1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===/
12
13 #include "clang/Sema/Sema.h"
14 #include "clang/Sema/DeclSpec.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "llvm/ADT/SmallBitVector.h"
24 #include "TreeTransform.h"
25 #include <algorithm>
26
27 namespace clang {
28 using namespace sema;
29
30 /// \brief Various flags that control template argument deduction.
31 ///
32 /// These flags can be bitwise-OR'd together.
33 enum TemplateDeductionFlags {
34 /// \brief No template argument deduction flags, which indicates the
35 /// strictest results for template argument deduction (as used for, e.g.,
36 /// matching class template partial specializations).
37 TDF_None = 0,
38 /// \brief Within template argument deduction from a function call, we are
39 /// matching with a parameter type for which the original parameter was
40 /// a reference.
41 TDF_ParamWithReferenceType = 0x1,
42 /// \brief Within template argument deduction from a function call, we
43 /// are matching in a case where we ignore cv-qualifiers.
44 TDF_IgnoreQualifiers = 0x02,
45 /// \brief Within template argument deduction from a function call,
46 /// we are matching in a case where we can perform template argument
47 /// deduction from a template-id of a derived class of the argument type.
48 TDF_DerivedClass = 0x04,
49 /// \brief Allow non-dependent types to differ, e.g., when performing
50 /// template argument deduction from a function call where conversions
51 /// may apply.
52 TDF_SkipNonDependent = 0x08,
53 /// \brief Whether we are performing template argument deduction for
54 /// parameters and arguments in a top-level template argument
55 TDF_TopLevelParameterTypeList = 0x10
56 };
57 }
58
59 using namespace clang;
60
61 /// \brief Compare two APSInts, extending and switching the sign as
62 /// necessary to compare their values regardless of underlying type.
hasSameExtendedValue(llvm::APSInt X,llvm::APSInt Y)63 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
64 if (Y.getBitWidth() > X.getBitWidth())
65 X = X.extend(Y.getBitWidth());
66 else if (Y.getBitWidth() < X.getBitWidth())
67 Y = Y.extend(X.getBitWidth());
68
69 // If there is a signedness mismatch, correct it.
70 if (X.isSigned() != Y.isSigned()) {
71 // If the signed value is negative, then the values cannot be the same.
72 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
73 return false;
74
75 Y.setIsSigned(true);
76 X.setIsSigned(true);
77 }
78
79 return X == Y;
80 }
81
82 static Sema::TemplateDeductionResult
83 DeduceTemplateArguments(Sema &S,
84 TemplateParameterList *TemplateParams,
85 const TemplateArgument &Param,
86 TemplateArgument Arg,
87 TemplateDeductionInfo &Info,
88 SmallVectorImpl<DeducedTemplateArgument> &Deduced);
89
90 /// \brief Whether template argument deduction for two reference parameters
91 /// resulted in the argument type, parameter type, or neither type being more
92 /// qualified than the other.
93 enum DeductionQualifierComparison {
94 NeitherMoreQualified = 0,
95 ParamMoreQualified,
96 ArgMoreQualified
97 };
98
99 /// \brief Stores the result of comparing two reference parameters while
100 /// performing template argument deduction for partial ordering of function
101 /// templates.
102 struct RefParamPartialOrderingComparison {
103 /// \brief Whether the parameter type is an rvalue reference type.
104 bool ParamIsRvalueRef;
105 /// \brief Whether the argument type is an rvalue reference type.
106 bool ArgIsRvalueRef;
107
108 /// \brief Whether the parameter or argument (or neither) is more qualified.
109 DeductionQualifierComparison Qualifiers;
110 };
111
112
113
114 static Sema::TemplateDeductionResult
115 DeduceTemplateArgumentsByTypeMatch(Sema &S,
116 TemplateParameterList *TemplateParams,
117 QualType Param,
118 QualType Arg,
119 TemplateDeductionInfo &Info,
120 SmallVectorImpl<DeducedTemplateArgument> &
121 Deduced,
122 unsigned TDF,
123 bool PartialOrdering = false,
124 SmallVectorImpl<RefParamPartialOrderingComparison> *
125 RefParamComparisons = 0);
126
127 static Sema::TemplateDeductionResult
128 DeduceTemplateArguments(Sema &S,
129 TemplateParameterList *TemplateParams,
130 const TemplateArgument *Params, unsigned NumParams,
131 const TemplateArgument *Args, unsigned NumArgs,
132 TemplateDeductionInfo &Info,
133 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
134 bool NumberOfArgumentsMustMatch = true);
135
136 /// \brief If the given expression is of a form that permits the deduction
137 /// of a non-type template parameter, return the declaration of that
138 /// non-type template parameter.
getDeducedParameterFromExpr(Expr * E)139 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
140 // If we are within an alias template, the expression may have undergone
141 // any number of parameter substitutions already.
142 while (1) {
143 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
144 E = IC->getSubExpr();
145 else if (SubstNonTypeTemplateParmExpr *Subst =
146 dyn_cast<SubstNonTypeTemplateParmExpr>(E))
147 E = Subst->getReplacement();
148 else
149 break;
150 }
151
152 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
153 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
154
155 return 0;
156 }
157
158 /// \brief Determine whether two declaration pointers refer to the same
159 /// declaration.
isSameDeclaration(Decl * X,Decl * Y)160 static bool isSameDeclaration(Decl *X, Decl *Y) {
161 if (!X || !Y)
162 return !X && !Y;
163
164 if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
165 X = NX->getUnderlyingDecl();
166 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
167 Y = NY->getUnderlyingDecl();
168
169 return X->getCanonicalDecl() == Y->getCanonicalDecl();
170 }
171
172 /// \brief Verify that the given, deduced template arguments are compatible.
173 ///
174 /// \returns The deduced template argument, or a NULL template argument if
175 /// the deduced template arguments were incompatible.
176 static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext & Context,const DeducedTemplateArgument & X,const DeducedTemplateArgument & Y)177 checkDeducedTemplateArguments(ASTContext &Context,
178 const DeducedTemplateArgument &X,
179 const DeducedTemplateArgument &Y) {
180 // We have no deduction for one or both of the arguments; they're compatible.
181 if (X.isNull())
182 return Y;
183 if (Y.isNull())
184 return X;
185
186 switch (X.getKind()) {
187 case TemplateArgument::Null:
188 llvm_unreachable("Non-deduced template arguments handled above");
189
190 case TemplateArgument::Type:
191 // If two template type arguments have the same type, they're compatible.
192 if (Y.getKind() == TemplateArgument::Type &&
193 Context.hasSameType(X.getAsType(), Y.getAsType()))
194 return X;
195
196 return DeducedTemplateArgument();
197
198 case TemplateArgument::Integral:
199 // If we deduced a constant in one case and either a dependent expression or
200 // declaration in another case, keep the integral constant.
201 // If both are integral constants with the same value, keep that value.
202 if (Y.getKind() == TemplateArgument::Expression ||
203 Y.getKind() == TemplateArgument::Declaration ||
204 (Y.getKind() == TemplateArgument::Integral &&
205 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
206 return DeducedTemplateArgument(X,
207 X.wasDeducedFromArrayBound() &&
208 Y.wasDeducedFromArrayBound());
209
210 // All other combinations are incompatible.
211 return DeducedTemplateArgument();
212
213 case TemplateArgument::Template:
214 if (Y.getKind() == TemplateArgument::Template &&
215 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
216 return X;
217
218 // All other combinations are incompatible.
219 return DeducedTemplateArgument();
220
221 case TemplateArgument::TemplateExpansion:
222 if (Y.getKind() == TemplateArgument::TemplateExpansion &&
223 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
224 Y.getAsTemplateOrTemplatePattern()))
225 return X;
226
227 // All other combinations are incompatible.
228 return DeducedTemplateArgument();
229
230 case TemplateArgument::Expression:
231 // If we deduced a dependent expression in one case and either an integral
232 // constant or a declaration in another case, keep the integral constant
233 // or declaration.
234 if (Y.getKind() == TemplateArgument::Integral ||
235 Y.getKind() == TemplateArgument::Declaration)
236 return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
237 Y.wasDeducedFromArrayBound());
238
239 if (Y.getKind() == TemplateArgument::Expression) {
240 // Compare the expressions for equality
241 llvm::FoldingSetNodeID ID1, ID2;
242 X.getAsExpr()->Profile(ID1, Context, true);
243 Y.getAsExpr()->Profile(ID2, Context, true);
244 if (ID1 == ID2)
245 return X;
246 }
247
248 // All other combinations are incompatible.
249 return DeducedTemplateArgument();
250
251 case TemplateArgument::Declaration:
252 // If we deduced a declaration and a dependent expression, keep the
253 // declaration.
254 if (Y.getKind() == TemplateArgument::Expression)
255 return X;
256
257 // If we deduced a declaration and an integral constant, keep the
258 // integral constant.
259 if (Y.getKind() == TemplateArgument::Integral)
260 return Y;
261
262 // If we deduced two declarations, make sure they they refer to the
263 // same declaration.
264 if (Y.getKind() == TemplateArgument::Declaration &&
265 isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
266 return X;
267
268 // All other combinations are incompatible.
269 return DeducedTemplateArgument();
270
271 case TemplateArgument::Pack:
272 if (Y.getKind() != TemplateArgument::Pack ||
273 X.pack_size() != Y.pack_size())
274 return DeducedTemplateArgument();
275
276 for (TemplateArgument::pack_iterator XA = X.pack_begin(),
277 XAEnd = X.pack_end(),
278 YA = Y.pack_begin();
279 XA != XAEnd; ++XA, ++YA) {
280 if (checkDeducedTemplateArguments(Context,
281 DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
282 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
283 .isNull())
284 return DeducedTemplateArgument();
285 }
286
287 return X;
288 }
289
290 llvm_unreachable("Invalid TemplateArgument Kind!");
291 }
292
293 /// \brief Deduce the value of the given non-type template parameter
294 /// from the given constant.
295 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,llvm::APSInt Value,QualType ValueType,bool DeducedFromArrayBound,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)296 DeduceNonTypeTemplateArgument(Sema &S,
297 NonTypeTemplateParmDecl *NTTP,
298 llvm::APSInt Value, QualType ValueType,
299 bool DeducedFromArrayBound,
300 TemplateDeductionInfo &Info,
301 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
302 assert(NTTP->getDepth() == 0 &&
303 "Cannot deduce non-type template argument with depth > 0");
304
305 DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
306 DeducedFromArrayBound);
307 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
308 Deduced[NTTP->getIndex()],
309 NewDeduced);
310 if (Result.isNull()) {
311 Info.Param = NTTP;
312 Info.FirstArg = Deduced[NTTP->getIndex()];
313 Info.SecondArg = NewDeduced;
314 return Sema::TDK_Inconsistent;
315 }
316
317 Deduced[NTTP->getIndex()] = Result;
318 return Sema::TDK_Success;
319 }
320
321 /// \brief Deduce the value of the given non-type template parameter
322 /// from the given type- or value-dependent expression.
323 ///
324 /// \returns true if deduction succeeded, false otherwise.
325 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Expr * Value,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)326 DeduceNonTypeTemplateArgument(Sema &S,
327 NonTypeTemplateParmDecl *NTTP,
328 Expr *Value,
329 TemplateDeductionInfo &Info,
330 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
331 assert(NTTP->getDepth() == 0 &&
332 "Cannot deduce non-type template argument with depth > 0");
333 assert((Value->isTypeDependent() || Value->isValueDependent()) &&
334 "Expression template argument must be type- or value-dependent.");
335
336 DeducedTemplateArgument NewDeduced(Value);
337 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
338 Deduced[NTTP->getIndex()],
339 NewDeduced);
340
341 if (Result.isNull()) {
342 Info.Param = NTTP;
343 Info.FirstArg = Deduced[NTTP->getIndex()];
344 Info.SecondArg = NewDeduced;
345 return Sema::TDK_Inconsistent;
346 }
347
348 Deduced[NTTP->getIndex()] = Result;
349 return Sema::TDK_Success;
350 }
351
352 /// \brief Deduce the value of the given non-type template parameter
353 /// from the given declaration.
354 ///
355 /// \returns true if deduction succeeded, false otherwise.
356 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Decl * D,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)357 DeduceNonTypeTemplateArgument(Sema &S,
358 NonTypeTemplateParmDecl *NTTP,
359 Decl *D,
360 TemplateDeductionInfo &Info,
361 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
362 assert(NTTP->getDepth() == 0 &&
363 "Cannot deduce non-type template argument with depth > 0");
364
365 DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
366 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
367 Deduced[NTTP->getIndex()],
368 NewDeduced);
369 if (Result.isNull()) {
370 Info.Param = NTTP;
371 Info.FirstArg = Deduced[NTTP->getIndex()];
372 Info.SecondArg = NewDeduced;
373 return Sema::TDK_Inconsistent;
374 }
375
376 Deduced[NTTP->getIndex()] = Result;
377 return Sema::TDK_Success;
378 }
379
380 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,TemplateName Param,TemplateName Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)381 DeduceTemplateArguments(Sema &S,
382 TemplateParameterList *TemplateParams,
383 TemplateName Param,
384 TemplateName Arg,
385 TemplateDeductionInfo &Info,
386 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
387 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
388 if (!ParamDecl) {
389 // The parameter type is dependent and is not a template template parameter,
390 // so there is nothing that we can deduce.
391 return Sema::TDK_Success;
392 }
393
394 if (TemplateTemplateParmDecl *TempParam
395 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
396 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
397 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
398 Deduced[TempParam->getIndex()],
399 NewDeduced);
400 if (Result.isNull()) {
401 Info.Param = TempParam;
402 Info.FirstArg = Deduced[TempParam->getIndex()];
403 Info.SecondArg = NewDeduced;
404 return Sema::TDK_Inconsistent;
405 }
406
407 Deduced[TempParam->getIndex()] = Result;
408 return Sema::TDK_Success;
409 }
410
411 // Verify that the two template names are equivalent.
412 if (S.Context.hasSameTemplateName(Param, Arg))
413 return Sema::TDK_Success;
414
415 // Mismatch of non-dependent template parameter to argument.
416 Info.FirstArg = TemplateArgument(Param);
417 Info.SecondArg = TemplateArgument(Arg);
418 return Sema::TDK_NonDeducedMismatch;
419 }
420
421 /// \brief Deduce the template arguments by comparing the template parameter
422 /// type (which is a template-id) with the template argument type.
423 ///
424 /// \param S the Sema
425 ///
426 /// \param TemplateParams the template parameters that we are deducing
427 ///
428 /// \param Param the parameter type
429 ///
430 /// \param Arg the argument type
431 ///
432 /// \param Info information about the template argument deduction itself
433 ///
434 /// \param Deduced the deduced template arguments
435 ///
436 /// \returns the result of template argument deduction so far. Note that a
437 /// "success" result means that template argument deduction has not yet failed,
438 /// but it may still fail, later, for other reasons.
439 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateSpecializationType * Param,QualType Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)440 DeduceTemplateArguments(Sema &S,
441 TemplateParameterList *TemplateParams,
442 const TemplateSpecializationType *Param,
443 QualType Arg,
444 TemplateDeductionInfo &Info,
445 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
446 assert(Arg.isCanonical() && "Argument type must be canonical");
447
448 // Check whether the template argument is a dependent template-id.
449 if (const TemplateSpecializationType *SpecArg
450 = dyn_cast<TemplateSpecializationType>(Arg)) {
451 // Perform template argument deduction for the template name.
452 if (Sema::TemplateDeductionResult Result
453 = DeduceTemplateArguments(S, TemplateParams,
454 Param->getTemplateName(),
455 SpecArg->getTemplateName(),
456 Info, Deduced))
457 return Result;
458
459
460 // Perform template argument deduction on each template
461 // argument. Ignore any missing/extra arguments, since they could be
462 // filled in by default arguments.
463 return DeduceTemplateArguments(S, TemplateParams,
464 Param->getArgs(), Param->getNumArgs(),
465 SpecArg->getArgs(), SpecArg->getNumArgs(),
466 Info, Deduced,
467 /*NumberOfArgumentsMustMatch=*/false);
468 }
469
470 // If the argument type is a class template specialization, we
471 // perform template argument deduction using its template
472 // arguments.
473 const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
474 if (!RecordArg)
475 return Sema::TDK_NonDeducedMismatch;
476
477 ClassTemplateSpecializationDecl *SpecArg
478 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
479 if (!SpecArg)
480 return Sema::TDK_NonDeducedMismatch;
481
482 // Perform template argument deduction for the template name.
