• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19 
20 #include <utils/threads.h>
21 #include <utils/Log.h>
22 
23 #include <cutils/sched_policy.h>
24 #include <cutils/properties.h>
25 
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <memory.h>
29 #include <errno.h>
30 #include <assert.h>
31 #include <unistd.h>
32 
33 #if defined(HAVE_PTHREADS)
34 # include <pthread.h>
35 # include <sched.h>
36 # include <sys/resource.h>
37 #ifdef HAVE_ANDROID_OS
38 # include <bionic_pthread.h>
39 #endif
40 #elif defined(HAVE_WIN32_THREADS)
41 # include <windows.h>
42 # include <stdint.h>
43 # include <process.h>
44 # define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
45 #endif
46 
47 #if defined(HAVE_PRCTL)
48 #include <sys/prctl.h>
49 #endif
50 
51 /*
52  * ===========================================================================
53  *      Thread wrappers
54  * ===========================================================================
55  */
56 
57 using namespace android;
58 
59 // ----------------------------------------------------------------------------
60 #if defined(HAVE_PTHREADS)
61 // ----------------------------------------------------------------------------
62 
63 /*
64  * Create and run a new thread.
65  *
66  * We create it "detached", so it cleans up after itself.
67  */
68 
69 typedef void* (*android_pthread_entry)(void*);
70 
71 static pthread_once_t gDoSchedulingGroupOnce = PTHREAD_ONCE_INIT;
72 static bool gDoSchedulingGroup = true;
73 
checkDoSchedulingGroup(void)74 static void checkDoSchedulingGroup(void) {
75     char buf[PROPERTY_VALUE_MAX];
76     int len = property_get("debug.sys.noschedgroups", buf, "");
77     if (len > 0) {
78         int temp;
79         if (sscanf(buf, "%d", &temp) == 1) {
80             gDoSchedulingGroup = temp == 0;
81         }
82     }
83 }
84 
85 struct thread_data_t {
86     thread_func_t   entryFunction;
87     void*           userData;
88     int             priority;
89     char *          threadName;
90 
91     // we use this trampoline when we need to set the priority with
92     // nice/setpriority, and name with prctl.
trampolinethread_data_t93     static int trampoline(const thread_data_t* t) {
94         thread_func_t f = t->entryFunction;
95         void* u = t->userData;
96         int prio = t->priority;
97         char * name = t->threadName;
98         delete t;
99         setpriority(PRIO_PROCESS, 0, prio);
100         pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
101         if (gDoSchedulingGroup) {
102             if (prio >= ANDROID_PRIORITY_BACKGROUND) {
103                 set_sched_policy(androidGetTid(), SP_BACKGROUND);
104             } else if (prio > ANDROID_PRIORITY_AUDIO) {
105                 set_sched_policy(androidGetTid(), SP_FOREGROUND);
106             } else {
107                 // defaults to that of parent, or as set by requestPriority()
108             }
109         }
110 
111         if (name) {
112 #if defined(HAVE_PRCTL)
113             // Mac OS doesn't have this, and we build libutil for the host too
114             int hasAt = 0;
115             int hasDot = 0;
116             char *s = name;
117             while (*s) {
118                 if (*s == '.') hasDot = 1;
119                 else if (*s == '@') hasAt = 1;
120                 s++;
121             }
122             int len = s - name;
123             if (len < 15 || hasAt || !hasDot) {
124                 s = name;
125             } else {
126                 s = name + len - 15;
127             }
128             prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
129 #endif
130             free(name);
131         }
132         return f(u);
133     }
134 };
135 
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)136 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
137                                void *userData,
138                                const char* threadName,
139                                int32_t threadPriority,
140                                size_t threadStackSize,
141                                android_thread_id_t *threadId)
142 {
143     pthread_attr_t attr;
144     pthread_attr_init(&attr);
145     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
146 
147 #ifdef HAVE_ANDROID_OS  /* valgrind is rejecting RT-priority create reqs */
148     if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
149         // Now that the pthread_t has a method to find the associated
150         // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
151         // this trampoline in some cases as the parent could set the properties
152         // for the child.  However, there would be a race condition because the
153         // child becomes ready immediately, and it doesn't work for the name.
154         // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
155         // proposed but not yet accepted.
