• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariable analysis pass.  For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
16 //
17 // This class computes live variables using a sparse implementation based on
18 // the machine code SSA form.  This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function.  It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block).  If a physical
24 // register is not register allocatable, it is not tracked.  This is useful for
25 // things like the stack pointer and condition codes.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/ADT/DepthFirstIterator.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include <algorithm>
42 using namespace llvm;
43 
44 char LiveVariables::ID = 0;
45 char &llvm::LiveVariablesID = LiveVariables::ID;
46 INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
47                 "Live Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)48 INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
49 INITIALIZE_PASS_END(LiveVariables, "livevars",
50                 "Live Variable Analysis", false, false)
51 
52 
53 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
54   AU.addRequiredID(UnreachableMachineBlockElimID);
55   AU.setPreservesAll();
56   MachineFunctionPass::getAnalysisUsage(AU);
57 }
58 
59 MachineInstr *
findKill(const MachineBasicBlock * MBB) const60 LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
61   for (unsigned i = 0, e = Kills.size(); i != e; ++i)
62     if (Kills[i]->getParent() == MBB)
63       return Kills[i];
64   return NULL;
65 }
66 
dump() const67 void LiveVariables::VarInfo::dump() const {
68 #ifndef NDEBUG
69   dbgs() << "  Alive in blocks: ";
70   for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
71            E = AliveBlocks.end(); I != E; ++I)
72     dbgs() << *I << ", ";
73   dbgs() << "\n  Killed by:";
74   if (Kills.empty())
75     dbgs() << " No instructions.\n";
76   else {
77     for (unsigned i = 0, e = Kills.size(); i != e; ++i)
78       dbgs() << "\n    #" << i << ": " << *Kills[i];
79     dbgs() << "\n";
80   }
81 #endif
82 }
83 
84 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
getVarInfo(unsigned RegIdx)85 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
86   assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
87          "getVarInfo: not a virtual register!");
88   VirtRegInfo.grow(RegIdx);
89   return VirtRegInfo[RegIdx];
90 }
91 
MarkVirtRegAliveInBlock(VarInfo & VRInfo,MachineBasicBlock * DefBlock,MachineBasicBlock * MBB,std::vector<MachineBasicBlock * > & WorkList)92 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
93                                             MachineBasicBlock *DefBlock,
94                                             MachineBasicBlock *MBB,
95                                     std::vector<MachineBasicBlock*> &WorkList) {
96   unsigned BBNum = MBB->getNumber();
97 
98   // Check to see if this basic block is one of the killing blocks.  If so,
99   // remove it.
100   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
101     if (VRInfo.Kills[i]->getParent() == MBB) {
102       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
103       break;
104     }
105 
106   if (MBB == DefBlock) return;  // Terminate recursion
107 
108   if (VRInfo.AliveBlocks.test(BBNum))
109     return;  // We already know the block is live
110 
111   // Mark the variable known alive in this bb
112   VRInfo.AliveBlocks.set(BBNum);
113 
114   assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
115   WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
116 }
117 
MarkVirtRegAliveInBlock(VarInfo & VRInfo,MachineBasicBlock * DefBlock,MachineBasicBlock * MBB)118 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
119                                             MachineBasicBlock *DefBlock,
120                                             MachineBasicBlock *MBB) {
121   std::vector<MachineBasicBlock*> WorkList;
122   MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
123 
124   while (!WorkList.empty()) {
125     MachineBasicBlock *Pred = WorkList.back();
126     WorkList.pop_back();
127     MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
128   }
129 }
130 
HandleVirtRegUse(unsigned reg,MachineBasicBlock * MBB,MachineInstr * MI)131 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
132                                      MachineInstr *MI) {
133   assert(MRI->getVRegDef(reg) && "Register use before def!");
134 
135   unsigned BBNum = MBB->getNumber();
136 
137   VarInfo& VRInfo = getVarInfo(reg);
138 
139   // Check to see if this basic block is already a kill block.
140   if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
141     // Yes, this register is killed in this basic block already. Increase the
142     // live range by updating the kill instruction.
