1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariable analysis pass. For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
16 //
17 // This class computes live variables using a sparse implementation based on
18 // the machine code SSA form. This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function. It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block). If a physical
24 // register is not register allocatable, it is not tracked. This is useful for
25 // things like the stack pointer and condition codes.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/ADT/DepthFirstIterator.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include <algorithm>
42 using namespace llvm;
43
44 char LiveVariables::ID = 0;
45 char &llvm::LiveVariablesID = LiveVariables::ID;
46 INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
47 "Live Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)48 INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
49 INITIALIZE_PASS_END(LiveVariables, "livevars",
50 "Live Variable Analysis", false, false)
51
52
53 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
54 AU.addRequiredID(UnreachableMachineBlockElimID);
55 AU.setPreservesAll();
56 MachineFunctionPass::getAnalysisUsage(AU);
57 }
58
59 MachineInstr *
findKill(const MachineBasicBlock * MBB) const60 LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
61 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
62 if (Kills[i]->getParent() == MBB)
63 return Kills[i];
64 return NULL;
65 }
66
dump() const67 void LiveVariables::VarInfo::dump() const {
68 #ifndef NDEBUG
69 dbgs() << " Alive in blocks: ";
70 for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
71 E = AliveBlocks.end(); I != E; ++I)
72 dbgs() << *I << ", ";
73 dbgs() << "\n Killed by:";
74 if (Kills.empty())
75 dbgs() << " No instructions.\n";
76 else {
77 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
78 dbgs() << "\n #" << i << ": " << *Kills[i];
79 dbgs() << "\n";
80 }
81 #endif
82 }
83
84 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
getVarInfo(unsigned RegIdx)85 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
86 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
87 "getVarInfo: not a virtual register!");
88 VirtRegInfo.grow(RegIdx);
89 return VirtRegInfo[RegIdx];
90 }
91
MarkVirtRegAliveInBlock(VarInfo & VRInfo,MachineBasicBlock * DefBlock,MachineBasicBlock * MBB,std::vector<MachineBasicBlock * > & WorkList)92 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
93 MachineBasicBlock *DefBlock,
94 MachineBasicBlock *MBB,
95 std::vector<MachineBasicBlock*> &WorkList) {
96 unsigned BBNum = MBB->getNumber();
97
98 // Check to see if this basic block is one of the killing blocks. If so,
99 // remove it.
100 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
101 if (VRInfo.Kills[i]->getParent() == MBB) {
102 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
103 break;
104 }
105
106 if (MBB == DefBlock) return; // Terminate recursion
107
108 if (VRInfo.AliveBlocks.test(BBNum))
109 return; // We already know the block is live
110
111 // Mark the variable known alive in this bb
112 VRInfo.AliveBlocks.set(BBNum);
113
114 assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
115 WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
116 }
117
MarkVirtRegAliveInBlock(VarInfo & VRInfo,MachineBasicBlock * DefBlock,MachineBasicBlock * MBB)118 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
119 MachineBasicBlock *DefBlock,
120 MachineBasicBlock *MBB) {
121 std::vector<MachineBasicBlock*> WorkList;
122 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
123
124 while (!WorkList.empty()) {
125 MachineBasicBlock *Pred = WorkList.back();
126 WorkList.pop_back();
127 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
128 }
129 }
130
HandleVirtRegUse(unsigned reg,MachineBasicBlock * MBB,MachineInstr * MI)131 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
132 MachineInstr *MI) {
133 assert(MRI->getVRegDef(reg) && "Register use before def!");
134
135 unsigned BBNum = MBB->getNumber();
136
137 VarInfo& VRInfo = getVarInfo(reg);
138
139 // Check to see if this basic block is already a kill block.
140 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
141 // Yes, this register is killed in this basic block already. Increase the
142 // live range by updating the kill instruction.
143 VRInfo.Kills.back() = MI;
144 return;
145 }
146
147 #ifndef NDEBUG
148 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
149 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
150 #endif
151
152 // This situation can occur:
153 //
154 // ,------.
