• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 
18 using namespace clang;
19 using namespace ento;
20 
21 namespace {
22 class SimpleSValBuilder : public SValBuilder {
23 protected:
24   virtual SVal dispatchCast(SVal val, QualType castTy);
25   virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
26   virtual SVal evalCastFromLoc(Loc val, QualType castTy);
27 
28 public:
SimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)29   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
30                     ProgramStateManager &stateMgr)
31                     : SValBuilder(alloc, context, stateMgr) {}
~SimpleSValBuilder()32   virtual ~SimpleSValBuilder() {}
33 
34   virtual SVal evalMinus(NonLoc val);
35   virtual SVal evalComplement(NonLoc val);
36   virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
37                            NonLoc lhs, NonLoc rhs, QualType resultTy);
38   virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
39                            Loc lhs, Loc rhs, QualType resultTy);
40   virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
41                            Loc lhs, NonLoc rhs, QualType resultTy);
42 
43   /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
44   ///  (integer) value, that value is returned. Otherwise, returns NULL.
45   virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
46 
47   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48                      const llvm::APSInt &RHS, QualType resultTy);
49 };
50 } // end anonymous namespace
51 
createSimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53                                            ASTContext &context,
54                                            ProgramStateManager &stateMgr) {
55   return new SimpleSValBuilder(alloc, context, stateMgr);
56 }
57 
58 //===----------------------------------------------------------------------===//
59 // Transfer function for Casts.
60 //===----------------------------------------------------------------------===//
61 
dispatchCast(SVal Val,QualType CastTy)62 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
63   assert(isa<Loc>(&Val) || isa<NonLoc>(&Val));
64   return isa<Loc>(Val) ? evalCastFromLoc(cast<Loc>(Val), CastTy)
65                        : evalCastFromNonLoc(cast<NonLoc>(Val), CastTy);
66 }
67 
evalCastFromNonLoc(NonLoc val,QualType castTy)68 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
69 
70   bool isLocType = Loc::isLocType(castTy);
71 
72   if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
73     if (isLocType)
74       return LI->getLoc();
75 
76     // FIXME: Correctly support promotions/truncations.
77     unsigned castSize = Context.getTypeSize(castTy);
78     if (castSize == LI->getNumBits())
79       return val;
80     return makeLocAsInteger(LI->getLoc(), castSize);
81   }
82 
83   if (const SymExpr *se = val.getAsSymbolicExpression()) {
84     QualType T = Context.getCanonicalType(se->getType(Context));
85     // If types are the same or both are integers, ignore the cast.
86     // FIXME: Remove this hack when we support symbolic truncation/extension.
87     // HACK: If both castTy and T are integers, ignore the cast.  This is
88     // not a permanent solution.  Eventually we want to precisely handle
89     // extension/truncation of symbolic integers.  This prevents us from losing
90     // precision when we assign 'x = y' and 'y' is symbolic and x and y are
91     // different integer types.
92    if (haveSameType(T, castTy))
93       return val;
94 
95     if (!isLocType)
96       return makeNonLoc(se, T, castTy);
97     return UnknownVal();
98   }
99 
100   // If value is a non integer constant, produce unknown.
101   if (!isa<nonloc::ConcreteInt>(val))
102     return UnknownVal();
103 
104   // Only handle casts from integers to integers - if val is an integer constant
105   // being cast to a non integer type, produce unknown.
106   if (!isLocType && !castTy->isIntegerType())
107     return UnknownVal();
108 
109   llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
110   BasicVals.getAPSIntType(castTy).apply(i);
111 
112   if (isLocType)
113     return makeIntLocVal(i);
114   else
115     return makeIntVal(i);
116 }
117 
evalCastFromLoc(Loc val,QualType castTy)118 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
119 
120   // Casts from pointers -> pointers, just return the lval.
121   //
122   // Casts from pointers -> references, just return the lval.  These
123   //   can be introduced by the frontend for corner cases, e.g
124   //   casting from va_list* to __builtin_va_list&.
125   //
126   if (Loc::isLocType(castTy) || castTy->isReferenceType())
127     return val;
128 
129   // FIXME: Handle transparent unions where a value can be "transparently"
130   //  lifted into a union type.