483 if (Sema::TemplateDeductionResult Result
484 = DeduceTemplateArguments(S,
485 TemplateParams,
486 Param->getTemplateName(),
487 TemplateName(SpecArg->getSpecializedTemplate()),
488 Info, Deduced))
489 return Result;
490
491 // Perform template argument deduction for the template arguments.
492 return DeduceTemplateArguments(S, TemplateParams,
493 Param->getArgs(), Param->getNumArgs(),
494 SpecArg->getTemplateArgs().data(),
495 SpecArg->getTemplateArgs().size(),
496 Info, Deduced);
497 }
498
499 /// \brief Determines whether the given type is an opaque type that
500 /// might be more qualified when instantiated.
IsPossiblyOpaquelyQualifiedType(QualType T)501 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
502 switch (T->getTypeClass()) {
503 case Type::TypeOfExpr:
504 case Type::TypeOf:
505 case Type::DependentName:
506 case Type::Decltype:
507 case Type::UnresolvedUsing:
508 case Type::TemplateTypeParm:
509 return true;
510
511 case Type::ConstantArray:
512 case Type::IncompleteArray:
513 case Type::VariableArray:
514 case Type::DependentSizedArray:
515 return IsPossiblyOpaquelyQualifiedType(
516 cast<ArrayType>(T)->getElementType());
517
518 default:
519 return false;
520 }
521 }
522
523 /// \brief Retrieve the depth and index of a template parameter.
524 static std::pair<unsigned, unsigned>
getDepthAndIndex(NamedDecl * ND)525 getDepthAndIndex(NamedDecl *ND) {
526 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
527 return std::make_pair(TTP->getDepth(), TTP->getIndex());
528
529 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
530 return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
531
532 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
533 return std::make_pair(TTP->getDepth(), TTP->getIndex());
534 }
535
536 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
537 static std::pair<unsigned, unsigned>
getDepthAndIndex(UnexpandedParameterPack UPP)538 getDepthAndIndex(UnexpandedParameterPack UPP) {
539 if (const TemplateTypeParmType *TTP
540 = UPP.first.dyn_cast<const TemplateTypeParmType *>())
541 return std::make_pair(TTP->getDepth(), TTP->getIndex());
542
543 return getDepthAndIndex(UPP.first.get<NamedDecl *>());
544 }
545
546 /// \brief Helper function to build a TemplateParameter when we don't
547 /// know its type statically.
makeTemplateParameter(Decl * D)548 static TemplateParameter makeTemplateParameter(Decl *D) {
549 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
550 return TemplateParameter(TTP);
551 else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
552 return TemplateParameter(NTTP);
553
554 return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
555 }
556
557 /// \brief Prepare to perform template argument deduction for all of the
558 /// arguments in a set of argument packs.
PrepareArgumentPackDeduction(Sema & S,SmallVectorImpl<DeducedTemplateArgument> & Deduced,ArrayRef<unsigned> PackIndices,SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,SmallVectorImpl<SmallVector<DeducedTemplateArgument,4>> & NewlyDeducedPacks)559 static void PrepareArgumentPackDeduction(Sema &S,
560 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
561 ArrayRef<unsigned> PackIndices,
562 SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
563 SmallVectorImpl<
564 SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
565 // Save the deduced template arguments for each parameter pack expanded
566 // by this pack expansion, then clear out the deduction.
567 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
568 // Save the previously-deduced argument pack, then clear it out so that we
569 // can deduce a new argument pack.
570 SavedPacks[I] = Deduced[PackIndices[I]];
571 Deduced[PackIndices[I]] = TemplateArgument();
572
573 if (!S.CurrentInstantiationScope)
574 continue;
575
576 // If the template argument pack was explicitly specified, add that to
577 // the set of deduced arguments.
578 const TemplateArgument *ExplicitArgs;
579 unsigned NumExplicitArgs;
580 if (NamedDecl *PartiallySubstitutedPack
581 = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
582 &ExplicitArgs,
583 &NumExplicitArgs)) {
584 if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
585 NewlyDeducedPacks[I].append(ExplicitArgs,
586 ExplicitArgs + NumExplicitArgs);
587 }
588 }
589 }
590
591 /// \brief Finish template argument deduction for a set of argument packs,
592 /// producing the argument packs and checking for consistency with prior
593 /// deductions.
594 static Sema::TemplateDeductionResult
FinishArgumentPackDeduction(Sema & S,TemplateParameterList * TemplateParams,bool HasAnyArguments,SmallVectorImpl<DeducedTemplateArgument> & Deduced,ArrayRef<unsigned> PackIndices,SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,SmallVectorImpl<SmallVector<DeducedTemplateArgument,4>> & NewlyDeducedPacks,TemplateDeductionInfo & Info)595 FinishArgumentPackDeduction(Sema &S,
596 TemplateParameterList *TemplateParams,
597 bool HasAnyArguments,
598 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
599 ArrayRef<unsigned> PackIndices,
600 SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
601 SmallVectorImpl<
602 SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
603 TemplateDeductionInfo &Info) {
604 // Build argument packs for each of the parameter packs expanded by this
605 // pack expansion.
606 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
607 if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
608 // We were not able to deduce anything for this parameter pack,
609 // so just restore the saved argument pack.
610 Deduced[PackIndices[I]] = SavedPacks[I];
611 continue;
612 }
613
614 DeducedTemplateArgument NewPack;
615
616 if (NewlyDeducedPacks[I].empty()) {
617 // If we deduced an empty argument pack, create it now.
618 NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
619 } else {
620 TemplateArgument *ArgumentPack
621 = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
622 std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
623 ArgumentPack);
624 NewPack
625 = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
626 NewlyDeducedPacks[I].size()),
627 NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
628 }
629
630 DeducedTemplateArgument Result
631 = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
632 if (Result.isNull()) {
633 Info.Param
634 = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
635 Info.FirstArg = SavedPacks[I];
636 Info.SecondArg = NewPack;
637 return Sema::TDK_Inconsistent;
638 }
639
640 Deduced[PackIndices[I]] = Result;
641 }
642
643 return Sema::TDK_Success;
644 }
645
646 /// \brief Deduce the template arguments by comparing the list of parameter
647 /// types to the list of argument types, as in the parameter-type-lists of
648 /// function types (C++ [temp.deduct.type]p10).
649 ///
650 /// \param S The semantic analysis object within which we are deducing
651 ///
652 /// \param TemplateParams The template parameters that we are deducing
653 ///
654 /// \param Params The list of parameter types
655 ///
656 /// \param NumParams The number of types in \c Params
657 ///
658 /// \param Args The list of argument types
659 ///
660 /// \param NumArgs The number of types in \c Args
661 ///
662 /// \param Info information about the template argument deduction itself
663 ///
664 /// \param Deduced the deduced template arguments
665 ///
666 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
667 /// how template argument deduction is performed.
668 ///
669 /// \param PartialOrdering If true, we are performing template argument
670 /// deduction for during partial ordering for a call
671 /// (C++0x [temp.deduct.partial]).
672 ///
673 /// \param RefParamComparisons If we're performing template argument deduction
674 /// in the context of partial ordering, the set of qualifier comparisons.
675 ///
676 /// \returns the result of template argument deduction so far. Note that a
677 /// "success" result means that template argument deduction has not yet failed,
678 /// but it may still fail, later, for other reasons.
679 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType * Params,unsigned NumParams,const QualType * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering=false,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons=0)680 DeduceTemplateArguments(Sema &S,
681 TemplateParameterList *TemplateParams,
682 const QualType *Params, unsigned NumParams,
683 const QualType *Args, unsigned NumArgs,
684 TemplateDeductionInfo &Info,
685 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
686 unsigned TDF,
687 bool PartialOrdering = false,
688 SmallVectorImpl<RefParamPartialOrderingComparison> *
689 RefParamComparisons = 0) {
690 // Fast-path check to see if we have too many/too few arguments.
691 if (NumParams != NumArgs &&
692 !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
693 !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
694 return Sema::TDK_NonDeducedMismatch;
695
696 // C++0x [temp.deduct.type]p10:
697 // Similarly, if P has a form that contains (T), then each parameter type
698 // Pi of the respective parameter-type- list of P is compared with the
699 // corresponding parameter type Ai of the corresponding parameter-type-list
700 // of A. [...]
701 unsigned ArgIdx = 0, ParamIdx = 0;
702 for (; ParamIdx != NumParams; ++ParamIdx) {
703 // Check argument types.
704 const PackExpansionType *Expansion
705 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
706 if (!Expansion) {
707 // Simple case: compare the parameter and argument types at this point.
708
709 // Make sure we have an argument.
710 if (ArgIdx >= NumArgs)
711 return Sema::TDK_NonDeducedMismatch;
712
713 if (isa<PackExpansionType>(Args[ArgIdx])) {
714 // C++0x [temp.deduct.type]p22:
715 // If the original function parameter associated with A is a function
716 // parameter pack and the function parameter associated with P is not
717 // a function parameter pack, then template argument deduction fails.
718 return Sema::TDK_NonDeducedMismatch;
719 }
720
721 if (Sema::TemplateDeductionResult Result
722 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
723 Params[ParamIdx], Args[ArgIdx],
724 Info, Deduced, TDF,
725 PartialOrdering,
726 RefParamComparisons))
727 return Result;
728
729 ++ArgIdx;
730 continue;
731 }
732
733 // C++0x [temp.deduct.type]p5:
734 // The non-deduced contexts are:
735 // - A function parameter pack that does not occur at the end of the
736 // parameter-declaration-clause.
737 if (ParamIdx + 1 < NumParams)
738 return Sema::TDK_Success;
739
740 // C++0x [temp.deduct.type]p10:
741 // If the parameter-declaration corresponding to Pi is a function
742 // parameter pack, then the type of its declarator- id is compared with
743 // each remaining parameter type in the parameter-type-list of A. Each
744 // comparison deduces template arguments for subsequent positions in the
745 // template parameter packs expanded by the function parameter pack.
746
747 // Compute the set of template parameter indices that correspond to
748 // parameter packs expanded by the pack expansion.
749 SmallVector<unsigned, 2> PackIndices;
750 QualType Pattern = Expansion->getPattern();
751 {
752 llvm::SmallBitVector SawIndices(TemplateParams->size());
753 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
754 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
755 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
756 unsigned Depth, Index;
757 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
758 if (Depth == 0 && !SawIndices[Index]) {
759 SawIndices[Index] = true;
760 PackIndices.push_back(Index);
761 }
762 }
763 }
764 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
765
766 // Keep track of the deduced template arguments for each parameter pack
767 // expanded by this pack expansion (the outer index) and for each
768 // template argument (the inner SmallVectors).
769 SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
770 NewlyDeducedPacks(PackIndices.size());
771 SmallVector<DeducedTemplateArgument, 2>
772 SavedPacks(PackIndices.size());
773 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
774 NewlyDeducedPacks);
775
776 bool HasAnyArguments = false;
777 for (; ArgIdx < NumArgs; ++ArgIdx) {
778 HasAnyArguments = true;
779
780 // Deduce template arguments from the pattern.
781 if (Sema::TemplateDeductionResult Result
782 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
783 Args[ArgIdx], Info, Deduced,
784 TDF, PartialOrdering,
785 RefParamComparisons))
786 return Result;
787
788 // Capture the deduced template arguments for each parameter pack expanded
789 // by this pack expansion, add them to the list of arguments we've deduced
790 // for that pack, then clear out the deduced argument.
791 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
792 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
793 if (!DeducedArg.isNull()) {
794 NewlyDeducedPacks[I].push_back(DeducedArg);
795 DeducedArg = DeducedTemplateArgument();
796 }
797 }
798 }
799
800 // Build argument packs for each of the parameter packs expanded by this
801 // pack expansion.
802 if (Sema::TemplateDeductionResult Result
803 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
804 Deduced, PackIndices, SavedPacks,
805 NewlyDeducedPacks, Info))
806 return Result;
807 }
808
809 // Make sure we don't have any extra arguments.
810 if (ArgIdx < NumArgs)
811 return Sema::TDK_NonDeducedMismatch;
812
813 return Sema::TDK_Success;
814 }
815
816 /// \brief Determine whether the parameter has qualifiers that are either
817 /// inconsistent with or a superset of the argument's qualifiers.
hasInconsistentOrSupersetQualifiersOf(QualType ParamType,QualType ArgType)818 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
819 QualType ArgType) {
820 Qualifiers ParamQs = ParamType.getQualifiers();
821 Qualifiers ArgQs = ArgType.getQualifiers();
822
823 if (ParamQs == ArgQs)
824 return false;
825
826 // Mismatched (but not missing) Objective-C GC attributes.
827 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
828 ParamQs.hasObjCGCAttr())
829 return true;
830
831 // Mismatched (but not missing) address spaces.
832 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
833 ParamQs.hasAddressSpace())
834 return true;
835
836 // Mismatched (but not missing) Objective-C lifetime qualifiers.
837 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
838 ParamQs.hasObjCLifetime())
839 return true;
840
841 // CVR qualifier superset.
842 return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
843 ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
844 == ParamQs.getCVRQualifiers());
845 }
846
847 /// \brief Deduce the template arguments by comparing the parameter type and
848 /// the argument type (C++ [temp.deduct.type]).
849 ///
850 /// \param S the semantic analysis object within which we are deducing
851 ///
852 /// \param TemplateParams the template parameters that we are deducing
853 ///
854 /// \param ParamIn the parameter type
855 ///
856 /// \param ArgIn the argument type
857 ///
858 /// \param Info information about the template argument deduction itself
859 ///
860 /// \param Deduced the deduced template arguments
861 ///
862 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
863 /// how template argument deduction is performed.
864 ///
865 /// \param PartialOrdering Whether we're performing template argument deduction
866 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
867 ///
868 /// \param RefParamComparisons If we're performing template argument deduction
869 /// in the context of partial ordering, the set of qualifier comparisons.
870 ///
871 /// \returns the result of template argument deduction so far. Note that a
872 /// "success" result means that template argument deduction has not yet failed,
873 /// but it may still fail, later, for other reasons.
874 static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema & S,TemplateParameterList * TemplateParams,QualType ParamIn,QualType ArgIn,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)875 DeduceTemplateArgumentsByTypeMatch(Sema &S,
876 TemplateParameterList *TemplateParams,
877 QualType ParamIn, QualType ArgIn,
878 TemplateDeductionInfo &Info,
879 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
880 unsigned TDF,
881 bool PartialOrdering,
882 SmallVectorImpl<RefParamPartialOrderingComparison> *
883 RefParamComparisons) {
884 // We only want to look at the canonical types, since typedefs and
885 // sugar are not part of template argument deduction.
886 QualType Param = S.Context.getCanonicalType(ParamIn);
887 QualType Arg = S.Context.getCanonicalType(ArgIn);
888
889 // If the argument type is a pack expansion, look at its pattern.
890 // This isn't explicitly called out
891 if (const PackExpansionType *ArgExpansion
892 = dyn_cast<PackExpansionType>(Arg))
893 Arg = ArgExpansion->getPattern();
894
895 if (PartialOrdering) {
896 // C++0x [temp.deduct.partial]p5:
897 // Before the partial ordering is done, certain transformations are
898 // performed on the types used for partial ordering:
899 // - If P is a reference type, P is replaced by the type referred to.
900 const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
901 if (ParamRef)
902 Param = ParamRef->getPointeeType();
903
904 // - If A is a reference type, A is replaced by the type referred to.
905 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
906 if (ArgRef)
907 Arg = ArgRef->getPointeeType();
908
909 if (RefParamComparisons && ParamRef && ArgRef) {
910 // C++0x [temp.deduct.partial]p6:
911 // If both P and A were reference types (before being replaced with the
912 // type referred to above), determine which of the two types (if any) is
913 // more cv-qualified than the other; otherwise the types are considered
914 // to be equally cv-qualified for partial ordering purposes. The result
915 // of this determination will be used below.
916 //
917 // We save this information for later, using it only when deduction
918 // succeeds in both directions.
