1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17
18 using namespace clang;
19 using namespace ento;
20
21 namespace {
22 class SimpleSValBuilder : public SValBuilder {
23 protected:
24 virtual SVal dispatchCast(SVal val, QualType castTy);
25 virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
26 virtual SVal evalCastFromLoc(Loc val, QualType castTy);
27
28 public:
SimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)29 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
30 ProgramStateManager &stateMgr)
31 : SValBuilder(alloc, context, stateMgr) {}
~SimpleSValBuilder()32 virtual ~SimpleSValBuilder() {}
33
34 virtual SVal evalMinus(NonLoc val);
35 virtual SVal evalComplement(NonLoc val);
36 virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
37 NonLoc lhs, NonLoc rhs, QualType resultTy);
38 virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
39 Loc lhs, Loc rhs, QualType resultTy);
40 virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
41 Loc lhs, NonLoc rhs, QualType resultTy);
42
43 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
44 /// (integer) value, that value is returned. Otherwise, returns NULL.
45 virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
46
47 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48 const llvm::APSInt &RHS, QualType resultTy);
49 };
50 } // end anonymous namespace
51
createSimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53 ASTContext &context,
54 ProgramStateManager &stateMgr) {
55 return new SimpleSValBuilder(alloc, context, stateMgr);
56 }
57
58 //===----------------------------------------------------------------------===//
59 // Transfer function for Casts.
60 //===----------------------------------------------------------------------===//
61
dispatchCast(SVal Val,QualType CastTy)62 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
63 assert(isa<Loc>(&Val) || isa<NonLoc>(&Val));
64 return isa<Loc>(Val) ? evalCastFromLoc(cast<Loc>(Val), CastTy)
65 : evalCastFromNonLoc(cast<NonLoc>(Val), CastTy);
66 }
67
evalCastFromNonLoc(NonLoc val,QualType castTy)68 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
69
70 bool isLocType = Loc::isLocType(castTy);
71
72 if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
73 if (isLocType)
74 return LI->getLoc();
75
76 // FIXME: Correctly support promotions/truncations.
77 unsigned castSize = Context.getTypeSize(castTy);
78 if (castSize == LI->getNumBits())
79 return val;
80 return makeLocAsInteger(LI->getLoc(), castSize);
81 }
82
83 if (const SymExpr *se = val.getAsSymbolicExpression()) {
84 QualType T = Context.getCanonicalType(se->getType(Context));
85 // If types are the same or both are integers, ignore the cast.
86 // FIXME: Remove this hack when we support symbolic truncation/extension.
87 // HACK: If both castTy and T are integers, ignore the cast. This is
88 // not a permanent solution. Eventually we want to precisely handle
89 // extension/truncation of symbolic integers. This prevents us from losing
90 // precision when we assign 'x = y' and 'y' is symbolic and x and y are
91 // different integer types.
92 if (haveSameType(T, castTy))
93 return val;
94
95 if (!isLocType)
96 return makeNonLoc(se, T, castTy);
97 return UnknownVal();
98 }
99
100 // If value is a non integer constant, produce unknown.
101 if (!isa<nonloc::ConcreteInt>(val))
102 return UnknownVal();
103
104 // Only handle casts from integers to integers - if val is an integer constant
105 // being cast to a non integer type, produce unknown.
106 if (!isLocType && !castTy->isIntegerType())
107 return UnknownVal();
108
109 llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
110 BasicVals.getAPSIntType(castTy).apply(i);
111
112 if (isLocType)
113 return makeIntLocVal(i);
114 else
115 return makeIntVal(i);
116 }
117
evalCastFromLoc(Loc val,QualType castTy)118 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
119
120 // Casts from pointers -> pointers, just return the lval.
121 //
122 // Casts from pointers -> references, just return the lval. These
123 // can be introduced by the frontend for corner cases, e.g
124 // casting from va_list* to __builtin_va_list&.
125 //
126 if (Loc::isLocType(castTy) || castTy->isReferenceType())
127 return val;
128
129 // FIXME: Handle transparent unions where a value can be "transparently"
130 // lifted into a union type.