143     VRInfo.Kills.back() = MI;
144     return;
145   }
146 
147 #ifndef NDEBUG
148   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
149     assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
150 #endif
151 
152   // This situation can occur:
153   //
154   //     ,------.
155   //     |      |
156   //     |      v
157   //     |   t2 = phi ... t1 ...
158   //     |      |
159   //     |      v
160   //     |   t1 = ...
161   //     |  ... = ... t1 ...
162   //     |      |
163   //     `------'
164   //
165   // where there is a use in a PHI node that's a predecessor to the defining
166   // block. We don't want to mark all predecessors as having the value "alive"
167   // in this case.
168   if (MBB == MRI->getVRegDef(reg)->getParent()) return;
169 
170   // Add a new kill entry for this basic block. If this virtual register is
171   // already marked as alive in this basic block, that means it is alive in at
172   // least one of the successor blocks, it's not a kill.
173   if (!VRInfo.AliveBlocks.test(BBNum))
174     VRInfo.Kills.push_back(MI);
175 
176   // Update all dominating blocks to mark them as "known live".
177   for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
178          E = MBB->pred_end(); PI != E; ++PI)
179     MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
180 }
181 
HandleVirtRegDef(unsigned Reg,MachineInstr * MI)182 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
183   VarInfo &VRInfo = getVarInfo(Reg);
184 
185   if (VRInfo.AliveBlocks.empty())
186     // If vr is not alive in any block, then defaults to dead.
187     VRInfo.Kills.push_back(MI);
188 }
189 
190 /// FindLastPartialDef - Return the last partial def of the specified register.
191 /// Also returns the sub-registers that're defined by the instruction.
FindLastPartialDef(unsigned Reg,SmallSet<unsigned,4> & PartDefRegs)192 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
193                                             SmallSet<unsigned,4> &PartDefRegs) {
194   unsigned LastDefReg = 0;
195   unsigned LastDefDist = 0;
196   MachineInstr *LastDef = NULL;
197   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
198     unsigned SubReg = *SubRegs;
199     MachineInstr *Def = PhysRegDef[SubReg];
200     if (!Def)
201       continue;
202     unsigned Dist = DistanceMap[Def];
203     if (Dist > LastDefDist) {
204       LastDefReg  = SubReg;
205       LastDef     = Def;
206       LastDefDist = Dist;
207     }
208   }
209 
210   if (!LastDef)
211     return 0;
212 
213   PartDefRegs.insert(LastDefReg);
214   for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
215     MachineOperand &MO = LastDef->getOperand(i);
216     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
217       continue;
218     unsigned DefReg = MO.getReg();
219     if (TRI->isSubRegister(Reg, DefReg)) {
220       PartDefRegs.insert(DefReg);
221       for (MCSubRegIterator SubRegs(DefReg, TRI); SubRegs.isValid(); ++SubRegs)
222         PartDefRegs.insert(*SubRegs);
223     }
224   }
225   return LastDef;
226 }
227 
228 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
229 /// implicit defs to a machine instruction if there was an earlier def of its
230 /// super-register.
HandlePhysRegUse(unsigned Reg,MachineInstr * MI)231 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
232   MachineInstr *LastDef = PhysRegDef[Reg];
233   // If there was a previous use or a "full" def all is well.
234   if (!LastDef && !PhysRegUse[Reg]) {
235     // Otherwise, the last sub-register def implicitly defines this register.
236     // e.g.
237     // AH =
238     // AL = ... <imp-def EAX>, <imp-kill AH>
239     //    = AH
240     // ...
241     //    = EAX
242     // All of the sub-registers must have been defined before the use of Reg!
243     SmallSet<unsigned, 4> PartDefRegs;
244     MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
245     // If LastPartialDef is NULL, it must be using a livein register.
246     if (LastPartialDef) {
247       LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
248                                                            true/*IsImp*/));
249       PhysRegDef[Reg] = LastPartialDef;
250       SmallSet<unsigned, 8> Processed;
251       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
252         unsigned SubReg = *SubRegs;
253         if (Processed.count(SubReg))
254           continue;
255         if (PartDefRegs.count(SubReg))
256           continue;
257         // This part of Reg was defined before the last partial def. It's killed
258         // here.