131   if (castTy->isUnionType())
132     return UnknownVal();
133 
134   if (castTy->isIntegerType()) {
135     unsigned BitWidth = Context.getTypeSize(castTy);
136 
137     if (!isa<loc::ConcreteInt>(val))
138       return makeLocAsInteger(val, BitWidth);
139 
140     llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
141     BasicVals.getAPSIntType(castTy).apply(i);
142     return makeIntVal(i);
143   }
144 
145   // All other cases: return 'UnknownVal'.  This includes casting pointers
146   // to floats, which is probably badness it itself, but this is a good
147   // intermediate solution until we do something better.
148   return UnknownVal();
149 }
150 
151 //===----------------------------------------------------------------------===//
152 // Transfer function for unary operators.
153 //===----------------------------------------------------------------------===//
154 
evalMinus(NonLoc val)155 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
156   switch (val.getSubKind()) {
157   case nonloc::ConcreteIntKind:
158     return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
159   default:
160     return UnknownVal();
161   }
162 }
163 
evalComplement(NonLoc X)164 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
165   switch (X.getSubKind()) {
166   case nonloc::ConcreteIntKind:
167     return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
168   default:
169     return UnknownVal();
170   }
171 }
172 
173 //===----------------------------------------------------------------------===//
174 // Transfer function for binary operators.
175 //===----------------------------------------------------------------------===//
176 
NegateComparison(BinaryOperator::Opcode op)177 static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
178   switch (op) {
179   default:
180     llvm_unreachable("Invalid opcode.");
181   case BO_LT: return BO_GE;
182   case BO_GT: return BO_LE;
183   case BO_LE: return BO_GT;
184   case BO_GE: return BO_LT;
185   case BO_EQ: return BO_NE;
186   case BO_NE: return BO_EQ;
187   }
188 }
189 
ReverseComparison(BinaryOperator::Opcode op)190 static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
191   switch (op) {
192   default:
193     llvm_unreachable("Invalid opcode.");
194   case BO_LT: return BO_GT;
195   case BO_GT: return BO_LT;
196   case BO_LE: return BO_GE;
197   case BO_GE: return BO_LE;
198   case BO_EQ:
199   case BO_NE:
200     return op;
201   }
202 }
203 
MakeSymIntVal(const SymExpr * LHS,BinaryOperator::Opcode op,const llvm::APSInt & RHS,QualType resultTy)204 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
205                                     BinaryOperator::Opcode op,
206                                     const llvm::APSInt &RHS,
207                                     QualType resultTy) {
208   bool isIdempotent = false;
209 
210   // Check for a few special cases with known reductions first.
211   switch (op) {
212   default:
213     // We can't reduce this case; just treat it normally.
214     break;
215   case BO_Mul:
216     // a*0 and a*1
217     if (RHS == 0)
218       return makeIntVal(0, resultTy);
219     else if (RHS == 1)
220       isIdempotent = true;
221     break;
222   case BO_Div:
223     // a/0 and a/1
224     if (RHS == 0)
225       // This is also handled elsewhere.
226       return UndefinedVal();
227     else if (RHS == 1)
228       isIdempotent = true;
229     break;
230   case BO_Rem:
231     // a%0 and a%1
232     if (RHS == 0)
233       // This is also handled elsewhere.
234       return UndefinedVal();
235     else if (RHS == 1)
236       return makeIntVal(0, resultTy);
237     break;
238   case BO_Add:
239   case BO_Sub:
240   case BO_Shl:
241   case BO_Shr:
242   case BO_Xor:
243     // a+0, a-0, a<<0, a>>0, a^0
244     if (RHS == 0)
245       isIdempotent = true;
246     break;
247   case BO_And:
248     // a&0 and a&(~0)
249     if (RHS == 0)
250       return makeIntVal(0, resultTy);
251     else if (RHS.isAllOnesValue())
252       isIdempotent = true;
253     break;
254   case BO_Or:
255     // a|0 and a|(~0)
256     if (RHS == 0)
257       isIdempotent = true;
258     else if (RHS.isAllOnesValue()) {
259       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
260       return nonloc::ConcreteInt(Result);
261     }
262     break;
263   }
264 
265   // Idempotent ops (like a*1) can still change the type of an expression.
266   // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
267   // dirty work.
268   if (isIdempotent)
269       return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
270 
271   // If we reach this point, the expression cannot be simplified.
272   // Make a SymbolVal for the entire expression, after converting the RHS.
273   const llvm::APSInt *ConvertedRHS = &RHS;
274   if (BinaryOperator::isComparisonOp(op)) {
275     // We're looking for a type big enough to compare the symbolic value
276     // with the given constant.