131 if (castTy->isUnionType())
132 return UnknownVal();
133
134 if (castTy->isIntegerType()) {
135 unsigned BitWidth = Context.getTypeSize(castTy);
136
137 if (!isa<loc::ConcreteInt>(val))
138 return makeLocAsInteger(val, BitWidth);
139
140 llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
141 BasicVals.getAPSIntType(castTy).apply(i);
142 return makeIntVal(i);
143 }
144
145 // All other cases: return 'UnknownVal'. This includes casting pointers
146 // to floats, which is probably badness it itself, but this is a good
147 // intermediate solution until we do something better.
148 return UnknownVal();
149 }
150
151 //===----------------------------------------------------------------------===//
152 // Transfer function for unary operators.
153 //===----------------------------------------------------------------------===//
154
evalMinus(NonLoc val)155 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
156 switch (val.getSubKind()) {
157 case nonloc::ConcreteIntKind:
158 return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
159 default:
160 return UnknownVal();
161 }
162 }
163
evalComplement(NonLoc X)164 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
165 switch (X.getSubKind()) {
166 case nonloc::ConcreteIntKind:
167 return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
168 default:
169 return UnknownVal();
170 }
171 }
172
173 //===----------------------------------------------------------------------===//
174 // Transfer function for binary operators.
175 //===----------------------------------------------------------------------===//
176
NegateComparison(BinaryOperator::Opcode op)177 static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
178 switch (op) {
179 default:
180 llvm_unreachable("Invalid opcode.");
181 case BO_LT: return BO_GE;
182 case BO_GT: return BO_LE;
183 case BO_LE: return BO_GT;
184 case BO_GE: return BO_LT;
185 case BO_EQ: return BO_NE;
186 case BO_NE: return BO_EQ;
187 }
188 }
189
ReverseComparison(BinaryOperator::Opcode op)190 static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
191 switch (op) {
192 default:
193 llvm_unreachable("Invalid opcode.");
194 case BO_LT: return BO_GT;
195 case BO_GT: return BO_LT;
196 case BO_LE: return BO_GE;
197 case BO_GE: return BO_LE;
198 case BO_EQ:
199 case BO_NE:
200 return op;
201 }
202 }
203
MakeSymIntVal(const SymExpr * LHS,BinaryOperator::Opcode op,const llvm::APSInt & RHS,QualType resultTy)204 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
205 BinaryOperator::Opcode op,
206 const llvm::APSInt &RHS,
207 QualType resultTy) {
208 bool isIdempotent = false;
209
210 // Check for a few special cases with known reductions first.
211 switch (op) {
212 default:
213 // We can't reduce this case; just treat it normally.
214 break;
215 case BO_Mul:
216 // a*0 and a*1
217 if (RHS == 0)
218 return makeIntVal(0, resultTy);
219 else if (RHS == 1)
220 isIdempotent = true;
221 break;
222 case BO_Div:
223 // a/0 and a/1
224 if (RHS == 0)
225 // This is also handled elsewhere.
226 return UndefinedVal();
227 else if (RHS == 1)
228 isIdempotent = true;
229 break;
230 case BO_Rem:
231 // a%0 and a%1
232 if (RHS == 0)
233 // This is also handled elsewhere.
234 return UndefinedVal();
235 else if (RHS == 1)
236 return makeIntVal(0, resultTy);
237 break;
238 case BO_Add:
239 case BO_Sub:
240 case BO_Shl:
241 case BO_Shr:
242 case BO_Xor:
243 // a+0, a-0, a<<0, a>>0, a^0
244 if (RHS == 0)
245 isIdempotent = true;
246 break;
247 case BO_And:
248 // a&0 and a&(~0)
249 if (RHS == 0)
250 return makeIntVal(0, resultTy);
251 else if (RHS.isAllOnesValue())
252 isIdempotent = true;
253 break;
254 case BO_Or:
255 // a|0 and a|(~0)
256 if (RHS == 0)
257 isIdempotent = true;
258 else if (RHS.isAllOnesValue()) {
259 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
260 return nonloc::ConcreteInt(Result);
261 }
262 break;
263 }
264
265 // Idempotent ops (like a*1) can still change the type of an expression.
266 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
267 // dirty work.
268 if (isIdempotent)
269 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
270
271 // If we reach this point, the expression cannot be simplified.
272 // Make a SymbolVal for the entire expression, after converting the RHS.
273 const llvm::APSInt *ConvertedRHS = &RHS;
274 if (BinaryOperator::isComparisonOp(op)) {
275 // We're looking for a type big enough to compare the symbolic value
276 // with the given constant.