259         LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
260                                                              false/*IsDef*/,
261                                                              true/*IsImp*/));
262         PhysRegDef[SubReg] = LastPartialDef;
263         for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
264           Processed.insert(*SS);
265       }
266     }
267   } else if (LastDef && !PhysRegUse[Reg] &&
268              !LastDef->findRegisterDefOperand(Reg))
269     // Last def defines the super register, add an implicit def of reg.
270     LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
271                                                   true/*IsImp*/));
272 
273   // Remember this use.
274   PhysRegUse[Reg]  = MI;
275   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
276     PhysRegUse[*SubRegs] =  MI;
277 }
278 
279 /// FindLastRefOrPartRef - Return the last reference or partial reference of
280 /// the specified register.
FindLastRefOrPartRef(unsigned Reg)281 MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
282   MachineInstr *LastDef = PhysRegDef[Reg];
283   MachineInstr *LastUse = PhysRegUse[Reg];
284   if (!LastDef && !LastUse)
285     return 0;
286 
287   MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
288   unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
289   unsigned LastPartDefDist = 0;
290   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
291     unsigned SubReg = *SubRegs;
292     MachineInstr *Def = PhysRegDef[SubReg];
293     if (Def && Def != LastDef) {
294       // There was a def of this sub-register in between. This is a partial
295       // def, keep track of the last one.
296       unsigned Dist = DistanceMap[Def];
297       if (Dist > LastPartDefDist)
298         LastPartDefDist = Dist;
299     } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
300       unsigned Dist = DistanceMap[Use];
301       if (Dist > LastRefOrPartRefDist) {
302         LastRefOrPartRefDist = Dist;
303         LastRefOrPartRef = Use;
304       }
305     }
306   }
307 
308   return LastRefOrPartRef;
309 }
310 
HandlePhysRegKill(unsigned Reg,MachineInstr * MI)311 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
312   MachineInstr *LastDef = PhysRegDef[Reg];
313   MachineInstr *LastUse = PhysRegUse[Reg];
314   if (!LastDef && !LastUse)
315     return false;
316 
317   MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
318   unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
319   // The whole register is used.
320   // AL =
321   // AH =
322   //
323   //    = AX
324   //    = AL, AX<imp-use, kill>
325   // AX =
326   //
327   // Or whole register is defined, but not used at all.
328   // AX<dead> =
329   // ...
330   // AX =
331   //
332   // Or whole register is defined, but only partly used.
333   // AX<dead> = AL<imp-def>
334   //    = AL<kill>
335   // AX =
336   MachineInstr *LastPartDef = 0;
337   unsigned LastPartDefDist = 0;
338   SmallSet<unsigned, 8> PartUses;
339   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
340     unsigned SubReg = *SubRegs;
341     MachineInstr *Def = PhysRegDef[SubReg];
342     if (Def && Def != LastDef) {
343       // There was a def of this sub-register in between. This is a partial
344       // def, keep track of the last one.
345       unsigned Dist = DistanceMap[Def];
346       if (Dist > LastPartDefDist) {
347         LastPartDefDist = Dist;
348         LastPartDef = Def;
349       }
350       continue;
351     }
352     if (MachineInstr *Use = PhysRegUse[SubReg]) {
353       PartUses.insert(SubReg);
354       for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
355         PartUses.insert(*SS);
356       unsigned Dist = DistanceMap[Use];
357       if (Dist > LastRefOrPartRefDist) {
358         LastRefOrPartRefDist = Dist;
359         LastRefOrPartRef = Use;
360       }
361     }
362   }
363 
364   if (!PhysRegUse[Reg]) {
365     // Partial uses. Mark register def dead and add implicit def of
366     // sub-registers which are used.
367     // EAX<dead>  = op  AL<imp-def>
368     // That is, EAX def is dead but AL def extends pass it.