156         thread_data_t* t = new thread_data_t;
157         t->priority = threadPriority;
158         t->threadName = threadName ? strdup(threadName) : NULL;
159         t->entryFunction = entryFunction;
160         t->userData = userData;
161         entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
162         userData = t;
163     }
164 #endif
165 
166     if (threadStackSize) {
167         pthread_attr_setstacksize(&attr, threadStackSize);
168     }
169 
170     errno = 0;
171     pthread_t thread;
172     int result = pthread_create(&thread, &attr,
173                     (android_pthread_entry)entryFunction, userData);
174     pthread_attr_destroy(&attr);
175     if (result != 0) {
176         ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
177              "(android threadPriority=%d)",
178             entryFunction, result, errno, threadPriority);
179         return 0;
180     }
181 
182     // Note that *threadID is directly available to the parent only, as it is
183     // assigned after the child starts.  Use memory barrier / lock if the child
184     // or other threads also need access.
185     if (threadId != NULL) {
186         *threadId = (android_thread_id_t)thread; // XXX: this is not portable
187     }
188     return 1;
189 }
190 
191 #ifdef HAVE_ANDROID_OS
android_thread_id_t_to_pthread(android_thread_id_t thread)192 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
193 {
194     return (pthread_t) thread;
195 }
196 #endif
197 
androidGetThreadId()198 android_thread_id_t androidGetThreadId()
199 {
200     return (android_thread_id_t)pthread_self();
201 }
202 
203 // ----------------------------------------------------------------------------
204 #elif defined(HAVE_WIN32_THREADS)
205 // ----------------------------------------------------------------------------
206 
207 /*
208  * Trampoline to make us __stdcall-compliant.
209  *
210  * We're expected to delete "vDetails" when we're done.
211  */
212 struct threadDetails {
213     int (*func)(void*);
214     void* arg;
215 };
threadIntermediary(void * vDetails)216 static __stdcall unsigned int threadIntermediary(void* vDetails)
217 {
218     struct threadDetails* pDetails = (struct threadDetails*) vDetails;
219     int result;
220 
221     result = (*(pDetails->func))(pDetails->arg);
222 
223     delete pDetails;
224 
225     ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
226     return (unsigned int) result;
227 }
228 
229 /*
230  * Create and run a new thread.
231  */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)232 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
233 {
234     HANDLE hThread;
235     struct threadDetails* pDetails = new threadDetails; // must be on heap
236     unsigned int thrdaddr;
237 
238     pDetails->func = fn;
239     pDetails->arg = arg;
240 
241 #if defined(HAVE__BEGINTHREADEX)
242     hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
243                     &thrdaddr);
244     if (hThread == 0)
245 #elif defined(HAVE_CREATETHREAD)
246     hThread = CreateThread(NULL, 0,
247                     (LPTHREAD_START_ROUTINE) threadIntermediary,
248                     (void*) pDetails, 0, (DWORD*) &thrdaddr);
249     if (hThread == NULL)
250 #endif
251     {
252         ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
253         return false;
254     }
255 
256 #if defined(HAVE_CREATETHREAD)
257     /* close the management handle */
258     CloseHandle(hThread);
259 #endif
260 
261     if (id != NULL) {
262       	*id = (android_thread_id_t)thrdaddr;
263     }
264 
265     return true;
266 }
267 
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)268 int androidCreateRawThreadEtc(android_thread_func_t fn,
269                                void *userData,
270                                const char* threadName,
271                                int32_t threadPriority,
272                                size_t threadStackSize,
273                                android_thread_id_t *threadId)
274 {
275     return doCreateThread(  fn, userData, threadId);
276 }
277 
androidGetThreadId()278 android_thread_id_t androidGetThreadId()
279 {
280     return (android_thread_id_t)GetCurrentThreadId();
281 }
282 
283 // ----------------------------------------------------------------------------
284 #else
285 #error "Threads not supported"
286 #endif
287 
288 // ----------------------------------------------------------------------------
289 
androidCreateThread(android_thread_func_t fn,void * arg)290 int androidCreateThread(android_thread_func_t fn, void* arg)
291 {
292     return createThreadEtc(fn, arg);
293 }
294 
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)295 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
296 {
297     return createThreadEtc(fn, arg, "android:unnamed_thread",
298                            PRIORITY_DEFAULT, 0, id);
299 }
300 