277 // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
278 ASTContext &Ctx = getContext();
279 QualType SymbolType = LHS->getType(Ctx);
280 uint64_t ValWidth = RHS.getBitWidth();
281 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
282
283 if (ValWidth < TypeWidth) {
284 // If the value is too small, extend it.
285 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
286 } else if (ValWidth == TypeWidth) {
287 // If the value is signed but the symbol is unsigned, do the comparison
288 // in unsigned space. [C99 6.3.1.8]
289 // (For the opposite case, the value is already unsigned.)
290 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
291 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
292 }
293 } else
294 ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
295
296 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
297 }
298
evalBinOpNN(ProgramStateRef state,BinaryOperator::Opcode op,NonLoc lhs,NonLoc rhs,QualType resultTy)299 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
300 BinaryOperator::Opcode op,
301 NonLoc lhs, NonLoc rhs,
302 QualType resultTy) {
303 NonLoc InputLHS = lhs;
304 NonLoc InputRHS = rhs;
305
306 // Handle trivial case where left-side and right-side are the same.
307 if (lhs == rhs)
308 switch (op) {
309 default:
310 break;
311 case BO_EQ:
312 case BO_LE:
313 case BO_GE:
314 return makeTruthVal(true, resultTy);
315 case BO_LT:
316 case BO_GT:
317 case BO_NE:
318 return makeTruthVal(false, resultTy);
319 case BO_Xor:
320 case BO_Sub:
321 if (resultTy->isIntegralOrEnumerationType())
322 return makeIntVal(0, resultTy);
323 return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
324 case BO_Or:
325 case BO_And:
326 return evalCastFromNonLoc(lhs, resultTy);
327 }
328
329 while (1) {
330 switch (lhs.getSubKind()) {
331 default:
332 return makeSymExprValNN(state, op, lhs, rhs, resultTy);
333 case nonloc::LocAsIntegerKind: {
334 Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
335 switch (rhs.getSubKind()) {
336 case nonloc::LocAsIntegerKind:
337 return evalBinOpLL(state, op, lhsL,
338 cast<nonloc::LocAsInteger>(rhs).getLoc(),
339 resultTy);
340 case nonloc::ConcreteIntKind: {
341 // Transform the integer into a location and compare.
342 llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
343 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
344 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
345 }
346 default:
347 switch (op) {
348 case BO_EQ:
349 return makeTruthVal(false, resultTy);
350 case BO_NE:
351 return makeTruthVal(true, resultTy);
352 default:
353 // This case also handles pointer arithmetic.
354 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
355 }
356 }
357 }
358 case nonloc::ConcreteIntKind: {
359 llvm::APSInt LHSValue = cast<nonloc::ConcreteInt>(lhs).getValue();
360
361 // If we're dealing with two known constants, just perform the operation.
362 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
363 llvm::APSInt RHSValue = *KnownRHSValue;
364 if (BinaryOperator::isComparisonOp(op)) {
365 // We're looking for a type big enough to compare the two values.
366 // FIXME: This is not correct. char + short will result in a promotion
367 // to int. Unfortunately we have lost types by this point.
368 APSIntType CompareType = std::max(APSIntType(LHSValue),
369 APSIntType(RHSValue));
370 CompareType.apply(LHSValue);
371 CompareType.apply(RHSValue);
372 } else if (!BinaryOperator::isShiftOp(op)) {
373 APSIntType IntType = BasicVals.getAPSIntType(resultTy);
374 IntType.apply(LHSValue);
375 IntType.apply(RHSValue);
376 }
377
378 const llvm::APSInt *Result =
379 BasicVals.evalAPSInt(op, LHSValue, RHSValue);
380 if (!Result)
381 return UndefinedVal();
382
383 return nonloc::ConcreteInt(*Result);
384 }
385
386 // Swap the left and right sides and flip the operator if doing so
387 // allows us to better reason about the expression (this is a form
388 // of expression canonicalization).
389 // While we're at it, catch some special cases for non-commutative ops.
390 switch (op) {
391 case BO_LT:
392 case BO_GT:
393 case BO_LE:
394 case BO_GE:
395 op = ReverseComparison(op);
396 // FALL-THROUGH
397 case BO_EQ:
398 case BO_NE:
399 case BO_Add:
400 case BO_Mul:
401 case BO_And:
402 case BO_Xor:
403 case BO_Or:
404 std::swap(lhs, rhs);
405 continue;
406 case BO_Shr:
407 // (~0)>>a
408 if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
409 return evalCastFromNonLoc(lhs, resultTy);
410 // FALL-THROUGH
411 case BO_Shl:
412 // 0<<a and 0>>a
413 if (LHSValue == 0)
414 return evalCastFromNonLoc(lhs, resultTy);
415 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
416 default:
417 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
418 }
419 }
420 case nonloc::SymbolValKind: {
421 // We only handle LHS as simple symbols or SymIntExprs.