369     PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
370     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
371       unsigned SubReg = *SubRegs;
372       if (!PartUses.count(SubReg))
373         continue;
374       bool NeedDef = true;
375       if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
376         MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
377         if (MO) {
378           NeedDef = false;
379           assert(!MO->isDead());
380         }
381       }
382       if (NeedDef)
383         PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
384                                                  true/*IsDef*/, true/*IsImp*/));
385       MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
386       if (LastSubRef)
387         LastSubRef->addRegisterKilled(SubReg, TRI, true);
388       else {
389         LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
390         PhysRegUse[SubReg] = LastRefOrPartRef;
391         for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
392           PhysRegUse[*SS] = LastRefOrPartRef;
393       }
394       for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
395         PartUses.erase(*SS);
396     }
397   } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
398     if (LastPartDef)
399       // The last partial def kills the register.
400       LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
401                                                 true/*IsImp*/, true/*IsKill*/));
402     else {
403       MachineOperand *MO =
404         LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
405       bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
406       // If the last reference is the last def, then it's not used at all.
407       // That is, unless we are currently processing the last reference itself.
408       LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
409       if (NeedEC) {
410         // If we are adding a subreg def and the superreg def is marked early
411         // clobber, add an early clobber marker to the subreg def.
412         MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
413         if (MO)
414           MO->setIsEarlyClobber();
415       }
416     }
417   } else
418     LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
419   return true;
420 }
421 
HandleRegMask(const MachineOperand & MO)422 void LiveVariables::HandleRegMask(const MachineOperand &MO) {
423   // Call HandlePhysRegKill() for all live registers clobbered by Mask.
424   // Clobbered registers are always dead, sp there is no need to use
425   // HandlePhysRegDef().
426   for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
427     // Skip dead regs.
428     if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
429       continue;
430     // Skip mask-preserved regs.
431     if (!MO.clobbersPhysReg(Reg))
432       continue;
433     // Kill the largest clobbered super-register.
434     // This avoids needless implicit operands.
435     unsigned Super = Reg;
436     for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
437       if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
438         Super = *SR;
439     HandlePhysRegKill(Super, 0);
440   }
441 }
442 
HandlePhysRegDef(unsigned Reg,MachineInstr * MI,SmallVector<unsigned,4> & Defs)443 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
444                                      SmallVector<unsigned, 4> &Defs) {
445   // What parts of the register are previously defined?
446   SmallSet<unsigned, 32> Live;
447   if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
448     Live.insert(Reg);
449     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
450       Live.insert(*SubRegs);
451   } else {
452     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
453       unsigned SubReg = *SubRegs;
454       // If a register isn't itself defined, but all parts that make up of it
455       // are defined, then consider it also defined.
456       // e.g.
457       // AL =
458       // AH =
459       //    = AX
460       if (Live.count(SubReg))
461         continue;
462       if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
463         Live.insert(SubReg);
464         for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
465           Live.insert(*SS);
466       }
467     }
468   }
469 
470   // Start from the largest piece, find the last time any part of the register
471   // is referenced.
472   HandlePhysRegKill(Reg, MI);
473   // Only some of the sub-registers are used.
474   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
475     unsigned SubReg = *SubRegs;
476     if (!Live.count(SubReg))
477       // Skip if this sub-register isn't defined.
478       continue;
479     HandlePhysRegKill(SubReg, MI);
480   }
481 
482   if (MI)
483     Defs.push_back(Reg);  // Remember this def.
484 }
485 
UpdatePhysRegDefs(MachineInstr * MI,SmallVector<unsigned,4> & Defs)486 void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
487                                       SmallVector<unsigned, 4> &Defs) {
488   while (!Defs.empty()) {
489     unsigned Reg = Defs.back();
490     Defs.pop_back();
491     PhysRegDef[Reg]  = MI;
492     PhysRegUse[Reg]  = NULL;
493     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
494       unsigned SubReg = *SubRegs;
495       PhysRegDef[SubReg]  = MI;
496       PhysRegUse[SubReg]  = NULL;
497     }
498   }
499 }
500 
runOnMachineFunction(MachineFunction & mf)501 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
502   MF = &mf;
503   MRI = &mf.getRegInfo();
504   TRI = MF->getTarget().getRegisterInfo();
505 
506   ReservedRegisters = TRI->getReservedRegs(mf);
507 
508   unsigned NumRegs = TRI->getNumRegs();
509   PhysRegDef  = new MachineInstr*[NumRegs];
510   PhysRegUse  = new MachineInstr*[NumRegs];
511   PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
512   std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
513   std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
514   PHIJoins.clear();
515 
516   // FIXME: LiveIntervals will be updated to remove its dependence on
517   // LiveVariables to improve compilation time and eliminate bizarre pass
518   // dependencies. Until then, we can't change much in -O0.