155 // | |
156 // | v
157 // | t2 = phi ... t1 ...
158 // | |
159 // | v
160 // | t1 = ...
161 // | ... = ... t1 ...
162 // | |
163 // `------'
164 //
165 // where there is a use in a PHI node that's a predecessor to the defining
166 // block. We don't want to mark all predecessors as having the value "alive"
167 // in this case.
168 if (MBB == MRI->getVRegDef(reg)->getParent()) return;
169
170 // Add a new kill entry for this basic block. If this virtual register is
171 // already marked as alive in this basic block, that means it is alive in at
172 // least one of the successor blocks, it's not a kill.
173 if (!VRInfo.AliveBlocks.test(BBNum))
174 VRInfo.Kills.push_back(MI);
175
176 // Update all dominating blocks to mark them as "known live".
177 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
178 E = MBB->pred_end(); PI != E; ++PI)
179 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
180 }
181
HandleVirtRegDef(unsigned Reg,MachineInstr * MI)182 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
183 VarInfo &VRInfo = getVarInfo(Reg);
184
185 if (VRInfo.AliveBlocks.empty())
186 // If vr is not alive in any block, then defaults to dead.
187 VRInfo.Kills.push_back(MI);
188 }
189
190 /// FindLastPartialDef - Return the last partial def of the specified register.
191 /// Also returns the sub-registers that're defined by the instruction.
FindLastPartialDef(unsigned Reg,SmallSet<unsigned,4> & PartDefRegs)192 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
193 SmallSet<unsigned,4> &PartDefRegs) {
194 unsigned LastDefReg = 0;
195 unsigned LastDefDist = 0;
196 MachineInstr *LastDef = NULL;
197 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
198 unsigned SubReg = *SubRegs;
199 MachineInstr *Def = PhysRegDef[SubReg];
200 if (!Def)
201 continue;
202 unsigned Dist = DistanceMap[Def];
203 if (Dist > LastDefDist) {
204 LastDefReg = SubReg;
205 LastDef = Def;
206 LastDefDist = Dist;
207 }
208 }
209
210 if (!LastDef)
211 return 0;
212
213 PartDefRegs.insert(LastDefReg);
214 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
215 MachineOperand &MO = LastDef->getOperand(i);
216 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
217 continue;
218 unsigned DefReg = MO.getReg();
219 if (TRI->isSubRegister(Reg, DefReg)) {
220 PartDefRegs.insert(DefReg);
221 for (MCSubRegIterator SubRegs(DefReg, TRI); SubRegs.isValid(); ++SubRegs)
222 PartDefRegs.insert(*SubRegs);
223 }
224 }
225 return LastDef;
226 }
227
228 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
229 /// implicit defs to a machine instruction if there was an earlier def of its
230 /// super-register.
HandlePhysRegUse(unsigned Reg,MachineInstr * MI)231 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
232 MachineInstr *LastDef = PhysRegDef[Reg];
233 // If there was a previous use or a "full" def all is well.
234 if (!LastDef && !PhysRegUse[Reg]) {
235 // Otherwise, the last sub-register def implicitly defines this register.
236 // e.g.
237 // AH =
238 // AL = ... <imp-def EAX>, <imp-kill AH>
239 // = AH
240 // ...
241 // = EAX
242 // All of the sub-registers must have been defined before the use of Reg!
243 SmallSet<unsigned, 4> PartDefRegs;
244 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
245 // If LastPartialDef is NULL, it must be using a livein register.
246 if (LastPartialDef) {
247 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
248 true/*IsImp*/));
249 PhysRegDef[Reg] = LastPartialDef;
250 SmallSet<unsigned, 8> Processed;
251 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
252 unsigned SubReg = *SubRegs;
253 if (Processed.count(SubReg))
254 continue;
255 if (PartDefRegs.count(SubReg))
256 continue;
257 // This part of Reg was defined before the last partial def. It's killed
258 // here.