919 RefParamPartialOrderingComparison Comparison;
920 Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
921 Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
922 Comparison.Qualifiers = NeitherMoreQualified;
923
924 Qualifiers ParamQuals = Param.getQualifiers();
925 Qualifiers ArgQuals = Arg.getQualifiers();
926 if (ParamQuals.isStrictSupersetOf(ArgQuals))
927 Comparison.Qualifiers = ParamMoreQualified;
928 else if (ArgQuals.isStrictSupersetOf(ParamQuals))
929 Comparison.Qualifiers = ArgMoreQualified;
930 RefParamComparisons->push_back(Comparison);
931 }
932
933 // C++0x [temp.deduct.partial]p7:
934 // Remove any top-level cv-qualifiers:
935 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
936 // version of P.
937 Param = Param.getUnqualifiedType();
938 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
939 // version of A.
940 Arg = Arg.getUnqualifiedType();
941 } else {
942 // C++0x [temp.deduct.call]p4 bullet 1:
943 // - If the original P is a reference type, the deduced A (i.e., the type
944 // referred to by the reference) can be more cv-qualified than the
945 // transformed A.
946 if (TDF & TDF_ParamWithReferenceType) {
947 Qualifiers Quals;
948 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
949 Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
950 Arg.getCVRQualifiers());
951 Param = S.Context.getQualifiedType(UnqualParam, Quals);
952 }
953
954 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
955 // C++0x [temp.deduct.type]p10:
956 // If P and A are function types that originated from deduction when
957 // taking the address of a function template (14.8.2.2) or when deducing
958 // template arguments from a function declaration (14.8.2.6) and Pi and
959 // Ai are parameters of the top-level parameter-type-list of P and A,
960 // respectively, Pi is adjusted if it is an rvalue reference to a
961 // cv-unqualified template parameter and Ai is an lvalue reference, in
962 // which case the type of Pi is changed to be the template parameter
963 // type (i.e., T&& is changed to simply T). [ Note: As a result, when
964 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
965 // deduced as X&. - end note ]
966 TDF &= ~TDF_TopLevelParameterTypeList;
967
968 if (const RValueReferenceType *ParamRef
969 = Param->getAs<RValueReferenceType>()) {
970 if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
971 !ParamRef->getPointeeType().getQualifiers())
972 if (Arg->isLValueReferenceType())
973 Param = ParamRef->getPointeeType();
974 }
975 }
976 }
977
978 // C++ [temp.deduct.type]p9:
979 // A template type argument T, a template template argument TT or a
980 // template non-type argument i can be deduced if P and A have one of
981 // the following forms:
982 //
983 // T
984 // cv-list T
985 if (const TemplateTypeParmType *TemplateTypeParm
986 = Param->getAs<TemplateTypeParmType>()) {
987 // Just skip any attempts to deduce from a placeholder type.
988 if (Arg->isPlaceholderType())
989 return Sema::TDK_Success;
990
991 unsigned Index = TemplateTypeParm->getIndex();
992 bool RecanonicalizeArg = false;
993
994 // If the argument type is an array type, move the qualifiers up to the
995 // top level, so they can be matched with the qualifiers on the parameter.
996 if (isa<ArrayType>(Arg)) {
997 Qualifiers Quals;
998 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
999 if (Quals) {
1000 Arg = S.Context.getQualifiedType(Arg, Quals);
1001 RecanonicalizeArg = true;
1002 }
1003 }
1004
1005 // The argument type can not be less qualified than the parameter
1006 // type.
1007 if (!(TDF & TDF_IgnoreQualifiers) &&
1008 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1009 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1010 Info.FirstArg = TemplateArgument(Param);
1011 Info.SecondArg = TemplateArgument(Arg);
1012 return Sema::TDK_Underqualified;
1013 }
1014
1015 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1016 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1017 QualType DeducedType = Arg;
1018
1019 // Remove any qualifiers on the parameter from the deduced type.
1020 // We checked the qualifiers for consistency above.
1021 Qualifiers DeducedQs = DeducedType.getQualifiers();
1022 Qualifiers ParamQs = Param.getQualifiers();
1023 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1024 if (ParamQs.hasObjCGCAttr())
1025 DeducedQs.removeObjCGCAttr();
1026 if (ParamQs.hasAddressSpace())
1027 DeducedQs.removeAddressSpace();
1028 if (ParamQs.hasObjCLifetime())
1029 DeducedQs.removeObjCLifetime();
1030
1031 // Objective-C ARC:
1032 // If template deduction would produce a lifetime qualifier on a type
1033 // that is not a lifetime type, template argument deduction fails.
1034 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1035 !DeducedType->isDependentType()) {
1036 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1037 Info.FirstArg = TemplateArgument(Param);
1038 Info.SecondArg = TemplateArgument(Arg);
1039 return Sema::TDK_Underqualified;
1040 }
1041
1042 // Objective-C ARC:
1043 // If template deduction would produce an argument type with lifetime type
1044 // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1045 if (S.getLangOpts().ObjCAutoRefCount &&
1046 DeducedType->isObjCLifetimeType() &&
1047 !DeducedQs.hasObjCLifetime())
1048 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1049
1050 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1051 DeducedQs);
1052
1053 if (RecanonicalizeArg)
1054 DeducedType = S.Context.getCanonicalType(DeducedType);
1055
1056 DeducedTemplateArgument NewDeduced(DeducedType);
1057 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1058 Deduced[Index],
1059 NewDeduced);
1060 if (Result.isNull()) {
1061 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1062 Info.FirstArg = Deduced[Index];
1063 Info.SecondArg = NewDeduced;
1064 return Sema::TDK_Inconsistent;
1065 }
1066
1067 Deduced[Index] = Result;
1068 return Sema::TDK_Success;
1069 }
1070
1071 // Set up the template argument deduction information for a failure.
1072 Info.FirstArg = TemplateArgument(ParamIn);
1073 Info.SecondArg = TemplateArgument(ArgIn);
1074
1075 // If the parameter is an already-substituted template parameter
1076 // pack, do nothing: we don't know which of its arguments to look
1077 // at, so we have to wait until all of the parameter packs in this
1078 // expansion have arguments.
1079 if (isa<SubstTemplateTypeParmPackType>(Param))
1080 return Sema::TDK_Success;
1081
1082 // Check the cv-qualifiers on the parameter and argument types.
1083 if (!(TDF & TDF_IgnoreQualifiers)) {
1084 if (TDF & TDF_ParamWithReferenceType) {
1085 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1086 return Sema::TDK_NonDeducedMismatch;
1087 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1088 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1089 return Sema::TDK_NonDeducedMismatch;
1090 }
1091
1092 // If the parameter type is not dependent, there is nothing to deduce.
1093 if (!Param->isDependentType()) {
1094 if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
1095 return Sema::TDK_NonDeducedMismatch;
1096
1097 return Sema::TDK_Success;
1098 }
1099 } else if (!Param->isDependentType() &&
1100 Param.getUnqualifiedType() == Arg.getUnqualifiedType()) {
1101 return Sema::TDK_Success;
1102 }
1103
1104 switch (Param->getTypeClass()) {
1105 // Non-canonical types cannot appear here.
1106 #define NON_CANONICAL_TYPE(Class, Base) \
1107 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1108 #define TYPE(Class, Base)
1109 #include "clang/AST/TypeNodes.def"
1110
1111 case Type::TemplateTypeParm:
1112 case Type::SubstTemplateTypeParmPack:
1113 llvm_unreachable("Type nodes handled above");
1114
1115 // These types cannot be dependent, so simply check whether the types are
1116 // the same.
1117 case Type::Builtin:
1118 case Type::VariableArray:
1119 case Type::Vector:
1120 case Type::FunctionNoProto:
1121 case Type::Record:
1122 case Type::Enum:
1123 case Type::ObjCObject:
1124 case Type::ObjCInterface:
1125 case Type::ObjCObjectPointer: {
1126 if (TDF & TDF_SkipNonDependent)
1127 return Sema::TDK_Success;
1128
1129 if (TDF & TDF_IgnoreQualifiers) {
1130 Param = Param.getUnqualifiedType();
1131 Arg = Arg.getUnqualifiedType();
1132 }
1133
1134 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1135 }
1136
1137 // _Complex T [placeholder extension]
1138 case Type::Complex:
1139 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1140 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1141 cast<ComplexType>(Param)->getElementType(),
1142 ComplexArg->getElementType(),
1143 Info, Deduced, TDF);
1144
1145 return Sema::TDK_NonDeducedMismatch;
1146
1147 // _Atomic T [extension]
1148 case Type::Atomic:
1149 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1150 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1151 cast<AtomicType>(Param)->getValueType(),
1152 AtomicArg->getValueType(),
1153 Info, Deduced, TDF);
1154
1155 return Sema::TDK_NonDeducedMismatch;
1156
1157 // T *
1158 case Type::Pointer: {
1159 QualType PointeeType;
1160 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1161 PointeeType = PointerArg->getPointeeType();
1162 } else if (const ObjCObjectPointerType *PointerArg
1163 = Arg->getAs<ObjCObjectPointerType>()) {
1164 PointeeType = PointerArg->getPointeeType();
1165 } else {
1166 return Sema::TDK_NonDeducedMismatch;
1167 }
1168
1169 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1170 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1171 cast<PointerType>(Param)->getPointeeType(),
1172 PointeeType,
1173 Info, Deduced, SubTDF);
1174 }
1175
1176 // T &
1177 case Type::LValueReference: {
1178 const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1179 if (!ReferenceArg)
1180 return Sema::TDK_NonDeducedMismatch;
1181
1182 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1183 cast<LValueReferenceType>(Param)->getPointeeType(),
1184 ReferenceArg->getPointeeType(), Info, Deduced, 0);
1185 }
1186
1187 // T && [C++0x]
1188 case Type::RValueReference: {
1189 const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1190 if (!ReferenceArg)
1191 return Sema::TDK_NonDeducedMismatch;
1192
1193 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1194 cast<RValueReferenceType>(Param)->getPointeeType(),
1195 ReferenceArg->getPointeeType(),
1196 Info, Deduced, 0);
1197 }
1198
1199 // T [] (implied, but not stated explicitly)
1200 case Type::IncompleteArray: {
1201 const IncompleteArrayType *IncompleteArrayArg =
1202 S.Context.getAsIncompleteArrayType(Arg);
1203 if (!IncompleteArrayArg)
1204 return Sema::TDK_NonDeducedMismatch;
1205
1206 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1207 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1208 S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1209 IncompleteArrayArg->getElementType(),
1210 Info, Deduced, SubTDF);
1211 }
1212
1213 // T [integer-constant]
1214 case Type::ConstantArray: {
1215 const ConstantArrayType *ConstantArrayArg =
1216 S.Context.getAsConstantArrayType(Arg);
1217 if (!ConstantArrayArg)
1218 return Sema::TDK_NonDeducedMismatch;
1219
1220 const ConstantArrayType *ConstantArrayParm =
1221 S.Context.getAsConstantArrayType(Param);
1222 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1223 return Sema::TDK_NonDeducedMismatch;
1224
1225 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1226 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1227 ConstantArrayParm->getElementType(),
1228 ConstantArrayArg->getElementType(),
1229 Info, Deduced, SubTDF);
1230 }
1231
1232 // type [i]
1233 case Type::DependentSizedArray: {
1234 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1235 if (!ArrayArg)
1236 return Sema::TDK_NonDeducedMismatch;
1237
1238 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1239
1240 // Check the element type of the arrays
1241 const DependentSizedArrayType *DependentArrayParm
1242 = S.Context.getAsDependentSizedArrayType(Param);
1243 if (Sema::TemplateDeductionResult Result
1244 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1245 DependentArrayParm->getElementType(),
1246 ArrayArg->getElementType(),
1247 Info, Deduced, SubTDF))
1248 return Result;
1249
1250 // Determine the array bound is something we can deduce.
1251 NonTypeTemplateParmDecl *NTTP
1252 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1253 if (!NTTP)
1254 return Sema::TDK_Success;
1255
1256 // We can perform template argument deduction for the given non-type
1257 // template parameter.
1258 assert(NTTP->getDepth() == 0 &&
1259 "Cannot deduce non-type template argument at depth > 0");
1260 if (const ConstantArrayType *ConstantArrayArg
1261 = dyn_cast<ConstantArrayType>(ArrayArg)) {
1262 llvm::APSInt Size(ConstantArrayArg->getSize());
1263 return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1264 S.Context.getSizeType(),
1265 /*ArrayBound=*/true,
1266 Info, Deduced);
1267 }
1268 if (const DependentSizedArrayType *DependentArrayArg
1269 = dyn_cast<DependentSizedArrayType>(ArrayArg))
1270 if (DependentArrayArg->getSizeExpr())
1271 return DeduceNonTypeTemplateArgument(S, NTTP,
1272 DependentArrayArg->getSizeExpr(),
1273 Info, Deduced);
1274
1275 // Incomplete type does not match a dependently-sized array type
1276 return Sema::TDK_NonDeducedMismatch;
1277 }
1278
1279 // type(*)(T)
1280 // T(*)()
1281 // T(*)(T)
1282 case Type::FunctionProto: {
1283 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1284 const FunctionProtoType *FunctionProtoArg =
1285 dyn_cast<FunctionProtoType>(Arg);
1286 if (!FunctionProtoArg)
1287 return Sema::TDK_NonDeducedMismatch;
1288
1289 const FunctionProtoType *FunctionProtoParam =
1290 cast<FunctionProtoType>(Param);
1291
1292 if (FunctionProtoParam->getTypeQuals()
1293 != FunctionProtoArg->getTypeQuals() ||
1294 FunctionProtoParam->getRefQualifier()
1295 != FunctionProtoArg->getRefQualifier() ||
1296 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1297 return Sema::TDK_NonDeducedMismatch;
1298
1299 // Check return types.
1300 if (Sema::TemplateDeductionResult Result
1301 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1302 FunctionProtoParam->getResultType(),
1303 FunctionProtoArg->getResultType(),
1304 Info, Deduced, 0))
1305 return Result;
1306
1307 return DeduceTemplateArguments(S, TemplateParams,
1308 FunctionProtoParam->arg_type_begin(),
1309 FunctionProtoParam->getNumArgs(),
1310 FunctionProtoArg->arg_type_begin(),
1311 FunctionProtoArg->getNumArgs(),
1312 Info, Deduced, SubTDF);
1313 }
1314
1315 case Type::InjectedClassName: {
1316 // Treat a template's injected-class-name as if the template
1317 // specialization type had been used.
1318 Param = cast<InjectedClassNameType>(Param)
1319 ->getInjectedSpecializationType();
1320 assert(isa<TemplateSpecializationType>(Param) &&
1321 "injected class name is not a template specialization type");
1322 // fall through
1323 }
1324
1325 // template-name<T> (where template-name refers to a class template)
1326 // template-name<i>
1327 // TT<T>
1328 // TT<i>
1329 // TT<>
1330 case Type::TemplateSpecialization: {
1331 const TemplateSpecializationType *SpecParam
1332 = cast<TemplateSpecializationType>(Param);
1333
1334 // Try to deduce template arguments from the template-id.
1335 Sema::TemplateDeductionResult Result
1336 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1337 Info, Deduced);
1338
1339 if (Result && (TDF & TDF_DerivedClass)) {
1340 // C++ [temp.deduct.call]p3b3:
1341 // If P is a class, and P has the form template-id, then A can be a
1342 // derived class of the deduced A. Likewise, if P is a pointer to a
1343 // class of the form template-id, A can be a pointer to a derived
1344 // class pointed to by the deduced A.
1345 //
1346 // More importantly:
1347 // These alternatives are considered only if type deduction would
1348 // otherwise fail.
1349 if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1350 // We cannot inspect base classes as part of deduction when the type
1351 // is incomplete, so either instantiate any templates necessary to
1352 // complete the type, or skip over it if it cannot be completed.
1353 if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1354 return Result;
1355
1356 // Use data recursion to crawl through the list of base classes.
1357 // Visited contains the set of nodes we have already visited, while
1358 // ToVisit is our stack of records that we still need to visit.
1359 llvm::SmallPtrSet<const RecordType *, 8> Visited;
1360 SmallVector<const RecordType *, 8> ToVisit;
1361 ToVisit.push_back(RecordT);
1362 bool Successful = false;
1363 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1364 Deduced.end());
1365 while (!ToVisit.empty()) {
1366 // Retrieve the next class in the inheritance hierarchy.
1367 const RecordType *NextT = ToVisit.back();
1368 ToVisit.pop_back();
1369
1370 // If we have already seen this type, skip it.
1371 if (!Visited.insert(NextT))
1372 continue;
1373
1374 // If this is a base class, try to perform template argument
1375 // deduction from it.
