1 /*
2 *******************************************************************************
3 * Copyright (C) 1997-2011, International Business Machines Corporation and *
4 * others. All Rights Reserved. *
5 *******************************************************************************
6 *
7 * File DECIMFMT.CPP
8 *
9 * Modification History:
10 *
11 * Date Name Description
12 * 02/19/97 aliu Converted from java.
13 * 03/20/97 clhuang Implemented with new APIs.
14 * 03/31/97 aliu Moved isLONG_MIN to DigitList, and fixed it.
15 * 04/3/97 aliu Rewrote parsing and formatting completely, and
16 * cleaned up and debugged. Actually works now.
17 * Implemented NAN and INF handling, for both parsing
18 * and formatting. Extensive testing & debugging.
19 * 04/10/97 aliu Modified to compile on AIX.
20 * 04/16/97 aliu Rewrote to use DigitList, which has been resurrected.
21 * Changed DigitCount to int per code review.
22 * 07/09/97 helena Made ParsePosition into a class.
23 * 08/26/97 aliu Extensive changes to applyPattern; completely
24 * rewritten from the Java.
25 * 09/09/97 aliu Ported over support for exponential formats.
26 * 07/20/98 stephen JDK 1.2 sync up.
27 * Various instances of '0' replaced with 'NULL'
28 * Check for grouping size in subFormat()
29 * Brought subParse() in line with Java 1.2
30 * Added method appendAffix()
31 * 08/24/1998 srl Removed Mutex calls. This is not a thread safe class!
32 * 02/22/99 stephen Removed character literals for EBCDIC safety
33 * 06/24/99 helena Integrated Alan's NF enhancements and Java2 bug fixes
34 * 06/28/99 stephen Fixed bugs in toPattern().
35 * 06/29/99 stephen Fixed operator= to copy fFormatWidth, fPad,
36 * fPadPosition
37 ********************************************************************************
38 */
39
40 #include "unicode/utypes.h"
41
42 #if !UCONFIG_NO_FORMATTING
43
44 #include "fphdlimp.h"
45 #include "unicode/decimfmt.h"
46 #include "unicode/choicfmt.h"
47 #include "unicode/ucurr.h"
48 #include "unicode/ustring.h"
49 #include "unicode/dcfmtsym.h"
50 #include "unicode/ures.h"
51 #include "unicode/uchar.h"
52 #include "unicode/uniset.h"
53 #include "unicode/curramt.h"
54 #include "unicode/currpinf.h"
55 #include "unicode/plurrule.h"
56 #include "uresimp.h"
57 #include "ucurrimp.h"
58 #include "charstr.h"
59 #include "cmemory.h"
60 #include "patternprops.h"
61 #include "digitlst.h"
62 #include "cstring.h"
63 #include "umutex.h"
64 #include "uassert.h"
65 #include "putilimp.h"
66 #include <math.h>
67 #include "hash.h"
68 #include "decfmtst.h"
69
70
71 U_NAMESPACE_BEGIN
72
73 /* For currency parsing purose,
74 * Need to remember all prefix patterns and suffix patterns of
75 * every currency format pattern,
76 * including the pattern of default currecny style
77 * and plural currency style. And the patterns are set through applyPattern.
78 */
79 struct AffixPatternsForCurrency : public UMemory {
80 // negative prefix pattern
81 UnicodeString negPrefixPatternForCurrency;
82 // negative suffix pattern
83 UnicodeString negSuffixPatternForCurrency;
84 // positive prefix pattern
85 UnicodeString posPrefixPatternForCurrency;
86 // positive suffix pattern
87 UnicodeString posSuffixPatternForCurrency;
88 int8_t patternType;
89
AffixPatternsForCurrencyAffixPatternsForCurrency90 AffixPatternsForCurrency(const UnicodeString& negPrefix,
91 const UnicodeString& negSuffix,
92 const UnicodeString& posPrefix,
93 const UnicodeString& posSuffix,
94 int8_t type) {
95 negPrefixPatternForCurrency = negPrefix;
96 negSuffixPatternForCurrency = negSuffix;
97 posPrefixPatternForCurrency = posPrefix;
98 posSuffixPatternForCurrency = posSuffix;
99 patternType = type;
100 }
101 };
102
103 /* affix for currency formatting when the currency sign in the pattern
104 * equals to 3, such as the pattern contains 3 currency sign or
105 * the formatter style is currency plural format style.
106 */
107 struct AffixesForCurrency : public UMemory {
108 // negative prefix
109 UnicodeString negPrefixForCurrency;
110 // negative suffix
111 UnicodeString negSuffixForCurrency;
112 // positive prefix
113 UnicodeString posPrefixForCurrency;
114 // positive suffix
115 UnicodeString posSuffixForCurrency;
116
117 int32_t formatWidth;
118
AffixesForCurrencyAffixesForCurrency119 AffixesForCurrency(const UnicodeString& negPrefix,
120 const UnicodeString& negSuffix,
121 const UnicodeString& posPrefix,
122 const UnicodeString& posSuffix) {
123 negPrefixForCurrency = negPrefix;
124 negSuffixForCurrency = negSuffix;
125 posPrefixForCurrency = posPrefix;
126 posSuffixForCurrency = posSuffix;
127 }
128 };
129
130 U_CDECL_BEGIN
131
132 /**
133 * @internal ICU 4.2
134 */
135 static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
136
137 /**
138 * @internal ICU 4.2
139 */
140 static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
141
142
143 static UBool
decimfmtAffixValueComparator(UHashTok val1,UHashTok val2)144 U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
145 const AffixesForCurrency* affix_1 =
146 (AffixesForCurrency*)val1.pointer;
147 const AffixesForCurrency* affix_2 =
148 (AffixesForCurrency*)val2.pointer;
149 return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
150 affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
151 affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
152 affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
153 }
154
155
156 static UBool
decimfmtAffixPatternValueComparator(UHashTok val1,UHashTok val2)157 U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
158 const AffixPatternsForCurrency* affix_1 =
159 (AffixPatternsForCurrency*)val1.pointer;
160 const AffixPatternsForCurrency* affix_2 =
161 (AffixPatternsForCurrency*)val2.pointer;
162 return affix_1->negPrefixPatternForCurrency ==
163 affix_2->negPrefixPatternForCurrency &&
164 affix_1->negSuffixPatternForCurrency ==
165 affix_2->negSuffixPatternForCurrency &&
166 affix_1->posPrefixPatternForCurrency ==
167 affix_2->posPrefixPatternForCurrency &&
168 affix_1->posSuffixPatternForCurrency ==
169 affix_2->posSuffixPatternForCurrency &&
170 affix_1->patternType == affix_2->patternType;
171 }
172
173 U_CDECL_END
174
175
176 //#define FMT_DEBUG
177
178 #ifdef FMT_DEBUG
179 #include <stdio.h>
debugout(UnicodeString s)180 static void debugout(UnicodeString s) {
181 char buf[2000];
182 s.extract((int32_t) 0, s.length(), buf);
183 printf("%s\n", buf);
184 }
185 #define debug(x) printf("%s\n", x);
186 #else
187 #define debugout(x)
188 #define debug(x)
189 #endif
190
191
192
193 // *****************************************************************************
194 // class DecimalFormat
195 // *****************************************************************************
196
197 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
198
199 // Constants for characters used in programmatic (unlocalized) patterns.
200 #define kPatternZeroDigit ((UChar)0x0030) /*'0'*/
201 #define kPatternSignificantDigit ((UChar)0x0040) /*'@'*/
202 #define kPatternGroupingSeparator ((UChar)0x002C) /*','*/
203 #define kPatternDecimalSeparator ((UChar)0x002E) /*'.'*/
204 #define kPatternPerMill ((UChar)0x2030)
205 #define kPatternPercent ((UChar)0x0025) /*'%'*/
206 #define kPatternDigit ((UChar)0x0023) /*'#'*/
207 #define kPatternSeparator ((UChar)0x003B) /*';'*/
208 #define kPatternExponent ((UChar)0x0045) /*'E'*/
209 #define kPatternPlus ((UChar)0x002B) /*'+'*/
210 #define kPatternMinus ((UChar)0x002D) /*'-'*/
211 #define kPatternPadEscape ((UChar)0x002A) /*'*'*/
212 #define kQuote ((UChar)0x0027) /*'\''*/
213 /**
214 * The CURRENCY_SIGN is the standard Unicode symbol for currency. It
215 * is used in patterns and substitued with either the currency symbol,
216 * or if it is doubled, with the international currency symbol. If the
217 * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
218 * replaced with the monetary decimal separator.
219 */
220 #define kCurrencySign ((UChar)0x00A4)
221 #define kDefaultPad ((UChar)0x0020) /* */
222
223 const int32_t DecimalFormat::kDoubleIntegerDigits = 309;
224 const int32_t DecimalFormat::kDoubleFractionDigits = 340;
225
226 const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
227
228 /**
229 * These are the tags we expect to see in normal resource bundle files associated
230 * with a locale.
231 */
232 const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
233 static const char fgNumberElements[]="NumberElements";
234 static const char fgLatn[]="latn";
235 static const char fgPatterns[]="patterns";
236 static const char fgDecimalFormat[]="decimalFormat";
237 static const char fgCurrencyFormat[]="currencyFormat";
238 static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
239
_min(int32_t a,int32_t b)240 inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
_max(int32_t a,int32_t b)241 inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
242
243 //------------------------------------------------------------------------------
244 // Constructs a DecimalFormat instance in the default locale.
245
DecimalFormat(UErrorCode & status)246 DecimalFormat::DecimalFormat(UErrorCode& status) {
247 init();
248 UParseError parseError;
249 construct(status, parseError);
250 }
251
252 //------------------------------------------------------------------------------
253 // Constructs a DecimalFormat instance with the specified number format
254 // pattern in the default locale.
255
DecimalFormat(const UnicodeString & pattern,UErrorCode & status)256 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
257 UErrorCode& status) {
258 init();
259 UParseError parseError;
260 construct(status, parseError, &pattern);
261 }
262
263 //------------------------------------------------------------------------------
264 // Constructs a DecimalFormat instance with the specified number format
265 // pattern and the number format symbols in the default locale. The
266 // created instance owns the symbols.
267
DecimalFormat(const UnicodeString & pattern,DecimalFormatSymbols * symbolsToAdopt,UErrorCode & status)268 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
269 DecimalFormatSymbols* symbolsToAdopt,
270 UErrorCode& status) {
271 init();
272 UParseError parseError;
273 if (symbolsToAdopt == NULL)
274 status = U_ILLEGAL_ARGUMENT_ERROR;
275 construct(status, parseError, &pattern, symbolsToAdopt);
276 }
277
DecimalFormat(const UnicodeString & pattern,DecimalFormatSymbols * symbolsToAdopt,UParseError & parseErr,UErrorCode & status)278 DecimalFormat::DecimalFormat( const UnicodeString& pattern,
279 DecimalFormatSymbols* symbolsToAdopt,
280 UParseError& parseErr,
281 UErrorCode& status) {
282 init();
283 if (symbolsToAdopt == NULL)
284 status = U_ILLEGAL_ARGUMENT_ERROR;
285 construct(status,parseErr, &pattern, symbolsToAdopt);
286 }
287
288 //------------------------------------------------------------------------------
289 // Constructs a DecimalFormat instance with the specified number format
290 // pattern and the number format symbols in the default locale. The
291 // created instance owns the clone of the symbols.
292
DecimalFormat(const UnicodeString & pattern,const DecimalFormatSymbols & symbols,UErrorCode & status)293 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
294 const DecimalFormatSymbols& symbols,
295 UErrorCode& status) {
296 init();
297 UParseError parseError;
298 construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
299 }
300
301 //------------------------------------------------------------------------------
302 // Constructs a DecimalFormat instance with the specified number format
303 // pattern, the number format symbols, and the number format style.
304 // The created instance owns the clone of the symbols.
305
DecimalFormat(const UnicodeString & pattern,DecimalFormatSymbols * symbolsToAdopt,UNumberFormatStyle style,UErrorCode & status)306 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
307 DecimalFormatSymbols* symbolsToAdopt,
308 UNumberFormatStyle style,
309 UErrorCode& status) {
310 init();
311 fStyle = style;
312 UParseError parseError;
313 construct(status, parseError, &pattern, symbolsToAdopt);
314 }
315
316 //-----------------------------------------------------------------------------
317 // Common DecimalFormat initialization.
318 // Put all fields of an uninitialized object into a known state.
319 // Common code, shared by all constructors.
320 void
init()321 DecimalFormat::init() {
322 fPosPrefixPattern = 0;
323 fPosSuffixPattern = 0;
324 fNegPrefixPattern = 0;
325 fNegSuffixPattern = 0;
326 fCurrencyChoice = 0;
327 fMultiplier = NULL;
328 fGroupingSize = 0;
329 fGroupingSize2 = 0;
330 fDecimalSeparatorAlwaysShown = FALSE;
331 fSymbols = NULL;
332 fUseSignificantDigits = FALSE;
333 fMinSignificantDigits = 1;
334 fMaxSignificantDigits = 6;
335 fUseExponentialNotation = FALSE;
336 fMinExponentDigits = 0;
337 fExponentSignAlwaysShown = FALSE;
338 fRoundingIncrement = 0;
339 fRoundingMode = kRoundHalfEven;
340 fPad = 0;
341 fFormatWidth = 0;
342 fPadPosition = kPadBeforePrefix;
343 fStyle = UNUM_DECIMAL;
344 fCurrencySignCount = 0;
345 fAffixPatternsForCurrency = NULL;
346 fAffixesForCurrency = NULL;
347 fPluralAffixesForCurrency = NULL;
348 fCurrencyPluralInfo = NULL;
349 }
350
351 //------------------------------------------------------------------------------
352 // Constructs a DecimalFormat instance with the specified number format
353 // pattern and the number format symbols in the desired locale. The
354 // created instance owns the symbols.
355
356 void
construct(UErrorCode & status,UParseError & parseErr,const UnicodeString * pattern,DecimalFormatSymbols * symbolsToAdopt)357 DecimalFormat::construct(UErrorCode& status,
358 UParseError& parseErr,
359 const UnicodeString* pattern,
360 DecimalFormatSymbols* symbolsToAdopt)
361 {
362 fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
363 fRoundingIncrement = NULL;
364 fRoundingMode = kRoundHalfEven;
365 fPad = kPatternPadEscape;
366 fPadPosition = kPadBeforePrefix;
367 if (U_FAILURE(status))
368 return;
369
370 fPosPrefixPattern = fPosSuffixPattern = NULL;
371 fNegPrefixPattern = fNegSuffixPattern = NULL;
372 setMultiplier(1);
373 fGroupingSize = 3;
374 fGroupingSize2 = 0;
375 fDecimalSeparatorAlwaysShown = FALSE;
376 fUseExponentialNotation = FALSE;
377 fMinExponentDigits = 0;
378
379 if (fSymbols == NULL)
380 {
381 fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
382 /* test for NULL */
383 if (fSymbols == 0) {
384 status = U_MEMORY_ALLOCATION_ERROR;
385 return;
386 }
387 }
388
389 UnicodeString str;
390 // Uses the default locale's number format pattern if there isn't
391 // one specified.
392 if (pattern == NULL)
393 {
394 int32_t len = 0;
395 UResourceBundle *resource = ures_open(NULL, Locale::getDefault().getName(), &status);
396
397 resource = ures_getByKeyWithFallback(resource, fgNumberElements, resource, &status);
398 // TODO : Get the pattern based on the active numbering system for the locale. Right now assumes "latn".
399 resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
400 resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
401 const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
402 str.setTo(TRUE, resStr, len);
403 pattern = &str;
404 ures_close(resource);
405 }
406
407 if (U_FAILURE(status))
408 {
409 return;
410 }
411
412 if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
413 // If it looks like we are going to use a currency pattern
414 // then do the time consuming lookup.
415 setCurrencyForSymbols();
416 } else {
417 setCurrencyInternally(NULL, status);
418 }
419
420 const UnicodeString* patternUsed;
421 UnicodeString currencyPluralPatternForOther;
422 // apply pattern
423 if (fStyle == UNUM_CURRENCY_PLURAL) {
424 fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
425 if (U_FAILURE(status)) {
426 return;
427 }
428
429 // the pattern used in format is not fixed until formatting,
430 // in which, the number is known and
431 // will be used to pick the right pattern based on plural count.
432 // Here, set the pattern as the pattern of plural count == "other".
433 // For most locale, the patterns are probably the same for all
434 // plural count. If not, the right pattern need to be re-applied
435 // during format.
436 fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
437 patternUsed = ¤cyPluralPatternForOther;
438 // TODO: not needed?
439 setCurrencyForSymbols();
440
441 } else {
442 patternUsed = pattern;
443 }
444
445 if (patternUsed->indexOf(kCurrencySign) != -1) {
446 // initialize for currency, not only for plural format,
447 // but also for mix parsing
448 if (fCurrencyPluralInfo == NULL) {
449 fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
450 if (U_FAILURE(status)) {
451 return;
452 }
453 }
454 // need it for mix parsing
455 setupCurrencyAffixPatterns(status);
456 // expanded affixes for plural names
457 if (patternUsed->indexOf(fgTripleCurrencySign, 3, 0) != -1) {
458 setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
459 }
460 }
461
462 applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
463
464 // expand affixes
465 if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
466 expandAffixAdjustWidth(NULL);
467 }
468
469 // If it was a currency format, apply the appropriate rounding by
470 // resetting the currency. NOTE: this copies fCurrency on top of itself.
471 if (fCurrencySignCount > fgCurrencySignCountZero) {
472 setCurrencyInternally(getCurrency(), status);
473 }
474 }
475
476
477 void
setupCurrencyAffixPatterns(UErrorCode & status)478 DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
479 if (U_FAILURE(status)) {
480 return;
481 }
482 UParseError parseErr;
483 fAffixPatternsForCurrency = initHashForAffixPattern(status);
484 if (U_FAILURE(status)) {
485 return;
486 }
487
488 // Save the default currency patterns of this locale.
489 // Here, chose onlyApplyPatternWithoutExpandAffix without
490 // expanding the affix patterns into affixes.
491 UnicodeString currencyPattern;
492 UErrorCode error = U_ZERO_ERROR;
493
494 UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
495 resource = ures_getByKeyWithFallback(resource, fgNumberElements, resource, &error);
496 // TODO : Get the pattern based on the active numbering system for the locale. Right now assumes "latn".
497 resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &error);
498 resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
499 int32_t patLen = 0;
500 const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat, &patLen, &error);
501 ures_close(resource);
502
503 if (U_SUCCESS(error)) {
504 applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
505 parseErr, status);
506 AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
507 *fNegPrefixPattern,
508 *fNegSuffixPattern,
509 *fPosPrefixPattern,
510 *fPosSuffixPattern,
511 UCURR_SYMBOL_NAME);
512 fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
513 }
514
515 // save the unique currency plural patterns of this locale.