277     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
278     ASTContext &Ctx = getContext();
279     QualType SymbolType = LHS->getType(Ctx);
280     uint64_t ValWidth = RHS.getBitWidth();
281     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
282 
283     if (ValWidth < TypeWidth) {
284       // If the value is too small, extend it.
285       ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
286     } else if (ValWidth == TypeWidth) {
287       // If the value is signed but the symbol is unsigned, do the comparison
288       // in unsigned space. [C99 6.3.1.8]
289       // (For the opposite case, the value is already unsigned.)
290       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
291         ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
292     }
293   } else
294     ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
295 
296   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
297 }
298 
evalBinOpNN(ProgramStateRef state,BinaryOperator::Opcode op,NonLoc lhs,NonLoc rhs,QualType resultTy)299 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
300                                   BinaryOperator::Opcode op,
301                                   NonLoc lhs, NonLoc rhs,
302                                   QualType resultTy)  {
303   NonLoc InputLHS = lhs;
304   NonLoc InputRHS = rhs;
305 
306   // Handle trivial case where left-side and right-side are the same.
307   if (lhs == rhs)
308     switch (op) {
309       default:
310         break;
311       case BO_EQ:
312       case BO_LE:
313       case BO_GE:
314         return makeTruthVal(true, resultTy);
315       case BO_LT:
316       case BO_GT:
317       case BO_NE:
318         return makeTruthVal(false, resultTy);
319       case BO_Xor:
320       case BO_Sub:
321         if (resultTy->isIntegralOrEnumerationType())
322           return makeIntVal(0, resultTy);
323         return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
324       case BO_Or:
325       case BO_And:
326         return evalCastFromNonLoc(lhs, resultTy);
327     }
328 
329   while (1) {
330     switch (lhs.getSubKind()) {
331     default:
332       return makeSymExprValNN(state, op, lhs, rhs, resultTy);
333     case nonloc::LocAsIntegerKind: {
334       Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
335       switch (rhs.getSubKind()) {
336         case nonloc::LocAsIntegerKind:
337           return evalBinOpLL(state, op, lhsL,
338                              cast<nonloc::LocAsInteger>(rhs).getLoc(),
339                              resultTy);
340         case nonloc::ConcreteIntKind: {
341           // Transform the integer into a location and compare.
342           llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
343           BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
344           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
345         }
346         default:
347           switch (op) {
348             case BO_EQ:
349               return makeTruthVal(false, resultTy);
350             case BO_NE:
351               return makeTruthVal(true, resultTy);
352             default:
353               // This case also handles pointer arithmetic.
354               return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
355           }
356       }
357     }
358     case nonloc::ConcreteIntKind: {
359       llvm::APSInt LHSValue = cast<nonloc::ConcreteInt>(lhs).getValue();
360 
361       // If we're dealing with two known constants, just perform the operation.
362       if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
363         llvm::APSInt RHSValue = *KnownRHSValue;
364         if (BinaryOperator::isComparisonOp(op)) {
365           // We're looking for a type big enough to compare the two values.
366           // FIXME: This is not correct. char + short will result in a promotion
367           // to int. Unfortunately we have lost types by this point.
368           APSIntType CompareType = std::max(APSIntType(LHSValue),
369                                             APSIntType(RHSValue));
370           CompareType.apply(LHSValue);
371           CompareType.apply(RHSValue);
372         } else if (!BinaryOperator::isShiftOp(op)) {
373           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
374           IntType.apply(LHSValue);
375           IntType.apply(RHSValue);
376         }
377 
378         const llvm::APSInt *Result =
379           BasicVals.evalAPSInt(op, LHSValue, RHSValue);
380         if (!Result)
381           return UndefinedVal();
382 
383         return nonloc::ConcreteInt(*Result);
384       }
385 
386       // Swap the left and right sides and flip the operator if doing so
387       // allows us to better reason about the expression (this is a form
388       // of expression canonicalization).
389       // While we're at it, catch some special cases for non-commutative ops.