422 SymbolRef Sym = cast<nonloc::SymbolVal>(lhs).getSymbol();
423
424 // LHS is a symbolic expression.
425 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
426
427 // Is this a logical not? (!x is represented as x == 0.)
428 if (op == BO_EQ && rhs.isZeroConstant()) {
429 // We know how to negate certain expressions. Simplify them here.
430
431 BinaryOperator::Opcode opc = symIntExpr->getOpcode();
432 switch (opc) {
433 default:
434 // We don't know how to negate this operation.
435 // Just handle it as if it were a normal comparison to 0.
436 break;
437 case BO_LAnd:
438 case BO_LOr:
439 llvm_unreachable("Logical operators handled by branching logic.");
440 case BO_Assign:
441 case BO_MulAssign:
442 case BO_DivAssign:
443 case BO_RemAssign:
444 case BO_AddAssign:
445 case BO_SubAssign:
446 case BO_ShlAssign:
447 case BO_ShrAssign:
448 case BO_AndAssign:
449 case BO_XorAssign:
450 case BO_OrAssign:
451 case BO_Comma:
452 llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
453 case BO_PtrMemD:
454 case BO_PtrMemI:
455 llvm_unreachable("Pointer arithmetic not handled here.");
456 case BO_LT:
457 case BO_GT:
458 case BO_LE:
459 case BO_GE:
460 case BO_EQ:
461 case BO_NE:
462 // Negate the comparison and make a value.
463 opc = NegateComparison(opc);
464 assert(symIntExpr->getType(Context) == resultTy);
465 return makeNonLoc(symIntExpr->getLHS(), opc,
466 symIntExpr->getRHS(), resultTy);
467 }
468 }
469
470 // For now, only handle expressions whose RHS is a constant.
471 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
472 // If both the LHS and the current expression are additive,
473 // fold their constants and try again.
474 if (BinaryOperator::isAdditiveOp(op)) {
475 BinaryOperator::Opcode lop = symIntExpr->getOpcode();
476 if (BinaryOperator::isAdditiveOp(lop)) {
477 // Convert the two constants to a common type, then combine them.
478
479 // resultTy may not be the best type to convert to, but it's
480 // probably the best choice in expressions with mixed type
481 // (such as x+1U+2LL). The rules for implicit conversions should
482 // choose a reasonable type to preserve the expression, and will
483 // at least match how the value is going to be used.
484 APSIntType IntType = BasicVals.getAPSIntType(resultTy);
485 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
486 const llvm::APSInt &second = IntType.convert(*RHSValue);
487
488 const llvm::APSInt *newRHS;
489 if (lop == op)
490 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
491 else
492 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
493
494 assert(newRHS && "Invalid operation despite common type!");
495 rhs = nonloc::ConcreteInt(*newRHS);
496 lhs = nonloc::SymbolVal(symIntExpr->getLHS());
497 op = lop;
498 continue;
499 }
500 }
501
502 // Otherwise, make a SymIntExpr out of the expression.
503 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
504 }
505
506
507 } else if (isa<SymbolData>(Sym)) {
508 // Does the symbol simplify to a constant? If so, "fold" the constant
509 // by setting 'lhs' to a ConcreteInt and try again.
510 if (const llvm::APSInt *Constant = state->getConstraintManager()
511 .getSymVal(state, Sym)) {
512 lhs = nonloc::ConcreteInt(*Constant);
513 continue;
514 }
515
516 // Is the RHS a constant?
517 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
518 return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
519 }
520
521 // Give up -- this is not a symbolic expression we can handle.
522 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
523 }
524 }
525 }
526 }
527
528 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
evalBinOpLL(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,Loc rhs,QualType resultTy)529 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
530 BinaryOperator::Opcode op,
531 Loc lhs, Loc rhs,
532 QualType resultTy) {
533 // Only comparisons and subtractions are valid operations on two pointers.