1376 if (NextT != RecordT) {
1377 Sema::TemplateDeductionResult BaseResult
1378 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1379 QualType(NextT, 0), Info, Deduced);
1380
1381 // If template argument deduction for this base was successful,
1382 // note that we had some success. Otherwise, ignore any deductions
1383 // from this base class.
1384 if (BaseResult == Sema::TDK_Success) {
1385 Successful = true;
1386 DeducedOrig.clear();
1387 DeducedOrig.append(Deduced.begin(), Deduced.end());
1388 }
1389 else
1390 Deduced = DeducedOrig;
1391 }
1392
1393 // Visit base classes
1394 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1395 for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1396 BaseEnd = Next->bases_end();
1397 Base != BaseEnd; ++Base) {
1398 assert(Base->getType()->isRecordType() &&
1399 "Base class that isn't a record?");
1400 ToVisit.push_back(Base->getType()->getAs<RecordType>());
1401 }
1402 }
1403
1404 if (Successful)
1405 return Sema::TDK_Success;
1406 }
1407
1408 }
1409
1410 return Result;
1411 }
1412
1413 // T type::*
1414 // T T::*
1415 // T (type::*)()
1416 // type (T::*)()
1417 // type (type::*)(T)
1418 // type (T::*)(T)
1419 // T (type::*)(T)
1420 // T (T::*)()
1421 // T (T::*)(T)
1422 case Type::MemberPointer: {
1423 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1424 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1425 if (!MemPtrArg)
1426 return Sema::TDK_NonDeducedMismatch;
1427
1428 if (Sema::TemplateDeductionResult Result
1429 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1430 MemPtrParam->getPointeeType(),
1431 MemPtrArg->getPointeeType(),
1432 Info, Deduced,
1433 TDF & TDF_IgnoreQualifiers))
1434 return Result;
1435
1436 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1437 QualType(MemPtrParam->getClass(), 0),
1438 QualType(MemPtrArg->getClass(), 0),
1439 Info, Deduced,
1440 TDF & TDF_IgnoreQualifiers);
1441 }
1442
1443 // (clang extension)
1444 //
1445 // type(^)(T)
1446 // T(^)()
1447 // T(^)(T)
1448 case Type::BlockPointer: {
1449 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1450 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1451
1452 if (!BlockPtrArg)
1453 return Sema::TDK_NonDeducedMismatch;
1454
1455 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1456 BlockPtrParam->getPointeeType(),
1457 BlockPtrArg->getPointeeType(),
1458 Info, Deduced, 0);
1459 }
1460
1461 // (clang extension)
1462 //
1463 // T __attribute__(((ext_vector_type(<integral constant>))))
1464 case Type::ExtVector: {
1465 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1466 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1467 // Make sure that the vectors have the same number of elements.
1468 if (VectorParam->getNumElements() != VectorArg->getNumElements())
1469 return Sema::TDK_NonDeducedMismatch;
1470
1471 // Perform deduction on the element types.
1472 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1473 VectorParam->getElementType(),
1474 VectorArg->getElementType(),
1475 Info, Deduced, TDF);
1476 }
1477
1478 if (const DependentSizedExtVectorType *VectorArg
1479 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1480 // We can't check the number of elements, since the argument has a
1481 // dependent number of elements. This can only occur during partial
1482 // ordering.
1483
1484 // Perform deduction on the element types.
1485 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1486 VectorParam->getElementType(),
1487 VectorArg->getElementType(),
1488 Info, Deduced, TDF);
1489 }
1490
1491 return Sema::TDK_NonDeducedMismatch;
1492 }
1493
1494 // (clang extension)
1495 //
1496 // T __attribute__(((ext_vector_type(N))))
1497 case Type::DependentSizedExtVector: {
1498 const DependentSizedExtVectorType *VectorParam
1499 = cast<DependentSizedExtVectorType>(Param);
1500
1501 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1502 // Perform deduction on the element types.
1503 if (Sema::TemplateDeductionResult Result
1504 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1505 VectorParam->getElementType(),
1506 VectorArg->getElementType(),
1507 Info, Deduced, TDF))
1508 return Result;
1509
1510 // Perform deduction on the vector size, if we can.
1511 NonTypeTemplateParmDecl *NTTP
1512 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1513 if (!NTTP)
1514 return Sema::TDK_Success;
1515
1516 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1517 ArgSize = VectorArg->getNumElements();
1518 return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1519 false, Info, Deduced);
1520 }
1521
1522 if (const DependentSizedExtVectorType *VectorArg
1523 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1524 // Perform deduction on the element types.
1525 if (Sema::TemplateDeductionResult Result
1526 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1527 VectorParam->getElementType(),
1528 VectorArg->getElementType(),
1529 Info, Deduced, TDF))
1530 return Result;
1531
1532 // Perform deduction on the vector size, if we can.
1533 NonTypeTemplateParmDecl *NTTP
1534 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1535 if (!NTTP)
1536 return Sema::TDK_Success;
1537
1538 return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1539 Info, Deduced);
1540 }
1541
1542 return Sema::TDK_NonDeducedMismatch;
1543 }
1544
1545 case Type::TypeOfExpr:
1546 case Type::TypeOf:
1547 case Type::DependentName:
1548 case Type::UnresolvedUsing:
1549 case Type::Decltype:
1550 case Type::UnaryTransform:
1551 case Type::Auto:
1552 case Type::DependentTemplateSpecialization:
1553 case Type::PackExpansion:
1554 // No template argument deduction for these types
1555 return Sema::TDK_Success;
1556 }
1557
1558 llvm_unreachable("Invalid Type Class!");
1559 }
1560
1561 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument & Param,TemplateArgument Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1562 DeduceTemplateArguments(Sema &S,
1563 TemplateParameterList *TemplateParams,
1564 const TemplateArgument &Param,
1565 TemplateArgument Arg,
1566 TemplateDeductionInfo &Info,
1567 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1568 // If the template argument is a pack expansion, perform template argument
1569 // deduction against the pattern of that expansion. This only occurs during
1570 // partial ordering.
1571 if (Arg.isPackExpansion())
1572 Arg = Arg.getPackExpansionPattern();
1573
1574 switch (Param.getKind()) {
1575 case TemplateArgument::Null:
1576 llvm_unreachable("Null template argument in parameter list");
1577
1578 case TemplateArgument::Type:
1579 if (Arg.getKind() == TemplateArgument::Type)
1580 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1581 Param.getAsType(),
1582 Arg.getAsType(),
1583 Info, Deduced, 0);
1584 Info.FirstArg = Param;
1585 Info.SecondArg = Arg;
1586 return Sema::TDK_NonDeducedMismatch;
1587
1588 case TemplateArgument::Template:
1589 if (Arg.getKind() == TemplateArgument::Template)
1590 return DeduceTemplateArguments(S, TemplateParams,
1591 Param.getAsTemplate(),
1592 Arg.getAsTemplate(), Info, Deduced);
1593 Info.FirstArg = Param;
1594 Info.SecondArg = Arg;
1595 return Sema::TDK_NonDeducedMismatch;
1596
1597 case TemplateArgument::TemplateExpansion:
1598 llvm_unreachable("caller should handle pack expansions");
1599
1600 case TemplateArgument::Declaration:
1601 if (Arg.getKind() == TemplateArgument::Declaration &&
1602 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
1603 return Sema::TDK_Success;
1604
1605 Info.FirstArg = Param;
1606 Info.SecondArg = Arg;
1607 return Sema::TDK_NonDeducedMismatch;
1608
1609 case TemplateArgument::Integral:
1610 if (Arg.getKind() == TemplateArgument::Integral) {
1611 if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
1612 return Sema::TDK_Success;
1613
1614 Info.FirstArg = Param;
1615 Info.SecondArg = Arg;
1616 return Sema::TDK_NonDeducedMismatch;
1617 }
1618
1619 if (Arg.getKind() == TemplateArgument::Expression) {
1620 Info.FirstArg = Param;
1621 Info.SecondArg = Arg;
1622 return Sema::TDK_NonDeducedMismatch;
1623 }
1624
1625 Info.FirstArg = Param;
1626 Info.SecondArg = Arg;
1627 return Sema::TDK_NonDeducedMismatch;
1628
1629 case TemplateArgument::Expression: {
1630 if (NonTypeTemplateParmDecl *NTTP
1631 = getDeducedParameterFromExpr(Param.getAsExpr())) {
1632 if (Arg.getKind() == TemplateArgument::Integral)
1633 return DeduceNonTypeTemplateArgument(S, NTTP,
1634 Arg.getAsIntegral(),
1635 Arg.getIntegralType(),
1636 /*ArrayBound=*/false,
1637 Info, Deduced);
1638 if (Arg.getKind() == TemplateArgument::Expression)
1639 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1640 Info, Deduced);
1641 if (Arg.getKind() == TemplateArgument::Declaration)
1642 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1643 Info, Deduced);
1644
1645 Info.FirstArg = Param;
1646 Info.SecondArg = Arg;
1647 return Sema::TDK_NonDeducedMismatch;
1648 }
1649
1650 // Can't deduce anything, but that's okay.
1651 return Sema::TDK_Success;
1652 }
1653 case TemplateArgument::Pack:
1654 llvm_unreachable("Argument packs should be expanded by the caller!");
1655 }
1656
1657 llvm_unreachable("Invalid TemplateArgument Kind!");
1658 }
1659
1660 /// \brief Determine whether there is a template argument to be used for
1661 /// deduction.
1662 ///
1663 /// This routine "expands" argument packs in-place, overriding its input
1664 /// parameters so that \c Args[ArgIdx] will be the available template argument.
1665 ///
1666 /// \returns true if there is another template argument (which will be at
1667 /// \c Args[ArgIdx]), false otherwise.
hasTemplateArgumentForDeduction(const TemplateArgument * & Args,unsigned & ArgIdx,unsigned & NumArgs)1668 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1669 unsigned &ArgIdx,
1670 unsigned &NumArgs) {
1671 if (ArgIdx == NumArgs)
1672 return false;
1673
1674 const TemplateArgument &Arg = Args[ArgIdx];
1675 if (Arg.getKind() != TemplateArgument::Pack)
1676 return true;
1677
1678 assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1679 Args = Arg.pack_begin();
1680 NumArgs = Arg.pack_size();
1681 ArgIdx = 0;
1682 return ArgIdx < NumArgs;
1683 }
1684
1685 /// \brief Determine whether the given set of template arguments has a pack
1686 /// expansion that is not the last template argument.
hasPackExpansionBeforeEnd(const TemplateArgument * Args,unsigned NumArgs)1687 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1688 unsigned NumArgs) {
1689 unsigned ArgIdx = 0;
1690 while (ArgIdx < NumArgs) {
1691 const TemplateArgument &Arg = Args[ArgIdx];
1692
1693 // Unwrap argument packs.
1694 if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1695 Args = Arg.pack_begin();
1696 NumArgs = Arg.pack_size();
1697 ArgIdx = 0;
1698 continue;
1699 }
1700
1701 ++ArgIdx;
1702 if (ArgIdx == NumArgs)
1703 return false;
1704
1705 if (Arg.isPackExpansion())
1706 return true;
1707 }
1708
1709 return false;
1710 }
1711
1712 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument * Params,unsigned NumParams,const TemplateArgument * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,bool NumberOfArgumentsMustMatch)1713 DeduceTemplateArguments(Sema &S,
1714 TemplateParameterList *TemplateParams,
1715 const TemplateArgument *Params, unsigned NumParams,
1716 const TemplateArgument *Args, unsigned NumArgs,
1717 TemplateDeductionInfo &Info,
1718 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1719 bool NumberOfArgumentsMustMatch) {
1720 // C++0x [temp.deduct.type]p9:
1721 // If the template argument list of P contains a pack expansion that is not
1722 // the last template argument, the entire template argument list is a
1723 // non-deduced context.
1724 if (hasPackExpansionBeforeEnd(Params, NumParams))
1725 return Sema::TDK_Success;
1726
1727 // C++0x [temp.deduct.type]p9:
1728 // If P has a form that contains <T> or <i>, then each argument Pi of the
1729 // respective template argument list P is compared with the corresponding
1730 // argument Ai of the corresponding template argument list of A.
1731 unsigned ArgIdx = 0, ParamIdx = 0;
1732 for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1733 ++ParamIdx) {
1734 if (!Params[ParamIdx].isPackExpansion()) {
1735 // The simple case: deduce template arguments by matching Pi and Ai.
1736
1737 // Check whether we have enough arguments.
1738 if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1739 return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
1740 : Sema::TDK_Success;
1741
1742 if (Args[ArgIdx].isPackExpansion()) {
1743 // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1744 // but applied to pack expansions that are template arguments.
1745 return Sema::TDK_NonDeducedMismatch;
1746 }
1747
1748 // Perform deduction for this Pi/Ai pair.
1749 if (Sema::TemplateDeductionResult Result
1750 = DeduceTemplateArguments(S, TemplateParams,
1751 Params[ParamIdx], Args[ArgIdx],
1752 Info, Deduced))
1753 return Result;
1754
1755 // Move to the next argument.
1756 ++ArgIdx;
1757 continue;
1758 }
1759
1760 // The parameter is a pack expansion.
1761
1762 // C++0x [temp.deduct.type]p9:
1763 // If Pi is a pack expansion, then the pattern of Pi is compared with
1764 // each remaining argument in the template argument list of A. Each
1765 // comparison deduces template arguments for subsequent positions in the
1766 // template parameter packs expanded by Pi.
1767 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1768
1769 // Compute the set of template parameter indices that correspond to
1770 // parameter packs expanded by the pack expansion.
1771 SmallVector<unsigned, 2> PackIndices;
1772 {
1773 llvm::SmallBitVector SawIndices(TemplateParams->size());
1774 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1775 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1776 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1777 unsigned Depth, Index;
1778 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1779 if (Depth == 0 && !SawIndices[Index]) {
1780 SawIndices[Index] = true;
1781 PackIndices.push_back(Index);
1782 }
1783 }
1784 }
1785 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1786
1787 // FIXME: If there are no remaining arguments, we can bail out early
1788 // and set any deduced parameter packs to an empty argument pack.
1789 // The latter part of this is a (minor) correctness issue.
1790
1791 // Save the deduced template arguments for each parameter pack expanded
1792 // by this pack expansion, then clear out the deduction.
1793 SmallVector<DeducedTemplateArgument, 2>
1794 SavedPacks(PackIndices.size());
1795 SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
1796 NewlyDeducedPacks(PackIndices.size());
1797 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1798 NewlyDeducedPacks);
1799
1800 // Keep track of the deduced template arguments for each parameter pack
1801 // expanded by this pack expansion (the outer index) and for each
1802 // template argument (the inner SmallVectors).
1803 bool HasAnyArguments = false;
1804 while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1805 HasAnyArguments = true;
1806
1807 // Deduce template arguments from the pattern.
1808 if (Sema::TemplateDeductionResult Result
1809 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1810 Info, Deduced))
1811 return Result;
1812
1813 // Capture the deduced template arguments for each parameter pack expanded
1814 // by this pack expansion, add them to the list of arguments we've deduced
1815 // for that pack, then clear out the deduced argument.
1816 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1817 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1818 if (!DeducedArg.isNull()) {
1819 NewlyDeducedPacks[I].push_back(DeducedArg);
1820 DeducedArg = DeducedTemplateArgument();
1821 }
1822 }
1823
1824 ++ArgIdx;
1825 }
1826
1827 // Build argument packs for each of the parameter packs expanded by this
1828 // pack expansion.
1829 if (Sema::TemplateDeductionResult Result
1830 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1831 Deduced, PackIndices, SavedPacks,
1832 NewlyDeducedPacks, Info))
1833 return Result;
1834 }
1835
1836 // If there is an argument remaining, then we had too many arguments.