390       switch (op) {
391       case BO_LT:
392       case BO_GT:
393       case BO_LE:
394       case BO_GE:
395         op = ReverseComparison(op);
396         // FALL-THROUGH
397       case BO_EQ:
398       case BO_NE:
399       case BO_Add:
400       case BO_Mul:
401       case BO_And:
402       case BO_Xor:
403       case BO_Or:
404         std::swap(lhs, rhs);
405         continue;
406       case BO_Shr:
407         // (~0)>>a
408         if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
409           return evalCastFromNonLoc(lhs, resultTy);
410         // FALL-THROUGH
411       case BO_Shl:
412         // 0<<a and 0>>a
413         if (LHSValue == 0)
414           return evalCastFromNonLoc(lhs, resultTy);
415         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
416       default:
417         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
418       }
419     }
420     case nonloc::SymbolValKind: {
421       // We only handle LHS as simple symbols or SymIntExprs.
422       SymbolRef Sym = cast<nonloc::SymbolVal>(lhs).getSymbol();
423 
424       // LHS is a symbolic expression.
425       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
426 
427         // Is this a logical not? (!x is represented as x == 0.)
428         if (op == BO_EQ && rhs.isZeroConstant()) {
429           // We know how to negate certain expressions. Simplify them here.
430 
431           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
432           switch (opc) {
433           default:
434             // We don't know how to negate this operation.
435             // Just handle it as if it were a normal comparison to 0.
436             break;
437           case BO_LAnd:
438           case BO_LOr:
439             llvm_unreachable("Logical operators handled by branching logic.");
440           case BO_Assign:
441           case BO_MulAssign:
442           case BO_DivAssign:
443           case BO_RemAssign:
444           case BO_AddAssign:
445           case BO_SubAssign:
446           case BO_ShlAssign:
447           case BO_ShrAssign:
448           case BO_AndAssign:
449           case BO_XorAssign:
450           case BO_OrAssign:
451           case BO_Comma:
452             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
453           case BO_PtrMemD:
454           case BO_PtrMemI:
455             llvm_unreachable("Pointer arithmetic not handled here.");
456           case BO_LT:
457           case BO_GT:
458           case BO_LE:
459           case BO_GE:
460           case BO_EQ:
461           case BO_NE:
462             // Negate the comparison and make a value.
463             opc = NegateComparison(opc);
464             assert(symIntExpr->getType(Context) == resultTy);
465             return makeNonLoc(symIntExpr->getLHS(), opc,
466                 symIntExpr->getRHS(), resultTy);
467           }
468         }
469 
470         // For now, only handle expressions whose RHS is a constant.
471         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
472           // If both the LHS and the current expression are additive,
473           // fold their constants and try again.
474           if (BinaryOperator::isAdditiveOp(op)) {
475             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
476             if (BinaryOperator::isAdditiveOp(lop)) {
477               // Convert the two constants to a common type, then combine them.
478 
479               // resultTy may not be the best type to convert to, but it's
480               // probably the best choice in expressions with mixed type
481               // (such as x+1U+2LL). The rules for implicit conversions should
482               // choose a reasonable type to preserve the expression, and will
483               // at least match how the value is going to be used.
484               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
485               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
486               const llvm::APSInt &second = IntType.convert(*RHSValue);
487 
488               const llvm::APSInt *newRHS;
489               if (lop == op)
490                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
491               else
492                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
493 
494               assert(newRHS && "Invalid operation despite common type!");
495               rhs = nonloc::ConcreteInt(*newRHS);
496               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
497               op = lop;
498               continue;
499             }
500           }
501 
502           // Otherwise, make a SymIntExpr out of the expression.
503           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
504         }
505 
506 
507       } else if (isa<SymbolData>(Sym)) {
508         // Does the symbol simplify to a constant?  If so, "fold" the constant
509         // by setting 'lhs' to a ConcreteInt and try again.
510         if (const llvm::APSInt *Constant = state->getConstraintManager()
511                                                   .getSymVal(state, Sym)) {
512           lhs = nonloc::ConcreteInt(*Constant);
513           continue;
514         }
515 
516         // Is the RHS a constant?
517         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
518           return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
519       }
520 
521       // Give up -- this is not a symbolic expression we can handle.
522       return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
523     }
524     }
525   }
526 }
527 
528 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
evalBinOpLL(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,Loc rhs,QualType resultTy)529 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
530                                   BinaryOperator::Opcode op,
531                                   Loc lhs, Loc rhs,
532                                   QualType resultTy) {
533   // Only comparisons and subtractions are valid operations on two pointers.
534   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
535   // However, if a pointer is casted to an integer, evalBinOpNN may end up
536   // calling this function with another operation (PR7527). We don't attempt to
537   // model this for now, but it could be useful, particularly when the
538   // "location" is actually an integer value that's been passed through a void*.