534 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
535 // However, if a pointer is casted to an integer, evalBinOpNN may end up
536 // calling this function with another operation (PR7527). We don't attempt to
537 // model this for now, but it could be useful, particularly when the
538 // "location" is actually an integer value that's been passed through a void*.
539 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
540 return UnknownVal();
541
542 // Special cases for when both sides are identical.
543 if (lhs == rhs) {
544 switch (op) {
545 default:
546 llvm_unreachable("Unimplemented operation for two identical values");
547 case BO_Sub:
548 return makeZeroVal(resultTy);
549 case BO_EQ:
550 case BO_LE:
551 case BO_GE:
552 return makeTruthVal(true, resultTy);
553 case BO_NE:
554 case BO_LT:
555 case BO_GT:
556 return makeTruthVal(false, resultTy);
557 }
558 }
559
560 switch (lhs.getSubKind()) {
561 default:
562 llvm_unreachable("Ordering not implemented for this Loc.");
563
564 case loc::GotoLabelKind:
565 // The only thing we know about labels is that they're non-null.
566 if (rhs.isZeroConstant()) {
567 switch (op) {
568 default:
569 break;
570 case BO_Sub:
571 return evalCastFromLoc(lhs, resultTy);
572 case BO_EQ:
573 case BO_LE:
574 case BO_LT:
575 return makeTruthVal(false, resultTy);
576 case BO_NE:
577 case BO_GT:
578 case BO_GE:
579 return makeTruthVal(true, resultTy);
580 }
581 }
582 // There may be two labels for the same location, and a function region may
583 // have the same address as a label at the start of the function (depending
584 // on the ABI).
585 // FIXME: we can probably do a comparison against other MemRegions, though.
586 // FIXME: is there a way to tell if two labels refer to the same location?
587 return UnknownVal();
588
589 case loc::ConcreteIntKind: {
590 // If one of the operands is a symbol and the other is a constant,
591 // build an expression for use by the constraint manager.
592 if (SymbolRef rSym = rhs.getAsLocSymbol()) {
593 // We can only build expressions with symbols on the left,
594 // so we need a reversible operator.
595 if (!BinaryOperator::isComparisonOp(op))
596 return UnknownVal();
597
598 const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
599 return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
600 }
601
602 // If both operands are constants, just perform the operation.
603 if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
604 SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
605 *rInt);
606 if (Loc *Result = dyn_cast<Loc>(&ResultVal))
607 return evalCastFromLoc(*Result, resultTy);
608 else
609 return UnknownVal();
610 }
611
612 // Special case comparisons against NULL.
613 // This must come after the test if the RHS is a symbol, which is used to
614 // build constraints. The address of any non-symbolic region is guaranteed
615 // to be non-NULL, as is any label.
616 assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
617 if (lhs.isZeroConstant()) {
618 switch (op) {
619 default:
620 break;
621 case BO_EQ:
622 case BO_GT:
623 case BO_GE:
624 return makeTruthVal(false, resultTy);
625 case BO_NE:
626 case BO_LT:
627 case BO_LE:
628 return makeTruthVal(true, resultTy);
629 }
630 }
631
632 // Comparing an arbitrary integer to a region or label address is
633 // completely unknowable.
634 return UnknownVal();
635 }
636 case loc::MemRegionKind: {
637 if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
638 // If one of the operands is a symbol and the other is a constant,
639 // build an expression for use by the constraint manager.
640 if (SymbolRef lSym = lhs.getAsLocSymbol())
641 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
642
643 // Special case comparisons to NULL.
644 // This must come after the test if the LHS is a symbol, which is used to
645 // build constraints. The address of any non-symbolic region is guaranteed
646 // to be non-NULL.
647 if (rInt->isZeroConstant()) {
648 switch (op) {
649 default:
650 break;
651 case BO_Sub:
652 return evalCastFromLoc(lhs, resultTy);
653 case BO_EQ:
654 case BO_LT:
655 case BO_LE:
656 return makeTruthVal(false, resultTy);
657 case BO_NE:
658 case BO_GT:
659 case BO_GE:
660 return makeTruthVal(true, resultTy);
661 }
662 }
663
664 // Comparing a region to an arbitrary integer is completely unknowable.
665 return UnknownVal();
666 }
667
668 // Get both values as regions, if possible.
669 const MemRegion *LeftMR = lhs.getAsRegion();
670 assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
671
672 const MemRegion *RightMR = rhs.getAsRegion();
673 if (!RightMR)
674 // The RHS is probably a label, which in theory could address a region.