516 Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
517 const UHashElement* element = NULL;
518 int32_t pos = -1;
519 Hashtable pluralPatternSet;
520 while ((element = pluralPtn->nextElement(pos)) != NULL) {
521 const UHashTok valueTok = element->value;
522 const UnicodeString* value = (UnicodeString*)valueTok.pointer;
523 const UHashTok keyTok = element->key;
524 const UnicodeString* key = (UnicodeString*)keyTok.pointer;
525 if (pluralPatternSet.geti(*value) != 1) {
526 pluralPatternSet.puti(*value, 1, status);
527 applyPatternWithoutExpandAffix(*value, false, parseErr, status);
528 AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
529 *fNegPrefixPattern,
530 *fNegSuffixPattern,
531 *fPosPrefixPattern,
532 *fPosSuffixPattern,
533 UCURR_LONG_NAME);
534 fAffixPatternsForCurrency->put(*key, affixPtn, status);
535 }
536 }
537 }
538
539
540 void
setupCurrencyAffixes(const UnicodeString & pattern,UBool setupForCurrentPattern,UBool setupForPluralPattern,UErrorCode & status)541 DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
542 UBool setupForCurrentPattern,
543 UBool setupForPluralPattern,
544 UErrorCode& status) {
545 if (U_FAILURE(status)) {
546 return;
547 }
548 UParseError parseErr;
549 if (setupForCurrentPattern) {
550 if (fAffixesForCurrency) {
551 deleteHashForAffix(fAffixesForCurrency);
552 }
553 fAffixesForCurrency = initHashForAffix(status);
554 if (U_SUCCESS(status)) {
555 applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
556 const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
557 StringEnumeration* keywords = pluralRules->getKeywords(status);
558 if (U_SUCCESS(status)) {
559 const UnicodeString* pluralCount;
560 while ((pluralCount = keywords->snext(status)) != NULL) {
561 if ( U_SUCCESS(status) ) {
562 expandAffixAdjustWidth(pluralCount);
563 AffixesForCurrency* affix = new AffixesForCurrency(
564 fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
565 fAffixesForCurrency->put(*pluralCount, affix, status);
566 }
567 }
568 }
569 delete keywords;
570 }
571 }
572
573 if (U_FAILURE(status)) {
574 return;
575 }
576
577 if (setupForPluralPattern) {
578 if (fPluralAffixesForCurrency) {
579 deleteHashForAffix(fPluralAffixesForCurrency);
580 }
581 fPluralAffixesForCurrency = initHashForAffix(status);
582 if (U_SUCCESS(status)) {
583 const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
584 StringEnumeration* keywords = pluralRules->getKeywords(status);
585 if (U_SUCCESS(status)) {
586 const UnicodeString* pluralCount;
587 while ((pluralCount = keywords->snext(status)) != NULL) {
588 if ( U_SUCCESS(status) ) {
589 UnicodeString ptn;
590 fCurrencyPluralInfo->getCurrencyPluralPattern(*pluralCount, ptn);
591 applyPatternInternally(*pluralCount, ptn, false, parseErr, status);
592 AffixesForCurrency* affix = new AffixesForCurrency(
593 fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
594 fPluralAffixesForCurrency->put(*pluralCount, affix, status);
595 }
596 }
597 }
598 delete keywords;
599 }
600 }
601 }
602
603
604 //------------------------------------------------------------------------------
605
~DecimalFormat()606 DecimalFormat::~DecimalFormat()
607 {
608 delete fPosPrefixPattern;
609 delete fPosSuffixPattern;
610 delete fNegPrefixPattern;
611 delete fNegSuffixPattern;
612 delete fCurrencyChoice;
613 delete fMultiplier;
614 delete fSymbols;
615 delete fRoundingIncrement;
616 deleteHashForAffixPattern();
617 deleteHashForAffix(fAffixesForCurrency);
618 deleteHashForAffix(fPluralAffixesForCurrency);
619 delete fCurrencyPluralInfo;
620 }
621
622 //------------------------------------------------------------------------------
623 // copy constructor
624
DecimalFormat(const DecimalFormat & source)625 DecimalFormat::DecimalFormat(const DecimalFormat &source) :
626 NumberFormat(source) {
627 init();
628 *this = source;
629 }
630
631 //------------------------------------------------------------------------------
632 // assignment operator
633
_copy_us_ptr(UnicodeString ** pdest,const UnicodeString * source)634 static void _copy_us_ptr(UnicodeString** pdest, const UnicodeString* source) {
635 if (source == NULL) {
636 delete *pdest;
637 *pdest = NULL;
638 } else if (*pdest == NULL) {
639 *pdest = new UnicodeString(*source);
640 } else {
641 **pdest = *source;
642 }
643 }
644
645 DecimalFormat&
operator =(const DecimalFormat & rhs)646 DecimalFormat::operator=(const DecimalFormat& rhs)
647 {
648 if(this != &rhs) {
649 NumberFormat::operator=(rhs);
650 fPositivePrefix = rhs.fPositivePrefix;
651 fPositiveSuffix = rhs.fPositiveSuffix;
652 fNegativePrefix = rhs.fNegativePrefix;
653 fNegativeSuffix = rhs.fNegativeSuffix;
654 _copy_us_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
655 _copy_us_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
656 _copy_us_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
657 _copy_us_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
658 if (rhs.fCurrencyChoice == 0) {
659 delete fCurrencyChoice;
660 fCurrencyChoice = 0;
661 } else {
662 fCurrencyChoice = (ChoiceFormat*) rhs.fCurrencyChoice->clone();
663 }
664 setRoundingIncrement(rhs.getRoundingIncrement());
665 fRoundingMode = rhs.fRoundingMode;
666 setMultiplier(rhs.getMultiplier());
667 fGroupingSize = rhs.fGroupingSize;
668 fGroupingSize2 = rhs.fGroupingSize2;
669 fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
670 if(fSymbols == NULL) {
671 fSymbols = new DecimalFormatSymbols(*rhs.fSymbols);
672 } else {
673 *fSymbols = *rhs.fSymbols;
674 }
675 fUseExponentialNotation = rhs.fUseExponentialNotation;
676 fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
677 /*Bertrand A. D. Update 98.03.17*/
678 fCurrencySignCount = rhs.fCurrencySignCount;
679 /*end of Update*/
680 fMinExponentDigits = rhs.fMinExponentDigits;
681
682 /* sfb 990629 */
683 fFormatWidth = rhs.fFormatWidth;
684 fPad = rhs.fPad;
685 fPadPosition = rhs.fPadPosition;
686 /* end sfb */
687 fMinSignificantDigits = rhs.fMinSignificantDigits;
688 fMaxSignificantDigits = rhs.fMaxSignificantDigits;
689 fUseSignificantDigits = rhs.fUseSignificantDigits;
690 fFormatPattern = rhs.fFormatPattern;
691 fStyle = rhs.fStyle;
692 fCurrencySignCount = rhs.fCurrencySignCount;
693 if (rhs.fCurrencyPluralInfo) {
694 delete fCurrencyPluralInfo;
695 fCurrencyPluralInfo = rhs.fCurrencyPluralInfo->clone();
696 }
697 if (rhs.fAffixPatternsForCurrency) {
698 UErrorCode status = U_ZERO_ERROR;
699 deleteHashForAffixPattern();
700 fAffixPatternsForCurrency = initHashForAffixPattern(status);
701 copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
702 fAffixPatternsForCurrency, status);
703 }
704 if (rhs.fAffixesForCurrency) {
705 UErrorCode status = U_ZERO_ERROR;
706 deleteHashForAffix(fAffixesForCurrency);
707 fAffixesForCurrency = initHashForAffixPattern(status);
708 copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
709 }
710 if (rhs.fPluralAffixesForCurrency) {
711 UErrorCode status = U_ZERO_ERROR;
712 deleteHashForAffix(fPluralAffixesForCurrency);
713 fPluralAffixesForCurrency = initHashForAffixPattern(status);
714 copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
715 }
716 }
717 return *this;
718 }
719
720 //------------------------------------------------------------------------------
721
722 UBool
operator ==(const Format & that) const723 DecimalFormat::operator==(const Format& that) const
724 {
725 if (this == &that)
726 return TRUE;
727
728 // NumberFormat::operator== guarantees this cast is safe
729 const DecimalFormat* other = (DecimalFormat*)&that;
730
731 #ifdef FMT_DEBUG
732 // This code makes it easy to determine why two format objects that should
733 // be equal aren't.
734 UBool first = TRUE;
735 if (!NumberFormat::operator==(that)) {
736 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
737 debug("NumberFormat::!=");
738 } else {
739 if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
740 fPositivePrefix == other->fPositivePrefix)
741 || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
742 *fPosPrefixPattern == *other->fPosPrefixPattern))) {
743 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
744 debug("Pos Prefix !=");
745 }
746 if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
747 fPositiveSuffix == other->fPositiveSuffix)
748 || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
749 *fPosSuffixPattern == *other->fPosSuffixPattern))) {
750 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
751 debug("Pos Suffix !=");
752 }
753 if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
754 fNegativePrefix == other->fNegativePrefix)
755 || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
756 *fNegPrefixPattern == *other->fNegPrefixPattern))) {
757 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
758 debug("Neg Prefix ");
759 if (fNegPrefixPattern == NULL) {
760 debug("NULL(");
761 debugout(fNegativePrefix);
762 debug(")");
763 } else {
764 debugout(*fNegPrefixPattern);
765 }
766 debug(" != ");
767 if (other->fNegPrefixPattern == NULL) {
768 debug("NULL(");
769 debugout(other->fNegativePrefix);
770 debug(")");
771 } else {
772 debugout(*other->fNegPrefixPattern);
773 }
774 }
775 if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
776 fNegativeSuffix == other->fNegativeSuffix)
777 || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
778 *fNegSuffixPattern == *other->fNegSuffixPattern))) {
779 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
780 debug("Neg Suffix ");
781 if (fNegSuffixPattern == NULL) {
782 debug("NULL(");
783 debugout(fNegativeSuffix);
784 debug(")");
785 } else {
786 debugout(*fNegSuffixPattern);
787 }
788 debug(" != ");
789 if (other->fNegSuffixPattern == NULL) {
790 debug("NULL(");
791 debugout(other->fNegativeSuffix);
792 debug(")");
793 } else {
794 debugout(*other->fNegSuffixPattern);
795 }
796 }
797 if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
798 || (fRoundingIncrement != NULL &&
799 other->fRoundingIncrement != NULL &&
800 *fRoundingIncrement == *other->fRoundingIncrement))) {
801 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
802 debug("Rounding Increment !=");
803 }
804 if (getMultiplier() != other->getMultiplier()) {
805 if (first) { printf("[ "); first = FALSE; }
806 printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
807 }
808 if (fGroupingSize != other->fGroupingSize) {
809 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
810 printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
811 }
812 if (fGroupingSize2 != other->fGroupingSize2) {
813 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
814 printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
815 }
816 if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
817 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
818 printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
819 }
820 if (fUseExponentialNotation != other->fUseExponentialNotation) {
821 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
822 debug("Use Exp !=");
823 }
824 if (!(!fUseExponentialNotation ||
825 fMinExponentDigits != other->fMinExponentDigits)) {
826 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
827 debug("Exp Digits !=");
828 }
829 if (*fSymbols != *(other->fSymbols)) {
830 if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
831 debug("Symbols !=");
832 }
833 // TODO Add debug stuff for significant digits here
834 if (fUseSignificantDigits != other->fUseSignificantDigits) {
835 debug("fUseSignificantDigits !=");
836 }
837 if (fUseSignificantDigits &&
838 fMinSignificantDigits != other->fMinSignificantDigits) {
839 debug("fMinSignificantDigits !=");
840 }
841 if (fUseSignificantDigits &&
842 fMaxSignificantDigits != other->fMaxSignificantDigits) {
843 debug("fMaxSignificantDigits !=");
844 }
845
846 if (!first) { printf(" ]"); }
847 if (fCurrencySignCount != other->fCurrencySignCount) {
848 debug("fCurrencySignCount !=");
849 }
850 if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
851 debug("fCurrencyPluralInfo == ");
852 if (fCurrencyPluralInfo == NULL) {
853 debug("fCurrencyPluralInfo == NULL");
854 }
855 }
856 if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
857 *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
858 debug("fCurrencyPluralInfo !=");
859 }
860 if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
861 fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
862 debug("fCurrencyPluralInfo one NULL, the other not");
863 }
864 if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
865 debug("fCurrencyPluralInfo == ");
866 }
867 }
868 #endif
869
870 return (NumberFormat::operator==(that) &&
871 ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
872 (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
873 (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
874 fPositivePrefix == other->fPositivePrefix)
875 || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
876 *fPosPrefixPattern == *other->fPosPrefixPattern)) &&
877 ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
878 fPositiveSuffix == other->fPositiveSuffix)
879 || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
880 *fPosSuffixPattern == *other->fPosSuffixPattern)) &&
881 ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
882 fNegativePrefix == other->fNegativePrefix)
883 || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
884 *fNegPrefixPattern == *other->fNegPrefixPattern)) &&
885 ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
886 fNegativeSuffix == other->fNegativeSuffix)
887 || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
888 *fNegSuffixPattern == *other->fNegSuffixPattern)))) &&
889 ((fRoundingIncrement == other->fRoundingIncrement) // both null
890 || (fRoundingIncrement != NULL &&
891 other->fRoundingIncrement != NULL &&
892 *fRoundingIncrement == *other->fRoundingIncrement)) &&
893 getMultiplier() == other->getMultiplier() &&
894 fGroupingSize == other->fGroupingSize &&
895 fGroupingSize2 == other->fGroupingSize2 &&
896 fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
897 fUseExponentialNotation == other->fUseExponentialNotation &&
898 (!fUseExponentialNotation ||
899 fMinExponentDigits == other->fMinExponentDigits) &&
900 *fSymbols == *(other->fSymbols) &&
901 fUseSignificantDigits == other->fUseSignificantDigits &&
902 (!fUseSignificantDigits ||
903 (fMinSignificantDigits == other->fMinSignificantDigits &&
904 fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
905 fCurrencySignCount == other->fCurrencySignCount &&
906 ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
907 fCurrencyPluralInfo == NULL) ||
908 (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
909 *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))));
910 }
911
912 //------------------------------------------------------------------------------
913
914 Format*
clone() const915 DecimalFormat::clone() const
916 {
917 return new DecimalFormat(*this);
918 }
919
920 //------------------------------------------------------------------------------
921
922 UnicodeString&
format(int32_t number,UnicodeString & appendTo,FieldPosition & fieldPosition) const923 DecimalFormat::format(int32_t number,
924 UnicodeString& appendTo,
925 FieldPosition& fieldPosition) const
926 {
927 return format((int64_t)number, appendTo, fieldPosition);
928 }
929
930 UnicodeString&
format(int32_t number,UnicodeString & appendTo,FieldPositionIterator * posIter,UErrorCode & status) const931 DecimalFormat::format(int32_t number,
932 UnicodeString& appendTo,
933 FieldPositionIterator* posIter,
934 UErrorCode& status) const
935 {
936 return format((int64_t)number, appendTo, posIter, status);
937 }
938
939 //------------------------------------------------------------------------------
940
941 UnicodeString&
format(int64_t number,UnicodeString & appendTo,FieldPosition & fieldPosition) const942 DecimalFormat::format(int64_t number,
943 UnicodeString& appendTo,
944 FieldPosition& fieldPosition) const
945 {
946 FieldPositionOnlyHandler handler(fieldPosition);
947 return _format(number, appendTo, handler);
948 }
949
950 UnicodeString&
format(int64_t number,UnicodeString & appendTo,FieldPositionIterator * posIter,UErrorCode & status) const951 DecimalFormat::format(int64_t number,
952 UnicodeString& appendTo,
953 FieldPositionIterator* posIter,
954 UErrorCode& status) const
955 {
956 FieldPositionIteratorHandler handler(posIter, status);
957 return _format(number, appendTo, handler);
958 }
959
960 UnicodeString&
_format(int64_t number,UnicodeString & appendTo,FieldPositionHandler & handler) const961 DecimalFormat::_format(int64_t number,
962 UnicodeString& appendTo,
963 FieldPositionHandler& handler) const
964 {
965 UErrorCode status = U_ZERO_ERROR;
966 DigitList digits;
967 digits.set(number);
968 return _format(digits, appendTo, handler, status);
969 }
970
971 //------------------------------------------------------------------------------
972
973 UnicodeString&
format(double number,UnicodeString & appendTo,FieldPosition & fieldPosition) const974 DecimalFormat::format( double number,
975 UnicodeString& appendTo,
976 FieldPosition& fieldPosition) const
977 {
978 FieldPositionOnlyHandler handler(fieldPosition);
979 return _format(number, appendTo, handler);
980 }
981
982 UnicodeString&
format(double number,UnicodeString & appendTo,FieldPositionIterator * posIter,UErrorCode & status) const983 DecimalFormat::format( double number,
984 UnicodeString& appendTo,
985 FieldPositionIterator* posIter,
986 UErrorCode& status) const
987 {
988 FieldPositionIteratorHandler handler(posIter, status);
989 return _format(number, appendTo, handler);
990 }
991
992 UnicodeString&
_format(double number,UnicodeString & appendTo,FieldPositionHandler & handler) const993 DecimalFormat::_format( double number,
994 UnicodeString& appendTo,
995 FieldPositionHandler& handler) const
996 {
997 // Special case for NaN, sets the begin and end index to be the
998 // the string length of localized name of NaN.
999 // TODO: let NaNs go through DigitList.
1000 if (uprv_isNaN(number))
1001 {
1002 int begin = appendTo.length();
1003 appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1004
1005 handler.addAttribute(kIntegerField, begin, appendTo.length());
1006
1007 addPadding(appendTo, handler, 0, 0);
1008 return appendTo;
1009 }
1010
1011 UErrorCode status = U_ZERO_ERROR;
1012 DigitList digits;
1013 digits.set(number);
1014 _format(digits, appendTo, handler, status);
1015 // No way to return status from here.
1016 return appendTo;
1017 }
1018
1019 //------------------------------------------------------------------------------
1020
1021
1022 UnicodeString&
format(const StringPiece & number,UnicodeString & toAppendTo,FieldPositionIterator * posIter,UErrorCode & status) const1023 DecimalFormat::format(const StringPiece &number,
1024 UnicodeString &toAppendTo,
1025 FieldPositionIterator *posIter,
1026 UErrorCode &status) const
1027 {
1028 DigitList dnum;
1029 dnum.set(number, status);
1030 if (U_FAILURE(status)) {
1031 return toAppendTo;
1032 }
1033 FieldPositionIteratorHandler handler(posIter, status);
1034 _format(dnum, toAppendTo, handler, status);
1035 return toAppendTo;
1036 }
1037
1038
1039 UnicodeString&
format(const DigitList & number,UnicodeString & appendTo,FieldPositionIterator * posIter,UErrorCode & status) const1040 DecimalFormat::format(const DigitList &number,
1041 UnicodeString &appendTo,
1042 FieldPositionIterator *posIter,
1043 UErrorCode &status) const {
1044 FieldPositionIteratorHandler handler(posIter, status);
1045 _format(number, appendTo, handler, status);
1046 return appendTo;
1047 }
1048
1049
1050
1051 UnicodeString&
format(const DigitList & number,UnicodeString & appendTo,FieldPosition & pos,UErrorCode & status) const1052 DecimalFormat::format(const DigitList &number,
1053 UnicodeString& appendTo,
1054 FieldPosition& pos,
1055 UErrorCode &status) const {
1056 FieldPositionOnlyHandler handler(pos);
1057 _format(number, appendTo, handler, status);
1058 return appendTo;
1059 }
1060
1061
1062
1063 UnicodeString&
_format(const DigitList & number,UnicodeString & appendTo,FieldPositionHandler & handler,UErrorCode & status) const1064 DecimalFormat::_format(const DigitList &number,
1065 UnicodeString& appendTo,
1066 FieldPositionHandler& handler,
1067 UErrorCode &status) const
1068 {
1069 // Special case for NaN, sets the begin and end index to be the
1070 // the string length of localized name of NaN.
1071 if (number.isNaN())
1072 {
1073 int begin = appendTo.length();
1074 appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1075
1076 handler.addAttribute(kIntegerField, begin, appendTo.length());
1077
1078 addPadding(appendTo, handler, 0, 0);
1079 return appendTo;
1080 }
1081
1082 // Do this BEFORE checking to see if value is infinite or negative! Sets the
1083 // begin and end index to be length of the string composed of
1084 // localized name of Infinite and the positive/negative localized
1085 // signs.
1086
1087 DigitList adjustedNum(number); // Copy, so we do not alter the original.
1088 adjustedNum.setRoundingMode(fRoundingMode);
1089 if (fMultiplier != NULL) {
1090 adjustedNum.mult(*fMultiplier, status);
1091 }
1092
1093 /*
1094 * Note: sign is important for zero as well as non-zero numbers.
1095 * Proper detection of -0.0 is needed to deal with the
1096 * issues raised by bugs 4106658, 4106667, and 4147706. Liu 7/6/98.
1097 */
1098 UBool isNegative = !adjustedNum.isPositive();
1099
1100 // Apply rounding after multiplier
1101
1102 adjustedNum.fContext.status &= ~DEC_Inexact;
1103 if (fRoundingIncrement != NULL) {
1104 adjustedNum.div(*fRoundingIncrement, status);
1105 adjustedNum.toIntegralValue();
1106 adjustedNum.mult(*fRoundingIncrement, status);
1107 adjustedNum.trim();
1108 }
1109 if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
1110 status = U_FORMAT_INEXACT_ERROR;
1111 return appendTo;
1112 }
1113
1114
1115 // Special case for INFINITE,
1116 if (adjustedNum.isInfinite()) {
1117 int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
1118
1119 int begin = appendTo.length();
1120 appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
1121
1122 handler.addAttribute(kIntegerField, begin, appendTo.length());
1123
1124 int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
1125
1126 addPadding(appendTo, handler, prefixLen, suffixLen);
1127 return appendTo;
1128 }
1129
1130 if (fUseExponentialNotation || areSignificantDigitsUsed()) {
1131 int32_t sigDigits = precision();
1132 if (sigDigits > 0) {
1133 adjustedNum.round(sigDigits);
1134 }
1135 } else {
1136 // Fixed point format. Round to a set number of fraction digits.
1137 int32_t numFractionDigits = precision();
1138 adjustedNum.roundFixedPoint(numFractionDigits);
1139 }
1140 if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
1141 status = U_FORMAT_INEXACT_ERROR;
1142 return appendTo;
1143 }
1144
1145 return subformat(appendTo, handler, adjustedNum, FALSE);
1146 }
1147
1148
1149 UnicodeString&
format(const Formattable & obj,UnicodeString & appendTo,FieldPosition & fieldPosition,UErrorCode & status) const1150 DecimalFormat::format( const Formattable& obj,
1151 UnicodeString& appendTo,
1152 FieldPosition& fieldPosition,
1153 UErrorCode& status) const
1154 {
1155 return NumberFormat::format(obj, appendTo, fieldPosition, status);
1156 }
1157
1158 /**
1159 * Return true if a grouping separator belongs at the given
1160 * position, based on whether grouping is in use and the values of
1161 * the primary and secondary grouping interval.
1162 * @param pos the number of integer digits to the right of
1163 * the current position. Zero indicates the position after the
1164 * rightmost integer digit.
1165 * @return true if a grouping character belongs at the current
1166 * position.
1167 */
isGroupingPosition(int32_t pos) const1168 UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
1169 UBool result = FALSE;
1170 if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
1171 if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
1172 result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
1173 } else {
1174 result = pos % fGroupingSize == 0;
1175 }
1176 }
1177 return result;
1178 }
1179
1180 //------------------------------------------------------------------------------
1181
1182 /**
1183 * Complete the formatting of a finite number. On entry, the DigitList must
1184 * be filled in with the correct digits.
1185 */
1186 UnicodeString&
subformat(UnicodeString & appendTo,FieldPositionHandler & handler,DigitList & digits,UBool isInteger) const1187 DecimalFormat::subformat(UnicodeString& appendTo,
1188 FieldPositionHandler& handler,
1189 DigitList& digits,
1190 UBool isInteger) const
1191 {
1192 // char zero = '0';
1193 // DigitList returns digits as '0' thru '9', so we will need to
1194 // always need to subtract the character 0 to get the numeric value to use for indexing.