259 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
260 false/*IsDef*/,
261 true/*IsImp*/));
262 PhysRegDef[SubReg] = LastPartialDef;
263 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
264 Processed.insert(*SS);
265 }
266 }
267 } else if (LastDef && !PhysRegUse[Reg] &&
268 !LastDef->findRegisterDefOperand(Reg))
269 // Last def defines the super register, add an implicit def of reg.
270 LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
271 true/*IsImp*/));
272
273 // Remember this use.
274 PhysRegUse[Reg] = MI;
275 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
276 PhysRegUse[*SubRegs] = MI;
277 }
278
279 /// FindLastRefOrPartRef - Return the last reference or partial reference of
280 /// the specified register.
FindLastRefOrPartRef(unsigned Reg)281 MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
282 MachineInstr *LastDef = PhysRegDef[Reg];
283 MachineInstr *LastUse = PhysRegUse[Reg];
284 if (!LastDef && !LastUse)
285 return 0;
286
287 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
288 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
289 unsigned LastPartDefDist = 0;
290 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
291 unsigned SubReg = *SubRegs;
292 MachineInstr *Def = PhysRegDef[SubReg];
293 if (Def && Def != LastDef) {
294 // There was a def of this sub-register in between. This is a partial
295 // def, keep track of the last one.
296 unsigned Dist = DistanceMap[Def];
297 if (Dist > LastPartDefDist)
298 LastPartDefDist = Dist;
299 } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
300 unsigned Dist = DistanceMap[Use];
301 if (Dist > LastRefOrPartRefDist) {
302 LastRefOrPartRefDist = Dist;
303 LastRefOrPartRef = Use;
304 }
305 }
306 }
307
308 return LastRefOrPartRef;
309 }
310
HandlePhysRegKill(unsigned Reg,MachineInstr * MI)311 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
312 MachineInstr *LastDef = PhysRegDef[Reg];
313 MachineInstr *LastUse = PhysRegUse[Reg];
314 if (!LastDef && !LastUse)
315 return false;
316
317 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
318 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
319 // The whole register is used.
320 // AL =
321 // AH =
322 //
323 // = AX
324 // = AL, AX<imp-use, kill>
325 // AX =
326 //
327 // Or whole register is defined, but not used at all.
328 // AX<dead> =
329 // ...
330 // AX =
331 //
332 // Or whole register is defined, but only partly used.
333 // AX<dead> = AL<imp-def>
334 // = AL<kill>
335 // AX =
336 MachineInstr *LastPartDef = 0;
337 unsigned LastPartDefDist = 0;
338 SmallSet<unsigned, 8> PartUses;
339 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
340 unsigned SubReg = *SubRegs;
341 MachineInstr *Def = PhysRegDef[SubReg];
342 if (Def && Def != LastDef) {
343 // There was a def of this sub-register in between. This is a partial
344 // def, keep track of the last one.
345 unsigned Dist = DistanceMap[Def];
346 if (Dist > LastPartDefDist) {
347 LastPartDefDist = Dist;
348 LastPartDef = Def;
349 }
350 continue;
351 }
352 if (MachineInstr *Use = PhysRegUse[SubReg]) {
353 PartUses.insert(SubReg);
354 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
355 PartUses.insert(*SS);
356 unsigned Dist = DistanceMap[Use];
357 if (Dist > LastRefOrPartRefDist) {
358 LastRefOrPartRefDist = Dist;
359 LastRefOrPartRef = Use;
360 }
361 }
362 }
363
364 if (!PhysRegUse[Reg]) {
365 // Partial uses. Mark register def dead and add implicit def of
366 // sub-registers which are used.
367 // EAX<dead> = op AL<imp-def>
368 // That is, EAX def is dead but AL def extends pass it.
369 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
370 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
371 unsigned SubReg = *SubRegs;
372 if (!PartUses.count(SubReg))
373 continue;
374 bool NeedDef = true;
375 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
376 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
377 if (MO) {
378 NeedDef = false;
379 assert(!MO->isDead());
380 }
381 }
382 if (NeedDef)
383 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
384 true/*IsDef*/, true/*IsImp*/));
385 MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
386 if (LastSubRef)
387 LastSubRef->addRegisterKilled(SubReg, TRI, true);
388 else {
389 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
390 PhysRegUse[SubReg] = LastRefOrPartRef;
391 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
392 PhysRegUse[*SS] = LastRefOrPartRef;
393 }
394 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
395 PartUses.erase(*SS);
396 }
397 } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
398 if (LastPartDef)
399 // The last partial def kills the register.