301 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
302 
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)303 int androidCreateThreadEtc(android_thread_func_t entryFunction,
304                             void *userData,
305                             const char* threadName,
306                             int32_t threadPriority,
307                             size_t threadStackSize,
308                             android_thread_id_t *threadId)
309 {
310     return gCreateThreadFn(entryFunction, userData, threadName,
311         threadPriority, threadStackSize, threadId);
312 }
313 
androidSetCreateThreadFunc(android_create_thread_fn func)314 void androidSetCreateThreadFunc(android_create_thread_fn func)
315 {
316     gCreateThreadFn = func;
317 }
318 
androidGetTid()319 pid_t androidGetTid()
320 {
321 #ifdef HAVE_GETTID
322     return gettid();
323 #else
324     return getpid();
325 #endif
326 }
327 
328 #ifdef HAVE_ANDROID_OS
androidSetThreadPriority(pid_t tid,int pri)329 int androidSetThreadPriority(pid_t tid, int pri)
330 {
331     int rc = 0;
332 
333 #if defined(HAVE_PTHREADS)
334     int lasterr = 0;
335 
336     pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
337     if (gDoSchedulingGroup) {
338         // set_sched_policy does not support tid == 0
339         int policy_tid;
340         if (tid == 0) {
341             policy_tid = androidGetTid();
342         } else {
343             policy_tid = tid;
344         }
345         if (pri >= ANDROID_PRIORITY_BACKGROUND) {
346             rc = set_sched_policy(policy_tid, SP_BACKGROUND);
347         } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
348             rc = set_sched_policy(policy_tid, SP_FOREGROUND);
349         }
350     }
351 
352     if (rc) {
353         lasterr = errno;
354     }
355 
356     if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
357         rc = INVALID_OPERATION;
358     } else {
359         errno = lasterr;
360     }
361 #endif
362 
363     return rc;
364 }
365 
androidGetThreadPriority(pid_t tid)366 int androidGetThreadPriority(pid_t tid) {
367 #if defined(HAVE_PTHREADS)
368     return getpriority(PRIO_PROCESS, tid);
369 #else
370     return ANDROID_PRIORITY_NORMAL;
371 #endif
372 }
373 
374 #endif
375 
376 namespace android {
377 
378 /*
379  * ===========================================================================
380  *      Mutex class
381  * ===========================================================================
382  */
383 
384 #if defined(HAVE_PTHREADS)
385 // implemented as inlines in threads.h
386 #elif defined(HAVE_WIN32_THREADS)
387 
388 Mutex::Mutex()
389 {
390     HANDLE hMutex;
391 
392     assert(sizeof(hMutex) == sizeof(mState));
393 
394     hMutex = CreateMutex(NULL, FALSE, NULL);
395     mState = (void*) hMutex;
396 }
397 
398 Mutex::Mutex(const char* name)
399 {
400     // XXX: name not used for now
401     HANDLE hMutex;
402 
403     assert(sizeof(hMutex) == sizeof(mState));
404 
405     hMutex = CreateMutex(NULL, FALSE, NULL);
406     mState = (void*) hMutex;
407 }
408 
409 Mutex::Mutex(int type, const char* name)
410 {
411     // XXX: type and name not used for now
412     HANDLE hMutex;
413 
414     assert(sizeof(hMutex) == sizeof(mState));
415 
416     hMutex = CreateMutex(NULL, FALSE, NULL);
417     mState = (void*) hMutex;
418 }
419 
420 Mutex::~Mutex()
421 {
422     CloseHandle((HANDLE) mState);
423 }
424 
425 status_t Mutex::lock()
426 {
427     DWORD dwWaitResult;
428     dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
429     return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
430 }
431 
432 void Mutex::unlock()
433 {
434     if (!ReleaseMutex((HANDLE) mState))
435         ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
436 }
437 
438 status_t Mutex::tryLock()
439 {
440     DWORD dwWaitResult;
441 
442     dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
443     if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
444         ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
445     return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
446 }
447 
448 #else
449 #error "Somebody forgot to implement threads for this platform."
450 #endif
451 
452 
453 /*
454  * ===========================================================================
455  *      Condition class
456  * ===========================================================================
457  */
458 
459 #if defined(HAVE_PTHREADS)
460 // implemented as inlines in threads.h
461 #elif defined(HAVE_WIN32_THREADS)
462 
463 /*
464  * Windows doesn't have a condition variable solution.  It's possible
465  * to create one, but it's easy to get it wrong.  For a discussion, and
466  * the origin of this implementation, see:
467  *
468  *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
469  *
470  * The implementation shown on the page does NOT follow POSIX semantics.