1195
1196 UChar32 localizedDigits[10];
1197 localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
1198 localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
1199 localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
1200 localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
1201 localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
1202 localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
1203 localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
1204 localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
1205 localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
1206 localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
1207
1208 const UnicodeString *grouping ;
1209 if(fCurrencySignCount > fgCurrencySignCountZero) {
1210 grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
1211 }else{
1212 grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
1213 }
1214 const UnicodeString *decimal;
1215 if(fCurrencySignCount > fgCurrencySignCountZero) {
1216 decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
1217 } else {
1218 decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
1219 }
1220 UBool useSigDig = areSignificantDigitsUsed();
1221 int32_t maxIntDig = getMaximumIntegerDigits();
1222 int32_t minIntDig = getMinimumIntegerDigits();
1223
1224 // Appends the prefix.
1225 double doubleValue = digits.getDouble();
1226 int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
1227
1228 if (fUseExponentialNotation)
1229 {
1230 int currentLength = appendTo.length();
1231 int intBegin = currentLength;
1232 int intEnd = -1;
1233 int fracBegin = -1;
1234
1235 int32_t minFracDig = 0;
1236 if (useSigDig) {
1237 maxIntDig = minIntDig = 1;
1238 minFracDig = getMinimumSignificantDigits() - 1;
1239 } else {
1240 minFracDig = getMinimumFractionDigits();
1241 if (maxIntDig > kMaxScientificIntegerDigits) {
1242 maxIntDig = 1;
1243 if (maxIntDig < minIntDig) {
1244 maxIntDig = minIntDig;
1245 }
1246 }
1247 if (maxIntDig > minIntDig) {
1248 minIntDig = 1;
1249 }
1250 }
1251
1252 // Minimum integer digits are handled in exponential format by
1253 // adjusting the exponent. For example, 0.01234 with 3 minimum
1254 // integer digits is "123.4E-4".
1255
1256 // Maximum integer digits are interpreted as indicating the
1257 // repeating range. This is useful for engineering notation, in
1258 // which the exponent is restricted to a multiple of 3. For
1259 // example, 0.01234 with 3 maximum integer digits is "12.34e-3".
1260 // If maximum integer digits are defined and are larger than
1261 // minimum integer digits, then minimum integer digits are
1262 // ignored.
1263 digits.reduce(); // Removes trailing zero digits.
1264 int32_t exponent = digits.getDecimalAt();
1265 if (maxIntDig > 1 && maxIntDig != minIntDig) {
1266 // A exponent increment is defined; adjust to it.
1267 exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
1268 : (exponent / maxIntDig) - 1;
1269 exponent *= maxIntDig;
1270 } else {
1271 // No exponent increment is defined; use minimum integer digits.
1272 // If none is specified, as in "#E0", generate 1 integer digit.
1273 exponent -= (minIntDig > 0 || minFracDig > 0)
1274 ? minIntDig : 1;
1275 }
1276
1277 // We now output a minimum number of digits, and more if there
1278 // are more digits, up to the maximum number of digits. We
1279 // place the decimal point after the "integer" digits, which
1280 // are the first (decimalAt - exponent) digits.
1281 int32_t minimumDigits = minIntDig + minFracDig;
1282 // The number of integer digits is handled specially if the number
1283 // is zero, since then there may be no digits.
1284 int32_t integerDigits = digits.isZero() ? minIntDig :
1285 digits.getDecimalAt() - exponent;
1286 int32_t totalDigits = digits.getCount();
1287 if (minimumDigits > totalDigits)
1288 totalDigits = minimumDigits;
1289 if (integerDigits > totalDigits)
1290 totalDigits = integerDigits;
1291
1292 // totalDigits records total number of digits needs to be processed
1293 int32_t i;
1294 for (i=0; i<totalDigits; ++i)
1295 {
1296 if (i == integerDigits)
1297 {
1298 intEnd = appendTo.length();
1299 handler.addAttribute(kIntegerField, intBegin, intEnd);
1300
1301 appendTo += *decimal;
1302
1303 fracBegin = appendTo.length();
1304 handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
1305 }
1306 // Restores the digit character or pads the buffer with zeros.
1307 UChar32 c = (UChar32)((i < digits.getCount()) ?
1308 localizedDigits[digits.getDigitValue(i)] :
1309 localizedDigits[0]);
1310 appendTo += c;
1311 }
1312
1313 currentLength = appendTo.length();
1314
1315 if (intEnd < 0) {
1316 handler.addAttribute(kIntegerField, intBegin, currentLength);
1317 }
1318 if (fracBegin > 0) {
1319 handler.addAttribute(kFractionField, fracBegin, currentLength);
1320 }
1321
1322 // The exponent is output using the pattern-specified minimum
1323 // exponent digits. There is no maximum limit to the exponent
1324 // digits, since truncating the exponent would appendTo in an
1325 // unacceptable inaccuracy.
1326 appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
1327
1328 handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
1329 currentLength = appendTo.length();
1330
1331 // For zero values, we force the exponent to zero. We
1332 // must do this here, and not earlier, because the value
1333 // is used to determine integer digit count above.
1334 if (digits.isZero())
1335 exponent = 0;
1336
1337 if (exponent < 0) {
1338 appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
1339 handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
1340 } else if (fExponentSignAlwaysShown) {
1341 appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
1342 handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
1343 }
1344
1345 currentLength = appendTo.length();
1346
1347 DigitList expDigits;
1348 expDigits.set(exponent);
1349 {
1350 int expDig = fMinExponentDigits;
1351 if (fUseExponentialNotation && expDig < 1) {
1352 expDig = 1;
1353 }
1354 for (i=expDigits.getDecimalAt(); i<expDig; ++i)
1355 appendTo += (localizedDigits[0]);
1356 }
1357 for (i=0; i<expDigits.getDecimalAt(); ++i)
1358 {
1359 UChar32 c = (UChar32)((i < expDigits.getCount()) ?
1360 localizedDigits[expDigits.getDigitValue(i)] :
1361 localizedDigits[0]);
1362 appendTo += c;
1363 }
1364
1365 handler.addAttribute(kExponentField, currentLength, appendTo.length());
1366 }
1367 else // Not using exponential notation
1368 {
1369 int currentLength = appendTo.length();
1370 int intBegin = currentLength;
1371
1372 int32_t sigCount = 0;
1373 int32_t minSigDig = getMinimumSignificantDigits();
1374 int32_t maxSigDig = getMaximumSignificantDigits();
1375 if (!useSigDig) {
1376 minSigDig = 0;
1377 maxSigDig = INT32_MAX;
1378 }
1379
1380 // Output the integer portion. Here 'count' is the total
1381 // number of integer digits we will display, including both
1382 // leading zeros required to satisfy getMinimumIntegerDigits,
1383 // and actual digits present in the number.
1384 int32_t count = useSigDig ?
1385 _max(1, digits.getDecimalAt()) : minIntDig;
1386 if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
1387 count = digits.getDecimalAt();
1388 }
1389
1390 // Handle the case where getMaximumIntegerDigits() is smaller
1391 // than the real number of integer digits. If this is so, we
1392 // output the least significant max integer digits. For example,
1393 // the value 1997 printed with 2 max integer digits is just "97".
1394
1395 int32_t digitIndex = 0; // Index into digitList.fDigits[]
1396 if (count > maxIntDig && maxIntDig >= 0) {
1397 count = maxIntDig;
1398 digitIndex = digits.getDecimalAt() - count;
1399 }
1400
1401 int32_t sizeBeforeIntegerPart = appendTo.length();
1402
1403 int32_t i;
1404 for (i=count-1; i>=0; --i)
1405 {
1406 if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
1407 sigCount < maxSigDig) {
1408 // Output a real digit
1409 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
1410 ++sigCount;
1411 }
1412 else
1413 {
1414 // Output a zero (leading or trailing)
1415 appendTo += localizedDigits[0];
1416 if (sigCount > 0) {
1417 ++sigCount;
1418 }
1419 }
1420
1421 // Output grouping separator if necessary.
1422 if (isGroupingPosition(i)) {
1423 currentLength = appendTo.length();
1424 appendTo.append(*grouping);
1425 handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
1426 }
1427 }
1428
1429 // TODO(dlf): this looks like it was a bug, we marked the int field as ending
1430 // before the zero was generated.
1431 // Record field information for caller.
1432 // if (fieldPosition.getField() == NumberFormat::kIntegerField)
1433 // fieldPosition.setEndIndex(appendTo.length());
1434
1435 // Determine whether or not there are any printable fractional
1436 // digits. If we've used up the digits we know there aren't.
1437 UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
1438 (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
1439
1440 // If there is no fraction present, and we haven't printed any
1441 // integer digits, then print a zero. Otherwise we won't print
1442 // _any_ digits, and we won't be able to parse this string.
1443 if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
1444 appendTo += localizedDigits[0];
1445
1446 currentLength = appendTo.length();
1447 handler.addAttribute(kIntegerField, intBegin, currentLength);
1448
1449 // Output the decimal separator if we always do so.
1450 if (fDecimalSeparatorAlwaysShown || fractionPresent) {
1451 appendTo += *decimal;
1452 handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
1453 currentLength = appendTo.length();
1454 }
1455
1456 int fracBegin = currentLength;
1457
1458 count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
1459 if (useSigDig && (sigCount == maxSigDig ||
1460 (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
1461 count = 0;
1462 }
1463
1464 for (i=0; i < count; ++i) {
1465 // Here is where we escape from the loop. We escape
1466 // if we've output the maximum fraction digits
1467 // (specified in the for expression above). We also
1468 // stop when we've output the minimum digits and
1469 // either: we have an integer, so there is no
1470 // fractional stuff to display, or we're out of
1471 // significant digits.
1472 if (!useSigDig && i >= getMinimumFractionDigits() &&
1473 (isInteger || digitIndex >= digits.getCount())) {
1474 break;
1475 }
1476
1477 // Output leading fractional zeros. These are zeros
1478 // that come after the decimal but before any
1479 // significant digits. These are only output if
1480 // abs(number being formatted) < 1.0.
1481 if (-1-i > (digits.getDecimalAt()-1)) {
1482 appendTo += localizedDigits[0];
1483 continue;
1484 }
1485
1486 // Output a digit, if we have any precision left, or a
1487 // zero if we don't. We don't want to output noise digits.
1488 if (!isInteger && digitIndex < digits.getCount()) {
1489 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
1490 } else {
1491 appendTo += localizedDigits[0];
1492 }
1493
1494 // If we reach the maximum number of significant
1495 // digits, or if we output all the real digits and
1496 // reach the minimum, then we are done.
1497 ++sigCount;
1498 if (useSigDig &&
1499 (sigCount == maxSigDig ||
1500 (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
1501 break;
1502 }
1503 }
1504
1505 handler.addAttribute(kFractionField, fracBegin, appendTo.length());
1506 }
1507
1508 int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
1509
1510 addPadding(appendTo, handler, prefixLen, suffixLen);
1511 return appendTo;
1512 }
1513
1514 /**
1515 * Inserts the character fPad as needed to expand result to fFormatWidth.
1516 * @param result the string to be padded
1517 */
addPadding(UnicodeString & appendTo,FieldPositionHandler & handler,int32_t prefixLen,int32_t suffixLen) const1518 void DecimalFormat::addPadding(UnicodeString& appendTo,
1519 FieldPositionHandler& handler,
1520 int32_t prefixLen,
1521 int32_t suffixLen) const
1522 {
1523 if (fFormatWidth > 0) {
1524 int32_t len = fFormatWidth - appendTo.length();
1525 if (len > 0) {
1526 UnicodeString padding;
1527 for (int32_t i=0; i<len; ++i) {
1528 padding += fPad;
1529 }
1530 switch (fPadPosition) {
1531 case kPadAfterPrefix:
1532 appendTo.insert(prefixLen, padding);
1533 break;
1534 case kPadBeforePrefix:
1535 appendTo.insert(0, padding);
1536 break;
1537 case kPadBeforeSuffix:
1538 appendTo.insert(appendTo.length() - suffixLen, padding);
1539 break;
1540 case kPadAfterSuffix:
1541 appendTo += padding;
1542 break;
1543 }
1544 if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
1545 handler.shiftLast(len);
1546 }
1547 }
1548 }
1549 }
1550
1551 //------------------------------------------------------------------------------
1552
1553 void
parse(const UnicodeString & text,Formattable & result,UErrorCode & status) const1554 DecimalFormat::parse(const UnicodeString& text,
1555 Formattable& result,
1556 UErrorCode& status) const
1557 {
1558 NumberFormat::parse(text, result, status);
1559 }
1560
1561 void
parse(const UnicodeString & text,Formattable & result,ParsePosition & parsePosition) const1562 DecimalFormat::parse(const UnicodeString& text,
1563 Formattable& result,
1564 ParsePosition& parsePosition) const {
1565 parse(text, result, parsePosition, FALSE);
1566 }
1567
parseCurrency(const UnicodeString & text,Formattable & result,ParsePosition & pos) const1568 Formattable& DecimalFormat::parseCurrency(const UnicodeString& text,
1569 Formattable& result,
1570 ParsePosition& pos) const {
1571 parse(text, result, pos, TRUE);
1572 return result;
1573 }
1574
1575 /**
1576 * Parses the given text as either a number or a currency amount.
1577 * @param text the string to parse
1578 * @param result output parameter for the result
1579 * @param parsePosition input-output position; on input, the
1580 * position within text to match; must have 0 <= pos.getIndex() <
1581 * text.length(); on output, the position after the last matched
1582 * character. If the parse fails, the position in unchanged upon
1583 * output.
1584 * @param parseCurrency if true, a currency amount is parsed;
1585 * otherwise a Number is parsed
1586 */
parse(const UnicodeString & text,Formattable & result,ParsePosition & parsePosition,UBool parseCurrency) const1587 void DecimalFormat::parse(const UnicodeString& text,
1588 Formattable& result,
1589 ParsePosition& parsePosition,
1590 UBool parseCurrency) const {
1591 int32_t backup;
1592 int32_t i = backup = parsePosition.getIndex();
1593
1594 // clear any old contents in the result. In particular, clears any DigitList
1595 // that it may be holding.
1596 result.setLong(0);
1597
1598 // Handle NaN as a special case:
1599
1600 // Skip padding characters, if around prefix
1601 if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
1602 fPadPosition == kPadAfterPrefix)) {
1603 i = skipPadding(text, i);
1604 }
1605
1606 if (isLenient()) {
1607 // skip any leading whitespace
1608 i = backup = skipUWhiteSpace(text, i);
1609 }
1610
1611 // If the text is composed of the representation of NaN, returns NaN.length
1612 const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1613 int32_t nanLen = (text.compare(i, nan->length(), *nan)
1614 ? 0 : nan->length());
1615 if (nanLen) {
1616 i += nanLen;
1617 if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
1618 fPadPosition == kPadAfterSuffix)) {
1619 i = skipPadding(text, i);
1620 }
1621 parsePosition.setIndex(i);
1622 result.setDouble(uprv_getNaN());
1623 return;
1624 }
1625
1626 // NaN parse failed; start over
1627 i = backup;
1628 parsePosition.setIndex(i);
1629
1630 // status is used to record whether a number is infinite.
1631 UBool status[fgStatusLength];
1632 UChar curbuf[4];
1633 UChar* currency = parseCurrency ? curbuf : NULL;
1634 DigitList *digits = new DigitList;
1635 if (digits == NULL) {
1636 return; // no way to report error from here.
1637 }
1638
1639 if (fCurrencySignCount > fgCurrencySignCountZero) {
1640 if (!parseForCurrency(text, parsePosition, *digits,
1641 status, currency)) {
1642 delete digits;
1643 return;
1644 }
1645 } else {
1646 if (!subparse(text,
1647 fNegPrefixPattern, fNegSuffixPattern,
1648 fPosPrefixPattern, fPosSuffixPattern,
1649 FALSE, UCURR_SYMBOL_NAME,
1650 parsePosition, *digits, status, currency)) {
1651 parsePosition.setIndex(backup);
1652 delete digits;
1653 return;
1654 }
1655 }
1656
1657 // Handle infinity
1658 if (status[fgStatusInfinite]) {
1659 double inf = uprv_getInfinity();
1660 result.setDouble(digits->isPositive() ? inf : -inf);
1661 delete digits; // TODO: set the dl to infinity, and let it fall into the code below.
1662 }
1663
1664 else {
1665
1666 if (fMultiplier != NULL) {
1667 UErrorCode ec = U_ZERO_ERROR;
1668 digits->div(*fMultiplier, ec);
1669 }
1670
1671 // Negative zero special case:
1672 // if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
1673 // if not parsing integerOnly, leave as -0, which a double can represent.
1674 if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
1675 digits->setPositive(TRUE);
1676 }
1677 result.adoptDigitList(digits);
1678 }
1679
1680 if (parseCurrency) {
1681 UErrorCode ec = U_ZERO_ERROR;
1682 Formattable n(result);
1683 result.adoptObject(new CurrencyAmount(n, curbuf, ec));
1684 U_ASSERT(U_SUCCESS(ec)); // should always succeed
1685 }
1686 }
1687
1688
1689
1690 UBool
parseForCurrency(const UnicodeString & text,ParsePosition & parsePosition,DigitList & digits,UBool * status,UChar * currency) const1691 DecimalFormat::parseForCurrency(const UnicodeString& text,
1692 ParsePosition& parsePosition,
1693 DigitList& digits,
1694 UBool* status,
1695 UChar* currency) const {
1696 int origPos = parsePosition.getIndex();
1697 int maxPosIndex = origPos;
1698 int maxErrorPos = -1;
1699 // First, parse against current pattern.
1700 // Since current pattern could be set by applyPattern(),
1701 // it could be an arbitrary pattern, and it may not be the one
1702 // defined in current locale.
1703 UBool tmpStatus[fgStatusLength];
1704 ParsePosition tmpPos(origPos);
1705 DigitList tmpDigitList;
1706 UBool found;
1707 if (fStyle == UNUM_CURRENCY_PLURAL) {
1708 found = subparse(text,
1709 fNegPrefixPattern, fNegSuffixPattern,
1710 fPosPrefixPattern, fPosSuffixPattern,
1711 TRUE, UCURR_LONG_NAME,
1712 tmpPos, tmpDigitList, tmpStatus, currency);
1713 } else {
1714 found = subparse(text,
1715 fNegPrefixPattern, fNegSuffixPattern,
1716 fPosPrefixPattern, fPosSuffixPattern,
1717 TRUE, UCURR_SYMBOL_NAME,
1718 tmpPos, tmpDigitList, tmpStatus, currency);
1719 }
1720 if (found) {
1721 if (tmpPos.getIndex() > maxPosIndex) {
1722 maxPosIndex = tmpPos.getIndex();
1723 for (int32_t i = 0; i < fgStatusLength; ++i) {
1724 status[i] = tmpStatus[i];
1725 }
1726 digits = tmpDigitList;
1727 }
1728 } else {
1729 maxErrorPos = tmpPos.getErrorIndex();
1730 }
1731 // Then, parse against affix patterns.
1732 // Those are currency patterns and currency plural patterns.
1733 int32_t pos = -1;
1734 const UHashElement* element = NULL;
1735 while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
1736 const UHashTok valueTok = element->value;
1737 const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
1738 UBool tmpStatus[fgStatusLength];
1739 ParsePosition tmpPos(origPos);
1740 DigitList tmpDigitList;
1741 UBool result = subparse(text,
1742 &affixPtn->negPrefixPatternForCurrency,
1743 &affixPtn->negSuffixPatternForCurrency,
1744 &affixPtn->posPrefixPatternForCurrency,
1745 &affixPtn->posSuffixPatternForCurrency,
1746 TRUE, affixPtn->patternType,
1747 tmpPos, tmpDigitList, tmpStatus, currency);
1748 if (result) {
1749 found = true;
1750 if (tmpPos.getIndex() > maxPosIndex) {
1751 maxPosIndex = tmpPos.getIndex();
1752 for (int32_t i = 0; i < fgStatusLength; ++i) {
1753 status[i] = tmpStatus[i];
1754 }
1755 digits = tmpDigitList;
1756 }
1757 } else {
1758 maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
1759 tmpPos.getErrorIndex() : maxErrorPos;
1760 }
1761 }
1762 // Finally, parse against simple affix to find the match.
1763 // For example, in TestMonster suite,
1764 // if the to-be-parsed text is "-\u00A40,00".
1765 // complexAffixCompare will not find match,
1766 // since there is no ISO code matches "\u00A4",
1767 // and the parse stops at "\u00A4".
1768 // We will just use simple affix comparison (look for exact match)
1769 // to pass it.
1770 UBool tmpStatus_2[fgStatusLength];
1771 ParsePosition tmpPos_2(origPos);
1772 DigitList tmpDigitList_2;
1773 // set currencySignCount to 0 so that compareAffix function will
1774 // fall to compareSimpleAffix path, not compareComplexAffix path.
1775 // ?? TODO: is it right? need "false"?
1776 UBool result = subparse(text,
1777 &fNegativePrefix, &fNegativeSuffix,
1778 &fPositivePrefix, &fPositiveSuffix,
1779 FALSE, UCURR_SYMBOL_NAME,
1780 tmpPos_2, tmpDigitList_2, tmpStatus_2,
1781 currency);
1782 if (result) {
1783 if (tmpPos_2.getIndex() > maxPosIndex) {
1784 maxPosIndex = tmpPos_2.getIndex();
1785 for (int32_t i = 0; i < fgStatusLength; ++i) {
1786 status[i] = tmpStatus_2[i];
1787 }
1788 digits = tmpDigitList_2;
1789 }
1790 found = true;
1791 } else {
1792 maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
1793 tmpPos_2.getErrorIndex() : maxErrorPos;
1794 }
1795
1796 if (!found) {
1797 //parsePosition.setIndex(origPos);
1798 parsePosition.setErrorIndex(maxErrorPos);
1799 } else {
1800 parsePosition.setIndex(maxPosIndex);
1801 parsePosition.setErrorIndex(-1);
1802 }
1803 return found;
1804 }
1805
1806
1807 /**
1808 * Parse the given text into a number. The text is parsed beginning at
1809 * parsePosition, until an unparseable character is seen.