400 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
401 true/*IsImp*/, true/*IsKill*/));
402 else {
403 MachineOperand *MO =
404 LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
405 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
406 // If the last reference is the last def, then it's not used at all.
407 // That is, unless we are currently processing the last reference itself.
408 LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
409 if (NeedEC) {
410 // If we are adding a subreg def and the superreg def is marked early
411 // clobber, add an early clobber marker to the subreg def.
412 MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
413 if (MO)
414 MO->setIsEarlyClobber();
415 }
416 }
417 } else
418 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
419 return true;
420 }
421
HandleRegMask(const MachineOperand & MO)422 void LiveVariables::HandleRegMask(const MachineOperand &MO) {
423 // Call HandlePhysRegKill() for all live registers clobbered by Mask.
424 // Clobbered registers are always dead, sp there is no need to use
425 // HandlePhysRegDef().
426 for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
427 // Skip dead regs.
428 if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
429 continue;
430 // Skip mask-preserved regs.
431 if (!MO.clobbersPhysReg(Reg))
432 continue;
433 // Kill the largest clobbered super-register.
434 // This avoids needless implicit operands.
435 unsigned Super = Reg;
436 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
437 if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
438 Super = *SR;
439 HandlePhysRegKill(Super, 0);
440 }
441 }
442
HandlePhysRegDef(unsigned Reg,MachineInstr * MI,SmallVector<unsigned,4> & Defs)443 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
444 SmallVector<unsigned, 4> &Defs) {
445 // What parts of the register are previously defined?
446 SmallSet<unsigned, 32> Live;
447 if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
448 Live.insert(Reg);
449 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
450 Live.insert(*SubRegs);
451 } else {
452 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
453 unsigned SubReg = *SubRegs;
454 // If a register isn't itself defined, but all parts that make up of it
455 // are defined, then consider it also defined.
456 // e.g.
457 // AL =
458 // AH =
459 // = AX
460 if (Live.count(SubReg))
461 continue;
462 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
463 Live.insert(SubReg);
464 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
465 Live.insert(*SS);
466 }
467 }
468 }
469
470 // Start from the largest piece, find the last time any part of the register
471 // is referenced.
472 HandlePhysRegKill(Reg, MI);
473 // Only some of the sub-registers are used.
474 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
475 unsigned SubReg = *SubRegs;
476 if (!Live.count(SubReg))
477 // Skip if this sub-register isn't defined.
478 continue;
479 HandlePhysRegKill(SubReg, MI);
480 }
481
482 if (MI)
483 Defs.push_back(Reg); // Remember this def.
484 }
485
UpdatePhysRegDefs(MachineInstr * MI,SmallVector<unsigned,4> & Defs)486 void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
487 SmallVector<unsigned, 4> &Defs) {
488 while (!Defs.empty()) {
489 unsigned Reg = Defs.back();
490 Defs.pop_back();
491 PhysRegDef[Reg] = MI;
492 PhysRegUse[Reg] = NULL;
493 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
494 unsigned SubReg = *SubRegs;
495 PhysRegDef[SubReg] = MI;
496 PhysRegUse[SubReg] = NULL;
497 }
498 }
499 }
500
runOnMachineFunction(MachineFunction & mf)501 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
502 MF = &mf;
503 MRI = &mf.getRegInfo();
504 TRI = MF->getTarget().getRegisterInfo();
505
506 ReservedRegisters = TRI->getReservedRegs(mf);
507
508 unsigned NumRegs = TRI->getNumRegs();
509 PhysRegDef = new MachineInstr*[NumRegs];
510 PhysRegUse = new MachineInstr*[NumRegs];
511 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
512 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0);
513 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0);
514 PHIJoins.clear();
515
516 // FIXME: LiveIntervals will be updated to remove its dependence on
517 // LiveVariables to improve compilation time and eliminate bizarre pass
518 // dependencies. Until then, we can't change much in -O0.