675 // FIXME: we can probably make a more useful statement about non-code
676 // regions, though.
677 return UnknownVal();
678
679 const MemSpaceRegion *LeftMS = LeftMR->getMemorySpace();
680 const MemSpaceRegion *RightMS = RightMR->getMemorySpace();
681 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
682 const MemRegion *LeftBase = LeftMR->getBaseRegion();
683 const MemRegion *RightBase = RightMR->getBaseRegion();
684
685 // If the two regions are from different known memory spaces they cannot be
686 // equal. Also, assume that no symbolic region (whose memory space is
687 // unknown) is on the stack.
688 if (LeftMS != RightMS &&
689 ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
690 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
691 switch (op) {
692 default:
693 return UnknownVal();
694 case BO_EQ:
695 return makeTruthVal(false, resultTy);
696 case BO_NE:
697 return makeTruthVal(true, resultTy);
698 }
699 }
700
701 // If both values wrap regions, see if they're from different base regions.
702 // Note, heap base symbolic regions are assumed to not alias with
703 // each other; for example, we assume that malloc returns different address
704 // on each invocation.
705 if (LeftBase != RightBase &&
706 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
707 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
708 switch (op) {
709 default:
710 return UnknownVal();
711 case BO_EQ:
712 return makeTruthVal(false, resultTy);
713 case BO_NE:
714 return makeTruthVal(true, resultTy);
715 }
716 }
717
718 // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
719 // ElementRegion path and the FieldRegion path below should be unified.
720 if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
721 // First see if the right region is also an ElementRegion.
722 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
723 if (!RightER)
724 return UnknownVal();
725
726 // Next, see if the two ERs have the same super-region and matching types.
727 // FIXME: This should do something useful even if the types don't match,
728 // though if both indexes are constant the RegionRawOffset path will
729 // give the correct answer.
730 if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
731 LeftER->getElementType() == RightER->getElementType()) {
732 // Get the left index and cast it to the correct type.
733 // If the index is unknown or undefined, bail out here.
734 SVal LeftIndexVal = LeftER->getIndex();
735 NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
736 if (!LeftIndex)
737 return UnknownVal();
738 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy);
739 LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
740 if (!LeftIndex)
741 return UnknownVal();
742
743 // Do the same for the right index.
744 SVal RightIndexVal = RightER->getIndex();
745 NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
746 if (!RightIndex)
747 return UnknownVal();
748 RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy);
749 RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
750 if (!RightIndex)
751 return UnknownVal();
752
753 // Actually perform the operation.
754 // evalBinOpNN expects the two indexes to already be the right type.
755 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
756 }
757
758 // If the element indexes aren't comparable, see if the raw offsets are.
759 RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
760 RegionRawOffset RightOffset = RightER->getAsArrayOffset();
761
762 if (LeftOffset.getRegion() != NULL &&
763 LeftOffset.getRegion() == RightOffset.getRegion()) {
764 CharUnits left = LeftOffset.getOffset();
765 CharUnits right = RightOffset.getOffset();
766
767 switch (op) {
768 default:
769 return UnknownVal();
770 case BO_LT:
771 return makeTruthVal(left < right, resultTy);
772 case BO_GT:
773 return makeTruthVal(left > right, resultTy);
774 case BO_LE:
775 return makeTruthVal(left <= right, resultTy);
776 case BO_GE:
777 return makeTruthVal(left >= right, resultTy);
778 case BO_EQ:
779 return makeTruthVal(left == right, resultTy);
780 case BO_NE:
781 return makeTruthVal(left != right, resultTy);
782 }
783 }
784
785 // If we get here, we have no way of comparing the ElementRegions.
786 return UnknownVal();
787 }
788
789 // See if both regions are fields of the same structure.
790 // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
791 if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
792 // Only comparisons are meaningful here!
793 if (!BinaryOperator::isComparisonOp(op))
794 return UnknownVal();
795
796 // First see if the right region is also a FieldRegion.
797 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
798 if (!RightFR)
799 return UnknownVal();
800
801 // Next, see if the two FRs have the same super-region.
802 // FIXME: This doesn't handle casts yet, and simply stripping the casts
803 // doesn't help.
804 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
805 return UnknownVal();
806
807 const FieldDecl *LeftFD = LeftFR->getDecl();
808 const FieldDecl *RightFD = RightFR->getDecl();
809 const RecordDecl *RD = LeftFD->getParent();
810
811 // Make sure the two FRs are from the same kind of record. Just in case!