471  * As an optimization they require acquiring the external mutex before
472  * calling signal() and broadcast(), whereas POSIX only requires grabbing
473  * it before calling wait().  The implementation here has been un-optimized
474  * to have the correct behavior.
475  */
476 typedef struct WinCondition {
477     // Number of waiting threads.
478     int                 waitersCount;
479 
480     // Serialize access to waitersCount.
481     CRITICAL_SECTION    waitersCountLock;
482 
483     // Semaphore used to queue up threads waiting for the condition to
484     // become signaled.
485     HANDLE              sema;
486 
487     // An auto-reset event used by the broadcast/signal thread to wait
488     // for all the waiting thread(s) to wake up and be released from
489     // the semaphore.
490     HANDLE              waitersDone;
491 
492     // This mutex wouldn't be necessary if we required that the caller
493     // lock the external mutex before calling signal() and broadcast().
494     // I'm trying to mimic pthread semantics though.
495     HANDLE              internalMutex;
496 
497     // Keeps track of whether we were broadcasting or signaling.  This
498     // allows us to optimize the code if we're just signaling.
499     bool                wasBroadcast;
500 
501     status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
502     {
503         // Increment the wait count, avoiding race conditions.
504         EnterCriticalSection(&condState->waitersCountLock);
505         condState->waitersCount++;
506         //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
507         //    condState->waitersCount, getThreadId());
508         LeaveCriticalSection(&condState->waitersCountLock);
509 
510         DWORD timeout = INFINITE;
511         if (abstime) {
512             nsecs_t reltime = *abstime - systemTime();
513             if (reltime < 0)
514                 reltime = 0;
515             timeout = reltime/1000000;
516         }
517 
518         // Atomically release the external mutex and wait on the semaphore.
519         DWORD res =
520             SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
521 
522         //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
523 
524         // Reacquire lock to avoid race conditions.
525         EnterCriticalSection(&condState->waitersCountLock);
526 
527         // No longer waiting.
528         condState->waitersCount--;
529 
530         // Check to see if we're the last waiter after a broadcast.
531         bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
532 
533         //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
534         //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
535 
536         LeaveCriticalSection(&condState->waitersCountLock);
537 
538         // If we're the last waiter thread during this particular broadcast
539         // then signal broadcast() that we're all awake.  It'll drop the
540         // internal mutex.
541         if (lastWaiter) {
542             // Atomically signal the "waitersDone" event and wait until we
543             // can acquire the internal mutex.  We want to do this in one step
544             // because it ensures that everybody is in the mutex FIFO before
545             // any thread has a chance to run.  Without it, another thread
546             // could wake up, do work, and hop back in ahead of us.
547             SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
548                 INFINITE, FALSE);
549         } else {
550             // Grab the internal mutex.
551             WaitForSingleObject(condState->internalMutex, INFINITE);
552         }
553 
554         // Release the internal and grab the external.
555         ReleaseMutex(condState->internalMutex);
556         WaitForSingleObject(hMutex, INFINITE);
557 
558         return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
559     }
560 } WinCondition;
561 
562 /*
563  * Constructor.  Set up the WinCondition stuff.
564  */
565 Condition::Condition()
566 {
567     WinCondition* condState = new WinCondition;
568 
569     condState->waitersCount = 0;
570     condState->wasBroadcast = false;
571     // semaphore: no security, initial value of 0
572     condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
573     InitializeCriticalSection(&condState->waitersCountLock);
574     // auto-reset event, not signaled initially
575     condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
576     // used so we don't have to lock external mutex on signal/broadcast
577     condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
578 
579     mState = condState;
580 }
581 
582 /*
583  * Destructor.  Free Windows resources as well as our allocated storage.
584  */
585 Condition::~Condition()
586 {
587     WinCondition* condState = (WinCondition*) mState;
588     if (condState != NULL) {
589         CloseHandle(condState->sema);
590         CloseHandle(condState->waitersDone);
591         delete condState;
592     }
593 }
594 
595 
596 status_t Condition::wait(Mutex& mutex)
597 {
598     WinCondition* condState = (WinCondition*) mState;
599     HANDLE hMutex = (HANDLE) mutex.mState;
600 
601     return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
602 }
603 
604 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
605 {
606     WinCondition* condState = (WinCondition*) mState;
607     HANDLE hMutex = (HANDLE) mutex.mState;
608     nsecs_t absTime = systemTime()+reltime;
609 
610     return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
611 }
612 
613 /*
614  * Signal the condition variable, allowing one thread to continue.