1810 * @param text the string to parse.
1811 * @param negPrefix negative prefix.
1812 * @param negSuffix negative suffix.
1813 * @param posPrefix positive prefix.
1814 * @param posSuffix positive suffix.
1815 * @param currencyParsing whether it is currency parsing or not.
1816 * @param type the currency type to parse against, LONG_NAME only or not.
1817 * @param parsePosition The position at which to being parsing. Upon
1818 * return, the first unparsed character.
1819 * @param digits the DigitList to set to the parsed value.
1820 * @param status output param containing boolean status flags indicating
1821 * whether the value was infinite and whether it was positive.
1822 * @param currency return value for parsed currency, for generic
1823 * currency parsing mode, or NULL for normal parsing. In generic
1824 * currency parsing mode, any currency is parsed, not just the
1825 * currency that this formatter is set to.
1826 */
subparse(const UnicodeString & text,const UnicodeString * negPrefix,const UnicodeString * negSuffix,const UnicodeString * posPrefix,const UnicodeString * posSuffix,UBool currencyParsing,int8_t type,ParsePosition & parsePosition,DigitList & digits,UBool * status,UChar * currency) const1827 UBool DecimalFormat::subparse(const UnicodeString& text,
1828 const UnicodeString* negPrefix,
1829 const UnicodeString* negSuffix,
1830 const UnicodeString* posPrefix,
1831 const UnicodeString* posSuffix,
1832 UBool currencyParsing,
1833 int8_t type,
1834 ParsePosition& parsePosition,
1835 DigitList& digits, UBool* status,
1836 UChar* currency) const
1837 {
1838 // The parsing process builds up the number as char string, in the neutral format that
1839 // will be acceptable to the decNumber library, then at the end passes that string
1840 // off for conversion to a decNumber.
1841 UErrorCode err = U_ZERO_ERROR;
1842 CharString parsedNum;
1843 digits.setToZero();
1844
1845 int32_t position = parsePosition.getIndex();
1846 int32_t oldStart = position;
1847 UBool strictParse = !isLenient();
1848
1849 // Match padding before prefix
1850 if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
1851 position = skipPadding(text, position);
1852 }
1853
1854 // Match positive and negative prefixes; prefer longest match.
1855 int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, currencyParsing, type, currency);
1856 int32_t negMatch = compareAffix(text, position, TRUE, TRUE, negPrefix, currencyParsing, type, currency);
1857 if (posMatch >= 0 && negMatch >= 0) {
1858 if (posMatch > negMatch) {
1859 negMatch = -1;
1860 } else if (negMatch > posMatch) {
1861 posMatch = -1;
1862 }
1863 }
1864 if (posMatch >= 0) {
1865 position += posMatch;
1866 parsedNum.append('+', err);
1867 } else if (negMatch >= 0) {
1868 position += negMatch;
1869 parsedNum.append('-', err);
1870 } else if (strictParse){
1871 parsePosition.setErrorIndex(position);
1872 return FALSE;
1873 }
1874
1875 // Match padding before prefix
1876 if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
1877 position = skipPadding(text, position);
1878 }
1879
1880 if (! strictParse) {
1881 position = skipUWhiteSpace(text, position);
1882 }
1883
1884 // process digits or Inf, find decimal position
1885 const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
1886 int32_t infLen = (text.compare(position, inf->length(), *inf)
1887 ? 0 : inf->length());
1888 position += infLen; // infLen is non-zero when it does equal to infinity
1889 status[fgStatusInfinite] = infLen != 0;
1890
1891 if (infLen != 0) {
1892 parsedNum.append("Infinity", err);
1893 } else {
1894 // We now have a string of digits, possibly with grouping symbols,
1895 // and decimal points. We want to process these into a DigitList.
1896 // We don't want to put a bunch of leading zeros into the DigitList
1897 // though, so we keep track of the location of the decimal point,
1898 // put only significant digits into the DigitList, and adjust the
1899 // exponent as needed.
1900
1901 UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
1902
1903 UBool strictFail = FALSE; // did we exit with a strict parse failure?
1904 int32_t lastGroup = -1; // where did we last see a grouping separator?
1905 int32_t digitStart = position;
1906 int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
1907
1908 const UnicodeString *decimalString;
1909 if (fCurrencySignCount > fgCurrencySignCountZero) {
1910 decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
1911 } else {
1912 decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
1913 }
1914 UChar32 decimalChar = decimalString->char32At(0);
1915
1916 const UnicodeString *groupingString = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
1917 UChar32 groupingChar = groupingString->char32At(0);
1918 UBool sawDecimal = FALSE;
1919 UChar32 sawDecimalChar = 0xFFFF;
1920 UBool sawGrouping = FALSE;
1921 UChar32 sawGroupingChar = 0xFFFF;
1922 UBool sawDigit = FALSE;
1923 int32_t backup = -1;
1924 int32_t digit;
1925 int32_t textLength = text.length(); // One less pointer to follow
1926 int32_t decimalStringLength = decimalString->length();
1927 int32_t decimalCharLength = U16_LENGTH(decimalChar);
1928 int32_t groupingStringLength = groupingString->length();
1929 int32_t groupingCharLength = U16_LENGTH(groupingChar);
1930
1931 // equivalent grouping and decimal support
1932 const UnicodeSet *decimalSet = NULL;
1933 const UnicodeSet *groupingSet = NULL;
1934
1935 if (decimalCharLength == decimalStringLength) {
1936 decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
1937 }
1938
1939 if (groupingCharLength == groupingStringLength) {
1940 if (strictParse) {
1941 groupingSet = DecimalFormatStaticSets::gStaticSets->fStrictDefaultGroupingSeparators;
1942 } else {
1943 groupingSet = DecimalFormatStaticSets::gStaticSets->fDefaultGroupingSeparators;
1944 }
1945 }
1946
1947 // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
1948 // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
1949 // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
1950
1951 // We have to track digitCount ourselves, because digits.fCount will
1952 // pin when the maximum allowable digits is reached.
1953 int32_t digitCount = 0;
1954 int32_t integerDigitCount = 0;
1955
1956 for (; position < textLength; )
1957 {
1958 UChar32 ch = text.char32At(position);
1959
1960 /* We recognize all digit ranges, not only the Latin digit range
1961 * '0'..'9'. We do so by using the Character.digit() method,
1962 * which converts a valid Unicode digit to the range 0..9.
1963 *
1964 * The character 'ch' may be a digit. If so, place its value
1965 * from 0 to 9 in 'digit'. First try using the locale digit,
1966 * which may or MAY NOT be a standard Unicode digit range. If
1967 * this fails, try using the standard Unicode digit ranges by
1968 * calling Character.digit(). If this also fails, digit will
1969 * have a value outside the range 0..9.
1970 */
1971 digit = ch - zero;
1972 if (digit < 0 || digit > 9)
1973 {
1974 digit = u_charDigitValue(ch);
1975 }
1976
1977 // As a last resort, look through the localized digits if the zero digit
1978 // is not a "standard" Unicode digit.
1979 if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
1980 digit = 0;
1981 if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
1982 break;
1983 }
1984 for (digit = 1 ; digit < 10 ; digit++ ) {
1985 if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
1986 break;
1987 }
1988 }
1989 }
1990
1991 if (digit >= 0 && digit <= 9)
1992 {
1993 if (strictParse && backup != -1) {
1994 // comma followed by digit, so group before comma is a
1995 // secondary group. If there was a group separator
1996 // before that, the group must == the secondary group
1997 // length, else it can be <= the the secondary group
1998 // length.
1999 if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
2000 (lastGroup == -1 && position - digitStart - 1 > gs2)) {
2001 strictFail = TRUE;
2002 break;
2003 }
2004
2005 lastGroup = backup;
2006 }
2007
2008 // Cancel out backup setting (see grouping handler below)
2009 backup = -1;
2010 sawDigit = TRUE;
2011
2012 // Note: this will append leading zeros
2013 parsedNum.append((char)(digit + '0'), err);
2014
2015 // count any digit that's not a leading zero
2016 if (digit > 0 || digitCount > 0 || sawDecimal) {
2017 digitCount += 1;
2018
2019 // count any integer digit that's not a leading zero
2020 if (! sawDecimal) {
2021 integerDigitCount += 1;
2022 }
2023 }
2024
2025 position += U16_LENGTH(ch);
2026 }
2027 else if (groupingStringLength > 0 &&
2028 matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet,
2029 decimalChar, decimalSet,
2030 ch) && isGroupingUsed())
2031 {
2032 if (sawDecimal) {
2033 break;
2034 }
2035
2036 if (strictParse) {
2037 if ((!sawDigit || backup != -1)) {
2038 // leading group, or two group separators in a row
2039 strictFail = TRUE;
2040 break;
2041 }
2042 }
2043
2044 // Ignore grouping characters, if we are using them, but require
2045 // that they be followed by a digit. Otherwise we backup and
2046 // reprocess them.
2047 backup = position;
2048 position += groupingStringLength;
2049 sawGrouping=TRUE;
2050 // Once we see a grouping character, we only accept that grouping character from then on.
2051 sawGroupingChar=ch;
2052 }
2053 else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
2054 {
2055 if (strictParse) {
2056 if (backup != -1 ||
2057 (lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
2058 strictFail = TRUE;
2059 break;
2060 }
2061 }
2062
2063 // If we're only parsing integers, or if we ALREADY saw the
2064 // decimal, then don't parse this one.
2065 if (isParseIntegerOnly() || sawDecimal) {
2066 break;
2067 }
2068
2069 parsedNum.append('.', err);
2070 position += decimalStringLength;
2071 sawDecimal = TRUE;
2072 // Once we see a decimal character, we only accept that decimal character from then on.
2073 sawDecimalChar=ch;
2074 // decimalSet is considered to consist of (ch,ch)
2075 }
2076 else {
2077 const UnicodeString *tmp;
2078 tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
2079 if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT)) // error code is set below if !sawDigit
2080 {
2081 // Parse sign, if present
2082 int32_t pos = position + tmp->length();
2083 char exponentSign = '+';
2084
2085 if (pos < textLength)
2086 {
2087 tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
2088 if (!text.compare(pos, tmp->length(), *tmp))
2089 {
2090 pos += tmp->length();
2091 }
2092 else {
2093 tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
2094 if (!text.compare(pos, tmp->length(), *tmp))
2095 {
2096 exponentSign = '-';
2097 pos += tmp->length();
2098 }
2099 }
2100 }
2101
2102 UBool sawExponentDigit = FALSE;
2103 while (pos < textLength) {
2104 ch = text[(int32_t)pos];
2105 digit = ch - zero;
2106
2107 if (digit < 0 || digit > 9) {
2108 digit = u_charDigitValue(ch);
2109 }
2110 if (0 <= digit && digit <= 9) {
2111 if (!sawExponentDigit) {
2112 parsedNum.append('E', err);
2113 parsedNum.append(exponentSign, err);
2114 sawExponentDigit = TRUE;
2115 }
2116 ++pos;
2117 parsedNum.append((char)(digit + '0'), err);
2118 } else {
2119 break;
2120 }
2121 }
2122
2123 if (sawExponentDigit) {
2124 position = pos; // Advance past the exponent
2125 }
2126
2127 break; // Whether we fail or succeed, we exit this loop
2128 }
2129 else {
2130 break;
2131 }
2132 }
2133 }
2134
2135 if (backup != -1)
2136 {
2137 position = backup;
2138 }
2139
2140 if (strictParse && !sawDecimal) {
2141 if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
2142 strictFail = TRUE;
2143 }
2144 }
2145
2146 if (strictFail) {
2147 // only set with strictParse and a grouping separator error
2148
2149 parsePosition.setIndex(oldStart);
2150 parsePosition.setErrorIndex(position);
2151 return FALSE;
2152 }
2153
2154 // If there was no decimal point we have an integer
2155
2156 // If none of the text string was recognized. For example, parse
2157 // "x" with pattern "#0.00" (return index and error index both 0)
2158 // parse "$" with pattern "$#0.00". (return index 0 and error index
2159 // 1).
2160 if (!sawDigit && digitCount == 0) {
2161 parsePosition.setIndex(oldStart);
2162 parsePosition.setErrorIndex(oldStart);
2163 return FALSE;
2164 }
2165 }
2166
2167 // Match padding before suffix
2168 if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
2169 position = skipPadding(text, position);
2170 }
2171
2172 int32_t posSuffixMatch = -1, negSuffixMatch = -1;
2173
2174 // Match positive and negative suffixes; prefer longest match.
2175 if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
2176 posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, currencyParsing, type, currency);
2177 }
2178 if (negMatch >= 0) {
2179 negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, currencyParsing, type, currency);
2180 }
2181 if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
2182 if (posSuffixMatch > negSuffixMatch) {
2183 negSuffixMatch = -1;
2184 } else if (negSuffixMatch > posSuffixMatch) {
2185 posSuffixMatch = -1;
2186 }
2187 }
2188
2189 // Fail if neither or both
2190 if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
2191 parsePosition.setErrorIndex(position);
2192 return FALSE;
2193 }
2194
2195 position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
2196
2197 // Match padding before suffix
2198 if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
2199 position = skipPadding(text, position);
2200 }
2201
2202 parsePosition.setIndex(position);
2203
2204 parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
2205
2206 if(parsePosition.getIndex() == oldStart)
2207 {
2208 parsePosition.setErrorIndex(position);
2209 return FALSE;
2210 }
2211 digits.set(parsedNum.toStringPiece(), err);
2212
2213 if (U_FAILURE(err)) {
2214 parsePosition.setErrorIndex(position);
2215 return FALSE;
2216 }
2217 return TRUE;
2218 }
2219
2220 /**
2221 * Starting at position, advance past a run of pad characters, if any.
2222 * Return the index of the first character after position that is not a pad
2223 * character. Result is >= position.
2224 */
skipPadding(const UnicodeString & text,int32_t position) const2225 int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
2226 int32_t padLen = U16_LENGTH(fPad);
2227 while (position < text.length() &&
2228 text.char32At(position) == fPad) {
2229 position += padLen;
2230 }
2231 return position;
2232 }
2233
2234 /**
2235 * Return the length matched by the given affix, or -1 if none.
2236 * Runs of white space in the affix, match runs of white space in
2237 * the input. Pattern white space and input white space are
2238 * determined differently; see code.
2239 * @param text input text
2240 * @param pos offset into input at which to begin matching
2241 * @param isNegative
2242 * @param isPrefix
2243 * @param affixPat affix pattern used for currency affix comparison.
2244 * @param currencyParsing whether it is currency parsing or not
2245 * @param type the currency type to parse against, LONG_NAME only or not.
2246 * @param currency return value for parsed currency, for generic
2247 * currency parsing mode, or null for normal parsing. In generic
2248 * currency parsing mode, any currency is parsed, not just the
2249 * currency that this formatter is set to.
2250 * @return length of input that matches, or -1 if match failure
2251 */
compareAffix(const UnicodeString & text,int32_t pos,UBool isNegative,UBool isPrefix,const UnicodeString * affixPat,UBool currencyParsing,int8_t type,UChar * currency) const2252 int32_t DecimalFormat::compareAffix(const UnicodeString& text,
2253 int32_t pos,
2254 UBool isNegative,
2255 UBool isPrefix,
2256 const UnicodeString* affixPat,
2257 UBool currencyParsing,
2258 int8_t type,
2259 UChar* currency) const
2260 {
2261 const UnicodeString *patternToCompare;
2262 if (fCurrencyChoice != NULL || currency != NULL ||
2263 (fCurrencySignCount > fgCurrencySignCountZero && currencyParsing)) {
2264
2265 if (affixPat != NULL) {
2266 return compareComplexAffix(*affixPat, text, pos, type, currency);
2267 }
2268 }
2269
2270 if (isNegative) {
2271 if (isPrefix) {
2272 patternToCompare = &fNegativePrefix;
2273 }
2274 else {
2275 patternToCompare = &fNegativeSuffix;
2276 }
2277 }
2278 else {
2279 if (isPrefix) {
2280 patternToCompare = &fPositivePrefix;
2281 }
2282 else {
2283 patternToCompare = &fPositiveSuffix;
2284 }
2285 }
2286 return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
2287 }
2288
2289 /**
2290 * Return the length matched by the given affix, or -1 if none.
2291 * Runs of white space in the affix, match runs of white space in
2292 * the input. Pattern white space and input white space are
2293 * determined differently; see code.
2294 * @param affix pattern string, taken as a literal
2295 * @param input input text
2296 * @param pos offset into input at which to begin matching
2297 * @return length of input that matches, or -1 if match failure
2298 */
compareSimpleAffix(const UnicodeString & affix,const UnicodeString & input,int32_t pos,UBool lenient)2299 int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
2300 const UnicodeString& input,
2301 int32_t pos,
2302 UBool lenient) {
2303 UErrorCode status = U_ZERO_ERROR;
2304 int32_t start = pos;
2305 UChar32 affixChar = affix.char32At(0);
2306 int32_t affixLength = affix.length();
2307 int32_t inputLength = input.length();
2308 int32_t affixCharLength = U16_LENGTH(affixChar);
2309 UnicodeSet *affixSet;
2310
2311 DecimalFormatStaticSets::initSets(&status);
2312
2313 if (!lenient) {
2314 affixSet = DecimalFormatStaticSets::gStaticSets->fStrictDashEquivalents;
2315
2316 // If the affix is exactly one character long and that character
2317 // is in the dash set and the very next input character is also
2318 // in the dash set, return a match.
2319 if (affixCharLength == affixLength && affixSet->contains(affixChar)) {
2320 if (affixSet->contains(input.char32At(pos))) {
2321 return 1;
2322 }
2323 }
2324
2325 for (int32_t i = 0; i < affixLength; ) {
2326 UChar32 c = affix.char32At(i);
2327 int32_t len = U16_LENGTH(c);
2328 if (PatternProps::isWhiteSpace(c)) {
2329 // We may have a pattern like: \u200F \u0020
2330 // and input text like: \u200F \u0020
2331 // Note that U+200F and U+0020 are Pattern_White_Space but only
2332 // U+0020 is UWhiteSpace. So we have to first do a direct
2333 // match of the run of Pattern_White_Space in the pattern,
2334 // then match any extra characters.
2335 UBool literalMatch = FALSE;
2336 while (pos < inputLength &&
2337 input.char32At(pos) == c) {
2338 literalMatch = TRUE;
2339 i += len;
2340 pos += len;
2341 if (i == affixLength) {
2342 break;
2343 }
2344 c = affix.char32At(i);
2345 len = U16_LENGTH(c);
2346 if (!PatternProps::isWhiteSpace(c)) {
2347 break;
2348 }
2349 }
2350
2351 // Advance over run in pattern
2352 i = skipPatternWhiteSpace(affix, i);
2353
2354 // Advance over run in input text
2355 // Must see at least one white space char in input,
2356 // unless we've already matched some characters literally.
2357 int32_t s = pos;
2358 pos = skipUWhiteSpace(input, pos);
2359 if (pos == s && !literalMatch) {
2360 return -1;
2361 }
2362
2363 // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
2364 // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
2365 // is also in the affix.
2366 i = skipUWhiteSpace(affix, i);
2367 } else {
2368 if (pos < inputLength &&
2369 input.char32At(pos) == c) {
2370 i += len;
2371 pos += len;
2372 } else {
2373 return -1;
2374 }
2375 }
2376 }
2377 } else {
2378 UBool match = FALSE;
2379
2380 affixSet = DecimalFormatStaticSets::gStaticSets->fDashEquivalents;
2381
2382 if (affixCharLength == affixLength && affixSet->contains(affixChar)) {
2383 pos = skipUWhiteSpace(input, pos);
2384
2385 if (affixSet->contains(input.char32At(pos))) {
2386 return pos - start + 1;
2387 }
2388 }
2389
2390 for (int32_t i = 0; i < affixLength; )
2391 {
2392 //i = skipRuleWhiteSpace(affix, i);
2393 i = skipUWhiteSpace(affix, i);
2394 pos = skipUWhiteSpace(input, pos);
2395
2396 if (i >= affixLength || pos >= inputLength) {
2397 break;
2398 }
2399
2400 UChar32 c = affix.char32At(i);
2401 int32_t len = U16_LENGTH(c);
2402
2403 if (input.char32At(pos) != c) {
2404 return -1;
2405 }
2406
2407 match = TRUE;
2408 i += len;
2409 pos += len;
2410 }
2411
2412 if (affixLength > 0 && ! match) {
2413 return -1;
2414 }
2415 }
2416 return pos - start;
2417 }
2418
2419 /**
2420 * Skip over a run of zero or more Pattern_White_Space characters at
2421 * pos in text.
2422 */
skipPatternWhiteSpace(const UnicodeString & text,int32_t pos)2423 int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
2424 const UChar* s = text.getBuffer();
2425 return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
2426 }
2427
2428 /**
2429 * Skip over a run of zero or more isUWhiteSpace() characters at pos
2430 * in text.
2431 */
skipUWhiteSpace(const UnicodeString & text,int32_t pos)2432 int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
2433 while (pos < text.length()) {
2434 UChar32 c = text.char32At(pos);
2435 if (!u_isUWhiteSpace(c)) {
2436 break;
2437 }
2438 pos += U16_LENGTH(c);
2439 }
2440 return pos;
2441 }
2442
2443 /**
2444 * Return the length matched by the given affix, or -1 if none.