1837 if (NumberOfArgumentsMustMatch &&
1838 hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1839 return Sema::TDK_NonDeducedMismatch;
1840
1841 return Sema::TDK_Success;
1842 }
1843
1844 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgumentList & ParamList,const TemplateArgumentList & ArgList,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1845 DeduceTemplateArguments(Sema &S,
1846 TemplateParameterList *TemplateParams,
1847 const TemplateArgumentList &ParamList,
1848 const TemplateArgumentList &ArgList,
1849 TemplateDeductionInfo &Info,
1850 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1851 return DeduceTemplateArguments(S, TemplateParams,
1852 ParamList.data(), ParamList.size(),
1853 ArgList.data(), ArgList.size(),
1854 Info, Deduced);
1855 }
1856
1857 /// \brief Determine whether two template arguments are the same.
isSameTemplateArg(ASTContext & Context,const TemplateArgument & X,const TemplateArgument & Y)1858 static bool isSameTemplateArg(ASTContext &Context,
1859 const TemplateArgument &X,
1860 const TemplateArgument &Y) {
1861 if (X.getKind() != Y.getKind())
1862 return false;
1863
1864 switch (X.getKind()) {
1865 case TemplateArgument::Null:
1866 llvm_unreachable("Comparing NULL template argument");
1867
1868 case TemplateArgument::Type:
1869 return Context.getCanonicalType(X.getAsType()) ==
1870 Context.getCanonicalType(Y.getAsType());
1871
1872 case TemplateArgument::Declaration:
1873 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
1874
1875 case TemplateArgument::Template:
1876 case TemplateArgument::TemplateExpansion:
1877 return Context.getCanonicalTemplateName(
1878 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1879 Context.getCanonicalTemplateName(
1880 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1881
1882 case TemplateArgument::Integral:
1883 return X.getAsIntegral() == Y.getAsIntegral();
1884
1885 case TemplateArgument::Expression: {
1886 llvm::FoldingSetNodeID XID, YID;
1887 X.getAsExpr()->Profile(XID, Context, true);
1888 Y.getAsExpr()->Profile(YID, Context, true);
1889 return XID == YID;
1890 }
1891
1892 case TemplateArgument::Pack:
1893 if (X.pack_size() != Y.pack_size())
1894 return false;
1895
1896 for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1897 XPEnd = X.pack_end(),
1898 YP = Y.pack_begin();
1899 XP != XPEnd; ++XP, ++YP)
1900 if (!isSameTemplateArg(Context, *XP, *YP))
1901 return false;
1902
1903 return true;
1904 }
1905
1906 llvm_unreachable("Invalid TemplateArgument Kind!");
1907 }
1908
1909 /// \brief Allocate a TemplateArgumentLoc where all locations have
1910 /// been initialized to the given location.
1911 ///
1912 /// \param S The semantic analysis object.
1913 ///
1914 /// \param Arg The template argument we are producing template argument
1915 /// location information for.
1916 ///
1917 /// \param NTTPType For a declaration template argument, the type of
1918 /// the non-type template parameter that corresponds to this template
1919 /// argument.
1920 ///
1921 /// \param Loc The source location to use for the resulting template
1922 /// argument.
1923 static TemplateArgumentLoc
getTrivialTemplateArgumentLoc(Sema & S,const TemplateArgument & Arg,QualType NTTPType,SourceLocation Loc)1924 getTrivialTemplateArgumentLoc(Sema &S,
1925 const TemplateArgument &Arg,
1926 QualType NTTPType,
1927 SourceLocation Loc) {
1928 switch (Arg.getKind()) {
1929 case TemplateArgument::Null:
1930 llvm_unreachable("Can't get a NULL template argument here");
1931
1932 case TemplateArgument::Type:
1933 return TemplateArgumentLoc(Arg,
1934 S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1935
1936 case TemplateArgument::Declaration: {
1937 Expr *E
1938 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1939 .takeAs<Expr>();
1940 return TemplateArgumentLoc(TemplateArgument(E), E);
1941 }
1942
1943 case TemplateArgument::Integral: {
1944 Expr *E
1945 = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1946 return TemplateArgumentLoc(TemplateArgument(E), E);
1947 }
1948
1949 case TemplateArgument::Template:
1950 case TemplateArgument::TemplateExpansion: {
1951 NestedNameSpecifierLocBuilder Builder;
1952 TemplateName Template = Arg.getAsTemplate();
1953 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
1954 Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
1955 else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
1956 Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
1957
1958 if (Arg.getKind() == TemplateArgument::Template)
1959 return TemplateArgumentLoc(Arg,
1960 Builder.getWithLocInContext(S.Context),
1961 Loc);
1962
1963
1964 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
1965 Loc, Loc);
1966 }
1967
1968 case TemplateArgument::Expression:
1969 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1970
1971 case TemplateArgument::Pack:
1972 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1973 }
1974
1975 llvm_unreachable("Invalid TemplateArgument Kind!");
1976 }
1977
1978
1979 /// \brief Convert the given deduced template argument and add it to the set of
1980 /// fully-converted template arguments.
ConvertDeducedTemplateArgument(Sema & S,NamedDecl * Param,DeducedTemplateArgument Arg,NamedDecl * Template,QualType NTTPType,unsigned ArgumentPackIndex,TemplateDeductionInfo & Info,bool InFunctionTemplate,SmallVectorImpl<TemplateArgument> & Output)1981 static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
1982 DeducedTemplateArgument Arg,
1983 NamedDecl *Template,
1984 QualType NTTPType,
1985 unsigned ArgumentPackIndex,
1986 TemplateDeductionInfo &Info,
1987 bool InFunctionTemplate,
1988 SmallVectorImpl<TemplateArgument> &Output) {
1989 if (Arg.getKind() == TemplateArgument::Pack) {
1990 // This is a template argument pack, so check each of its arguments against
1991 // the template parameter.
1992 SmallVector<TemplateArgument, 2> PackedArgsBuilder;
1993 for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
1994 PAEnd = Arg.pack_end();
1995 PA != PAEnd; ++PA) {
1996 // When converting the deduced template argument, append it to the
1997 // general output list. We need to do this so that the template argument
1998 // checking logic has all of the prior template arguments available.
1999 DeducedTemplateArgument InnerArg(*PA);
2000 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2001 if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
2002 NTTPType, PackedArgsBuilder.size(),
2003 Info, InFunctionTemplate, Output))
2004 return true;
2005
2006 // Move the converted template argument into our argument pack.
2007 PackedArgsBuilder.push_back(Output.back());
2008 Output.pop_back();
2009 }
2010
2011 // Create the resulting argument pack.
2012 Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2013 PackedArgsBuilder.data(),
2014 PackedArgsBuilder.size()));
2015 return false;
2016 }
2017
2018 // Convert the deduced template argument into a template
2019 // argument that we can check, almost as if the user had written
2020 // the template argument explicitly.
2021 TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2022 Info.getLocation());
2023
2024 // Check the template argument, converting it as necessary.
2025 return S.CheckTemplateArgument(Param, ArgLoc,
2026 Template,
2027 Template->getLocation(),
2028 Template->getSourceRange().getEnd(),
2029 ArgumentPackIndex,
2030 Output,
2031 InFunctionTemplate
2032 ? (Arg.wasDeducedFromArrayBound()
2033 ? Sema::CTAK_DeducedFromArrayBound
2034 : Sema::CTAK_Deduced)
2035 : Sema::CTAK_Specified);
2036 }
2037
2038 /// Complete template argument deduction for a class template partial
2039 /// specialization.
2040 static Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(Sema & S,ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2041 FinishTemplateArgumentDeduction(Sema &S,
2042 ClassTemplatePartialSpecializationDecl *Partial,
2043 const TemplateArgumentList &TemplateArgs,
2044 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2045 TemplateDeductionInfo &Info) {
2046 // Unevaluated SFINAE context.
2047 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2048 Sema::SFINAETrap Trap(S);
2049
2050 Sema::ContextRAII SavedContext(S, Partial);
2051
2052 // C++ [temp.deduct.type]p2:
2053 // [...] or if any template argument remains neither deduced nor
2054 // explicitly specified, template argument deduction fails.
2055 SmallVector<TemplateArgument, 4> Builder;
2056 TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2057 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2058 NamedDecl *Param = PartialParams->getParam(I);
2059 if (Deduced[I].isNull()) {
2060 Info.Param = makeTemplateParameter(Param);
2061 return Sema::TDK_Incomplete;
2062 }
2063
2064 // We have deduced this argument, so it still needs to be
2065 // checked and converted.
2066
2067 // First, for a non-type template parameter type that is
2068 // initialized by a declaration, we need the type of the
2069 // corresponding non-type template parameter.
2070 QualType NTTPType;
2071 if (NonTypeTemplateParmDecl *NTTP
2072 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2073 NTTPType = NTTP->getType();
2074 if (NTTPType->isDependentType()) {
2075 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2076 Builder.data(), Builder.size());
2077 NTTPType = S.SubstType(NTTPType,
2078 MultiLevelTemplateArgumentList(TemplateArgs),
2079 NTTP->getLocation(),
2080 NTTP->getDeclName());
2081 if (NTTPType.isNull()) {
2082 Info.Param = makeTemplateParameter(Param);
2083 // FIXME: These template arguments are temporary. Free them!
2084 Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2085 Builder.data(),
2086 Builder.size()));
2087 return Sema::TDK_SubstitutionFailure;
2088 }
2089 }
2090 }
2091
2092 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2093 Partial, NTTPType, 0, Info, false,
2094 Builder)) {
2095 Info.Param = makeTemplateParameter(Param);
2096 // FIXME: These template arguments are temporary. Free them!
2097 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2098 Builder.size()));
2099 return Sema::TDK_SubstitutionFailure;
2100 }
2101 }
2102
2103 // Form the template argument list from the deduced template arguments.
2104 TemplateArgumentList *DeducedArgumentList
2105 = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2106 Builder.size());
2107
2108 Info.reset(DeducedArgumentList);
2109
2110 // Substitute the deduced template arguments into the template
2111 // arguments of the class template partial specialization, and
2112 // verify that the instantiated template arguments are both valid
2113 // and are equivalent to the template arguments originally provided
2114 // to the class template.
2115 LocalInstantiationScope InstScope(S);
2116 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2117 const TemplateArgumentLoc *PartialTemplateArgs
2118 = Partial->getTemplateArgsAsWritten();
2119
2120 // Note that we don't provide the langle and rangle locations.
2121 TemplateArgumentListInfo InstArgs;
2122
2123 if (S.Subst(PartialTemplateArgs,
2124 Partial->getNumTemplateArgsAsWritten(),
2125 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2126 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2127 if (ParamIdx >= Partial->getTemplateParameters()->size())
2128 ParamIdx = Partial->getTemplateParameters()->size() - 1;
2129
2130 Decl *Param
2131 = const_cast<NamedDecl *>(
2132 Partial->getTemplateParameters()->getParam(ParamIdx));
2133 Info.Param = makeTemplateParameter(Param);
2134 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2135 return Sema::TDK_SubstitutionFailure;
2136 }
2137
2138 SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2139 if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2140 InstArgs, false, ConvertedInstArgs))
2141 return Sema::TDK_SubstitutionFailure;
2142
2143 TemplateParameterList *TemplateParams
2144 = ClassTemplate->getTemplateParameters();
2145 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2146 TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2147 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2148 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2149 Info.FirstArg = TemplateArgs[I];
2150 Info.SecondArg = InstArg;
2151 return Sema::TDK_NonDeducedMismatch;
2152 }
2153 }
2154
2155 if (Trap.hasErrorOccurred())
2156 return Sema::TDK_SubstitutionFailure;
2157
2158 return Sema::TDK_Success;
2159 }
2160
2161 /// \brief Perform template argument deduction to determine whether
2162 /// the given template arguments match the given class template
2163 /// partial specialization per C++ [temp.class.spec.match].
2164 Sema::TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2165 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2166 const TemplateArgumentList &TemplateArgs,
2167 TemplateDeductionInfo &Info) {
2168 // C++ [temp.class.spec.match]p2:
2169 // A partial specialization matches a given actual template
2170 // argument list if the template arguments of the partial
2171 // specialization can be deduced from the actual template argument
2172 // list (14.8.2).
2173
2174 // Unevaluated SFINAE context.
2175 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2176 SFINAETrap Trap(*this);
2177
2178 SmallVector<DeducedTemplateArgument, 4> Deduced;
2179 Deduced.resize(Partial->getTemplateParameters()->size());
2180 if (TemplateDeductionResult Result
2181 = ::DeduceTemplateArguments(*this,
2182 Partial->getTemplateParameters(),
2183 Partial->getTemplateArgs(),
2184 TemplateArgs, Info, Deduced))
2185 return Result;
2186
2187 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2188 InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2189 DeducedArgs, Info);
2190 if (Inst)
2191 return TDK_InstantiationDepth;
2192
2193 if (Trap.hasErrorOccurred())
2194 return Sema::TDK_SubstitutionFailure;
2195
2196 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2197 Deduced, Info);
2198 }
2199
2200 /// \brief Determine whether the given type T is a simple-template-id type.
isSimpleTemplateIdType(QualType T)2201 static bool isSimpleTemplateIdType(QualType T) {
2202 if (const TemplateSpecializationType *Spec
2203 = T->getAs<TemplateSpecializationType>())
2204 return Spec->getTemplateName().getAsTemplateDecl() != 0;
2205
2206 return false;
2207 }
2208
2209 /// \brief Substitute the explicitly-provided template arguments into the
2210 /// given function template according to C++ [temp.arg.explicit].
2211 ///
2212 /// \param FunctionTemplate the function template into which the explicit
2213 /// template arguments will be substituted.
2214 ///
2215 /// \param ExplicitTemplateArgs the explicitly-specified template
2216 /// arguments.
2217 ///
2218 /// \param Deduced the deduced template arguments, which will be populated
2219 /// with the converted and checked explicit template arguments.
2220 ///
2221 /// \param ParamTypes will be populated with the instantiated function
2222 /// parameters.
2223 ///
2224 /// \param FunctionType if non-NULL, the result type of the function template
2225 /// will also be instantiated and the pointed-to value will be updated with
2226 /// the instantiated function type.
2227 ///
2228 /// \param Info if substitution fails for any reason, this object will be
2229 /// populated with more information about the failure.
2230 ///
2231 /// \returns TDK_Success if substitution was successful, or some failure
2232 /// condition.
2233 Sema::TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo & ExplicitTemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<QualType> & ParamTypes,QualType * FunctionType,TemplateDeductionInfo & Info)2234 Sema::SubstituteExplicitTemplateArguments(
2235 FunctionTemplateDecl *FunctionTemplate,
2236 TemplateArgumentListInfo &ExplicitTemplateArgs,
2237 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2238 SmallVectorImpl<QualType> &ParamTypes,
2239 QualType *FunctionType,
2240 TemplateDeductionInfo &Info) {
2241 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2242 TemplateParameterList *TemplateParams
2243 = FunctionTemplate->getTemplateParameters();
2244
2245 if (ExplicitTemplateArgs.size() == 0) {
2246 // No arguments to substitute; just copy over the parameter types and
2247 // fill in the function type.
2248 for (FunctionDecl::param_iterator P = Function->param_begin(),
2249 PEnd = Function->param_end();
2250 P != PEnd;
2251 ++P)
2252 ParamTypes.push_back((*P)->getType());
2253
2254 if (FunctionType)
2255 *FunctionType = Function->getType();
2256 return TDK_Success;
2257 }
2258
2259 // Unevaluated SFINAE context.
2260 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2261 SFINAETrap Trap(*this);
2262
2263 // C++ [temp.arg.explicit]p3:
2264 // Template arguments that are present shall be specified in the
2265 // declaration order of their corresponding template-parameters. The
2266 // template argument list shall not specify more template-arguments than
2267 // there are corresponding template-parameters.
2268 SmallVector<TemplateArgument, 4> Builder;
2269
2270 // Enter a new template instantiation context where we check the
2271 // explicitly-specified template arguments against this function template,
2272 // and then substitute them into the function parameter types.
2273 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2274 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2275 FunctionTemplate, DeducedArgs,
2276 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2277 Info);
2278 if (Inst)
2279 return TDK_InstantiationDepth;
2280
2281 if (CheckTemplateArgumentList(FunctionTemplate,
2282 SourceLocation(),
2283 ExplicitTemplateArgs,
2284 true,
2285 Builder) || Trap.hasErrorOccurred()) {
2286 unsigned Index = Builder.size();
2287 if (Index >= TemplateParams->size())
2288 Index = TemplateParams->size() - 1;
2289 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2290 return TDK_InvalidExplicitArguments;
2291 }
2292
2293 // Form the template argument list from the explicitly-specified
2294 // template arguments.
2295 TemplateArgumentList *ExplicitArgumentList
2296 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2297 Info.reset(ExplicitArgumentList);
2298
2299 // Template argument deduction and the final substitution should be
2300 // done in the context of the templated declaration. Explicit
2301 // argument substitution, on the other hand, needs to happen in the
2302 // calling context.