519 if (!MRI->isSSA())
520 report_fatal_error("regalloc=... not currently supported with -O0");
521
522 analyzePHINodes(mf);
523
524 // Calculate live variable information in depth first order on the CFG of the
525 // function. This guarantees that we will see the definition of a virtual
526 // register before its uses due to dominance properties of SSA (except for PHI
527 // nodes, which are treated as a special case).
528 MachineBasicBlock *Entry = MF->begin();
529 SmallPtrSet<MachineBasicBlock*,16> Visited;
530
531 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
532 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
533 DFI != E; ++DFI) {
534 MachineBasicBlock *MBB = *DFI;
535
536 // Mark live-in registers as live-in.
537 SmallVector<unsigned, 4> Defs;
538 for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
539 EE = MBB->livein_end(); II != EE; ++II) {
540 assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
541 "Cannot have a live-in virtual register!");
542 HandlePhysRegDef(*II, 0, Defs);
543 }
544
545 // Loop over all of the instructions, processing them.
546 DistanceMap.clear();
547 unsigned Dist = 0;
548 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
549 I != E; ++I) {
550 MachineInstr *MI = I;
551 if (MI->isDebugValue())
552 continue;
553 DistanceMap.insert(std::make_pair(MI, Dist++));
554
555 // Process all of the operands of the instruction...
556 unsigned NumOperandsToProcess = MI->getNumOperands();
557
558 // Unless it is a PHI node. In this case, ONLY process the DEF, not any
559 // of the uses. They will be handled in other basic blocks.
560 if (MI->isPHI())
561 NumOperandsToProcess = 1;
562
563 // Clear kill and dead markers. LV will recompute them.
564 SmallVector<unsigned, 4> UseRegs;
565 SmallVector<unsigned, 4> DefRegs;
566 SmallVector<unsigned, 1> RegMasks;
567 for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
568 MachineOperand &MO = MI->getOperand(i);
569 if (MO.isRegMask()) {
570 RegMasks.push_back(i);
571 continue;
572 }
573 if (!MO.isReg() || MO.getReg() == 0)
574 continue;
575 unsigned MOReg = MO.getReg();
576 if (MO.isUse()) {
577 MO.setIsKill(false);
578 if (MO.readsReg())
579 UseRegs.push_back(MOReg);
580 } else /*MO.isDef()*/ {
581 MO.setIsDead(false);
582 DefRegs.push_back(MOReg);
583 }
584 }
585
586 // Process all uses.
587 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
588 unsigned MOReg = UseRegs[i];
589 if (TargetRegisterInfo::isVirtualRegister(MOReg))
590 HandleVirtRegUse(MOReg, MBB, MI);
591 else if (!ReservedRegisters[MOReg])
592 HandlePhysRegUse(MOReg, MI);
593 }
594
595 // Process all masked registers. (Call clobbers).
596 for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
597 HandleRegMask(MI->getOperand(RegMasks[i]));
598
599 // Process all defs.
600 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
601 unsigned MOReg = DefRegs[i];
602 if (TargetRegisterInfo::isVirtualRegister(MOReg))
603 HandleVirtRegDef(MOReg, MI);
604 else if (!ReservedRegisters[MOReg])
605 HandlePhysRegDef(MOReg, MI, Defs);
606 }
607 UpdatePhysRegDefs(MI, Defs);
608 }
609
610 // Handle any virtual assignments from PHI nodes which might be at the
611 // bottom of this basic block. We check all of our successor blocks to see
612 // if they have PHI nodes, and if so, we simulate an assignment at the end
613 // of the current block.
614 if (!PHIVarInfo[MBB->getNumber()].empty()) {
615 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
616
617 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
618 E = VarInfoVec.end(); I != E; ++I)
619 // Mark it alive only in the block we are representing.