519   if (!MRI->isSSA())
520     report_fatal_error("regalloc=... not currently supported with -O0");
521 
522   analyzePHINodes(mf);
523 
524   // Calculate live variable information in depth first order on the CFG of the
525   // function.  This guarantees that we will see the definition of a virtual
526   // register before its uses due to dominance properties of SSA (except for PHI
527   // nodes, which are treated as a special case).
528   MachineBasicBlock *Entry = MF->begin();
529   SmallPtrSet<MachineBasicBlock*,16> Visited;
530 
531   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
532          DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
533        DFI != E; ++DFI) {
534     MachineBasicBlock *MBB = *DFI;
535 
536     // Mark live-in registers as live-in.
537     SmallVector<unsigned, 4> Defs;
538     for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
539            EE = MBB->livein_end(); II != EE; ++II) {
540       assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
541              "Cannot have a live-in virtual register!");
542       HandlePhysRegDef(*II, 0, Defs);
543     }
544 
545     // Loop over all of the instructions, processing them.
546     DistanceMap.clear();
547     unsigned Dist = 0;
548     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
549          I != E; ++I) {
550       MachineInstr *MI = I;
551       if (MI->isDebugValue())
552         continue;
553       DistanceMap.insert(std::make_pair(MI, Dist++));
554 
555       // Process all of the operands of the instruction...
556       unsigned NumOperandsToProcess = MI->getNumOperands();
557 
558       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
559       // of the uses.  They will be handled in other basic blocks.
560       if (MI->isPHI())
561         NumOperandsToProcess = 1;
562 
563       // Clear kill and dead markers. LV will recompute them.
564       SmallVector<unsigned, 4> UseRegs;
565       SmallVector<unsigned, 4> DefRegs;
566       SmallVector<unsigned, 1> RegMasks;
567       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
568         MachineOperand &MO = MI->getOperand(i);
569         if (MO.isRegMask()) {
570           RegMasks.push_back(i);
571           continue;
572         }
573         if (!MO.isReg() || MO.getReg() == 0)
574           continue;
575         unsigned MOReg = MO.getReg();
576         if (MO.isUse()) {
577           MO.setIsKill(false);
578           if (MO.readsReg())
579             UseRegs.push_back(MOReg);
580         } else /*MO.isDef()*/ {
581           MO.setIsDead(false);
582           DefRegs.push_back(MOReg);
583         }
584       }
585 
586       // Process all uses.
587       for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
588         unsigned MOReg = UseRegs[i];
589         if (TargetRegisterInfo::isVirtualRegister(MOReg))
590           HandleVirtRegUse(MOReg, MBB, MI);
591         else if (!ReservedRegisters[MOReg])
592           HandlePhysRegUse(MOReg, MI);
593       }
594 
595       // Process all masked registers. (Call clobbers).
596       for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
597         HandleRegMask(MI->getOperand(RegMasks[i]));
598 
599       // Process all defs.
600       for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
601         unsigned MOReg = DefRegs[i];
602         if (TargetRegisterInfo::isVirtualRegister(MOReg))
603           HandleVirtRegDef(MOReg, MI);
604         else if (!ReservedRegisters[MOReg])
605           HandlePhysRegDef(MOReg, MI, Defs);
606       }
607       UpdatePhysRegDefs(MI, Defs);
608     }
609 
610     // Handle any virtual assignments from PHI nodes which might be at the
611     // bottom of this basic block.  We check all of our successor blocks to see
612     // if they have PHI nodes, and if so, we simulate an assignment at the end
613     // of the current block.
614     if (!PHIVarInfo[MBB->getNumber()].empty()) {
615       SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
616 
617       for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
618              E = VarInfoVec.end(); I != E; ++I)
619         // Mark it alive only in the block we are representing.