2303 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2304
2305 // If we deduced template arguments for a template parameter pack,
2306 // note that the template argument pack is partially substituted and record
2307 // the explicit template arguments. They'll be used as part of deduction
2308 // for this template parameter pack.
2309 for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2310 const TemplateArgument &Arg = Builder[I];
2311 if (Arg.getKind() == TemplateArgument::Pack) {
2312 CurrentInstantiationScope->SetPartiallySubstitutedPack(
2313 TemplateParams->getParam(I),
2314 Arg.pack_begin(),
2315 Arg.pack_size());
2316 break;
2317 }
2318 }
2319
2320 const FunctionProtoType *Proto
2321 = Function->getType()->getAs<FunctionProtoType>();
2322 assert(Proto && "Function template does not have a prototype?");
2323
2324 // Instantiate the types of each of the function parameters given the
2325 // explicitly-specified template arguments. If the function has a trailing
2326 // return type, substitute it after the arguments to ensure we substitute
2327 // in lexical order.
2328 if (Proto->hasTrailingReturn()) {
2329 if (SubstParmTypes(Function->getLocation(),
2330 Function->param_begin(), Function->getNumParams(),
2331 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2332 ParamTypes))
2333 return TDK_SubstitutionFailure;
2334 }
2335
2336 // Instantiate the return type.
2337 // FIXME: exception-specifications?
2338 QualType ResultType;
2339 {
2340 // C++11 [expr.prim.general]p3:
2341 // If a declaration declares a member function or member function
2342 // template of a class X, the expression this is a prvalue of type
2343 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2344 // and the end of the function-definition, member-declarator, or
2345 // declarator.
2346 unsigned ThisTypeQuals = 0;
2347 CXXRecordDecl *ThisContext = 0;
2348 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2349 ThisContext = Method->getParent();
2350 ThisTypeQuals = Method->getTypeQualifiers();
2351 }
2352
2353 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2354 getLangOpts().CPlusPlus0x);
2355
2356 ResultType = SubstType(Proto->getResultType(),
2357 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2358 Function->getTypeSpecStartLoc(),
2359 Function->getDeclName());
2360 if (ResultType.isNull() || Trap.hasErrorOccurred())
2361 return TDK_SubstitutionFailure;
2362 }
2363
2364 // Instantiate the types of each of the function parameters given the
2365 // explicitly-specified template arguments if we didn't do so earlier.
2366 if (!Proto->hasTrailingReturn() &&
2367 SubstParmTypes(Function->getLocation(),
2368 Function->param_begin(), Function->getNumParams(),
2369 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2370 ParamTypes))
2371 return TDK_SubstitutionFailure;
2372
2373 if (FunctionType) {
2374 *FunctionType = BuildFunctionType(ResultType,
2375 ParamTypes.data(), ParamTypes.size(),
2376 Proto->isVariadic(),
2377 Proto->hasTrailingReturn(),
2378 Proto->getTypeQuals(),
2379 Proto->getRefQualifier(),
2380 Function->getLocation(),
2381 Function->getDeclName(),
2382 Proto->getExtInfo());
2383 if (FunctionType->isNull() || Trap.hasErrorOccurred())
2384 return TDK_SubstitutionFailure;
2385 }
2386
2387 // C++ [temp.arg.explicit]p2:
2388 // Trailing template arguments that can be deduced (14.8.2) may be
2389 // omitted from the list of explicit template-arguments. If all of the
2390 // template arguments can be deduced, they may all be omitted; in this
2391 // case, the empty template argument list <> itself may also be omitted.
2392 //
2393 // Take all of the explicitly-specified arguments and put them into
2394 // the set of deduced template arguments. Explicitly-specified
2395 // parameter packs, however, will be set to NULL since the deduction
2396 // mechanisms handle explicitly-specified argument packs directly.
2397 Deduced.reserve(TemplateParams->size());
2398 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2399 const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2400 if (Arg.getKind() == TemplateArgument::Pack)
2401 Deduced.push_back(DeducedTemplateArgument());
2402 else
2403 Deduced.push_back(Arg);
2404 }
2405
2406 return TDK_Success;
2407 }
2408
2409 /// \brief Check whether the deduced argument type for a call to a function
2410 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
2411 static bool
CheckOriginalCallArgDeduction(Sema & S,Sema::OriginalCallArg OriginalArg,QualType DeducedA)2412 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2413 QualType DeducedA) {
2414 ASTContext &Context = S.Context;
2415
2416 QualType A = OriginalArg.OriginalArgType;
2417 QualType OriginalParamType = OriginalArg.OriginalParamType;
2418
2419 // Check for type equality (top-level cv-qualifiers are ignored).
2420 if (Context.hasSameUnqualifiedType(A, DeducedA))
2421 return false;
2422
2423 // Strip off references on the argument types; they aren't needed for
2424 // the following checks.
2425 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2426 DeducedA = DeducedARef->getPointeeType();
2427 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2428 A = ARef->getPointeeType();
2429
2430 // C++ [temp.deduct.call]p4:
2431 // [...] However, there are three cases that allow a difference:
2432 // - If the original P is a reference type, the deduced A (i.e., the
2433 // type referred to by the reference) can be more cv-qualified than
2434 // the transformed A.
2435 if (const ReferenceType *OriginalParamRef
2436 = OriginalParamType->getAs<ReferenceType>()) {
2437 // We don't want to keep the reference around any more.
2438 OriginalParamType = OriginalParamRef->getPointeeType();
2439
2440 Qualifiers AQuals = A.getQualifiers();
2441 Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2442
2443 // Under Objective-C++ ARC, the deduced type may have implicitly been
2444 // given strong lifetime. If so, update the original qualifiers to
2445 // include this strong lifetime.
2446 if (S.getLangOpts().ObjCAutoRefCount &&
2447 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
2448 AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
2449 AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
2450 }
2451
2452 if (AQuals == DeducedAQuals) {
2453 // Qualifiers match; there's nothing to do.
2454 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2455 return true;
2456 } else {
2457 // Qualifiers are compatible, so have the argument type adopt the
2458 // deduced argument type's qualifiers as if we had performed the
2459 // qualification conversion.
2460 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2461 }
2462 }
2463
2464 // - The transformed A can be another pointer or pointer to member
2465 // type that can be converted to the deduced A via a qualification
2466 // conversion.
2467 //
2468 // Also allow conversions which merely strip [[noreturn]] from function types
2469 // (recursively) as an extension.
2470 // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2471 bool ObjCLifetimeConversion = false;
2472 QualType ResultTy;
2473 if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2474 (S.IsQualificationConversion(A, DeducedA, false,
2475 ObjCLifetimeConversion) ||
2476 S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2477 return false;
2478
2479
2480 // - If P is a class and P has the form simple-template-id, then the
2481 // transformed A can be a derived class of the deduced A. [...]
2482 // [...] Likewise, if P is a pointer to a class of the form
2483 // simple-template-id, the transformed A can be a pointer to a
2484 // derived class pointed to by the deduced A.
2485 if (const PointerType *OriginalParamPtr
2486 = OriginalParamType->getAs<PointerType>()) {
2487 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2488 if (const PointerType *APtr = A->getAs<PointerType>()) {
2489 if (A->getPointeeType()->isRecordType()) {
2490 OriginalParamType = OriginalParamPtr->getPointeeType();
2491 DeducedA = DeducedAPtr->getPointeeType();
2492 A = APtr->getPointeeType();
2493 }
2494 }
2495 }
2496 }
2497
2498 if (Context.hasSameUnqualifiedType(A, DeducedA))
2499 return false;
2500
2501 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2502 S.IsDerivedFrom(A, DeducedA))
2503 return false;
2504
2505 return true;
2506 }
2507
2508 /// \brief Finish template argument deduction for a function template,
2509 /// checking the deduced template arguments for completeness and forming
2510 /// the function template specialization.
2511 ///
2512 /// \param OriginalCallArgs If non-NULL, the original call arguments against
2513 /// which the deduced argument types should be compared.
2514 Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl * FunctionTemplate,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned NumExplicitlySpecified,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,SmallVectorImpl<OriginalCallArg> const * OriginalCallArgs)2515 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2516 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2517 unsigned NumExplicitlySpecified,
2518 FunctionDecl *&Specialization,
2519 TemplateDeductionInfo &Info,
2520 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2521 TemplateParameterList *TemplateParams
2522 = FunctionTemplate->getTemplateParameters();
2523
2524 // Unevaluated SFINAE context.
2525 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2526 SFINAETrap Trap(*this);
2527
2528 // Enter a new template instantiation context while we instantiate the
2529 // actual function declaration.
2530 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2531 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2532 FunctionTemplate, DeducedArgs,
2533 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2534 Info);
2535 if (Inst)
2536 return TDK_InstantiationDepth;
2537
2538 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2539
2540 // C++ [temp.deduct.type]p2:
2541 // [...] or if any template argument remains neither deduced nor
2542 // explicitly specified, template argument deduction fails.
2543 SmallVector<TemplateArgument, 4> Builder;
2544 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2545 NamedDecl *Param = TemplateParams->getParam(I);
2546
2547 if (!Deduced[I].isNull()) {
2548 if (I < NumExplicitlySpecified) {
2549 // We have already fully type-checked and converted this
2550 // argument, because it was explicitly-specified. Just record the
2551 // presence of this argument.
2552 Builder.push_back(Deduced[I]);
2553 continue;
2554 }
2555
2556 // We have deduced this argument, so it still needs to be
2557 // checked and converted.
2558
2559 // First, for a non-type template parameter type that is
2560 // initialized by a declaration, we need the type of the
2561 // corresponding non-type template parameter.
2562 QualType NTTPType;
2563 if (NonTypeTemplateParmDecl *NTTP
2564 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2565 NTTPType = NTTP->getType();
2566 if (NTTPType->isDependentType()) {
2567 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2568 Builder.data(), Builder.size());
2569 NTTPType = SubstType(NTTPType,
2570 MultiLevelTemplateArgumentList(TemplateArgs),
2571 NTTP->getLocation(),
2572 NTTP->getDeclName());
2573 if (NTTPType.isNull()) {
2574 Info.Param = makeTemplateParameter(Param);
2575 // FIXME: These template arguments are temporary. Free them!
2576 Info.reset(TemplateArgumentList::CreateCopy(Context,
2577 Builder.data(),
2578 Builder.size()));
2579 return TDK_SubstitutionFailure;
2580 }
2581 }
2582 }
2583
2584 if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2585 FunctionTemplate, NTTPType, 0, Info,
2586 true, Builder)) {
2587 Info.Param = makeTemplateParameter(Param);
2588 // FIXME: These template arguments are temporary. Free them!
2589 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2590 Builder.size()));
2591 return TDK_SubstitutionFailure;
2592 }
2593
2594 continue;
2595 }
2596
2597 // C++0x [temp.arg.explicit]p3:
2598 // A trailing template parameter pack (14.5.3) not otherwise deduced will
2599 // be deduced to an empty sequence of template arguments.
2600 // FIXME: Where did the word "trailing" come from?
2601 if (Param->isTemplateParameterPack()) {
2602 // We may have had explicitly-specified template arguments for this
2603 // template parameter pack. If so, our empty deduction extends the
2604 // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2605 const TemplateArgument *ExplicitArgs;
2606 unsigned NumExplicitArgs;
2607 if (CurrentInstantiationScope &&
2608 CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2609 &NumExplicitArgs)
2610 == Param)
2611 Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2612 else
2613 Builder.push_back(TemplateArgument(0, 0));
2614
2615 continue;
2616 }
2617
2618 // Substitute into the default template argument, if available.
2619 TemplateArgumentLoc DefArg
2620 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2621 FunctionTemplate->getLocation(),
2622 FunctionTemplate->getSourceRange().getEnd(),
2623 Param,
2624 Builder);
2625
2626 // If there was no default argument, deduction is incomplete.
2627 if (DefArg.getArgument().isNull()) {
2628 Info.Param = makeTemplateParameter(
2629 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2630 return TDK_Incomplete;
2631 }
2632
2633 // Check whether we can actually use the default argument.
2634 if (CheckTemplateArgument(Param, DefArg,
2635 FunctionTemplate,
2636 FunctionTemplate->getLocation(),
2637 FunctionTemplate->getSourceRange().getEnd(),
2638 0, Builder,
2639 CTAK_Specified)) {
2640 Info.Param = makeTemplateParameter(
2641 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2642 // FIXME: These template arguments are temporary. Free them!
2643 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2644 Builder.size()));
2645 return TDK_SubstitutionFailure;
2646 }
2647
2648 // If we get here, we successfully used the default template argument.
2649 }
2650
2651 // Form the template argument list from the deduced template arguments.
2652 TemplateArgumentList *DeducedArgumentList
2653 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2654 Info.reset(DeducedArgumentList);
2655
2656 // Substitute the deduced template arguments into the function template
2657 // declaration to produce the function template specialization.
2658 DeclContext *Owner = FunctionTemplate->getDeclContext();
2659 if (FunctionTemplate->getFriendObjectKind())
2660 Owner = FunctionTemplate->getLexicalDeclContext();
2661 Specialization = cast_or_null<FunctionDecl>(
2662 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2663 MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2664 if (!Specialization || Specialization->isInvalidDecl())
2665 return TDK_SubstitutionFailure;
2666
2667 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2668 FunctionTemplate->getCanonicalDecl());
2669
2670 // If the template argument list is owned by the function template
2671 // specialization, release it.
2672 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2673 !Trap.hasErrorOccurred())
2674 Info.take();
2675
2676 // There may have been an error that did not prevent us from constructing a
2677 // declaration. Mark the declaration invalid and return with a substitution
2678 // failure.
2679 if (Trap.hasErrorOccurred()) {
2680 Specialization->setInvalidDecl(true);
2681 return TDK_SubstitutionFailure;
2682 }
2683
2684 if (OriginalCallArgs) {
2685 // C++ [temp.deduct.call]p4:
2686 // In general, the deduction process attempts to find template argument
2687 // values that will make the deduced A identical to A (after the type A
2688 // is transformed as described above). [...]
2689 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2690 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2691 unsigned ParamIdx = OriginalArg.ArgIdx;
2692
2693 if (ParamIdx >= Specialization->getNumParams())
2694 continue;
2695
2696 QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2697 if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2698 return Sema::TDK_SubstitutionFailure;
2699 }
2700 }
2701
2702 // If we suppressed any diagnostics while performing template argument
2703 // deduction, and if we haven't already instantiated this declaration,
2704 // keep track of these diagnostics. They'll be emitted if this specialization
2705 // is actually used.
2706 if (Info.diag_begin() != Info.diag_end()) {
2707 llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
2708 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2709 if (Pos == SuppressedDiagnostics.end())
2710 SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2711 .append(Info.diag_begin(), Info.diag_end());
2712 }
2713
2714 return TDK_Success;
2715 }
2716
2717 /// Gets the type of a function for template-argument-deducton
2718 /// purposes when it's considered as part of an overload set.
GetTypeOfFunction(ASTContext & Context,const OverloadExpr::FindResult & R,FunctionDecl * Fn)2719 static QualType GetTypeOfFunction(ASTContext &Context,
2720 const OverloadExpr::FindResult &R,
2721 FunctionDecl *Fn) {
2722 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2723 if (Method->isInstance()) {
2724 // An instance method that's referenced in a form that doesn't
2725 // look like a member pointer is just invalid.
2726 if (!R.HasFormOfMemberPointer) return QualType();
2727
2728 return Context.getMemberPointerType(Fn->getType(),
2729 Context.getTypeDeclType(Method->getParent()).getTypePtr());
2730 }
2731
2732 if (!R.IsAddressOfOperand) return Fn->getType();
2733 return Context.getPointerType(Fn->getType());
2734 }
2735
2736 /// Apply the deduction rules for overload sets.
2737 ///
2738 /// \return the null type if this argument should be treated as an
2739 /// undeduced context
2740 static QualType
ResolveOverloadForDeduction(Sema & S,TemplateParameterList * TemplateParams,Expr * Arg,QualType ParamType,bool ParamWasReference)2741 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2742 Expr *Arg, QualType ParamType,
2743 bool ParamWasReference) {
2744
2745 OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2746
2747 OverloadExpr *Ovl = R.Expression;
2748
2749 // C++0x [temp.deduct.call]p4
2750 unsigned TDF = 0;
2751 if (ParamWasReference)
2752 TDF |= TDF_ParamWithReferenceType;
2753 if (R.IsAddressOfOperand)
2754 TDF |= TDF_IgnoreQualifiers;
2755
2756 // C++0x [temp.deduct.call]p6:
2757 // When P is a function type, pointer to function type, or pointer
2758 // to member function type:
2759
2760 if (!ParamType->isFunctionType() &&
2761 !ParamType->isFunctionPointerType() &&
2762 !ParamType->isMemberFunctionPointerType()) {
2763 if (Ovl->hasExplicitTemplateArgs()) {
2764 // But we can still look for an explicit specialization.