620 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
621 MBB);
622 }
623
624 // Finally, if the last instruction in the block is a return, make sure to
625 // mark it as using all of the live-out values in the function.
626 // Things marked both call and return are tail calls; do not do this for
627 // them. The tail callee need not take the same registers as input
628 // that it produces as output, and there are dependencies for its input
629 // registers elsewhere.
630 if (!MBB->empty() && MBB->back().isReturn()
631 && !MBB->back().isCall()) {
632 MachineInstr *Ret = &MBB->back();
633
634 for (MachineRegisterInfo::liveout_iterator
635 I = MF->getRegInfo().liveout_begin(),
636 E = MF->getRegInfo().liveout_end(); I != E; ++I) {
637 assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
638 "Cannot have a live-out virtual register!");
639 HandlePhysRegUse(*I, Ret);
640
641 // Add live-out registers as implicit uses.
642 if (!Ret->readsRegister(*I))
643 Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
644 }
645 }
646
647 // MachineCSE may CSE instructions which write to non-allocatable physical
648 // registers across MBBs. Remember if any reserved register is liveout.
649 SmallSet<unsigned, 4> LiveOuts;
650 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
651 SE = MBB->succ_end(); SI != SE; ++SI) {
652 MachineBasicBlock *SuccMBB = *SI;
653 if (SuccMBB->isLandingPad())
654 continue;
655 for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
656 LE = SuccMBB->livein_end(); LI != LE; ++LI) {
657 unsigned LReg = *LI;
658 if (!TRI->isInAllocatableClass(LReg))
659 // Ignore other live-ins, e.g. those that are live into landing pads.
660 LiveOuts.insert(LReg);
661 }
662 }
663
664 // Loop over PhysRegDef / PhysRegUse, killing any registers that are
665 // available at the end of the basic block.
666 for (unsigned i = 0; i != NumRegs; ++i)
667 if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
668 HandlePhysRegDef(i, 0, Defs);
669
670 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0);
671 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0);
672 }
673
674 // Convert and transfer the dead / killed information we have gathered into
675 // VirtRegInfo onto MI's.
676 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
677 const unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
678 for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
679 if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
680 VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
681 else
682 VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
683 }
684
685 // Check to make sure there are no unreachable blocks in the MC CFG for the
686 // function. If so, it is due to a bug in the instruction selector or some
687 // other part of the code generator if this happens.
688 #ifndef NDEBUG
689 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
690 assert(Visited.count(&*i) != 0 && "unreachable basic block found");
691 #endif
692
693 delete[] PhysRegDef;
694 delete[] PhysRegUse;
695 delete[] PHIVarInfo;
696
697 return false;
698 }
699
700 /// replaceKillInstruction - Update register kill info by replacing a kill
701 /// instruction with a new one.
replaceKillInstruction(unsigned Reg,MachineInstr * OldMI,MachineInstr * NewMI)702 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
703 MachineInstr *NewMI) {
704 VarInfo &VI = getVarInfo(Reg);
705 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
706 }
707
708 /// removeVirtualRegistersKilled - Remove all killed info for the specified
709 /// instruction.
removeVirtualRegistersKilled(MachineInstr * MI)710 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
711 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
712 MachineOperand &MO = MI->getOperand(i);
713 if (MO.isReg() && MO.isKill()) {
714 MO.setIsKill(false);
715 unsigned Reg = MO.getReg();
716 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
717 bool removed = getVarInfo(Reg).removeKill(MI);
718 assert(removed && "kill not in register's VarInfo?");
719 (void)removed;
720 }
721 }
722 }
723 }
724
725 /// analyzePHINodes - Gather information about the PHI nodes in here. In
726 /// particular, we want to map the variable information of a virtual register
727 /// which is used in a PHI node. We map that to the BB the vreg is coming from.