620         MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
621                                 MBB);
622     }
623 
624     // Finally, if the last instruction in the block is a return, make sure to
625     // mark it as using all of the live-out values in the function.
626     // Things marked both call and return are tail calls; do not do this for
627     // them.  The tail callee need not take the same registers as input
628     // that it produces as output, and there are dependencies for its input
629     // registers elsewhere.
630     if (!MBB->empty() && MBB->back().isReturn()
631         && !MBB->back().isCall()) {
632       MachineInstr *Ret = &MBB->back();
633 
634       for (MachineRegisterInfo::liveout_iterator
635            I = MF->getRegInfo().liveout_begin(),
636            E = MF->getRegInfo().liveout_end(); I != E; ++I) {
637         assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
638                "Cannot have a live-out virtual register!");
639         HandlePhysRegUse(*I, Ret);
640 
641         // Add live-out registers as implicit uses.
642         if (!Ret->readsRegister(*I))
643           Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
644       }
645     }
646 
647     // MachineCSE may CSE instructions which write to non-allocatable physical
648     // registers across MBBs. Remember if any reserved register is liveout.
649     SmallSet<unsigned, 4> LiveOuts;
650     for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
651            SE = MBB->succ_end(); SI != SE; ++SI) {
652       MachineBasicBlock *SuccMBB = *SI;
653       if (SuccMBB->isLandingPad())
654         continue;
655       for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
656              LE = SuccMBB->livein_end(); LI != LE; ++LI) {
657         unsigned LReg = *LI;
658         if (!TRI->isInAllocatableClass(LReg))
659           // Ignore other live-ins, e.g. those that are live into landing pads.
660           LiveOuts.insert(LReg);
661       }
662     }
663 
664     // Loop over PhysRegDef / PhysRegUse, killing any registers that are
665     // available at the end of the basic block.
666     for (unsigned i = 0; i != NumRegs; ++i)
667       if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
668         HandlePhysRegDef(i, 0, Defs);
669 
670     std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
671     std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
672   }
673 
674   // Convert and transfer the dead / killed information we have gathered into
675   // VirtRegInfo onto MI's.
676   for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
677     const unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
678     for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
679       if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
680         VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
681       else
682         VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
683   }
684 
685   // Check to make sure there are no unreachable blocks in the MC CFG for the
686   // function.  If so, it is due to a bug in the instruction selector or some
687   // other part of the code generator if this happens.
688 #ifndef NDEBUG
689   for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
690     assert(Visited.count(&*i) != 0 && "unreachable basic block found");
691 #endif
692 
693   delete[] PhysRegDef;
694   delete[] PhysRegUse;
695   delete[] PHIVarInfo;
696 
697   return false;
698 }
699 
700 /// replaceKillInstruction - Update register kill info by replacing a kill
701 /// instruction with a new one.
replaceKillInstruction(unsigned Reg,MachineInstr * OldMI,MachineInstr * NewMI)702 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
703                                            MachineInstr *NewMI) {
704   VarInfo &VI = getVarInfo(Reg);
705   std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
706 }
707 
708 /// removeVirtualRegistersKilled - Remove all killed info for the specified
709 /// instruction.
removeVirtualRegistersKilled(MachineInstr * MI)710 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
711   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
712     MachineOperand &MO = MI->getOperand(i);
713     if (MO.isReg() && MO.isKill()) {
714       MO.setIsKill(false);
715       unsigned Reg = MO.getReg();
716       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
717         bool removed = getVarInfo(Reg).removeKill(MI);
718         assert(removed && "kill not in register's VarInfo?");
719         (void)removed;
720       }
721     }
722   }
723 }
724 
725 /// analyzePHINodes - Gather information about the PHI nodes in here. In
726 /// particular, we want to map the variable information of a virtual register
727 /// which is used in a PHI node. We map that to the BB the vreg is coming from.