615  */
616 void Condition::signal()
617 {
618     WinCondition* condState = (WinCondition*) mState;
619 
620     // Lock the internal mutex.  This ensures that we don't clash with
621     // broadcast().
622     WaitForSingleObject(condState->internalMutex, INFINITE);
623 
624     EnterCriticalSection(&condState->waitersCountLock);
625     bool haveWaiters = (condState->waitersCount > 0);
626     LeaveCriticalSection(&condState->waitersCountLock);
627 
628     // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
629     // down a notch.
630     if (haveWaiters)
631         ReleaseSemaphore(condState->sema, 1, 0);
632 
633     // Release internal mutex.
634     ReleaseMutex(condState->internalMutex);
635 }
636 
637 /*
638  * Signal the condition variable, allowing all threads to continue.
639  *
640  * First we have to wake up all threads waiting on the semaphore, then
641  * we wait until all of the threads have actually been woken before
642  * releasing the internal mutex.  This ensures that all threads are woken.
643  */
644 void Condition::broadcast()
645 {
646     WinCondition* condState = (WinCondition*) mState;
647 
648     // Lock the internal mutex.  This keeps the guys we're waking up
649     // from getting too far.
650     WaitForSingleObject(condState->internalMutex, INFINITE);
651 
652     EnterCriticalSection(&condState->waitersCountLock);
653     bool haveWaiters = false;
654 
655     if (condState->waitersCount > 0) {
656         haveWaiters = true;
657         condState->wasBroadcast = true;
658     }
659 
660     if (haveWaiters) {
661         // Wake up all the waiters.
662         ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
663 
664         LeaveCriticalSection(&condState->waitersCountLock);
665 
666         // Wait for all awakened threads to acquire the counting semaphore.
667         // The last guy who was waiting sets this.
668         WaitForSingleObject(condState->waitersDone, INFINITE);
669 
670         // Reset wasBroadcast.  (No crit section needed because nobody
671         // else can wake up to poke at it.)
672         condState->wasBroadcast = 0;
673     } else {
674         // nothing to do
675         LeaveCriticalSection(&condState->waitersCountLock);
676     }
677 
678     // Release internal mutex.
679     ReleaseMutex(condState->internalMutex);
680 }
681 
682 #else
683 #error "condition variables not supported on this platform"
684 #endif
685 
686 // ----------------------------------------------------------------------------
687 
688 /*
689  * This is our thread object!
690  */
691 
Thread(bool canCallJava)692 Thread::Thread(bool canCallJava)
693     :   mCanCallJava(canCallJava),
694         mThread(thread_id_t(-1)),
695         mLock("Thread::mLock"),
696         mStatus(NO_ERROR),
697         mExitPending(false), mRunning(false)
698 #ifdef HAVE_ANDROID_OS
699         , mTid(-1)
700 #endif
701 {
702 }
703 
~Thread()704 Thread::~Thread()
705 {
706 }
707 
readyToRun()708 status_t Thread::readyToRun()
709 {
710     return NO_ERROR;
711 }
712 
run(const char * name,int32_t priority,size_t stack)713 status_t Thread::run(const char* name, int32_t priority, size_t stack)
714 {
715     Mutex::Autolock _l(mLock);
716 
717     if (mRunning) {
718         // thread already started
719         return INVALID_OPERATION;
720     }
721 
722     // reset status and exitPending to their default value, so we can
723     // try again after an error happened (either below, or in readyToRun())
724     mStatus = NO_ERROR;
725     mExitPending = false;
726     mThread = thread_id_t(-1);
727 
728     // hold a strong reference on ourself
729     mHoldSelf = this;
730 
731     mRunning = true;
732 
733     bool res;
734     if (mCanCallJava) {
735         res = createThreadEtc(_threadLoop,
736                 this, name, priority, stack, &mThread);
737     } else {
738         res = androidCreateRawThreadEtc(_threadLoop,
739                 this, name, priority, stack, &mThread);
740     }
741 
742     if (res == false) {
743         mStatus = UNKNOWN_ERROR;   // something happened!
744         mRunning = false;
745         mThread = thread_id_t(-1);
746         mHoldSelf.clear();  // "this" may have gone away after this.
747 
748         return UNKNOWN_ERROR;
749     }
750 
751     // Do not refer to mStatus here: The thread is already running (may, in fact
752     // already have exited with a valid mStatus result). The NO_ERROR indication
753     // here merely indicates successfully starting the thread and does not
754     // imply successful termination/execution.