2445 * @param affixPat pattern string
2446 * @param input input text
2447 * @param pos offset into input at which to begin matching
2448 * @param type the currency type to parse against, LONG_NAME only or not.
2449 * @param currency return value for parsed currency, for generic
2450 * currency parsing mode, or null for normal parsing. In generic
2451 * currency parsing mode, any currency is parsed, not just the
2452 * currency that this formatter is set to.
2453 * @return length of input that matches, or -1 if match failure
2454 */
compareComplexAffix(const UnicodeString & affixPat,const UnicodeString & text,int32_t pos,int8_t type,UChar * currency) const2455 int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
2456 const UnicodeString& text,
2457 int32_t pos,
2458 int8_t type,
2459 UChar* currency) const
2460 {
2461 int32_t start = pos;
2462 U_ASSERT(currency != NULL ||
2463 (fCurrencyChoice != NULL && *getCurrency() != 0) ||
2464 fCurrencySignCount > fgCurrencySignCountZero);
2465
2466 for (int32_t i=0;
2467 i<affixPat.length() && pos >= 0; ) {
2468 UChar32 c = affixPat.char32At(i);
2469 i += U16_LENGTH(c);
2470
2471 if (c == kQuote) {
2472 U_ASSERT(i <= affixPat.length());
2473 c = affixPat.char32At(i);
2474 i += U16_LENGTH(c);
2475
2476 const UnicodeString* affix = NULL;
2477
2478 switch (c) {
2479 case kCurrencySign: {
2480 // since the currency names in choice format is saved
2481 // the same way as other currency names,
2482 // do not need to do currency choice parsing here.
2483 // the general currency parsing parse against all names,
2484 // including names in choice format.
2485 UBool intl = i<affixPat.length() &&
2486 affixPat.char32At(i) == kCurrencySign;
2487 if (intl) {
2488 ++i;
2489 }
2490 UBool plural = i<affixPat.length() &&
2491 affixPat.char32At(i) == kCurrencySign;
2492 if (plural) {
2493 ++i;
2494 intl = FALSE;
2495 }
2496 // Parse generic currency -- anything for which we
2497 // have a display name, or any 3-letter ISO code.
2498 // Try to parse display name for our locale; first
2499 // determine our locale.
2500 const char* loc = fCurrencyPluralInfo->getLocale().getName();
2501 ParsePosition ppos(pos);
2502 UChar curr[4];
2503 UErrorCode ec = U_ZERO_ERROR;
2504 // Delegate parse of display name => ISO code to Currency
2505 uprv_parseCurrency(loc, text, ppos, type, curr, ec);
2506
2507 // If parse succeeds, populate currency[0]
2508 if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
2509 if (currency) {
2510 u_strcpy(currency, curr);
2511 } else {
2512 // The formatter is currency-style but the client has not requested
2513 // the value of the parsed currency. In this case, if that value does
2514 // not match the formatter's current value, then the parse fails.
2515 UChar effectiveCurr[4];
2516 getEffectiveCurrency(effectiveCurr, ec);
2517 if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
2518 pos = -1;
2519 continue;
2520 }
2521 }
2522 pos = ppos.getIndex();
2523 } else if (!isLenient()){
2524 pos = -1;
2525 }
2526 continue;
2527 }
2528 case kPatternPercent:
2529 affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
2530 break;
2531 case kPatternPerMill:
2532 affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
2533 break;
2534 case kPatternPlus:
2535 affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
2536 break;
2537 case kPatternMinus:
2538 affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
2539 break;
2540 default:
2541 // fall through to affix!=0 test, which will fail
2542 break;
2543 }
2544
2545 if (affix != NULL) {
2546 pos = match(text, pos, *affix);
2547 continue;
2548 }
2549 }
2550
2551 pos = match(text, pos, c);
2552 if (PatternProps::isWhiteSpace(c)) {
2553 i = skipPatternWhiteSpace(affixPat, i);
2554 }
2555 }
2556 return pos - start;
2557 }
2558
2559 /**
2560 * Match a single character at text[pos] and return the index of the
2561 * next character upon success. Return -1 on failure. If
2562 * ch is a Pattern_White_Space then match a run of white space in text.
2563 */
match(const UnicodeString & text,int32_t pos,UChar32 ch)2564 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
2565 if (PatternProps::isWhiteSpace(ch)) {
2566 // Advance over run of white space in input text
2567 // Must see at least one white space char in input
2568 int32_t s = pos;
2569 pos = skipPatternWhiteSpace(text, pos);
2570 if (pos == s) {
2571 return -1;
2572 }
2573 return pos;
2574 }
2575 return (pos >= 0 && text.char32At(pos) == ch) ?
2576 (pos + U16_LENGTH(ch)) : -1;
2577 }
2578
2579 /**
2580 * Match a string at text[pos] and return the index of the next
2581 * character upon success. Return -1 on failure. Match a run of
2582 * white space in str with a run of white space in text.
2583 */
match(const UnicodeString & text,int32_t pos,const UnicodeString & str)2584 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
2585 for (int32_t i=0; i<str.length() && pos >= 0; ) {
2586 UChar32 ch = str.char32At(i);
2587 i += U16_LENGTH(ch);
2588 if (PatternProps::isWhiteSpace(ch)) {
2589 i = skipPatternWhiteSpace(str, i);
2590 }
2591 pos = match(text, pos, ch);
2592 }
2593 return pos;
2594 }
2595
matchSymbol(const UnicodeString & text,int32_t position,int32_t length,const UnicodeString & symbol,UnicodeSet * sset,UChar32 schar)2596 UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
2597 UnicodeSet *sset, UChar32 schar)
2598 {
2599 if (sset != NULL) {
2600 return sset->contains(schar);
2601 }
2602
2603 return text.compare(position, length, symbol) == 0;
2604 }
2605
matchDecimal(UChar32 symbolChar,UBool sawDecimal,UChar32 sawDecimalChar,const UnicodeSet * sset,UChar32 schar)2606 UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
2607 UBool sawDecimal, UChar32 sawDecimalChar,
2608 const UnicodeSet *sset, UChar32 schar) {
2609 if(sawDecimal) {
2610 return schar==sawDecimalChar;
2611 } else if(schar==symbolChar) {
2612 return TRUE;
2613 } else if(sset!=NULL) {
2614 return sset->contains(schar);
2615 } else {
2616 return FALSE;
2617 }
2618 }
2619
matchGrouping(UChar32 groupingChar,UBool sawGrouping,UChar32 sawGroupingChar,const UnicodeSet * sset,UChar32 decimalChar,const UnicodeSet * decimalSet,UChar32 schar)2620 UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
2621 UBool sawGrouping, UChar32 sawGroupingChar,
2622 const UnicodeSet *sset,
2623 UChar32 decimalChar, const UnicodeSet *decimalSet,
2624 UChar32 schar) {
2625 if(sawGrouping) {
2626 return schar==sawGroupingChar; // previously found
2627 } else if(schar==groupingChar) {
2628 return TRUE; // char from symbols
2629 } else if(sset!=NULL) {
2630 return sset->contains(schar) && // in groupingSet but...
2631 ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
2632 } else {
2633 return FALSE;
2634 }
2635 }
2636
2637
2638
2639 //------------------------------------------------------------------------------
2640 // Gets the pointer to the localized decimal format symbols
2641
2642 const DecimalFormatSymbols*
getDecimalFormatSymbols() const2643 DecimalFormat::getDecimalFormatSymbols() const
2644 {
2645 return fSymbols;
2646 }
2647
2648 //------------------------------------------------------------------------------
2649 // De-owning the current localized symbols and adopt the new symbols.
2650
2651 void
adoptDecimalFormatSymbols(DecimalFormatSymbols * symbolsToAdopt)2652 DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
2653 {
2654 if (symbolsToAdopt == NULL) {
2655 return; // do not allow caller to set fSymbols to NULL
2656 }
2657
2658 UBool sameSymbols = FALSE;
2659 if (fSymbols != NULL) {
2660 sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
2661 symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
2662 getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
2663 symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
2664 delete fSymbols;
2665 }
2666
2667 fSymbols = symbolsToAdopt;
2668 if (!sameSymbols) {
2669 // If the currency symbols are the same, there is no need to recalculate.
2670 setCurrencyForSymbols();
2671 }
2672 expandAffixes(NULL);
2673 }
2674 //------------------------------------------------------------------------------
2675 // Setting the symbols is equlivalent to adopting a newly created localized
2676 // symbols.
2677
2678 void
setDecimalFormatSymbols(const DecimalFormatSymbols & symbols)2679 DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
2680 {
2681 adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
2682 }
2683
2684
2685 const CurrencyPluralInfo*
getCurrencyPluralInfo(void) const2686 DecimalFormat::getCurrencyPluralInfo(void) const
2687 {
2688 return fCurrencyPluralInfo;
2689 }
2690
2691
2692 void
adoptCurrencyPluralInfo(CurrencyPluralInfo * toAdopt)2693 DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
2694 {
2695 if (toAdopt != NULL) {
2696 delete fCurrencyPluralInfo;
2697 fCurrencyPluralInfo = toAdopt;
2698 // re-set currency affix patterns and currency affixes.
2699 if (fCurrencySignCount > fgCurrencySignCountZero) {
2700 UErrorCode status = U_ZERO_ERROR;
2701 if (fAffixPatternsForCurrency) {
2702 deleteHashForAffixPattern();
2703 }
2704 setupCurrencyAffixPatterns(status);
2705 if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
2706 // only setup the affixes of the plural pattern.
2707 setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
2708 }
2709 }
2710 }
2711 }
2712
2713 void
setCurrencyPluralInfo(const CurrencyPluralInfo & info)2714 DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
2715 {
2716 adoptCurrencyPluralInfo(info.clone());
2717 }
2718
2719
2720 /**
2721 * Update the currency object to match the symbols. This method
2722 * is used only when the caller has passed in a symbols object
2723 * that may not be the default object for its locale.
2724 */
2725 void
setCurrencyForSymbols()2726 DecimalFormat::setCurrencyForSymbols() {
2727 /*Bug 4212072
2728 Update the affix strings accroding to symbols in order to keep
2729 the affix strings up to date.
2730 [Richard/GCL]
2731 */
2732
2733 // With the introduction of the Currency object, the currency
2734 // symbols in the DFS object are ignored. For backward
2735 // compatibility, we check any explicitly set DFS object. If it
2736 // is a default symbols object for its locale, we change the
2737 // currency object to one for that locale. If it is custom,
2738 // we set the currency to null.
2739 UErrorCode ec = U_ZERO_ERROR;
2740 const UChar* c = NULL;
2741 const char* loc = fSymbols->getLocale().getName();
2742 UChar intlCurrencySymbol[4];
2743 ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
2744 UnicodeString currencySymbol;
2745
2746 uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
2747 if (U_SUCCESS(ec)
2748 && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
2749 && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == UnicodeString(intlCurrencySymbol))
2750 {
2751 // Trap an error in mapping locale to currency. If we can't
2752 // map, then don't fail and set the currency to "".
2753 c = intlCurrencySymbol;
2754 }
2755 ec = U_ZERO_ERROR; // reset local error code!
2756 setCurrencyInternally(c, ec);
2757 }
2758
2759
2760 //------------------------------------------------------------------------------
2761 // Gets the positive prefix of the number pattern.
2762
2763 UnicodeString&
getPositivePrefix(UnicodeString & result) const2764 DecimalFormat::getPositivePrefix(UnicodeString& result) const
2765 {
2766 result = fPositivePrefix;
2767 return result;
2768 }
2769
2770 //------------------------------------------------------------------------------
2771 // Sets the positive prefix of the number pattern.
2772
2773 void
setPositivePrefix(const UnicodeString & newValue)2774 DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
2775 {
2776 fPositivePrefix = newValue;
2777 delete fPosPrefixPattern;
2778 fPosPrefixPattern = 0;
2779 }
2780
2781 //------------------------------------------------------------------------------
2782 // Gets the negative prefix of the number pattern.
2783
2784 UnicodeString&
getNegativePrefix(UnicodeString & result) const2785 DecimalFormat::getNegativePrefix(UnicodeString& result) const
2786 {
2787 result = fNegativePrefix;
2788 return result;
2789 }
2790
2791 //------------------------------------------------------------------------------
2792 // Gets the negative prefix of the number pattern.
2793
2794 void
setNegativePrefix(const UnicodeString & newValue)2795 DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
2796 {
2797 fNegativePrefix = newValue;
2798 delete fNegPrefixPattern;
2799 fNegPrefixPattern = 0;
2800 }
2801
2802 //------------------------------------------------------------------------------
2803 // Gets the positive suffix of the number pattern.
2804
2805 UnicodeString&
getPositiveSuffix(UnicodeString & result) const2806 DecimalFormat::getPositiveSuffix(UnicodeString& result) const
2807 {
2808 result = fPositiveSuffix;
2809 return result;
2810 }
2811
2812 //------------------------------------------------------------------------------
2813 // Sets the positive suffix of the number pattern.
2814
2815 void
setPositiveSuffix(const UnicodeString & newValue)2816 DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
2817 {
2818 fPositiveSuffix = newValue;
2819 delete fPosSuffixPattern;
2820 fPosSuffixPattern = 0;
2821 }
2822
2823 //------------------------------------------------------------------------------
2824 // Gets the negative suffix of the number pattern.
2825
2826 UnicodeString&
getNegativeSuffix(UnicodeString & result) const2827 DecimalFormat::getNegativeSuffix(UnicodeString& result) const
2828 {
2829 result = fNegativeSuffix;
2830 return result;
2831 }
2832
2833 //------------------------------------------------------------------------------
2834 // Sets the negative suffix of the number pattern.
2835
2836 void
setNegativeSuffix(const UnicodeString & newValue)2837 DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
2838 {
2839 fNegativeSuffix = newValue;
2840 delete fNegSuffixPattern;
2841 fNegSuffixPattern = 0;
2842 }
2843
2844 //------------------------------------------------------------------------------
2845 // Gets the multiplier of the number pattern.
2846 // Multipliers are stored as decimal numbers (DigitLists) because that
2847 // is the most convenient for muliplying or dividing the numbers to be formatted.
2848 // A NULL multiplier implies one, and the scaling operations are skipped.
2849
2850 int32_t
getMultiplier() const2851 DecimalFormat::getMultiplier() const
2852 {
2853 if (fMultiplier == NULL) {
2854 return 1;
2855 } else {
2856 return fMultiplier->getLong();
2857 }
2858 }
2859
2860 //------------------------------------------------------------------------------
2861 // Sets the multiplier of the number pattern.
2862 void
setMultiplier(int32_t newValue)2863 DecimalFormat::setMultiplier(int32_t newValue)
2864 {
2865 // if (newValue == 0) {
2866 // throw new IllegalArgumentException("Bad multiplier: " + newValue);
2867 // }
2868 if (newValue == 0) {
2869 newValue = 1; // one being the benign default value for a multiplier.
2870 }
2871 if (newValue == 1) {
2872 delete fMultiplier;
2873 fMultiplier = NULL;
2874 } else {
2875 if (fMultiplier == NULL) {
2876 fMultiplier = new DigitList;
2877 }
2878 if (fMultiplier != NULL) {
2879 fMultiplier->set(newValue);
2880 }
2881 }
2882 }
2883
2884 /**
2885 * Get the rounding increment.
2886 * @return A positive rounding increment, or 0.0 if rounding
2887 * is not in effect.
2888 * @see #setRoundingIncrement
2889 * @see #getRoundingMode
2890 * @see #setRoundingMode
2891 */
getRoundingIncrement() const2892 double DecimalFormat::getRoundingIncrement() const {
2893 if (fRoundingIncrement == NULL) {
2894 return 0.0;
2895 } else {
2896 return fRoundingIncrement->getDouble();
2897 }
2898 }
2899
2900 /**
2901 * Set the rounding increment. This method also controls whether
2902 * rounding is enabled.
2903 * @param newValue A positive rounding increment, or 0.0 to disable rounding.
2904 * Negative increments are equivalent to 0.0.
2905 * @see #getRoundingIncrement
2906 * @see #getRoundingMode
2907 * @see #setRoundingMode
2908 */
setRoundingIncrement(double newValue)2909 void DecimalFormat::setRoundingIncrement(double newValue) {
2910 if (newValue > 0.0) {
2911 if (fRoundingIncrement == NULL) {
2912 fRoundingIncrement = new DigitList();
2913 }
2914 if (fRoundingIncrement != NULL) {
2915 fRoundingIncrement->set(newValue);
2916 return;
2917 }
2918 }
2919 // These statements are executed if newValue is less than 0.0
2920 // or fRoundingIncrement could not be created.
2921 delete fRoundingIncrement;
2922 fRoundingIncrement = NULL;
2923 }
2924
2925 /**
2926 * Get the rounding mode.
2927 * @return A rounding mode
2928 * @see #setRoundingIncrement
2929 * @see #getRoundingIncrement
2930 * @see #setRoundingMode
2931 */
getRoundingMode() const2932 DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
2933 return fRoundingMode;
2934 }
2935
2936 /**
2937 * Set the rounding mode. This has no effect unless the rounding
2938 * increment is greater than zero.
2939 * @param roundingMode A rounding mode
2940 * @see #setRoundingIncrement
2941 * @see #getRoundingIncrement
2942 * @see #getRoundingMode
2943 */
setRoundingMode(ERoundingMode roundingMode)2944 void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
2945 fRoundingMode = roundingMode;
2946 }
2947
2948 /**
2949 * Get the width to which the output of <code>format()</code> is padded.
2950 * @return the format width, or zero if no padding is in effect
2951 * @see #setFormatWidth
2952 * @see #getPadCharacter
2953 * @see #setPadCharacter
2954 * @see #getPadPosition
2955 * @see #setPadPosition
2956 */
getFormatWidth() const2957 int32_t DecimalFormat::getFormatWidth() const {
2958 return fFormatWidth;
2959 }
2960
2961 /**
2962 * Set the width to which the output of <code>format()</code> is padded.
2963 * This method also controls whether padding is enabled.
2964 * @param width the width to which to pad the result of
2965 * <code>format()</code>, or zero to disable padding. A negative
2966 * width is equivalent to 0.
2967 * @see #getFormatWidth
2968 * @see #getPadCharacter
2969 * @see #setPadCharacter
2970 * @see #getPadPosition
2971 * @see #setPadPosition
2972 */
setFormatWidth(int32_t width)2973 void DecimalFormat::setFormatWidth(int32_t width) {
2974 fFormatWidth = (width > 0) ? width : 0;
2975 }
2976
getPadCharacterString() const2977 UnicodeString DecimalFormat::getPadCharacterString() const {
2978 return UnicodeString(fPad);
2979 }
2980
setPadCharacter(const UnicodeString & padChar)2981 void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
2982 if (padChar.length() > 0) {
2983 fPad = padChar.char32At(0);
2984 }
2985 else {
2986 fPad = kDefaultPad;
2987 }
2988 }
2989
2990 /**
2991 * Get the position at which padding will take place. This is the location
2992 * at which padding will be inserted if the result of <code>format()</code>
2993 * is shorter than the format width.
2994 * @return the pad position, one of <code>kPadBeforePrefix</code>,
2995 * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
2996 * <code>kPadAfterSuffix</code>.
2997 * @see #setFormatWidth
2998 * @see #getFormatWidth
2999 * @see #setPadCharacter
3000 * @see #getPadCharacter
3001 * @see #setPadPosition
3002 * @see #kPadBeforePrefix
3003 * @see #kPadAfterPrefix
3004 * @see #kPadBeforeSuffix
3005 * @see #kPadAfterSuffix
3006 */
getPadPosition() const3007 DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
3008 return fPadPosition;
3009 }
3010
3011 /**
3012 * <strong><font face=helvetica color=red>NEW</font></strong>
3013 * Set the position at which padding will take place. This is the location
3014 * at which padding will be inserted if the result of <code>format()</code>
3015 * is shorter than the format width. This has no effect unless padding is
3016 * enabled.
3017 * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
3018 * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
3019 * <code>kPadAfterSuffix</code>.
3020 * @see #setFormatWidth
3021 * @see #getFormatWidth
3022 * @see #setPadCharacter
3023 * @see #getPadCharacter
3024 * @see #getPadPosition
3025 * @see #kPadBeforePrefix
3026 * @see #kPadAfterPrefix
3027 * @see #kPadBeforeSuffix
3028 * @see #kPadAfterSuffix
3029 */
setPadPosition(EPadPosition padPos)3030 void DecimalFormat::setPadPosition(EPadPosition padPos) {
3031 fPadPosition = padPos;
3032 }
3033
3034 /**
3035 * Return whether or not scientific notation is used.
3036 * @return TRUE if this object formats and parses scientific notation
3037 * @see #setScientificNotation
3038 * @see #getMinimumExponentDigits
3039 * @see #setMinimumExponentDigits
3040 * @see #isExponentSignAlwaysShown
3041 * @see #setExponentSignAlwaysShown
3042 */
isScientificNotation()3043 UBool DecimalFormat::isScientificNotation() {
3044 return fUseExponentialNotation;
3045 }
3046
3047 /**
3048 * Set whether or not scientific notation is used.
3049 * @param useScientific TRUE if this object formats and parses scientific
3050 * notation
3051 * @see #isScientificNotation
3052 * @see #getMinimumExponentDigits
3053 * @see #setMinimumExponentDigits
3054 * @see #isExponentSignAlwaysShown
3055 * @see #setExponentSignAlwaysShown
3056 */
setScientificNotation(UBool useScientific)3057 void DecimalFormat::setScientificNotation(UBool useScientific) {
3058 fUseExponentialNotation = useScientific;
3059 }
3060
3061 /**
3062 * Return the minimum exponent digits that will be shown.