2765 if (FunctionDecl *ExplicitSpec
2766 = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2767 return GetTypeOfFunction(S.Context, R, ExplicitSpec);
2768 }
2769
2770 return QualType();
2771 }
2772
2773 // Gather the explicit template arguments, if any.
2774 TemplateArgumentListInfo ExplicitTemplateArgs;
2775 if (Ovl->hasExplicitTemplateArgs())
2776 Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
2777 QualType Match;
2778 for (UnresolvedSetIterator I = Ovl->decls_begin(),
2779 E = Ovl->decls_end(); I != E; ++I) {
2780 NamedDecl *D = (*I)->getUnderlyingDecl();
2781
2782 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
2783 // - If the argument is an overload set containing one or more
2784 // function templates, the parameter is treated as a
2785 // non-deduced context.
2786 if (!Ovl->hasExplicitTemplateArgs())
2787 return QualType();
2788
2789 // Otherwise, see if we can resolve a function type
2790 FunctionDecl *Specialization = 0;
2791 TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2792 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
2793 Specialization, Info))
2794 continue;
2795
2796 D = Specialization;
2797 }
2798
2799 FunctionDecl *Fn = cast<FunctionDecl>(D);
2800 QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
2801 if (ArgType.isNull()) continue;
2802
2803 // Function-to-pointer conversion.
2804 if (!ParamWasReference && ParamType->isPointerType() &&
2805 ArgType->isFunctionType())
2806 ArgType = S.Context.getPointerType(ArgType);
2807
2808 // - If the argument is an overload set (not containing function
2809 // templates), trial argument deduction is attempted using each
2810 // of the members of the set. If deduction succeeds for only one
2811 // of the overload set members, that member is used as the
2812 // argument value for the deduction. If deduction succeeds for
2813 // more than one member of the overload set the parameter is
2814 // treated as a non-deduced context.
2815
2816 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2817 // Type deduction is done independently for each P/A pair, and
2818 // the deduced template argument values are then combined.
2819 // So we do not reject deductions which were made elsewhere.
2820 SmallVector<DeducedTemplateArgument, 8>
2821 Deduced(TemplateParams->size());
2822 TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2823 Sema::TemplateDeductionResult Result
2824 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2825 ArgType, Info, Deduced, TDF);
2826 if (Result) continue;
2827 if (!Match.isNull()) return QualType();
2828 Match = ArgType;
2829 }
2830
2831 return Match;
2832 }
2833
2834 /// \brief Perform the adjustments to the parameter and argument types
2835 /// described in C++ [temp.deduct.call].
2836 ///
2837 /// \returns true if the caller should not attempt to perform any template
2838 /// argument deduction based on this P/A pair.
AdjustFunctionParmAndArgTypesForDeduction(Sema & S,TemplateParameterList * TemplateParams,QualType & ParamType,QualType & ArgType,Expr * Arg,unsigned & TDF)2839 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2840 TemplateParameterList *TemplateParams,
2841 QualType &ParamType,
2842 QualType &ArgType,
2843 Expr *Arg,
2844 unsigned &TDF) {
2845 // C++0x [temp.deduct.call]p3:
2846 // If P is a cv-qualified type, the top level cv-qualifiers of P's type
2847 // are ignored for type deduction.
2848 if (ParamType.hasQualifiers())
2849 ParamType = ParamType.getUnqualifiedType();
2850 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2851 if (ParamRefType) {
2852 QualType PointeeType = ParamRefType->getPointeeType();
2853
2854 // If the argument has incomplete array type, try to complete it's type.
2855 if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
2856 ArgType = Arg->getType();
2857
2858 // [C++0x] If P is an rvalue reference to a cv-unqualified
2859 // template parameter and the argument is an lvalue, the type
2860 // "lvalue reference to A" is used in place of A for type
2861 // deduction.
2862 if (isa<RValueReferenceType>(ParamType)) {
2863 if (!PointeeType.getQualifiers() &&
2864 isa<TemplateTypeParmType>(PointeeType) &&
2865 Arg->Classify(S.Context).isLValue() &&
2866 Arg->getType() != S.Context.OverloadTy &&
2867 Arg->getType() != S.Context.BoundMemberTy)
2868 ArgType = S.Context.getLValueReferenceType(ArgType);
2869 }
2870
2871 // [...] If P is a reference type, the type referred to by P is used
2872 // for type deduction.
2873 ParamType = PointeeType;
2874 }
2875
2876 // Overload sets usually make this parameter an undeduced
2877 // context, but there are sometimes special circumstances.
2878 if (ArgType == S.Context.OverloadTy) {
2879 ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2880 Arg, ParamType,
2881 ParamRefType != 0);
2882 if (ArgType.isNull())
2883 return true;
2884 }
2885
2886 if (ParamRefType) {
2887 // C++0x [temp.deduct.call]p3:
2888 // [...] If P is of the form T&&, where T is a template parameter, and
2889 // the argument is an lvalue, the type A& is used in place of A for
2890 // type deduction.
2891 if (ParamRefType->isRValueReferenceType() &&
2892 ParamRefType->getAs<TemplateTypeParmType>() &&
2893 Arg->isLValue())
2894 ArgType = S.Context.getLValueReferenceType(ArgType);
2895 } else {
2896 // C++ [temp.deduct.call]p2:
2897 // If P is not a reference type:
2898 // - If A is an array type, the pointer type produced by the
2899 // array-to-pointer standard conversion (4.2) is used in place of
2900 // A for type deduction; otherwise,
2901 if (ArgType->isArrayType())
2902 ArgType = S.Context.getArrayDecayedType(ArgType);
2903 // - If A is a function type, the pointer type produced by the
2904 // function-to-pointer standard conversion (4.3) is used in place
2905 // of A for type deduction; otherwise,
2906 else if (ArgType->isFunctionType())
2907 ArgType = S.Context.getPointerType(ArgType);
2908 else {
2909 // - If A is a cv-qualified type, the top level cv-qualifiers of A's
2910 // type are ignored for type deduction.
2911 ArgType = ArgType.getUnqualifiedType();
2912 }
2913 }
2914
2915 // C++0x [temp.deduct.call]p4:
2916 // In general, the deduction process attempts to find template argument
2917 // values that will make the deduced A identical to A (after the type A
2918 // is transformed as described above). [...]
2919 TDF = TDF_SkipNonDependent;
2920
2921 // - If the original P is a reference type, the deduced A (i.e., the
2922 // type referred to by the reference) can be more cv-qualified than
2923 // the transformed A.
2924 if (ParamRefType)
2925 TDF |= TDF_ParamWithReferenceType;
2926 // - The transformed A can be another pointer or pointer to member
2927 // type that can be converted to the deduced A via a qualification
2928 // conversion (4.4).
2929 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2930 ArgType->isObjCObjectPointerType())
2931 TDF |= TDF_IgnoreQualifiers;
2932 // - If P is a class and P has the form simple-template-id, then the
2933 // transformed A can be a derived class of the deduced A. Likewise,
2934 // if P is a pointer to a class of the form simple-template-id, the
2935 // transformed A can be a pointer to a derived class pointed to by
2936 // the deduced A.
2937 if (isSimpleTemplateIdType(ParamType) ||
2938 (isa<PointerType>(ParamType) &&
2939 isSimpleTemplateIdType(
2940 ParamType->getAs<PointerType>()->getPointeeType())))
2941 TDF |= TDF_DerivedClass;
2942
2943 return false;
2944 }
2945
2946 static bool hasDeducibleTemplateParameters(Sema &S,
2947 FunctionTemplateDecl *FunctionTemplate,
2948 QualType T);
2949
2950 /// \brief Perform template argument deduction by matching a parameter type
2951 /// against a single expression, where the expression is an element of
2952 /// an initializer list that was originally matched against the argument
2953 /// type.
2954 static Sema::TemplateDeductionResult
DeduceTemplateArgumentByListElement(Sema & S,TemplateParameterList * TemplateParams,QualType ParamType,Expr * Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF)2955 DeduceTemplateArgumentByListElement(Sema &S,
2956 TemplateParameterList *TemplateParams,
2957 QualType ParamType, Expr *Arg,
2958 TemplateDeductionInfo &Info,
2959 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2960 unsigned TDF) {
2961 // Handle the case where an init list contains another init list as the
2962 // element.
2963 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
2964 QualType X;
2965 if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
2966 return Sema::TDK_Success; // Just ignore this expression.
2967
2968 // Recurse down into the init list.
2969 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
2970 if (Sema::TemplateDeductionResult Result =
2971 DeduceTemplateArgumentByListElement(S, TemplateParams, X,
2972 ILE->getInit(i),
2973 Info, Deduced, TDF))
2974 return Result;
2975 }
2976 return Sema::TDK_Success;
2977 }
2978
2979 // For all other cases, just match by type.
2980 QualType ArgType = Arg->getType();
2981 if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
2982 ArgType, Arg, TDF))
2983 return Sema::TDK_FailedOverloadResolution;
2984 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2985 ArgType, Info, Deduced, TDF);
2986 }
2987
2988 /// \brief Perform template argument deduction from a function call
2989 /// (C++ [temp.deduct.call]).
2990 ///
2991 /// \param FunctionTemplate the function template for which we are performing
2992 /// template argument deduction.
2993 ///
2994 /// \param ExplicitTemplateArgs the explicit template arguments provided
2995 /// for this call.
2996 ///
2997 /// \param Args the function call arguments
2998 ///
2999 /// \param Name the name of the function being called. This is only significant
3000 /// when the function template is a conversion function template, in which
3001 /// case this routine will also perform template argument deduction based on
3002 /// the function to which
3003 ///
3004 /// \param Specialization if template argument deduction was successful,
3005 /// this will be set to the function template specialization produced by
3006 /// template argument deduction.
3007 ///
3008 /// \param Info the argument will be updated to provide additional information
3009 /// about template argument deduction.
3010 ///
3011 /// \returns the result of template argument deduction.
3012 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3013 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3014 TemplateArgumentListInfo *ExplicitTemplateArgs,
3015 llvm::ArrayRef<Expr *> Args,
3016 FunctionDecl *&Specialization,
3017 TemplateDeductionInfo &Info) {
3018 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3019
3020 // C++ [temp.deduct.call]p1:
3021 // Template argument deduction is done by comparing each function template
3022 // parameter type (call it P) with the type of the corresponding argument
3023 // of the call (call it A) as described below.
3024 unsigned CheckArgs = Args.size();
3025 if (Args.size() < Function->getMinRequiredArguments())
3026 return TDK_TooFewArguments;
3027 else if (Args.size() > Function->getNumParams()) {
3028 const FunctionProtoType *Proto
3029 = Function->getType()->getAs<FunctionProtoType>();
3030 if (Proto->isTemplateVariadic())
3031 /* Do nothing */;
3032 else if (Proto->isVariadic())
3033 CheckArgs = Function->getNumParams();
3034 else
3035 return TDK_TooManyArguments;
3036 }
3037
3038 // The types of the parameters from which we will perform template argument
3039 // deduction.
3040 LocalInstantiationScope InstScope(*this);
3041 TemplateParameterList *TemplateParams
3042 = FunctionTemplate->getTemplateParameters();
3043 SmallVector<DeducedTemplateArgument, 4> Deduced;
3044 SmallVector<QualType, 4> ParamTypes;
3045 unsigned NumExplicitlySpecified = 0;
3046 if (ExplicitTemplateArgs) {
3047 TemplateDeductionResult Result =
3048 SubstituteExplicitTemplateArguments(FunctionTemplate,
3049 *ExplicitTemplateArgs,
3050 Deduced,
3051 ParamTypes,
3052 0,
3053 Info);
3054 if (Result)
3055 return Result;
3056
3057 NumExplicitlySpecified = Deduced.size();
3058 } else {
3059 // Just fill in the parameter types from the function declaration.
3060 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3061 ParamTypes.push_back(Function->getParamDecl(I)->getType());
3062 }
3063
3064 // Deduce template arguments from the function parameters.
3065 Deduced.resize(TemplateParams->size());
3066 unsigned ArgIdx = 0;
3067 SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3068 for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
3069 ParamIdx != NumParams; ++ParamIdx) {
3070 QualType OrigParamType = ParamTypes[ParamIdx];
3071 QualType ParamType = OrigParamType;
3072
3073 const PackExpansionType *ParamExpansion
3074 = dyn_cast<PackExpansionType>(ParamType);
3075 if (!ParamExpansion) {
3076 // Simple case: matching a function parameter to a function argument.
3077 if (ArgIdx >= CheckArgs)
3078 break;
3079
3080 Expr *Arg = Args[ArgIdx++];
3081 QualType ArgType = Arg->getType();
3082
3083 unsigned TDF = 0;
3084 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3085 ParamType, ArgType, Arg,
3086 TDF))
3087 continue;
3088
3089 // If we have nothing to deduce, we're done.
3090 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3091 continue;
3092
3093 // If the argument is an initializer list ...
3094 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3095 // ... then the parameter is an undeduced context, unless the parameter
3096 // type is (reference to cv) std::initializer_list<P'>, in which case
3097 // deduction is done for each element of the initializer list, and the
3098 // result is the deduced type if it's the same for all elements.
3099 QualType X;
3100 // Removing references was already done.
3101 if (!isStdInitializerList(ParamType, &X))
3102 continue;
3103
3104 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3105 if (TemplateDeductionResult Result =
3106 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3107 ILE->getInit(i),
3108 Info, Deduced, TDF))
3109 return Result;
3110 }
3111 // Don't track the argument type, since an initializer list has none.
3112 continue;
3113 }
3114
3115 // Keep track of the argument type and corresponding parameter index,
3116 // so we can check for compatibility between the deduced A and A.
3117 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3118 ArgType));
3119
3120 if (TemplateDeductionResult Result
3121 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3122 ParamType, ArgType,
3123 Info, Deduced, TDF))
3124 return Result;
3125
3126 continue;
3127 }
3128
3129 // C++0x [temp.deduct.call]p1:
3130 // For a function parameter pack that occurs at the end of the
3131 // parameter-declaration-list, the type A of each remaining argument of
3132 // the call is compared with the type P of the declarator-id of the
3133 // function parameter pack. Each comparison deduces template arguments
3134 // for subsequent positions in the template parameter packs expanded by
3135 // the function parameter pack. For a function parameter pack that does
3136 // not occur at the end of the parameter-declaration-list, the type of
3137 // the parameter pack is a non-deduced context.
3138 if (ParamIdx + 1 < NumParams)
3139 break;
3140
3141 QualType ParamPattern = ParamExpansion->getPattern();
3142 SmallVector<unsigned, 2> PackIndices;
3143 {
3144 llvm::SmallBitVector SawIndices(TemplateParams->size());
3145 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3146 collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
3147 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
3148 unsigned Depth, Index;
3149 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
3150 if (Depth == 0 && !SawIndices[Index]) {
3151 SawIndices[Index] = true;
3152 PackIndices.push_back(Index);
3153 }
3154 }
3155 }
3156 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
3157
3158 // Keep track of the deduced template arguments for each parameter pack
3159 // expanded by this pack expansion (the outer index) and for each
3160 // template argument (the inner SmallVectors).
3161 SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
3162 NewlyDeducedPacks(PackIndices.size());
3163 SmallVector<DeducedTemplateArgument, 2>
3164 SavedPacks(PackIndices.size());
3165 PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3166 NewlyDeducedPacks);
3167 bool HasAnyArguments = false;
3168 for (; ArgIdx < Args.size(); ++ArgIdx) {
3169 HasAnyArguments = true;
3170
3171 QualType OrigParamType = ParamPattern;
3172 ParamType = OrigParamType;
3173 Expr *Arg = Args[ArgIdx];
3174 QualType ArgType = Arg->getType();
3175
3176 unsigned TDF = 0;
3177 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3178 ParamType, ArgType, Arg,
3179 TDF)) {
3180 // We can't actually perform any deduction for this argument, so stop
3181 // deduction at this point.