728 ///
analyzePHINodes(const MachineFunction & Fn)729 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
730 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
731 I != E; ++I)
732 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
733 BBI != BBE && BBI->isPHI(); ++BBI)
734 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
735 if (BBI->getOperand(i).readsReg())
736 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
737 .push_back(BBI->getOperand(i).getReg());
738 }
739
isLiveIn(const MachineBasicBlock & MBB,unsigned Reg,MachineRegisterInfo & MRI)740 bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
741 unsigned Reg,
742 MachineRegisterInfo &MRI) {
743 unsigned Num = MBB.getNumber();
744
745 // Reg is live-through.
746 if (AliveBlocks.test(Num))
747 return true;
748
749 // Registers defined in MBB cannot be live in.
750 const MachineInstr *Def = MRI.getVRegDef(Reg);
751 if (Def && Def->getParent() == &MBB)
752 return false;
753
754 // Reg was not defined in MBB, was it killed here?
755 return findKill(&MBB);
756 }
757
isLiveOut(unsigned Reg,const MachineBasicBlock & MBB)758 bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
759 LiveVariables::VarInfo &VI = getVarInfo(Reg);
760
761 // Loop over all of the successors of the basic block, checking to see if
762 // the value is either live in the block, or if it is killed in the block.
763 SmallVector<MachineBasicBlock*, 8> OpSuccBlocks;
764 for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
765 E = MBB.succ_end(); SI != E; ++SI) {
766 MachineBasicBlock *SuccMBB = *SI;
767
768 // Is it alive in this successor?
769 unsigned SuccIdx = SuccMBB->getNumber();
770 if (VI.AliveBlocks.test(SuccIdx))
771 return true;
772 OpSuccBlocks.push_back(SuccMBB);
773 }
774
775 // Check to see if this value is live because there is a use in a successor
776 // that kills it.
777 switch (OpSuccBlocks.size()) {
778 case 1: {
779 MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
780 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
781 if (VI.Kills[i]->getParent() == SuccMBB)
782 return true;
783 break;
784 }
785 case 2: {
786 MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
787 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
788 if (VI.Kills[i]->getParent() == SuccMBB1 ||
789 VI.Kills[i]->getParent() == SuccMBB2)
790 return true;
791 break;
792 }
793 default:
794 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
795 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
796 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
797 VI.Kills[i]->getParent()))
798 return true;
799 }
800 return false;
801 }
802
803 /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
804 /// variables that are live out of DomBB will be marked as passing live through
805 /// BB.
addNewBlock(MachineBasicBlock * BB,MachineBasicBlock * DomBB,MachineBasicBlock * SuccBB)806 void LiveVariables::addNewBlock(MachineBasicBlock *BB,
807 MachineBasicBlock *DomBB,
808 MachineBasicBlock *SuccBB) {
809 const unsigned NumNew = BB->getNumber();
810
811 SmallSet<unsigned, 16> Defs, Kills;
812
813 MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end();
814 for (; BBI != BBE && BBI->isPHI(); ++BBI) {
815 // Record the def of the PHI node.
816 Defs.insert(BBI->getOperand(0).getReg());
817
818 // All registers used by PHI nodes in SuccBB must be live through BB.
819 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
820 if (BBI->getOperand(i+1).getMBB() == BB)
821 getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
822 }
823
824 // Record all vreg defs and kills of all instructions in SuccBB.
825 for (; BBI != BBE; ++BBI) {
826 for (MachineInstr::mop_iterator I = BBI->operands_begin(),
827 E = BBI->operands_end(); I != E; ++I) {
828 if (I->isReg() && TargetRegisterInfo::isVirtualRegister(I->getReg())) {
829 if (I->isDef())
830 Defs.insert(I->getReg());
831 else if (I->isKill())
832 Kills.insert(I->getReg());
833 }
834 }
835 }
836
837 // Update info for all live variables
838 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
839 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
840
841 // If the Defs is defined in the successor it can't be live in BB.
842 if (Defs.count(Reg))
843 continue;
844
845 // If the register is either killed in or live through SuccBB it's also live
846 // through BB.
847 VarInfo &VI = getVarInfo(Reg);
848 if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber()))
849 VI.AliveBlocks.set(NumNew);
850 }
851 }
852