539   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
540     return UnknownVal();
541 
542   // Special cases for when both sides are identical.
543   if (lhs == rhs) {
544     switch (op) {
545     default:
546       llvm_unreachable("Unimplemented operation for two identical values");
547     case BO_Sub:
548       return makeZeroVal(resultTy);
549     case BO_EQ:
550     case BO_LE:
551     case BO_GE:
552       return makeTruthVal(true, resultTy);
553     case BO_NE:
554     case BO_LT:
555     case BO_GT:
556       return makeTruthVal(false, resultTy);
557     }
558   }
559 
560   switch (lhs.getSubKind()) {
561   default:
562     llvm_unreachable("Ordering not implemented for this Loc.");
563 
564   case loc::GotoLabelKind:
565     // The only thing we know about labels is that they're non-null.
566     if (rhs.isZeroConstant()) {
567       switch (op) {
568       default:
569         break;
570       case BO_Sub:
571         return evalCastFromLoc(lhs, resultTy);
572       case BO_EQ:
573       case BO_LE:
574       case BO_LT:
575         return makeTruthVal(false, resultTy);
576       case BO_NE:
577       case BO_GT:
578       case BO_GE:
579         return makeTruthVal(true, resultTy);
580       }
581     }
582     // There may be two labels for the same location, and a function region may
583     // have the same address as a label at the start of the function (depending
584     // on the ABI).
585     // FIXME: we can probably do a comparison against other MemRegions, though.
586     // FIXME: is there a way to tell if two labels refer to the same location?
587     return UnknownVal();
588 
589   case loc::ConcreteIntKind: {
590     // If one of the operands is a symbol and the other is a constant,
591     // build an expression for use by the constraint manager.
592     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
593       // We can only build expressions with symbols on the left,
594       // so we need a reversible operator.
595       if (!BinaryOperator::isComparisonOp(op))
596         return UnknownVal();
597 
598       const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
599       return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
600     }
601 
602     // If both operands are constants, just perform the operation.
603     if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
604       SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
605                                                              *rInt);
606       if (Loc *Result = dyn_cast<Loc>(&ResultVal))
607         return evalCastFromLoc(*Result, resultTy);
608       else
609         return UnknownVal();
610     }
611 
612     // Special case comparisons against NULL.
613     // This must come after the test if the RHS is a symbol, which is used to
614     // build constraints. The address of any non-symbolic region is guaranteed
615     // to be non-NULL, as is any label.
616     assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
617     if (lhs.isZeroConstant()) {
618       switch (op) {
619       default:
620         break;
621       case BO_EQ:
622       case BO_GT:
623       case BO_GE:
624         return makeTruthVal(false, resultTy);
625       case BO_NE:
626       case BO_LT:
627       case BO_LE:
628         return makeTruthVal(true, resultTy);
629       }
630     }
631 
632     // Comparing an arbitrary integer to a region or label address is
633     // completely unknowable.
634     return UnknownVal();
635   }
636   case loc::MemRegionKind: {
637     if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
638       // If one of the operands is a symbol and the other is a constant,
639       // build an expression for use by the constraint manager.
640       if (SymbolRef lSym = lhs.getAsLocSymbol())
641         return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
642 
643       // Special case comparisons to NULL.
644       // This must come after the test if the LHS is a symbol, which is used to
645       // build constraints. The address of any non-symbolic region is guaranteed
646       // to be non-NULL.
647       if (rInt->isZeroConstant()) {
648         switch (op) {
649         default:
650           break;
651         case BO_Sub:
652           return evalCastFromLoc(lhs, resultTy);
653         case BO_EQ:
654         case BO_LT:
655         case BO_LE:
656           return makeTruthVal(false, resultTy);
657         case BO_NE:
658         case BO_GT:
659         case BO_GE:
660           return makeTruthVal(true, resultTy);
661         }
662       }
663 
664       // Comparing a region to an arbitrary integer is completely unknowable.
665       return UnknownVal();
666     }
667 
668     // Get both values as regions, if possible.
669     const MemRegion *LeftMR = lhs.getAsRegion();
670     assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
671 
672     const MemRegion *RightMR = rhs.getAsRegion();
673     if (!RightMR)
674       // The RHS is probably a label, which in theory could address a region.
675       // FIXME: we can probably make a more useful statement about non-code
676       // regions, though.