3063 * @return the minimum exponent digits that will be shown
3064 * @see #setScientificNotation
3065 * @see #isScientificNotation
3066 * @see #setMinimumExponentDigits
3067 * @see #isExponentSignAlwaysShown
3068 * @see #setExponentSignAlwaysShown
3069 */
getMinimumExponentDigits() const3070 int8_t DecimalFormat::getMinimumExponentDigits() const {
3071 return fMinExponentDigits;
3072 }
3073
3074 /**
3075 * Set the minimum exponent digits that will be shown. This has no
3076 * effect unless scientific notation is in use.
3077 * @param minExpDig a value >= 1 indicating the fewest exponent digits
3078 * that will be shown. Values less than 1 will be treated as 1.
3079 * @see #setScientificNotation
3080 * @see #isScientificNotation
3081 * @see #getMinimumExponentDigits
3082 * @see #isExponentSignAlwaysShown
3083 * @see #setExponentSignAlwaysShown
3084 */
setMinimumExponentDigits(int8_t minExpDig)3085 void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
3086 fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
3087 }
3088
3089 /**
3090 * Return whether the exponent sign is always shown.
3091 * @return TRUE if the exponent is always prefixed with either the
3092 * localized minus sign or the localized plus sign, false if only negative
3093 * exponents are prefixed with the localized minus sign.
3094 * @see #setScientificNotation
3095 * @see #isScientificNotation
3096 * @see #setMinimumExponentDigits
3097 * @see #getMinimumExponentDigits
3098 * @see #setExponentSignAlwaysShown
3099 */
isExponentSignAlwaysShown()3100 UBool DecimalFormat::isExponentSignAlwaysShown() {
3101 return fExponentSignAlwaysShown;
3102 }
3103
3104 /**
3105 * Set whether the exponent sign is always shown. This has no effect
3106 * unless scientific notation is in use.
3107 * @param expSignAlways TRUE if the exponent is always prefixed with either
3108 * the localized minus sign or the localized plus sign, false if only
3109 * negative exponents are prefixed with the localized minus sign.
3110 * @see #setScientificNotation
3111 * @see #isScientificNotation
3112 * @see #setMinimumExponentDigits
3113 * @see #getMinimumExponentDigits
3114 * @see #isExponentSignAlwaysShown
3115 */
setExponentSignAlwaysShown(UBool expSignAlways)3116 void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
3117 fExponentSignAlwaysShown = expSignAlways;
3118 }
3119
3120 //------------------------------------------------------------------------------
3121 // Gets the grouping size of the number pattern. For example, thousand or 10
3122 // thousand groupings.
3123
3124 int32_t
getGroupingSize() const3125 DecimalFormat::getGroupingSize() const
3126 {
3127 return fGroupingSize;
3128 }
3129
3130 //------------------------------------------------------------------------------
3131 // Gets the grouping size of the number pattern.
3132
3133 void
setGroupingSize(int32_t newValue)3134 DecimalFormat::setGroupingSize(int32_t newValue)
3135 {
3136 fGroupingSize = newValue;
3137 }
3138
3139 //------------------------------------------------------------------------------
3140
3141 int32_t
getSecondaryGroupingSize() const3142 DecimalFormat::getSecondaryGroupingSize() const
3143 {
3144 return fGroupingSize2;
3145 }
3146
3147 //------------------------------------------------------------------------------
3148
3149 void
setSecondaryGroupingSize(int32_t newValue)3150 DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
3151 {
3152 fGroupingSize2 = newValue;
3153 }
3154
3155 //------------------------------------------------------------------------------
3156 // Checks if to show the decimal separator.
3157
3158 UBool
isDecimalSeparatorAlwaysShown() const3159 DecimalFormat::isDecimalSeparatorAlwaysShown() const
3160 {
3161 return fDecimalSeparatorAlwaysShown;
3162 }
3163
3164 //------------------------------------------------------------------------------
3165 // Sets to always show the decimal separator.
3166
3167 void
setDecimalSeparatorAlwaysShown(UBool newValue)3168 DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
3169 {
3170 fDecimalSeparatorAlwaysShown = newValue;
3171 }
3172
3173 //------------------------------------------------------------------------------
3174 // Emits the pattern of this DecimalFormat instance.
3175
3176 UnicodeString&
toPattern(UnicodeString & result) const3177 DecimalFormat::toPattern(UnicodeString& result) const
3178 {
3179 return toPattern(result, FALSE);
3180 }
3181
3182 //------------------------------------------------------------------------------
3183 // Emits the localized pattern this DecimalFormat instance.
3184
3185 UnicodeString&
toLocalizedPattern(UnicodeString & result) const3186 DecimalFormat::toLocalizedPattern(UnicodeString& result) const
3187 {
3188 return toPattern(result, TRUE);
3189 }
3190
3191 //------------------------------------------------------------------------------
3192 /**
3193 * Expand the affix pattern strings into the expanded affix strings. If any
3194 * affix pattern string is null, do not expand it. This method should be
3195 * called any time the symbols or the affix patterns change in order to keep
3196 * the expanded affix strings up to date.
3197 * This method also will be called before formatting if format currency
3198 * plural names, since the plural name is not a static one, it is
3199 * based on the currency plural count, the affix will be known only
3200 * after the currency plural count is know.
3201 * In which case, the parameter
3202 * 'pluralCount' will be a non-null currency plural count.
3203 * In all other cases, the 'pluralCount' is null, which means it is not needed.
3204 */
expandAffixes(const UnicodeString * pluralCount)3205 void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
3206 FieldPositionHandler none;
3207 if (fPosPrefixPattern != 0) {
3208 expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
3209 }
3210 if (fPosSuffixPattern != 0) {
3211 expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
3212 }
3213 if (fNegPrefixPattern != 0) {
3214 expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
3215 }
3216 if (fNegSuffixPattern != 0) {
3217 expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
3218 }
3219 #ifdef FMT_DEBUG
3220 UnicodeString s;
3221 s.append("[")
3222 .append(*fPosPrefixPattern).append("|").append(*fPosSuffixPattern)
3223 .append(";") .append(*fNegPrefixPattern).append("|").append(*fNegSuffixPattern)
3224 .append("]->[")
3225 .append(fPositivePrefix).append("|").append(fPositiveSuffix)
3226 .append(";") .append(fNegativePrefix).append("|").append(fNegativeSuffix)
3227 .append("]\n");
3228 debugout(s);
3229 #endif
3230 }
3231
3232 /**
3233 * Expand an affix pattern into an affix string. All characters in the
3234 * pattern are literal unless prefixed by kQuote. The following characters
3235 * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
3236 * PATTERN_MINUS, and kCurrencySign. If kCurrencySign is doubled (kQuote +
3237 * kCurrencySign + kCurrencySign), it is interpreted as an international
3238 * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
3239 * currency plural long names, such as "US Dollars".
3240 * Any other character after a kQuote represents itself.
3241 * kQuote must be followed by another character; kQuote may not occur by
3242 * itself at the end of the pattern.
3243 *
3244 * This method is used in two distinct ways. First, it is used to expand
3245 * the stored affix patterns into actual affixes. For this usage, doFormat
3246 * must be false. Second, it is used to expand the stored affix patterns
3247 * given a specific number (doFormat == true), for those rare cases in
3248 * which a currency format references a ChoiceFormat (e.g., en_IN display
3249 * name for INR). The number itself is taken from digitList.
3250 *
3251 * When used in the first way, this method has a side effect: It sets
3252 * currencyChoice to a ChoiceFormat object, if the currency's display name
3253 * in this locale is a ChoiceFormat pattern (very rare). It only does this
3254 * if currencyChoice is null to start with.
3255 *
3256 * @param pattern the non-null, fPossibly empty pattern
3257 * @param affix string to receive the expanded equivalent of pattern.
3258 * Previous contents are deleted.
3259 * @param doFormat if false, then the pattern will be expanded, and if a
3260 * currency symbol is encountered that expands to a ChoiceFormat, the
3261 * currencyChoice member variable will be initialized if it is null. If
3262 * doFormat is true, then it is assumed that the currencyChoice has been
3263 * created, and it will be used to format the value in digitList.
3264 * @param pluralCount the plural count. It is only used for currency
3265 * plural format. In which case, it is the plural
3266 * count of the currency amount. For example,
3267 * in en_US, it is the singular "one", or the plural
3268 * "other". For all other cases, it is null, and
3269 * is not being used.
3270 */
expandAffix(const UnicodeString & pattern,UnicodeString & affix,double number,FieldPositionHandler & handler,UBool doFormat,const UnicodeString * pluralCount) const3271 void DecimalFormat::expandAffix(const UnicodeString& pattern,
3272 UnicodeString& affix,
3273 double number,
3274 FieldPositionHandler& handler,
3275 UBool doFormat,
3276 const UnicodeString* pluralCount) const {
3277 affix.remove();
3278 for (int i=0; i<pattern.length(); ) {
3279 UChar32 c = pattern.char32At(i);
3280 i += U16_LENGTH(c);
3281 if (c == kQuote) {
3282 c = pattern.char32At(i);
3283 i += U16_LENGTH(c);
3284 int beginIdx = affix.length();
3285 switch (c) {
3286 case kCurrencySign: {
3287 // As of ICU 2.2 we use the currency object, and
3288 // ignore the currency symbols in the DFS, unless
3289 // we have a null currency object. This occurs if
3290 // resurrecting a pre-2.2 object or if the user
3291 // sets a custom DFS.
3292 UBool intl = i<pattern.length() &&
3293 pattern.char32At(i) == kCurrencySign;
3294 UBool plural = FALSE;
3295 if (intl) {
3296 ++i;
3297 plural = i<pattern.length() &&
3298 pattern.char32At(i) == kCurrencySign;
3299 if (plural) {
3300 intl = FALSE;
3301 ++i;
3302 }
3303 }
3304 const UChar* currencyUChars = getCurrency();
3305 if (currencyUChars[0] != 0) {
3306 UErrorCode ec = U_ZERO_ERROR;
3307 if (plural && pluralCount != NULL) {
3308 // plural name is only needed when pluralCount != null,
3309 // which means when formatting currency plural names.
3310 // For other cases, pluralCount == null,
3311 // and plural names are not needed.
3312 int32_t len;
3313 CharString pluralCountChar;
3314 pluralCountChar.appendInvariantChars(*pluralCount, ec);
3315 UBool isChoiceFormat;
3316 const UChar* s = ucurr_getPluralName(currencyUChars,
3317 fSymbols != NULL ? fSymbols->getLocale().getName() :
3318 Locale::getDefault().getName(), &isChoiceFormat,
3319 pluralCountChar.data(), &len, &ec);
3320 affix += UnicodeString(s, len);
3321 handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3322 } else if(intl) {
3323 affix.append(currencyUChars, -1);
3324 handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3325 } else {
3326 int32_t len;
3327 UBool isChoiceFormat;
3328 // If fSymbols is NULL, use default locale
3329 const UChar* s = ucurr_getName(currencyUChars,
3330 fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
3331 UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
3332 if (isChoiceFormat) {
3333 // Two modes here: If doFormat is false, we set up
3334 // currencyChoice. If doFormat is true, we use the
3335 // previously created currencyChoice to format the
3336 // value in digitList.
3337 if (!doFormat) {
3338 // If the currency is handled by a ChoiceFormat,
3339 // then we're not going to use the expanded
3340 // patterns. Instantiate the ChoiceFormat and
3341 // return.
3342 if (fCurrencyChoice == NULL) {
3343 // TODO Replace double-check with proper thread-safe code
3344 ChoiceFormat* fmt = new ChoiceFormat(UnicodeString(s), ec);
3345 if (U_SUCCESS(ec)) {
3346 umtx_lock(NULL);
3347 if (fCurrencyChoice == NULL) {
3348 // Cast away const
3349 ((DecimalFormat*)this)->fCurrencyChoice = fmt;
3350 fmt = NULL;
3351 }
3352 umtx_unlock(NULL);
3353 delete fmt;
3354 }
3355 }
3356 // We could almost return null or "" here, since the
3357 // expanded affixes are almost not used at all
3358 // in this situation. However, one method --
3359 // toPattern() -- still does use the expanded
3360 // affixes, in order to set up a padding
3361 // pattern. We use the CURRENCY_SIGN as a
3362 // placeholder.
3363 affix.append(kCurrencySign);
3364 } else {
3365 if (fCurrencyChoice != NULL) {
3366 FieldPosition pos(0); // ignored
3367 if (number < 0) {
3368 number = -number;
3369 }
3370 fCurrencyChoice->format(number, affix, pos);
3371 } else {
3372 // We only arrive here if the currency choice
3373 // format in the locale data is INVALID.
3374 affix.append(currencyUChars, -1);
3375 handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3376 }
3377 }
3378 continue;
3379 }
3380 affix += UnicodeString(s, len);
3381 handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3382 }
3383 } else {
3384 if(intl) {
3385 affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
3386 } else {
3387 affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
3388 }
3389 handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3390 }
3391 break;
3392 }
3393 case kPatternPercent:
3394 affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3395 handler.addAttribute(kPercentField, beginIdx, affix.length());
3396 break;
3397 case kPatternPerMill:
3398 affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3399 handler.addAttribute(kPermillField, beginIdx, affix.length());
3400 break;
3401 case kPatternPlus:
3402 affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3403 handler.addAttribute(kSignField, beginIdx, affix.length());
3404 break;
3405 case kPatternMinus:
3406 affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3407 handler.addAttribute(kSignField, beginIdx, affix.length());
3408 break;
3409 default:
3410 affix.append(c);
3411 break;
3412 }
3413 }
3414 else {
3415 affix.append(c);
3416 }
3417 }
3418 }
3419
3420 /**
3421 * Append an affix to the given StringBuffer.
3422 * @param buf buffer to append to
3423 * @param isNegative
3424 * @param isPrefix
3425 */
appendAffix(UnicodeString & buf,double number,FieldPositionHandler & handler,UBool isNegative,UBool isPrefix) const3426 int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
3427 FieldPositionHandler& handler,
3428 UBool isNegative, UBool isPrefix) const {
3429 // plural format precedes choice format
3430 if (fCurrencyChoice != 0 &&
3431 fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
3432 const UnicodeString* affixPat;
3433 if (isPrefix) {
3434 affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
3435 } else {
3436 affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
3437 }
3438 if (affixPat) {
3439 UnicodeString affixBuf;
3440 expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
3441 buf.append(affixBuf);
3442 return affixBuf.length();
3443 }
3444 // else someone called a function that reset the pattern.
3445 }
3446
3447 const UnicodeString* affix;
3448 if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
3449 UnicodeString pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
3450 AffixesForCurrency* oneSet;
3451 if (fStyle == UNUM_CURRENCY_PLURAL) {
3452 oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
3453 } else {
3454 oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
3455 }
3456 if (isPrefix) {
3457 affix = isNegative ? &oneSet->negPrefixForCurrency :
3458 &oneSet->posPrefixForCurrency;
3459 } else {
3460 affix = isNegative ? &oneSet->negSuffixForCurrency :
3461 &oneSet->posSuffixForCurrency;
3462 }
3463 } else {
3464 if (isPrefix) {
3465 affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
3466 } else {
3467 affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
3468 }
3469 }
3470
3471 int32_t begin = (int) buf.length();
3472
3473 buf.append(*affix);
3474
3475 if (handler.isRecording()) {
3476 int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
3477 if (offset > -1) {
3478 UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
3479 handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
3480 }
3481
3482 offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
3483 if (offset > -1) {
3484 UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
3485 handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
3486 }
3487
3488 offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
3489 if (offset > -1) {
3490 UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3491 handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
3492 }
3493
3494 offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
3495 if (offset > -1) {
3496 UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3497 handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
3498 }
3499
3500 offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
3501 if (offset > -1) {
3502 UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3503 handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
3504 }
3505 }
3506 return affix->length();
3507 }
3508
3509 /**
3510 * Appends an affix pattern to the given StringBuffer, quoting special
3511 * characters as needed. Uses the internal affix pattern, if that exists,
3512 * or the literal affix, if the internal affix pattern is null. The
3513 * appended string will generate the same affix pattern (or literal affix)
3514 * when passed to toPattern().
3515 *
3516 * @param appendTo the affix string is appended to this
3517 * @param affixPattern a pattern such as fPosPrefixPattern; may be null
3518 * @param expAffix a corresponding expanded affix, such as fPositivePrefix.
3519 * Ignored unless affixPattern is null. If affixPattern is null, then
3520 * expAffix is appended as a literal affix.
3521 * @param localized true if the appended pattern should contain localized
3522 * pattern characters; otherwise, non-localized pattern chars are appended
3523 */
appendAffixPattern(UnicodeString & appendTo,const UnicodeString * affixPattern,const UnicodeString & expAffix,UBool localized) const3524 void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
3525 const UnicodeString* affixPattern,
3526 const UnicodeString& expAffix,
3527 UBool localized) const {
3528 if (affixPattern == 0) {
3529 appendAffixPattern(appendTo, expAffix, localized);
3530 } else {
3531 int i;
3532 for (int pos=0; pos<affixPattern->length(); pos=i) {
3533 i = affixPattern->indexOf(kQuote, pos);
3534 if (i < 0) {
3535 UnicodeString s;
3536 affixPattern->extractBetween(pos, affixPattern->length(), s);
3537 appendAffixPattern(appendTo, s, localized);
3538 break;
3539 }
3540 if (i > pos) {
3541 UnicodeString s;
3542 affixPattern->extractBetween(pos, i, s);
3543 appendAffixPattern(appendTo, s, localized);
3544 }
3545 UChar32 c = affixPattern->char32At(++i);
3546 ++i;
3547 if (c == kQuote) {
3548 appendTo.append(c).append(c);
3549 // Fall through and append another kQuote below
3550 } else if (c == kCurrencySign &&
3551 i<affixPattern->length() &&
3552 affixPattern->char32At(i) == kCurrencySign) {
3553 ++i;
3554 appendTo.append(c).append(c);
3555 } else if (localized) {
3556 switch (c) {
3557 case kPatternPercent:
3558 appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3559 break;
3560 case kPatternPerMill:
3561 appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3562 break;
3563 case kPatternPlus:
3564 appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3565 break;
3566 case kPatternMinus:
3567 appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3568 break;
3569 default:
3570 appendTo.append(c);
3571 }
3572 } else {
3573 appendTo.append(c);
3574 }
3575 }
3576 }
3577 }
3578
3579 /**
3580 * Append an affix to the given StringBuffer, using quotes if
3581 * there are special characters. Single quotes themselves must be
3582 * escaped in either case.
3583 */
3584 void
appendAffixPattern(UnicodeString & appendTo,const UnicodeString & affix,UBool localized) const3585 DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
3586 const UnicodeString& affix,
3587 UBool localized) const {
3588 UBool needQuote;
3589 if(localized) {
3590 needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
3591 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
3592 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
3593 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
3594 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
3595 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
3596 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
3597 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
3598 || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
3599 || affix.indexOf(kCurrencySign) >= 0;
3600 }
3601 else {
3602 needQuote = affix.indexOf(kPatternZeroDigit) >= 0
3603 || affix.indexOf(kPatternGroupingSeparator) >= 0
3604 || affix.indexOf(kPatternDecimalSeparator) >= 0
3605 || affix.indexOf(kPatternPercent) >= 0
3606 || affix.indexOf(kPatternPerMill) >= 0
3607 || affix.indexOf(kPatternDigit) >= 0
3608 || affix.indexOf(kPatternSeparator) >= 0
3609 || affix.indexOf(kPatternExponent) >= 0
3610 || affix.indexOf(kPatternPlus) >= 0
3611 || affix.indexOf(kPatternMinus) >= 0
3612 || affix.indexOf(kCurrencySign) >= 0;
3613 }
3614 if (needQuote)
3615 appendTo += (UChar)0x0027 /*'\''*/;
3616 if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
3617 appendTo += affix;
3618 else {
3619 for (int32_t j = 0; j < affix.length(); ) {
3620 UChar32 c = affix.char32At(j);
3621 j += U16_LENGTH(c);
3622 appendTo += c;
3623 if (c == 0x0027 /*'\''*/)
3624 appendTo += c;
3625 }
3626 }
3627 if (needQuote)
3628 appendTo += (UChar)0x0027 /*'\''*/;
3629 }
3630
3631 //------------------------------------------------------------------------------
3632
3633 UnicodeString&
toPattern(UnicodeString & result,UBool localized) const3634 DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
3635 {
3636 if (fStyle == UNUM_CURRENCY_PLURAL) {
3637 // the prefix or suffix pattern might not be defined yet,
3638 // so they can not be synthesized,
3639 // instead, get them directly.
3640 // but it might not be the actual pattern used in formatting.
3641 // the actual pattern used in formatting depends on the
3642 // formatted number's plural count.