755     return NO_ERROR;
756 
757     // Exiting scope of mLock is a memory barrier and allows new thread to run
758 }
759 
_threadLoop(void * user)760 int Thread::_threadLoop(void* user)
761 {
762     Thread* const self = static_cast<Thread*>(user);
763 
764     sp<Thread> strong(self->mHoldSelf);
765     wp<Thread> weak(strong);
766     self->mHoldSelf.clear();
767 
768 #ifdef HAVE_ANDROID_OS
769     // this is very useful for debugging with gdb
770     self->mTid = gettid();
771 #endif
772 
773     bool first = true;
774 
775     do {
776         bool result;
777         if (first) {
778             first = false;
779             self->mStatus = self->readyToRun();
780             result = (self->mStatus == NO_ERROR);
781 
782             if (result && !self->exitPending()) {
783                 // Binder threads (and maybe others) rely on threadLoop
784                 // running at least once after a successful ::readyToRun()
785                 // (unless, of course, the thread has already been asked to exit
786                 // at that point).
787                 // This is because threads are essentially used like this:
788                 //   (new ThreadSubclass())->run();
789                 // The caller therefore does not retain a strong reference to
790                 // the thread and the thread would simply disappear after the
791                 // successful ::readyToRun() call instead of entering the
792                 // threadLoop at least once.
793                 result = self->threadLoop();
794             }
795         } else {
796             result = self->threadLoop();
797         }
798 
799         // establish a scope for mLock
800         {
801         Mutex::Autolock _l(self->mLock);
802         if (result == false || self->mExitPending) {
803             self->mExitPending = true;
804             self->mRunning = false;
805             // clear thread ID so that requestExitAndWait() does not exit if
806             // called by a new thread using the same thread ID as this one.
807             self->mThread = thread_id_t(-1);
808             // note that interested observers blocked in requestExitAndWait are
809             // awoken by broadcast, but blocked on mLock until break exits scope
810             self->mThreadExitedCondition.broadcast();
811             break;
812         }
813         }
814 
815         // Release our strong reference, to let a chance to the thread
816         // to die a peaceful death.
817         strong.clear();
818         // And immediately, re-acquire a strong reference for the next loop
819         strong = weak.promote();
820     } while(strong != 0);
821 
822     return 0;
823 }
824 
requestExit()825 void Thread::requestExit()
826 {
827     Mutex::Autolock _l(mLock);
828     mExitPending = true;
829 }
830 
requestExitAndWait()831 status_t Thread::requestExitAndWait()
832 {
833     Mutex::Autolock _l(mLock);
834     if (mThread == getThreadId()) {
835         ALOGW(
836         "Thread (this=%p): don't call waitForExit() from this "
837         "Thread object's thread. It's a guaranteed deadlock!",
838         this);
839 
840         return WOULD_BLOCK;
841     }
842 
843     mExitPending = true;
844 
845     while (mRunning == true) {
846         mThreadExitedCondition.wait(mLock);
847     }
848     // This next line is probably not needed any more, but is being left for
849     // historical reference. Note that each interested party will clear flag.
850     mExitPending = false;
851 
852     return mStatus;
853 }
854 
join()855 status_t Thread::join()
856 {
857     Mutex::Autolock _l(mLock);
858     if (mThread == getThreadId()) {
859         ALOGW(
860         "Thread (this=%p): don't call join() from this "
861         "Thread object's thread. It's a guaranteed deadlock!",
862         this);
863 
864         return WOULD_BLOCK;
865     }
866 
867     while (mRunning == true) {
868         mThreadExitedCondition.wait(mLock);
869     }
870 
871     return mStatus;
872 }
873 
874 #ifdef HAVE_ANDROID_OS
getTid() const875 pid_t Thread::getTid() const
876 {
877     // mTid is not defined until the child initializes it, and the caller may need it earlier
878     Mutex::Autolock _l(mLock);
879     pid_t tid;
880     if (mRunning) {
881         pthread_t pthread = android_thread_id_t_to_pthread(mThread);
882         tid = __pthread_gettid(pthread);
883     } else {
884         ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
885         tid = -1;
886     }
887     return tid;
888 }
889 #endif
890 
exitPending() const891 bool Thread::exitPending() const
892 {
893     Mutex::Autolock _l(mLock);
894     return mExitPending;
895 }
896 
897 
898 
899 };  // namespace android
900