677       return UnknownVal();
678 
679     const MemSpaceRegion *LeftMS = LeftMR->getMemorySpace();
680     const MemSpaceRegion *RightMS = RightMR->getMemorySpace();
681     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
682     const MemRegion *LeftBase = LeftMR->getBaseRegion();
683     const MemRegion *RightBase = RightMR->getBaseRegion();
684 
685     // If the two regions are from different known memory spaces they cannot be
686     // equal. Also, assume that no symbolic region (whose memory space is
687     // unknown) is on the stack.
688     if (LeftMS != RightMS &&
689         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
690          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
691       switch (op) {
692       default:
693         return UnknownVal();
694       case BO_EQ:
695         return makeTruthVal(false, resultTy);
696       case BO_NE:
697         return makeTruthVal(true, resultTy);
698       }
699     }
700 
701     // If both values wrap regions, see if they're from different base regions.
702     // Note, heap base symbolic regions are assumed to not alias with
703     // each other; for example, we assume that malloc returns different address
704     // on each invocation.
705     if (LeftBase != RightBase &&
706         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
707          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
708       switch (op) {
709       default:
710         return UnknownVal();
711       case BO_EQ:
712         return makeTruthVal(false, resultTy);
713       case BO_NE:
714         return makeTruthVal(true, resultTy);
715       }
716     }
717 
718     // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
719     // ElementRegion path and the FieldRegion path below should be unified.
720     if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
721       // First see if the right region is also an ElementRegion.
722       const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
723       if (!RightER)
724         return UnknownVal();
725 
726       // Next, see if the two ERs have the same super-region and matching types.
727       // FIXME: This should do something useful even if the types don't match,
728       // though if both indexes are constant the RegionRawOffset path will
729       // give the correct answer.
730       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
731           LeftER->getElementType() == RightER->getElementType()) {
732         // Get the left index and cast it to the correct type.
733         // If the index is unknown or undefined, bail out here.
734         SVal LeftIndexVal = LeftER->getIndex();
735         NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
736         if (!LeftIndex)
737           return UnknownVal();
738         LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy);
739         LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
740         if (!LeftIndex)
741           return UnknownVal();
742 
743         // Do the same for the right index.
744         SVal RightIndexVal = RightER->getIndex();
745         NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
746         if (!RightIndex)
747           return UnknownVal();
748         RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy);
749         RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
750         if (!RightIndex)
751           return UnknownVal();
752 
753         // Actually perform the operation.
754         // evalBinOpNN expects the two indexes to already be the right type.
755         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
756       }
757 
758       // If the element indexes aren't comparable, see if the raw offsets are.
759       RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
760       RegionRawOffset RightOffset = RightER->getAsArrayOffset();
761 
762       if (LeftOffset.getRegion() != NULL &&
763           LeftOffset.getRegion() == RightOffset.getRegion()) {
764         CharUnits left = LeftOffset.getOffset();
765         CharUnits right = RightOffset.getOffset();
766 
767         switch (op) {
768         default:
769           return UnknownVal();
770         case BO_LT:
771           return makeTruthVal(left < right, resultTy);
772         case BO_GT:
773           return makeTruthVal(left > right, resultTy);
774         case BO_LE:
775           return makeTruthVal(left <= right, resultTy);
776         case BO_GE:
777           return makeTruthVal(left >= right, resultTy);
778         case BO_EQ:
779           return makeTruthVal(left == right, resultTy);
780         case BO_NE:
781           return makeTruthVal(left != right, resultTy);
782         }
783       }
784 
785       // If we get here, we have no way of comparing the ElementRegions.
786       return UnknownVal();
787     }
788 
789     // See if both regions are fields of the same structure.
790     // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
791     if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
792       // Only comparisons are meaningful here!
793       if (!BinaryOperator::isComparisonOp(op))
794         return UnknownVal();
795 
796       // First see if the right region is also a FieldRegion.
797       const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
798       if (!RightFR)
799         return UnknownVal();
800 
801       // Next, see if the two FRs have the same super-region.
802       // FIXME: This doesn't handle casts yet, and simply stripping the casts
803       // doesn't help.
804       if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
805         return UnknownVal();
806 
807       const FieldDecl *LeftFD = LeftFR->getDecl();
808       const FieldDecl *RightFD = RightFR->getDecl();
809       const RecordDecl *RD = LeftFD->getParent();
810 
811       // Make sure the two FRs are from the same kind of record. Just in case!