812 // FIXME: This is probably where inheritance would be a problem.
813 if (RD != RightFD->getParent())
814 return UnknownVal();
815
816 // We know for sure that the two fields are not the same, since that
817 // would have given us the same SVal.
818 if (op == BO_EQ)
819 return makeTruthVal(false, resultTy);
820 if (op == BO_NE)
821 return makeTruthVal(true, resultTy);
822
823 // Iterate through the fields and see which one comes first.
824 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
825 // members and the units in which bit-fields reside have addresses that
826 // increase in the order in which they are declared."
827 bool leftFirst = (op == BO_LT || op == BO_LE);
828 for (RecordDecl::field_iterator I = RD->field_begin(),
829 E = RD->field_end(); I!=E; ++I) {
830 if (*I == LeftFD)
831 return makeTruthVal(leftFirst, resultTy);
832 if (*I == RightFD)
833 return makeTruthVal(!leftFirst, resultTy);
834 }
835
836 llvm_unreachable("Fields not found in parent record's definition");
837 }
838
839 // If we get here, we have no way of comparing the regions.
840 return UnknownVal();
841 }
842 }
843 }
844
evalBinOpLN(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,NonLoc rhs,QualType resultTy)845 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
846 BinaryOperator::Opcode op,
847 Loc lhs, NonLoc rhs, QualType resultTy) {
848
849 // Special case: rhs is a zero constant.
850 if (rhs.isZeroConstant())
851 return lhs;
852
853 // Special case: 'rhs' is an integer that has the same width as a pointer and
854 // we are using the integer location in a comparison. Normally this cannot be
855 // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
856 // can generate comparisons that trigger this code.
857 // FIXME: Are all locations guaranteed to have pointer width?
858 if (BinaryOperator::isComparisonOp(op)) {
859 if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
860 const llvm::APSInt *x = &rhsInt->getValue();
861 ASTContext &ctx = Context;
862 if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
863 // Convert the signedness of the integer (if necessary).
864 if (x->isSigned())
865 x = &getBasicValueFactory().getValue(*x, true);
866
867 return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
868 }
869 }
870 return UnknownVal();
871 }
872
873 // We are dealing with pointer arithmetic.
874
875 // Handle pointer arithmetic on constant values.
876 if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
877 if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
878 const llvm::APSInt &leftI = lhsInt->getValue();
879 assert(leftI.isUnsigned());
880 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
881
882 // Convert the bitwidth of rightI. This should deal with overflow
883 // since we are dealing with concrete values.
884 rightI = rightI.extOrTrunc(leftI.getBitWidth());
885
886 // Offset the increment by the pointer size.
887 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
888 rightI *= Multiplicand;
889
890 // Compute the adjusted pointer.
891 switch (op) {
892 case BO_Add:
893 rightI = leftI + rightI;
894 break;
895 case BO_Sub:
896 rightI = leftI - rightI;
897 break;
898 default:
899 llvm_unreachable("Invalid pointer arithmetic operation");
900 }
901 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
902 }
903 }
904
905 // Handle cases where 'lhs' is a region.
906 if (const MemRegion *region = lhs.getAsRegion()) {
907 rhs = cast<NonLoc>(convertToArrayIndex(rhs));
908 SVal index = UnknownVal();
909 const MemRegion *superR = 0;
910 QualType elementType;
911
912 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
913 assert(op == BO_Add || op == BO_Sub);
914 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
915 getArrayIndexType());
916 superR = elemReg->getSuperRegion();
917 elementType = elemReg->getElementType();
918 }
919 else if (isa<SubRegion>(region)) {
920 superR = region;
921 index = rhs;
922 if (resultTy->isAnyPointerType())
923 elementType = resultTy->getPointeeType();
924 }
925
926 if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
927 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
928 superR, getContext()));
929 }
930 }
931 return UnknownVal();
932 }
933
getKnownValue(ProgramStateRef state,SVal V)934 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
935 SVal V) {
936 if (V.isUnknownOrUndef())
937 return NULL;
938
939 if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
940 return &X->getValue();
941
942 if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
943 return &X->getValue();
944
945 if (SymbolRef Sym = V.getAsSymbol())
946 return state->getConstraintManager().getSymVal(state, Sym);
947
948 // FIXME: Add support for SymExprs.
949 return NULL;
950 }
951