728 ///
analyzePHINodes(const MachineFunction & Fn)729 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
730   for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
731        I != E; ++I)
732     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
733          BBI != BBE && BBI->isPHI(); ++BBI)
734       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
735         if (BBI->getOperand(i).readsReg())
736           PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
737             .push_back(BBI->getOperand(i).getReg());
738 }
739 
isLiveIn(const MachineBasicBlock & MBB,unsigned Reg,MachineRegisterInfo & MRI)740 bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
741                                       unsigned Reg,
742                                       MachineRegisterInfo &MRI) {
743   unsigned Num = MBB.getNumber();
744 
745   // Reg is live-through.
746   if (AliveBlocks.test(Num))
747     return true;
748 
749   // Registers defined in MBB cannot be live in.
750   const MachineInstr *Def = MRI.getVRegDef(Reg);
751   if (Def && Def->getParent() == &MBB)
752     return false;
753 
754  // Reg was not defined in MBB, was it killed here?
755   return findKill(&MBB);
756 }
757 
isLiveOut(unsigned Reg,const MachineBasicBlock & MBB)758 bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
759   LiveVariables::VarInfo &VI = getVarInfo(Reg);
760 
761   // Loop over all of the successors of the basic block, checking to see if
762   // the value is either live in the block, or if it is killed in the block.
763   SmallVector<MachineBasicBlock*, 8> OpSuccBlocks;
764   for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
765          E = MBB.succ_end(); SI != E; ++SI) {
766     MachineBasicBlock *SuccMBB = *SI;
767 
768     // Is it alive in this successor?
769     unsigned SuccIdx = SuccMBB->getNumber();
770     if (VI.AliveBlocks.test(SuccIdx))
771       return true;
772     OpSuccBlocks.push_back(SuccMBB);
773   }
774 
775   // Check to see if this value is live because there is a use in a successor
776   // that kills it.
777   switch (OpSuccBlocks.size()) {
778   case 1: {
779     MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
780     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
781       if (VI.Kills[i]->getParent() == SuccMBB)
782         return true;
783     break;
784   }
785   case 2: {
786     MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
787     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
788       if (VI.Kills[i]->getParent() == SuccMBB1 ||
789           VI.Kills[i]->getParent() == SuccMBB2)
790         return true;
791     break;
792   }
793   default:
794     std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
795     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
796       if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
797                              VI.Kills[i]->getParent()))
798         return true;
799   }
800   return false;
801 }
802 
803 /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
804 /// variables that are live out of DomBB will be marked as passing live through
805 /// BB.
addNewBlock(MachineBasicBlock * BB,MachineBasicBlock * DomBB,MachineBasicBlock * SuccBB)806 void LiveVariables::addNewBlock(MachineBasicBlock *BB,
807                                 MachineBasicBlock *DomBB,
808                                 MachineBasicBlock *SuccBB) {
809   const unsigned NumNew = BB->getNumber();
810 
811   SmallSet<unsigned, 16> Defs, Kills;
812 
813   MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end();
814   for (; BBI != BBE && BBI->isPHI(); ++BBI) {
815     // Record the def of the PHI node.
816     Defs.insert(BBI->getOperand(0).getReg());
817 
818     // All registers used by PHI nodes in SuccBB must be live through BB.
819     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
820       if (BBI->getOperand(i+1).getMBB() == BB)
821         getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
822   }
823 
824   // Record all vreg defs and kills of all instructions in SuccBB.
825   for (; BBI != BBE; ++BBI) {
826     for (MachineInstr::mop_iterator I = BBI->operands_begin(),
827          E = BBI->operands_end(); I != E; ++I) {
828       if (I->isReg() && TargetRegisterInfo::isVirtualRegister(I->getReg())) {
829         if (I->isDef())
830           Defs.insert(I->getReg());
831         else if (I->isKill())
832           Kills.insert(I->getReg());
833       }
834     }
835   }
836 
837   // Update info for all live variables
838   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
839     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
840 
841     // If the Defs is defined in the successor it can't be live in BB.
842     if (Defs.count(Reg))
843       continue;
844 
845     // If the register is either killed in or live through SuccBB it's also live
846     // through BB.
847     VarInfo &VI = getVarInfo(Reg);
848     if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber()))
849       VI.AliveBlocks.set(NumNew);
850   }
851 }
852