812       // FIXME: This is probably where inheritance would be a problem.
813       if (RD != RightFD->getParent())
814         return UnknownVal();
815 
816       // We know for sure that the two fields are not the same, since that
817       // would have given us the same SVal.
818       if (op == BO_EQ)
819         return makeTruthVal(false, resultTy);
820       if (op == BO_NE)
821         return makeTruthVal(true, resultTy);
822 
823       // Iterate through the fields and see which one comes first.
824       // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
825       // members and the units in which bit-fields reside have addresses that
826       // increase in the order in which they are declared."
827       bool leftFirst = (op == BO_LT || op == BO_LE);
828       for (RecordDecl::field_iterator I = RD->field_begin(),
829            E = RD->field_end(); I!=E; ++I) {
830         if (*I == LeftFD)
831           return makeTruthVal(leftFirst, resultTy);
832         if (*I == RightFD)
833           return makeTruthVal(!leftFirst, resultTy);
834       }
835 
836       llvm_unreachable("Fields not found in parent record's definition");
837     }
838 
839     // If we get here, we have no way of comparing the regions.
840     return UnknownVal();
841   }
842   }
843 }
844 
evalBinOpLN(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,NonLoc rhs,QualType resultTy)845 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
846                                   BinaryOperator::Opcode op,
847                                   Loc lhs, NonLoc rhs, QualType resultTy) {
848 
849   // Special case: rhs is a zero constant.
850   if (rhs.isZeroConstant())
851     return lhs;
852 
853   // Special case: 'rhs' is an integer that has the same width as a pointer and
854   // we are using the integer location in a comparison.  Normally this cannot be
855   // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
856   // can generate comparisons that trigger this code.
857   // FIXME: Are all locations guaranteed to have pointer width?
858   if (BinaryOperator::isComparisonOp(op)) {
859     if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
860       const llvm::APSInt *x = &rhsInt->getValue();
861       ASTContext &ctx = Context;
862       if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
863         // Convert the signedness of the integer (if necessary).
864         if (x->isSigned())
865           x = &getBasicValueFactory().getValue(*x, true);
866 
867         return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
868       }
869     }
870     return UnknownVal();
871   }
872 
873   // We are dealing with pointer arithmetic.
874 
875   // Handle pointer arithmetic on constant values.
876   if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
877     if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
878       const llvm::APSInt &leftI = lhsInt->getValue();
879       assert(leftI.isUnsigned());
880       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
881 
882       // Convert the bitwidth of rightI.  This should deal with overflow
883       // since we are dealing with concrete values.
884       rightI = rightI.extOrTrunc(leftI.getBitWidth());
885 
886       // Offset the increment by the pointer size.
887       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
888       rightI *= Multiplicand;
889 
890       // Compute the adjusted pointer.
891       switch (op) {
892         case BO_Add:
893           rightI = leftI + rightI;
894           break;
895         case BO_Sub:
896           rightI = leftI - rightI;
897           break;
898         default:
899           llvm_unreachable("Invalid pointer arithmetic operation");
900       }
901       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
902     }
903   }
904 
905   // Handle cases where 'lhs' is a region.
906   if (const MemRegion *region = lhs.getAsRegion()) {
907     rhs = cast<NonLoc>(convertToArrayIndex(rhs));
908     SVal index = UnknownVal();
909     const MemRegion *superR = 0;
910     QualType elementType;
911 
912     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
913       assert(op == BO_Add || op == BO_Sub);
914       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
915                           getArrayIndexType());
916       superR = elemReg->getSuperRegion();
917       elementType = elemReg->getElementType();
918     }
919     else if (isa<SubRegion>(region)) {
920       superR = region;
921       index = rhs;
922       if (resultTy->isAnyPointerType())
923         elementType = resultTy->getPointeeType();
924     }
925 
926     if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
927       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
928                                                        superR, getContext()));
929     }
930   }
931   return UnknownVal();
932 }
933 
getKnownValue(ProgramStateRef state,SVal V)934 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
935                                                    SVal V) {
936   if (V.isUnknownOrUndef())
937     return NULL;
938 
939   if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
940     return &X->getValue();
941 
942   if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
943     return &X->getValue();
944 
945   if (SymbolRef Sym = V.getAsSymbol())
946     return state->getConstraintManager().getSymVal(state, Sym);
947 
948   // FIXME: Add support for SymExprs.
949   return NULL;
950 }
951