3643 result = fFormatPattern;
3644 return result;
3645 }
3646 result.remove();
3647 UChar32 zero, sigDigit = kPatternSignificantDigit;
3648 UnicodeString digit, group;
3649 int32_t i;
3650 int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
3651 UnicodeString roundingDigits;
3652 int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
3653 UnicodeString padSpec;
3654 UBool useSigDig = areSignificantDigitsUsed();
3655
3656 if (localized) {
3657 digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
3658 group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
3659 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
3660 if (useSigDig) {
3661 sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
3662 }
3663 }
3664 else {
3665 digit.append((UChar)kPatternDigit);
3666 group.append((UChar)kPatternGroupingSeparator);
3667 zero = (UChar32)kPatternZeroDigit;
3668 }
3669 if (fFormatWidth > 0) {
3670 if (localized) {
3671 padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
3672 }
3673 else {
3674 padSpec.append((UChar)kPatternPadEscape);
3675 }
3676 padSpec.append(fPad);
3677 }
3678 if (fRoundingIncrement != NULL) {
3679 for(i=0; i<fRoundingIncrement->getCount(); ++i) {
3680 roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
3681 }
3682 roundingDecimalPos = fRoundingIncrement->getDecimalAt();
3683 }
3684 for (int32_t part=0; part<2; ++part) {
3685 if (padPos == kPadBeforePrefix) {
3686 result.append(padSpec);
3687 }
3688 appendAffixPattern(result,
3689 (part==0 ? fPosPrefixPattern : fNegPrefixPattern),
3690 (part==0 ? fPositivePrefix : fNegativePrefix),
3691 localized);
3692 if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
3693 result.append(padSpec);
3694 }
3695 int32_t sub0Start = result.length();
3696 int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
3697 if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
3698 g += fGroupingSize2;
3699 }
3700 int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
3701 if (useSigDig) {
3702 minDig = getMinimumSignificantDigits();
3703 maxDig = maxSigDig = getMaximumSignificantDigits();
3704 } else {
3705 minDig = getMinimumIntegerDigits();
3706 maxDig = getMaximumIntegerDigits();
3707 }
3708 if (fUseExponentialNotation) {
3709 if (maxDig > kMaxScientificIntegerDigits) {
3710 maxDig = 1;
3711 }
3712 } else if (useSigDig) {
3713 maxDig = _max(maxDig, g+1);
3714 } else {
3715 maxDig = _max(_max(g, getMinimumIntegerDigits()),
3716 roundingDecimalPos) + 1;
3717 }
3718 for (i = maxDig; i > 0; --i) {
3719 if (!fUseExponentialNotation && i<maxDig &&
3720 isGroupingPosition(i)) {
3721 result.append(group);
3722 }
3723 if (useSigDig) {
3724 // #@,@### (maxSigDig == 5, minSigDig == 2)
3725 // 65 4321 (1-based pos, count from the right)
3726 // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
3727 // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
3728 if (maxSigDig >= i && i > (maxSigDig - minDig)) {
3729 result.append(sigDigit);
3730 } else {
3731 result.append(digit);
3732 }
3733 } else {
3734 if (! roundingDigits.isEmpty()) {
3735 int32_t pos = roundingDecimalPos - i;
3736 if (pos >= 0 && pos < roundingDigits.length()) {
3737 result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
3738 continue;
3739 }
3740 }
3741 if (i<=minDig) {
3742 result.append(zero);
3743 } else {
3744 result.append(digit);
3745 }
3746 }
3747 }
3748 if (!useSigDig) {
3749 if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
3750 if (localized) {
3751 result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
3752 }
3753 else {
3754 result.append((UChar)kPatternDecimalSeparator);
3755 }
3756 }
3757 int32_t pos = roundingDecimalPos;
3758 for (i = 0; i < getMaximumFractionDigits(); ++i) {
3759 if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
3760 if (pos < 0) {
3761 result.append(zero);
3762 }
3763 else {
3764 result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
3765 }
3766 ++pos;
3767 continue;
3768 }
3769 if (i<getMinimumFractionDigits()) {
3770 result.append(zero);
3771 }
3772 else {
3773 result.append(digit);
3774 }
3775 }
3776 }
3777 if (fUseExponentialNotation) {
3778 if (localized) {
3779 result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
3780 }
3781 else {
3782 result.append((UChar)kPatternExponent);
3783 }
3784 if (fExponentSignAlwaysShown) {
3785 if (localized) {
3786 result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3787 }
3788 else {
3789 result.append((UChar)kPatternPlus);
3790 }
3791 }
3792 for (i=0; i<fMinExponentDigits; ++i) {
3793 result.append(zero);
3794 }
3795 }
3796 if (! padSpec.isEmpty() && !fUseExponentialNotation) {
3797 int32_t add = fFormatWidth - result.length() + sub0Start
3798 - ((part == 0)
3799 ? fPositivePrefix.length() + fPositiveSuffix.length()
3800 : fNegativePrefix.length() + fNegativeSuffix.length());
3801 while (add > 0) {
3802 result.insert(sub0Start, digit);
3803 ++maxDig;
3804 --add;
3805 // Only add a grouping separator if we have at least
3806 // 2 additional characters to be added, so we don't
3807 // end up with ",###".
3808 if (add>1 && isGroupingPosition(maxDig)) {
3809 result.insert(sub0Start, group);
3810 --add;
3811 }
3812 }
3813 }
3814 if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
3815 result.append(padSpec);
3816 }
3817 if (part == 0) {
3818 appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
3819 if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
3820 result.append(padSpec);
3821 }
3822 UBool isDefault = FALSE;
3823 if ((fNegSuffixPattern == fPosSuffixPattern && // both null
3824 fNegativeSuffix == fPositiveSuffix)
3825 || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
3826 *fNegSuffixPattern == *fPosSuffixPattern))
3827 {
3828 if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
3829 {
3830 int32_t length = fPosPrefixPattern->length();
3831 isDefault = fNegPrefixPattern->length() == (length+2) &&
3832 (*fNegPrefixPattern)[(int32_t)0] == kQuote &&
3833 (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
3834 fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
3835 }
3836 if (!isDefault &&
3837 fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
3838 {
3839 int32_t length = fPositivePrefix.length();
3840 isDefault = fNegativePrefix.length() == (length+1) &&
3841 fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
3842 fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
3843 }
3844 }
3845 if (isDefault) {
3846 break; // Don't output default negative subpattern
3847 } else {
3848 if (localized) {
3849 result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
3850 }
3851 else {
3852 result.append((UChar)kPatternSeparator);
3853 }
3854 }
3855 } else {
3856 appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
3857 if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
3858 result.append(padSpec);
3859 }
3860 }
3861 }
3862
3863 return result;
3864 }
3865
3866 //------------------------------------------------------------------------------
3867
3868 void
applyPattern(const UnicodeString & pattern,UErrorCode & status)3869 DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
3870 {
3871 UParseError parseError;
3872 applyPattern(pattern, FALSE, parseError, status);
3873 }
3874
3875 //------------------------------------------------------------------------------
3876
3877 void
applyPattern(const UnicodeString & pattern,UParseError & parseError,UErrorCode & status)3878 DecimalFormat::applyPattern(const UnicodeString& pattern,
3879 UParseError& parseError,
3880 UErrorCode& status)
3881 {
3882 applyPattern(pattern, FALSE, parseError, status);
3883 }
3884 //------------------------------------------------------------------------------
3885
3886 void
applyLocalizedPattern(const UnicodeString & pattern,UErrorCode & status)3887 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
3888 {
3889 UParseError parseError;
3890 applyPattern(pattern, TRUE,parseError,status);
3891 }
3892
3893 //------------------------------------------------------------------------------
3894
3895 void
applyLocalizedPattern(const UnicodeString & pattern,UParseError & parseError,UErrorCode & status)3896 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
3897 UParseError& parseError,
3898 UErrorCode& status)
3899 {
3900 applyPattern(pattern, TRUE,parseError,status);
3901 }
3902
3903 //------------------------------------------------------------------------------
3904
3905 void
applyPatternWithoutExpandAffix(const UnicodeString & pattern,UBool localized,UParseError & parseError,UErrorCode & status)3906 DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
3907 UBool localized,
3908 UParseError& parseError,
3909 UErrorCode& status)
3910 {
3911 if (U_FAILURE(status))
3912 {
3913 return;
3914 }
3915 // Clear error struct
3916 parseError.offset = -1;
3917 parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
3918
3919 // Set the significant pattern symbols
3920 UChar32 zeroDigit = kPatternZeroDigit; // '0'
3921 UChar32 sigDigit = kPatternSignificantDigit; // '@'
3922 UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
3923 UnicodeString decimalSeparator ((UChar)kPatternDecimalSeparator);
3924 UnicodeString percent ((UChar)kPatternPercent);
3925 UnicodeString perMill ((UChar)kPatternPerMill);
3926 UnicodeString digit ((UChar)kPatternDigit); // '#'
3927 UnicodeString separator ((UChar)kPatternSeparator);
3928 UnicodeString exponent ((UChar)kPatternExponent);
3929 UnicodeString plus ((UChar)kPatternPlus);
3930 UnicodeString minus ((UChar)kPatternMinus);
3931 UnicodeString padEscape ((UChar)kPatternPadEscape);
3932 // Substitute with the localized symbols if necessary
3933 if (localized) {
3934 zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
3935 sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
3936 groupingSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
3937 decimalSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
3938 percent. remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
3939 perMill. remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
3940 digit. remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
3941 separator. remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
3942 exponent. remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
3943 plus. remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
3944 minus. remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
3945 padEscape. remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
3946 }
3947 UChar nineDigit = (UChar)(zeroDigit + 9);
3948 int32_t digitLen = digit.length();
3949 int32_t groupSepLen = groupingSeparator.length();
3950 int32_t decimalSepLen = decimalSeparator.length();
3951
3952 int32_t pos = 0;
3953 int32_t patLen = pattern.length();
3954 // Part 0 is the positive pattern. Part 1, if present, is the negative
3955 // pattern.
3956 for (int32_t part=0; part<2 && pos<patLen; ++part) {
3957 // The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
3958 // 2=suffix, 3=prefix in quote, 4=suffix in quote. Subpart 0 is
3959 // between the prefix and suffix, and consists of pattern
3960 // characters. In the prefix and suffix, percent, perMill, and
3961 // currency symbols are recognized and translated.
3962 int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
3963
3964 // It's important that we don't change any fields of this object
3965 // prematurely. We set the following variables for the multiplier,
3966 // grouping, etc., and then only change the actual object fields if
3967 // everything parses correctly. This also lets us register
3968 // the data from part 0 and ignore the part 1, except for the
3969 // prefix and suffix.
3970 UnicodeString prefix;
3971 UnicodeString suffix;
3972 int32_t decimalPos = -1;
3973 int32_t multiplier = 1;
3974 int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
3975 int8_t groupingCount = -1;
3976 int8_t groupingCount2 = -1;
3977 int32_t padPos = -1;
3978 UChar32 padChar = 0;
3979 int32_t roundingPos = -1;
3980 DigitList roundingInc;
3981 int8_t expDigits = -1;
3982 UBool expSignAlways = FALSE;
3983
3984 // The affix is either the prefix or the suffix.
3985 UnicodeString* affix = &prefix;
3986
3987 int32_t start = pos;
3988 UBool isPartDone = FALSE;
3989 UChar32 ch;
3990
3991 for (; !isPartDone && pos < patLen; ) {
3992 // Todo: account for surrogate pairs
3993 ch = pattern.char32At(pos);
3994 switch (subpart) {
3995 case 0: // Pattern proper subpart (between prefix & suffix)
3996 // Process the digits, decimal, and grouping characters. We
3997 // record five pieces of information. We expect the digits
3998 // to occur in the pattern ####00.00####, and we record the
3999 // number of left digits, zero (central) digits, and right
4000 // digits. The position of the last grouping character is
4001 // recorded (should be somewhere within the first two blocks
4002 // of characters), as is the position of the decimal point,
4003 // if any (should be in the zero digits). If there is no
4004 // decimal point, then there should be no right digits.
4005 if (pattern.compare(pos, digitLen, digit) == 0) {
4006 if (zeroDigitCount > 0 || sigDigitCount > 0) {
4007 ++digitRightCount;
4008 } else {
4009 ++digitLeftCount;
4010 }
4011 if (groupingCount >= 0 && decimalPos < 0) {
4012 ++groupingCount;
4013 }
4014 pos += digitLen;
4015 } else if ((ch >= zeroDigit && ch <= nineDigit) ||
4016 ch == sigDigit) {
4017 if (digitRightCount > 0) {
4018 // Unexpected '0'
4019 debug("Unexpected '0'")
4020 status = U_UNEXPECTED_TOKEN;
4021 syntaxError(pattern,pos,parseError);
4022 return;
4023 }
4024 if (ch == sigDigit) {
4025 ++sigDigitCount;
4026 } else {
4027 ++zeroDigitCount;
4028 if (ch != zeroDigit && roundingPos < 0) {
4029 roundingPos = digitLeftCount + zeroDigitCount;
4030 }
4031 if (roundingPos >= 0) {
4032 roundingInc.append((char)(ch - zeroDigit + '0'));
4033 }
4034 }
4035 if (groupingCount >= 0 && decimalPos < 0) {
4036 ++groupingCount;
4037 }
4038 pos += U16_LENGTH(ch);
4039 } else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
4040 if (decimalPos >= 0) {
4041 // Grouping separator after decimal
4042 debug("Grouping separator after decimal")
4043 status = U_UNEXPECTED_TOKEN;
4044 syntaxError(pattern,pos,parseError);
4045 return;
4046 }
4047 groupingCount2 = groupingCount;
4048 groupingCount = 0;
4049 pos += groupSepLen;
4050 } else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
4051 if (decimalPos >= 0) {
4052 // Multiple decimal separators
4053 debug("Multiple decimal separators")
4054 status = U_MULTIPLE_DECIMAL_SEPARATORS;
4055 syntaxError(pattern,pos,parseError);
4056 return;
4057 }
4058 // Intentionally incorporate the digitRightCount,
4059 // even though it is illegal for this to be > 0
4060 // at this point. We check pattern syntax below.
4061 decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
4062 pos += decimalSepLen;
4063 } else {
4064 if (pattern.compare(pos, exponent.length(), exponent) == 0) {
4065 if (expDigits >= 0) {
4066 // Multiple exponential symbols
4067 debug("Multiple exponential symbols")
4068 status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
4069 syntaxError(pattern,pos,parseError);
4070 return;
4071 }
4072 if (groupingCount >= 0) {
4073 // Grouping separator in exponential pattern
4074 debug("Grouping separator in exponential pattern")
4075 status = U_MALFORMED_EXPONENTIAL_PATTERN;
4076 syntaxError(pattern,pos,parseError);
4077 return;
4078 }
4079 pos += exponent.length();
4080 // Check for positive prefix
4081 if (pos < patLen
4082 && pattern.compare(pos, plus.length(), plus) == 0) {
4083 expSignAlways = TRUE;
4084 pos += plus.length();
4085 }
4086 // Use lookahead to parse out the exponential part of the
4087 // pattern, then jump into suffix subpart.
4088 expDigits = 0;
4089 while (pos < patLen &&
4090 pattern.char32At(pos) == zeroDigit) {
4091 ++expDigits;
4092 pos += U16_LENGTH(zeroDigit);
4093 }
4094
4095 // 1. Require at least one mantissa pattern digit
4096 // 2. Disallow "#+ @" in mantissa
4097 // 3. Require at least one exponent pattern digit
4098 if (((digitLeftCount + zeroDigitCount) < 1 &&
4099 (sigDigitCount + digitRightCount) < 1) ||
4100 (sigDigitCount > 0 && digitLeftCount > 0) ||
4101 expDigits < 1) {
4102 // Malformed exponential pattern
4103 debug("Malformed exponential pattern")
4104 status = U_MALFORMED_EXPONENTIAL_PATTERN;
4105 syntaxError(pattern,pos,parseError);
4106 return;
4107 }
4108 }
4109 // Transition to suffix subpart
4110 subpart = 2; // suffix subpart
4111 affix = &suffix;
4112 sub0Limit = pos;
4113 continue;
4114 }
4115 break;
4116 case 1: // Prefix subpart
4117 case 2: // Suffix subpart
4118 // Process the prefix / suffix characters
4119 // Process unquoted characters seen in prefix or suffix
4120 // subpart.
4121
4122 // Several syntax characters implicitly begins the
4123 // next subpart if we are in the prefix; otherwise
4124 // they are illegal if unquoted.
4125 if (!pattern.compare(pos, digitLen, digit) ||
4126 !pattern.compare(pos, groupSepLen, groupingSeparator) ||
4127 !pattern.compare(pos, decimalSepLen, decimalSeparator) ||
4128 (ch >= zeroDigit && ch <= nineDigit) ||
4129 ch == sigDigit) {
4130 if (subpart == 1) { // prefix subpart
4131 subpart = 0; // pattern proper subpart
4132 sub0Start = pos; // Reprocess this character
4133 continue;
4134 } else {
4135 status = U_UNQUOTED_SPECIAL;
4136 syntaxError(pattern,pos,parseError);
4137 return;
4138 }
4139 } else if (ch == kCurrencySign) {
4140 affix->append(kQuote); // Encode currency
4141 // Use lookahead to determine if the currency sign is
4142 // doubled or not.
4143 U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
4144 if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
4145 affix->append(kCurrencySign);
4146 ++pos; // Skip over the doubled character
4147 if ((pos+1) < pattern.length() &&
4148 pattern[pos+1] == kCurrencySign) {
4149 affix->append(kCurrencySign);
4150 ++pos; // Skip over the doubled character
4151 fCurrencySignCount = fgCurrencySignCountInPluralFormat;
4152 } else {
4153 fCurrencySignCount = fgCurrencySignCountInISOFormat;
4154 }
4155 } else {
4156 fCurrencySignCount = fgCurrencySignCountInSymbolFormat;
4157 }
4158 // Fall through to append(ch)
4159 } else if (ch == kQuote) {
4160 // A quote outside quotes indicates either the opening
4161 // quote or two quotes, which is a quote literal. That is,
4162 // we have the first quote in 'do' or o''clock.
4163 U_ASSERT(U16_LENGTH(kQuote) == 1);
4164 ++pos;
4165 if (pos < pattern.length() && pattern[pos] == kQuote) {
4166 affix->append(kQuote); // Encode quote
4167 // Fall through to append(ch)
4168 } else {
4169 subpart += 2; // open quote
4170 continue;
4171 }
4172 } else if (pattern.compare(pos, separator.length(), separator) == 0) {
4173 // Don't allow separators in the prefix, and don't allow
4174 // separators in the second pattern (part == 1).
4175 if (subpart == 1 || part == 1) {
4176 // Unexpected separator
4177 debug("Unexpected separator")
4178 status = U_UNEXPECTED_TOKEN;
4179 syntaxError(pattern,pos,parseError);
4180 return;
4181 }
4182 sub2Limit = pos;
4183 isPartDone = TRUE; // Go to next part
4184 pos += separator.length();
4185 break;
4186 } else if (pattern.compare(pos, percent.length(), percent) == 0) {
4187 // Next handle characters which are appended directly.
4188 if (multiplier != 1) {
4189 // Too many percent/perMill characters
4190 debug("Too many percent characters")
4191 status = U_MULTIPLE_PERCENT_SYMBOLS;
4192 syntaxError(pattern,pos,parseError);
4193 return;
4194 }
4195 affix->append(kQuote); // Encode percent/perMill
4196 affix->append(kPatternPercent); // Use unlocalized pattern char
4197 multiplier = 100;
4198 pos += percent.length();
4199 break;
4200 } else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
4201 // Next handle characters which are appended directly.
4202 if (multiplier != 1) {
4203 // Too many percent/perMill characters
4204 debug("Too many perMill characters")
4205 status = U_MULTIPLE_PERMILL_SYMBOLS;
4206 syntaxError(pattern,pos,parseError);
4207 return;
4208 }
4209 affix->append(kQuote); // Encode percent/perMill
4210 affix->append(kPatternPerMill); // Use unlocalized pattern char
4211 multiplier = 1000;
4212 pos += perMill.length();
4213 break;
4214 } else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
4215 if (padPos >= 0 || // Multiple pad specifiers
4216 (pos+1) == pattern.length()) { // Nothing after padEscape
4217 debug("Multiple pad specifiers")
4218 status = U_MULTIPLE_PAD_SPECIFIERS;
4219 syntaxError(pattern,pos,parseError);
4220 return;
4221 }
4222 padPos = pos;
4223 pos += padEscape.length();
4224 padChar = pattern.char32At(pos);
4225 pos += U16_LENGTH(padChar);
4226 break;
4227 } else if (pattern.compare(pos, minus.length(), minus) == 0) {
4228 affix->append(kQuote); // Encode minus
4229 affix->append(kPatternMinus);
4230 pos += minus.length();
4231 break;
4232 } else if (pattern.compare(pos, plus.length(), plus) == 0) {
4233 affix->append(kQuote); // Encode plus
4234 affix->append(kPatternPlus);
4235 pos += plus.length();
4236 break;
4237 }
4238 // Unquoted, non-special characters fall through to here, as
4239 // well as other code which needs to append something to the
4240 // affix.
4241 affix->append(ch);
4242 pos += U16_LENGTH(ch);
4243 break;
4244 case 3: // Prefix subpart, in quote
4245 case 4: // Suffix subpart, in quote
4246 // A quote within quotes indicates either the closing
4247 // quote or two quotes, which is a quote literal. That is,
4248 // we have the second quote in 'do' or 'don''t'.
4249 if (ch == kQuote) {
4250 ++pos;
4251 if (pos < pattern.length() && pattern[pos] == kQuote) {
4252 affix->append(kQuote); // Encode quote
4253 // Fall through to append(ch)
4254 } else {
4255 subpart -= 2; // close quote
4256 continue;
4257 }
4258 }
4259 affix->append(ch);
4260 pos += U16_LENGTH(ch);
4261 break;
4262 }
4263 }
4264
4265 if (sub0Limit == 0) {
4266 sub0Limit = pattern.length();
4267 }
4268
4269 if (sub2Limit == 0) {
4270 sub2Limit = pattern.length();
4271 }
4272
4273 /* Handle patterns with no '0' pattern character. These patterns
4274 * are legal, but must be recodified to make sense. "##.###" ->
4275 * "#0.###". ".###" -> ".0##".
4276 *
4277 * We allow patterns of the form "####" to produce a zeroDigitCount
4278 * of zero (got that?); although this seems like it might make it
4279 * possible for format() to produce empty strings, format() checks
4280 * for this condition and outputs a zero digit in this situation.
4281 * Having a zeroDigitCount of zero yields a minimum integer digits
4282 * of zero, which allows proper round-trip patterns. We don't want
4283 * "#" to become "#0" when toPattern() is called (even though that's
4284 * what it really is, semantically).
4285 */
4286 if (zeroDigitCount == 0 && sigDigitCount == 0 &&
4287 digitLeftCount > 0 && decimalPos >= 0) {
4288 // Handle "###.###" and "###." and ".###"
4289 int n = decimalPos;
4290 if (n == 0)
4291 ++n; // Handle ".###"
4292 digitRightCount = digitLeftCount - n;
4293 digitLeftCount = n - 1;
4294 zeroDigitCount = 1;
4295 }
4296
4297 // Do syntax checking on the digits, decimal points, and quotes.
4298 if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
4299 (decimalPos >= 0 &&
4300 (sigDigitCount > 0 ||
4301 decimalPos < digitLeftCount ||
4302 decimalPos > (digitLeftCount + zeroDigitCount))) ||
4303 groupingCount == 0 || groupingCount2 == 0 ||
4304 (sigDigitCount > 0 && zeroDigitCount > 0) ||
4305 subpart > 2)
4306 { // subpart > 2 == unmatched quote
4307 debug("Syntax error")
4308 status = U_PATTERN_SYNTAX_ERROR;
4309 syntaxError(pattern,pos,parseError);
4310 return;
4311 }
4312
4313 // Make sure pad is at legal position before or after affix.
4314 if (padPos >= 0) {
4315 if (padPos == start) {
4316 padPos = kPadBeforePrefix;
4317 } else if (padPos+2 == sub0Start) {
4318 padPos = kPadAfterPrefix;
4319 } else if (padPos == sub0Limit) {
4320 padPos = kPadBeforeSuffix;
4321 } else if (padPos+2 == sub2Limit) {
4322 padPos = kPadAfterSuffix;
4323 } else {
4324 // Illegal pad position
4325 debug("Illegal pad position")
4326 status = U_ILLEGAL_PAD_POSITION;
4327 syntaxError(pattern,pos,parseError);
4328 return;
4329 }
4330 }
4331
4332 if (part == 0) {
4333 delete fPosPrefixPattern;
4334 delete fPosSuffixPattern;
4335 delete fNegPrefixPattern;
4336 delete fNegSuffixPattern;
4337 fPosPrefixPattern = new UnicodeString(prefix);
4338 /* test for NULL */
4339 if (fPosPrefixPattern == 0) {
4340 status = U_MEMORY_ALLOCATION_ERROR;
4341 return;
4342 }
4343 fPosSuffixPattern = new UnicodeString(suffix);
4344 /* test for NULL */
4345 if (fPosSuffixPattern == 0) {
4346 status = U_MEMORY_ALLOCATION_ERROR;
4347 delete fPosPrefixPattern;
4348 return;
4349 }
4350 fNegPrefixPattern = 0;
4351 fNegSuffixPattern = 0;
4352
4353 fUseExponentialNotation = (expDigits >= 0);
4354 if (fUseExponentialNotation) {
4355 fMinExponentDigits = expDigits;
4356 }
4357 fExponentSignAlwaysShown = expSignAlways;
4358 int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
4359 // The effectiveDecimalPos is the position the decimal is at or
4360 // would be at if there is no decimal. Note that if
4361 // decimalPos<0, then digitTotalCount == digitLeftCount +
4362 // zeroDigitCount.
4363 int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
4364 UBool isSigDig = (sigDigitCount > 0);
4365 setSignificantDigitsUsed(isSigDig);
4366 if (isSigDig) {
4367 setMinimumSignificantDigits(sigDigitCount);
4368 setMaximumSignificantDigits(sigDigitCount + digitRightCount);
4369 } else {
4370 int32_t minInt = effectiveDecimalPos - digitLeftCount;
4371 setMinimumIntegerDigits(minInt);
4372 setMaximumIntegerDigits(fUseExponentialNotation
4373 ? digitLeftCount + getMinimumIntegerDigits()
4374 : kDoubleIntegerDigits);
4375 setMaximumFractionDigits(decimalPos >= 0
4376 ? (digitTotalCount - decimalPos) : 0);
4377 setMinimumFractionDigits(decimalPos >= 0
4378 ? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
4379 }
4380 setGroupingUsed(groupingCount > 0);
4381 fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
4382 fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
4383 ? groupingCount2 : 0;
4384 setMultiplier(multiplier);
4385 setDecimalSeparatorAlwaysShown(decimalPos == 0
4386 || decimalPos == digitTotalCount);
4387 if (padPos >= 0) {
4388 fPadPosition = (EPadPosition) padPos;
4389 // To compute the format width, first set up sub0Limit -
4390 // sub0Start. Add in prefix/suffix length later.
4391
4392 // fFormatWidth = prefix.length() + suffix.length() +
4393 // sub0Limit - sub0Start;
4394 fFormatWidth = sub0Limit - sub0Start;
4395 fPad = padChar;
4396 } else {
4397 fFormatWidth = 0;
4398 }
4399 if (roundingPos >= 0) {
4400 roundingInc.setDecimalAt(effectiveDecimalPos - roundingPos);
4401 if (fRoundingIncrement != NULL) {
4402 *fRoundingIncrement = roundingInc;
4403 } else {
4404 fRoundingIncrement = new DigitList(roundingInc);
4405 /* test for NULL */
4406 if (fRoundingIncrement == NULL) {
4407 status = U_MEMORY_ALLOCATION_ERROR;
4408 delete fPosPrefixPattern;
4409 delete fPosSuffixPattern;
4410 return;
4411 }
4412 }
4413 fRoundingIncrement->getDouble(); // forces caching of double in the DigitList,
4414 // makes getting it thread safe.
4415 fRoundingMode = kRoundHalfEven;
4416 } else {
4417 setRoundingIncrement(0.0);
4418 }
4419 } else {
4420 fNegPrefixPattern = new UnicodeString(prefix);
4421 /* test for NULL */
4422 if (fNegPrefixPattern == 0) {
4423 status = U_MEMORY_ALLOCATION_ERROR;
4424 return;
4425 }
4426 fNegSuffixPattern = new UnicodeString(suffix);
4427 /* test for NULL */
4428 if (fNegSuffixPattern == 0) {
4429 delete fNegPrefixPattern;
4430 status = U_MEMORY_ALLOCATION_ERROR;
4431 return;
4432 }
4433 }
4434 }
4435
4436 if (pattern.length() == 0) {
4437 delete fNegPrefixPattern;
4438 delete fNegSuffixPattern;
4439 fNegPrefixPattern = NULL;
4440 fNegSuffixPattern = NULL;
4441 if (fPosPrefixPattern != NULL) {
4442 fPosPrefixPattern->remove();
4443 } else {
4444 fPosPrefixPattern = new UnicodeString();
4445 /* test for NULL */
4446 if (fPosPrefixPattern == 0) {
4447 status = U_MEMORY_ALLOCATION_ERROR;
4448 return;
4449 }
4450 }
4451 if (fPosSuffixPattern != NULL) {
4452 fPosSuffixPattern->remove();
4453 } else {
4454 fPosSuffixPattern = new UnicodeString();
4455 /* test for NULL */
4456 if (fPosSuffixPattern == 0) {
4457 delete fPosPrefixPattern;
4458 status = U_MEMORY_ALLOCATION_ERROR;
4459 return;
4460 }
4461 }
4462
4463 setMinimumIntegerDigits(0);
4464 setMaximumIntegerDigits(kDoubleIntegerDigits);
4465 setMinimumFractionDigits(0);
4466 setMaximumFractionDigits(kDoubleFractionDigits);
4467
4468 fUseExponentialNotation = FALSE;
4469 fCurrencySignCount = 0;
4470 setGroupingUsed(FALSE);
4471 fGroupingSize = 0;
4472 fGroupingSize2 = 0;
4473 setMultiplier(1);
4474 setDecimalSeparatorAlwaysShown(FALSE);
4475 fFormatWidth = 0;
4476 setRoundingIncrement(0.0);
4477 }
4478
4479 // If there was no negative pattern, or if the negative pattern is
4480 // identical to the positive pattern, then prepend the minus sign to the
4481 // positive pattern to form the negative pattern.
4482 if (fNegPrefixPattern == NULL ||
4483 (*fNegPrefixPattern == *fPosPrefixPattern
4484 && *fNegSuffixPattern == *fPosSuffixPattern)) {
4485 _copy_us_ptr(&fNegSuffixPattern, fPosSuffixPattern);
4486 if (fNegPrefixPattern == NULL) {
4487 fNegPrefixPattern = new UnicodeString();
4488 /* test for NULL */
4489 if (fNegPrefixPattern == 0) {
4490 status = U_MEMORY_ALLOCATION_ERROR;
4491 return;
4492 }
4493 } else {
4494 fNegPrefixPattern->remove();
4495 }
4496 fNegPrefixPattern->append(kQuote).append(kPatternMinus)
4497 .append(*fPosPrefixPattern);
4498 }
4499 #ifdef FMT_DEBUG
4500 UnicodeString s;
4501 s.append("\"").append(pattern).append("\"->");
4502 debugout(s);
4503 #endif
4504
4505 // save the pattern
4506 fFormatPattern = pattern;
4507 }
4508
4509
4510 void
expandAffixAdjustWidth(const UnicodeString * pluralCount)4511 DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
4512 expandAffixes(pluralCount);
4513 if (fFormatWidth > 0) {
4514 // Finish computing format width (see above)
4515 // TODO: how to handle fFormatWidth,
4516 // need to save in f(Plural)AffixesForCurrecy?
4517 fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
4518 }
4519 }
4520
4521
4522 void
applyPattern(const UnicodeString & pattern,UBool localized,UParseError & parseError,UErrorCode & status)4523 DecimalFormat::applyPattern(const UnicodeString& pattern,
4524 UBool localized,
4525 UParseError& parseError,
4526 UErrorCode& status)
4527 {
4528 // do the following re-set first. since they change private data by
4529 // apply pattern again.
4530 if (pattern.indexOf(kCurrencySign) != -1) {
4531 if (fCurrencyPluralInfo == NULL) {
4532 // initialize currencyPluralInfo if needed
4533 fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
4534 }
4535 if (fAffixPatternsForCurrency == NULL) {
4536 setupCurrencyAffixPatterns(status);
4537 }
4538 if (pattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
4539 // only setup the affixes of the current pattern.
4540 setupCurrencyAffixes(pattern, TRUE, FALSE, status);
4541 }
4542 }
4543 applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
4544 expandAffixAdjustWidth(NULL);
4545 }
4546
4547
4548 void
applyPatternInternally(const UnicodeString & pluralCount,const UnicodeString & pattern,UBool localized,UParseError & parseError,UErrorCode & status)4549 DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
4550 const UnicodeString& pattern,
4551 UBool localized,
4552 UParseError& parseError,
4553 UErrorCode& status) {
4554 applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
4555 expandAffixAdjustWidth(&pluralCount);
4556 }
4557
4558
4559 /**
4560 * Sets the maximum number of digits allowed in the integer portion of a
4561 * number. This override limits the integer digit count to 309.
4562 * @see NumberFormat#setMaximumIntegerDigits
4563 */
setMaximumIntegerDigits(int32_t newValue)4564 void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
4565 NumberFormat::setMaximumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
4566 }
4567
4568 /**
4569 * Sets the minimum number of digits allowed in the integer portion of a
4570 * number. This override limits the integer digit count to 309.
4571 * @see NumberFormat#setMinimumIntegerDigits
4572 */
setMinimumIntegerDigits(int32_t newValue)4573 void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
4574 NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
4575 }
4576
4577 /**
4578 * Sets the maximum number of digits allowed in the fraction portion of a
4579 * number. This override limits the fraction digit count to 340.
4580 * @see NumberFormat#setMaximumFractionDigits
4581 */
setMaximumFractionDigits(int32_t newValue)4582 void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
4583 NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
4584 }
4585
4586 /**
4587 * Sets the minimum number of digits allowed in the fraction portion of a
4588 * number. This override limits the fraction digit count to 340.
4589 * @see NumberFormat#setMinimumFractionDigits
4590 */
setMinimumFractionDigits(int32_t newValue)4591 void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
4592 NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
4593 }
4594
getMinimumSignificantDigits() const4595 int32_t DecimalFormat::getMinimumSignificantDigits() const {
4596 return fMinSignificantDigits;
4597 }
4598
getMaximumSignificantDigits() const4599 int32_t DecimalFormat::getMaximumSignificantDigits() const {
4600 return fMaxSignificantDigits;
4601 }
4602
setMinimumSignificantDigits(int32_t min)4603 void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
4604 if (min < 1) {
4605 min = 1;
4606 }
4607 // pin max sig dig to >= min
4608 int32_t max = _max(fMaxSignificantDigits, min);
4609 fMinSignificantDigits = min;
4610 fMaxSignificantDigits = max;
4611 }
4612
setMaximumSignificantDigits(int32_t max)4613 void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
4614 if (max < 1) {
4615 max = 1;
4616 }
4617 // pin min sig dig to 1..max
4618 U_ASSERT(fMinSignificantDigits >= 1);
4619 int32_t min = _min(fMinSignificantDigits, max);
4620 fMinSignificantDigits = min;
4621 fMaxSignificantDigits = max;
4622 }
4623
areSignificantDigitsUsed() const4624 UBool DecimalFormat::areSignificantDigitsUsed() const {
4625 return fUseSignificantDigits;
4626 }
4627
setSignificantDigitsUsed(UBool useSignificantDigits)4628 void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
4629 fUseSignificantDigits = useSignificantDigits;
4630 }
4631
setCurrencyInternally(const UChar * theCurrency,UErrorCode & ec)4632 void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
4633 UErrorCode& ec) {
4634 // If we are a currency format, then modify our affixes to
4635 // encode the currency symbol for the given currency in our
4636 // locale, and adjust the decimal digits and rounding for the
4637 // given currency.
4638
4639 // Note: The code is ordered so that this object is *not changed*
4640 // until we are sure we are going to succeed.
4641
4642 // NULL or empty currency is *legal* and indicates no currency.
4643 UBool isCurr = (theCurrency && *theCurrency);
4644
4645 double rounding = 0.0;
4646 int32_t frac = 0;
4647 if (fCurrencySignCount > fgCurrencySignCountZero && isCurr) {
4648 rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
4649 frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
4650 }
4651
4652 NumberFormat::setCurrency(theCurrency, ec);
4653 if (U_FAILURE(ec)) return;
4654
4655 if (fCurrencySignCount > fgCurrencySignCountZero) {
4656 // NULL or empty currency is *legal* and indicates no currency.
4657 if (isCurr) {
4658 setRoundingIncrement(rounding);
4659 setMinimumFractionDigits(frac);
4660 setMaximumFractionDigits(frac);
4661 }
4662 expandAffixes(NULL);
4663 }
4664 }
4665
setCurrency(const UChar * theCurrency,UErrorCode & ec)4666 void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
4667 // set the currency before compute affixes to get the right currency names
4668 NumberFormat::setCurrency(theCurrency, ec);
4669 if (fFormatPattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
4670 UnicodeString savedPtn = fFormatPattern;
4671 setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
4672 UParseError parseErr;
4673 applyPattern(savedPtn, FALSE, parseErr, ec);
4674 }
4675 // set the currency after apply pattern to get the correct rounding/fraction
4676 setCurrencyInternally(theCurrency, ec);
4677 }
4678
4679 // Deprecated variant with no UErrorCode parameter
setCurrency(const UChar * theCurrency)4680 void DecimalFormat::setCurrency(const UChar* theCurrency) {
4681 UErrorCode ec = U_ZERO_ERROR;
4682 setCurrency(theCurrency, ec);
4683 }
4684
getEffectiveCurrency(UChar * result,UErrorCode & ec) const4685 void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
4686 if (fSymbols == NULL) {
4687 ec = U_MEMORY_ALLOCATION_ERROR;
4688 return;
4689 }
4690 ec = U_ZERO_ERROR;
4691 const UChar* c = getCurrency();
4692 if (*c == 0) {
4693 const UnicodeString &intl =
4694 fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
4695 c = intl.getBuffer(); // ok for intl to go out of scope
4696 }
4697 u_strncpy(result, c, 3);
4698 result[3] = 0;
4699 }
4700
4701 /**
4702 * Return the number of fraction digits to display, or the total
4703 * number of digits for significant digit formats and exponential
4704 * formats.
4705 */
4706 int32_t
precision() const4707 DecimalFormat::precision() const {
4708 if (areSignificantDigitsUsed()) {
4709 return getMaximumSignificantDigits();
4710 } else if (fUseExponentialNotation) {
4711 return getMinimumIntegerDigits() + getMaximumFractionDigits();
4712 } else {
4713 return getMaximumFractionDigits();
4714 }
4715 }
4716
4717
4718 // TODO: template algorithm
4719 Hashtable*
initHashForAffix(UErrorCode & status)4720 DecimalFormat::initHashForAffix(UErrorCode& status) {
4721 if ( U_FAILURE(status) ) {
4722 return NULL;
4723 }
4724 Hashtable* hTable;
4725 if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
4726 status = U_MEMORY_ALLOCATION_ERROR;
4727 return NULL;
4728 }
4729 if ( U_FAILURE(status) ) {
4730 delete hTable;
4731 return NULL;
4732 }
4733 hTable->setValueComparator(decimfmtAffixValueComparator);
4734 return hTable;
4735 }
4736
4737 Hashtable*
initHashForAffixPattern(UErrorCode & status)4738 DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
4739 if ( U_FAILURE(status) ) {
4740 return NULL;
4741 }
4742 Hashtable* hTable;
4743 if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
4744 status = U_MEMORY_ALLOCATION_ERROR;
4745 return NULL;
4746 }
4747 if ( U_FAILURE(status) ) {
4748 delete hTable;
4749 return NULL;
4750 }
4751 hTable->setValueComparator(decimfmtAffixPatternValueComparator);
4752 return hTable;
4753 }
4754
4755 void
deleteHashForAffix(Hashtable * & table)4756 DecimalFormat::deleteHashForAffix(Hashtable*& table)
4757 {
4758 if ( table == NULL ) {
4759 return;
4760 }
4761 int32_t pos = -1;
4762 const UHashElement* element = NULL;
4763 while ( (element = table->nextElement(pos)) != NULL ) {
4764 const UHashTok valueTok = element->value;
4765 const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
4766 delete value;
4767 }
4768 delete table;
4769 table = NULL;
4770 }
4771
4772
4773
4774 void
deleteHashForAffixPattern()4775 DecimalFormat::deleteHashForAffixPattern()
4776 {
4777 if ( fAffixPatternsForCurrency == NULL ) {
4778 return;
4779 }
4780 int32_t pos = -1;
4781 const UHashElement* element = NULL;
4782 while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
4783 const UHashTok valueTok = element->value;
4784 const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
4785 delete value;
4786 }
4787 delete fAffixPatternsForCurrency;
4788 fAffixPatternsForCurrency = NULL;
4789 }
4790
4791
4792 void
copyHashForAffixPattern(const Hashtable * source,Hashtable * target,UErrorCode & status)4793 DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
4794 Hashtable* target,
4795 UErrorCode& status) {
4796 if ( U_FAILURE(status) ) {
4797 return;
4798 }
4799 int32_t pos = -1;
4800 const UHashElement* element = NULL;
4801 if ( source ) {
4802 while ( (element = source->nextElement(pos)) != NULL ) {
4803 const UHashTok keyTok = element->key;
4804 const UnicodeString* key = (UnicodeString*)keyTok.pointer;
4805 const UHashTok valueTok = element->value;
4806 const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
4807 AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
4808 value->negPrefixPatternForCurrency,
4809 value->negSuffixPatternForCurrency,
4810 value->posPrefixPatternForCurrency,
4811 value->posSuffixPatternForCurrency,
4812 value->patternType);
4813 target->put(UnicodeString(*key), copy, status);
4814 if ( U_FAILURE(status) ) {
4815 return;
4816 }
4817 }
4818 }
4819 }
4820
4821
4822
4823 void
copyHashForAffix(const Hashtable * source,Hashtable * target,UErrorCode & status)4824 DecimalFormat::copyHashForAffix(const Hashtable* source,
4825 Hashtable* target,
4826 UErrorCode& status) {
4827 if ( U_FAILURE(status) ) {
4828 return;
4829 }
4830 int32_t pos = -1;
4831 const UHashElement* element = NULL;
4832 if ( source ) {
4833 while ( (element = source->nextElement(pos)) != NULL ) {
4834 const UHashTok keyTok = element->key;
4835 const UnicodeString* key = (UnicodeString*)keyTok.pointer;
4836
4837 const UHashTok valueTok = element->value;
4838 const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
4839 AffixesForCurrency* copy = new AffixesForCurrency(
4840 value->negPrefixForCurrency,
4841 value->negSuffixForCurrency,
4842 value->posPrefixForCurrency,
4843 value->posSuffixForCurrency);
4844 target->put(UnicodeString(*key), copy, status);
4845 if ( U_FAILURE(status) ) {
4846 return;
4847 }
4848 }
4849 }
4850 }
4851
4852 U_NAMESPACE_END
4853
4854 #endif /* #if !UCONFIG_NO_FORMATTING */
4855
4856 //eof
4857