3182 ++ArgIdx;
3183 break;
3184 }
3185
3186 // As above, initializer lists need special handling.
3187 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3188 QualType X;
3189 if (!isStdInitializerList(ParamType, &X)) {
3190 ++ArgIdx;
3191 break;
3192 }
3193
3194 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3195 if (TemplateDeductionResult Result =
3196 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3197 ILE->getInit(i)->getType(),
3198 Info, Deduced, TDF))
3199 return Result;
3200 }
3201 } else {
3202
3203 // Keep track of the argument type and corresponding argument index,
3204 // so we can check for compatibility between the deduced A and A.
3205 if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3206 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3207 ArgType));
3208
3209 if (TemplateDeductionResult Result
3210 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3211 ParamType, ArgType, Info,
3212 Deduced, TDF))
3213 return Result;
3214 }
3215
3216 // Capture the deduced template arguments for each parameter pack expanded
3217 // by this pack expansion, add them to the list of arguments we've deduced
3218 // for that pack, then clear out the deduced argument.
3219 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3220 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3221 if (!DeducedArg.isNull()) {
3222 NewlyDeducedPacks[I].push_back(DeducedArg);
3223 DeducedArg = DeducedTemplateArgument();
3224 }
3225 }
3226 }
3227
3228 // Build argument packs for each of the parameter packs expanded by this
3229 // pack expansion.
3230 if (Sema::TemplateDeductionResult Result
3231 = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3232 Deduced, PackIndices, SavedPacks,
3233 NewlyDeducedPacks, Info))
3234 return Result;
3235
3236 // After we've matching against a parameter pack, we're done.
3237 break;
3238 }
3239
3240 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3241 NumExplicitlySpecified,
3242 Specialization, Info, &OriginalCallArgs);
3243 }
3244
3245 /// \brief Deduce template arguments when taking the address of a function
3246 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3247 /// a template.
3248 ///
3249 /// \param FunctionTemplate the function template for which we are performing
3250 /// template argument deduction.
3251 ///
3252 /// \param ExplicitTemplateArgs the explicitly-specified template
3253 /// arguments.
3254 ///
3255 /// \param ArgFunctionType the function type that will be used as the
3256 /// "argument" type (A) when performing template argument deduction from the
3257 /// function template's function type. This type may be NULL, if there is no
3258 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3259 ///
3260 /// \param Specialization if template argument deduction was successful,
3261 /// this will be set to the function template specialization produced by
3262 /// template argument deduction.
3263 ///
3264 /// \param Info the argument will be updated to provide additional information
3265 /// about template argument deduction.
3266 ///
3267 /// \returns the result of template argument deduction.
3268 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ArgFunctionType,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3269 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3270 TemplateArgumentListInfo *ExplicitTemplateArgs,
3271 QualType ArgFunctionType,
3272 FunctionDecl *&Specialization,
3273 TemplateDeductionInfo &Info) {
3274 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3275 TemplateParameterList *TemplateParams
3276 = FunctionTemplate->getTemplateParameters();
3277 QualType FunctionType = Function->getType();
3278
3279 // Substitute any explicit template arguments.
3280 LocalInstantiationScope InstScope(*this);
3281 SmallVector<DeducedTemplateArgument, 4> Deduced;
3282 unsigned NumExplicitlySpecified = 0;
3283 SmallVector<QualType, 4> ParamTypes;
3284 if (ExplicitTemplateArgs) {
3285 if (TemplateDeductionResult Result
3286 = SubstituteExplicitTemplateArguments(FunctionTemplate,
3287 *ExplicitTemplateArgs,
3288 Deduced, ParamTypes,
3289 &FunctionType, Info))
3290 return Result;
3291
3292 NumExplicitlySpecified = Deduced.size();
3293 }
3294
3295 // Unevaluated SFINAE context.
3296 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3297 SFINAETrap Trap(*this);
3298
3299 Deduced.resize(TemplateParams->size());
3300
3301 if (!ArgFunctionType.isNull()) {
3302 // Deduce template arguments from the function type.
3303 if (TemplateDeductionResult Result
3304 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3305 FunctionType, ArgFunctionType, Info,
3306 Deduced, TDF_TopLevelParameterTypeList))
3307 return Result;
3308 }
3309
3310 if (TemplateDeductionResult Result
3311 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3312 NumExplicitlySpecified,
3313 Specialization, Info))
3314 return Result;
3315
3316 // If the requested function type does not match the actual type of the
3317 // specialization, template argument deduction fails.
3318 if (!ArgFunctionType.isNull() &&
3319 !Context.hasSameType(ArgFunctionType, Specialization->getType()))
3320 return TDK_NonDeducedMismatch;
3321
3322 return TDK_Success;
3323 }
3324
3325 /// \brief Deduce template arguments for a templated conversion
3326 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
3327 /// conversion function template specialization.
3328 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,QualType ToType,CXXConversionDecl * & Specialization,TemplateDeductionInfo & Info)3329 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3330 QualType ToType,
3331 CXXConversionDecl *&Specialization,
3332 TemplateDeductionInfo &Info) {
3333 CXXConversionDecl *Conv
3334 = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3335 QualType FromType = Conv->getConversionType();
3336
3337 // Canonicalize the types for deduction.
3338 QualType P = Context.getCanonicalType(FromType);
3339 QualType A = Context.getCanonicalType(ToType);
3340
3341 // C++0x [temp.deduct.conv]p2:
3342 // If P is a reference type, the type referred to by P is used for
3343 // type deduction.
3344 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3345 P = PRef->getPointeeType();
3346
3347 // C++0x [temp.deduct.conv]p4:
3348 // [...] If A is a reference type, the type referred to by A is used
3349 // for type deduction.
3350 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3351 A = ARef->getPointeeType().getUnqualifiedType();
3352 // C++ [temp.deduct.conv]p3:
3353 //
3354 // If A is not a reference type:
3355 else {
3356 assert(!A->isReferenceType() && "Reference types were handled above");
3357
3358 // - If P is an array type, the pointer type produced by the
3359 // array-to-pointer standard conversion (4.2) is used in place
3360 // of P for type deduction; otherwise,
3361 if (P->isArrayType())
3362 P = Context.getArrayDecayedType(P);
3363 // - If P is a function type, the pointer type produced by the
3364 // function-to-pointer standard conversion (4.3) is used in
3365 // place of P for type deduction; otherwise,
3366 else if (P->isFunctionType())
3367 P = Context.getPointerType(P);
3368 // - If P is a cv-qualified type, the top level cv-qualifiers of
3369 // P's type are ignored for type deduction.
3370 else
3371 P = P.getUnqualifiedType();
3372
3373 // C++0x [temp.deduct.conv]p4:
3374 // If A is a cv-qualified type, the top level cv-qualifiers of A's
3375 // type are ignored for type deduction. If A is a reference type, the type
3376 // referred to by A is used for type deduction.
3377 A = A.getUnqualifiedType();
3378 }
3379
3380 // Unevaluated SFINAE context.
3381 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3382 SFINAETrap Trap(*this);
3383
3384 // C++ [temp.deduct.conv]p1:
3385 // Template argument deduction is done by comparing the return
3386 // type of the template conversion function (call it P) with the
3387 // type that is required as the result of the conversion (call it
3388 // A) as described in 14.8.2.4.
3389 TemplateParameterList *TemplateParams
3390 = FunctionTemplate->getTemplateParameters();
3391 SmallVector<DeducedTemplateArgument, 4> Deduced;
3392 Deduced.resize(TemplateParams->size());
3393
3394 // C++0x [temp.deduct.conv]p4:
3395 // In general, the deduction process attempts to find template
3396 // argument values that will make the deduced A identical to
3397 // A. However, there are two cases that allow a difference:
3398 unsigned TDF = 0;
3399 // - If the original A is a reference type, A can be more
3400 // cv-qualified than the deduced A (i.e., the type referred to
3401 // by the reference)
3402 if (ToType->isReferenceType())
3403 TDF |= TDF_ParamWithReferenceType;
3404 // - The deduced A can be another pointer or pointer to member
3405 // type that can be converted to A via a qualification
3406 // conversion.
3407 //
3408 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3409 // both P and A are pointers or member pointers. In this case, we
3410 // just ignore cv-qualifiers completely).
3411 if ((P->isPointerType() && A->isPointerType()) ||
3412 (P->isMemberPointerType() && A->isMemberPointerType()))
3413 TDF |= TDF_IgnoreQualifiers;
3414 if (TemplateDeductionResult Result
3415 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3416 P, A, Info, Deduced, TDF))
3417 return Result;
3418
3419 // Finish template argument deduction.
3420 LocalInstantiationScope InstScope(*this);
3421 FunctionDecl *Spec = 0;
3422 TemplateDeductionResult Result
3423 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3424 Info);
3425 Specialization = cast_or_null<CXXConversionDecl>(Spec);
3426 return Result;
3427 }
3428
3429 /// \brief Deduce template arguments for a function template when there is
3430 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3431 ///
3432 /// \param FunctionTemplate the function template for which we are performing
3433 /// template argument deduction.
3434 ///
3435 /// \param ExplicitTemplateArgs the explicitly-specified template
3436 /// arguments.
3437 ///
3438 /// \param Specialization if template argument deduction was successful,
3439 /// this will be set to the function template specialization produced by
3440 /// template argument deduction.
3441 ///
3442 /// \param Info the argument will be updated to provide additional information
3443 /// about template argument deduction.
3444 ///
3445 /// \returns the result of template argument deduction.
3446 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3447 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3448 TemplateArgumentListInfo *ExplicitTemplateArgs,
3449 FunctionDecl *&Specialization,
3450 TemplateDeductionInfo &Info) {
3451 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3452 QualType(), Specialization, Info);
3453 }
3454
3455 namespace {
3456 /// Substitute the 'auto' type specifier within a type for a given replacement
3457 /// type.
3458 class SubstituteAutoTransform :
3459 public TreeTransform<SubstituteAutoTransform> {
3460 QualType Replacement;
3461 public:
SubstituteAutoTransform(Sema & SemaRef,QualType Replacement)3462 SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3463 TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3464 }
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)3465 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3466 // If we're building the type pattern to deduce against, don't wrap the
3467 // substituted type in an AutoType. Certain template deduction rules
3468 // apply only when a template type parameter appears directly (and not if
3469 // the parameter is found through desugaring). For instance:
3470 // auto &&lref = lvalue;
3471 // must transform into "rvalue reference to T" not "rvalue reference to
3472 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3473 if (isa<TemplateTypeParmType>(Replacement)) {
3474 QualType Result = Replacement;
3475 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
3476 NewTL.setNameLoc(TL.getNameLoc());
3477 return Result;
3478 } else {
3479 QualType Result = RebuildAutoType(Replacement);
3480 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3481 NewTL.setNameLoc(TL.getNameLoc());
3482 return Result;
3483 }
3484 }
3485
TransformLambdaExpr(LambdaExpr * E)3486 ExprResult TransformLambdaExpr(LambdaExpr *E) {
3487 // Lambdas never need to be transformed.
3488 return E;
3489 }
3490 };
3491
3492 /// Determine whether the specified type (which contains an 'auto' type
3493 /// specifier) is dependent. This is not trivial, because the 'auto' specifier
3494 /// itself claims to be type-dependent.
isDependentAutoType(QualType Ty)3495 bool isDependentAutoType(QualType Ty) {
3496 while (1) {
3497 QualType Pointee = Ty->getPointeeType();
3498 if (!Pointee.isNull()) {
3499 Ty = Pointee;
3500 } else if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()){
3501 if (MPT->getClass()->isDependentType())
3502 return true;
3503 Ty = MPT->getPointeeType();
3504 } else if (const FunctionProtoType *FPT = Ty->getAs<FunctionProtoType>()){
3505 for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
3506 E = FPT->arg_type_end();
3507 I != E; ++I)
3508 if ((*I)->isDependentType())
3509 return true;
3510 Ty = FPT->getResultType();
3511 } else if (Ty->isDependentSizedArrayType()) {
3512 return true;
3513 } else if (const ArrayType *AT = Ty->getAsArrayTypeUnsafe()) {
3514 Ty = AT->getElementType();
3515 } else if (Ty->getAs<DependentSizedExtVectorType>()) {
3516 return true;
3517 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3518 Ty = VT->getElementType();
3519 } else {
3520 break;
3521 }
3522 }
3523 assert(Ty->getAs<AutoType>() && "didn't find 'auto' in auto type");
3524 return false;
3525 }
3526 }
3527
3528 /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
3529 ///
3530 /// \param Type the type pattern using the auto type-specifier.
3531 ///
3532 /// \param Init the initializer for the variable whose type is to be deduced.
3533 ///
3534 /// \param Result if type deduction was successful, this will be set to the
3535 /// deduced type. This may still contain undeduced autos if the type is
3536 /// dependent. This will be set to null if deduction succeeded, but auto
3537 /// substitution failed; the appropriate diagnostic will already have been
3538 /// produced in that case.
3539 Sema::DeduceAutoResult
DeduceAutoType(TypeSourceInfo * Type,Expr * & Init,TypeSourceInfo * & Result)3540 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
3541 TypeSourceInfo *&Result) {
3542 if (Init->getType()->isNonOverloadPlaceholderType()) {
3543 ExprResult result = CheckPlaceholderExpr(Init);
3544 if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed;
3545 Init = result.take();
3546 }
3547
3548 if (Init->isTypeDependent() || isDependentAutoType(Type->getType())) {
3549 Result = Type;
3550 return DAR_Succeeded;
3551 }
3552
3553 SourceLocation Loc = Init->getExprLoc();
3554
3555 LocalInstantiationScope InstScope(*this);
3556
3557 // Build template<class TemplParam> void Func(FuncParam);
3558 TemplateTypeParmDecl *TemplParam =
3559 TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3560 false, false);
3561 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3562 NamedDecl *TemplParamPtr = TemplParam;
3563 FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3564 Loc);
3565
3566 TypeSourceInfo *FuncParamInfo =
3567 SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
3568 assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
3569 QualType FuncParam = FuncParamInfo->getType();
3570
3571 // Deduce type of TemplParam in Func(Init)
3572 SmallVector<DeducedTemplateArgument, 1> Deduced;
3573 Deduced.resize(1);
3574 QualType InitType = Init->getType();
3575 unsigned TDF = 0;
3576
3577 TemplateDeductionInfo Info(Context, Loc);
3578
3579 InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
3580 if (InitList) {
3581 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3582 if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
3583 TemplArg,
3584 InitList->getInit(i),
3585 Info, Deduced, TDF))
3586 return DAR_Failed;
3587 }
3588 } else {
3589 if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3590 FuncParam, InitType, Init,
3591 TDF))
3592 return DAR_Failed;
3593
3594 if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3595 InitType, Info, Deduced, TDF))
3596 return DAR_Failed;
3597 }
3598
3599 QualType DeducedType = Deduced[0].getAsType();
3600 if (DeducedType.isNull())
3601 return DAR_Failed;
3602
3603 if (InitList) {
3604 DeducedType = BuildStdInitializerList(DeducedType, Loc);
3605 if (DeducedType.isNull())
3606 return DAR_FailedAlreadyDiagnosed;
3607 }
3608
3609 Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
3610
3611 // Check that the deduced argument type is compatible with the original
3612 // argument type per C++ [temp.deduct.call]p4.
3613 if (!InitList && Result &&
3614 CheckOriginalCallArgDeduction(*this,
3615 Sema::OriginalCallArg(FuncParam,0,InitType),
3616 Result->getType())) {
3617 Result = 0;
3618 return DAR_Failed;
3619 }
3620
3621 return DAR_Succeeded;
3622 }
3623
DiagnoseAutoDeductionFailure(VarDecl * VDecl,Expr * Init)3624 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
3625 if (isa<InitListExpr>(Init))
3626 Diag(VDecl->getLocation(),
3627 diag::err_auto_var_deduction_failure_from_init_list)
3628 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
3629 else
3630 Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
3631 << VDecl->getDeclName() << VDecl->getType() << Init->getType()
3632 << Init->getSourceRange();
3633 }
3634
3635 static void
3636 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
3637 bool OnlyDeduced,
3638 unsigned Level,
3639 llvm::SmallBitVector &Deduced);
3640
3641 /// \brief If this is a non-static member function,
MaybeAddImplicitObjectParameterType(ASTContext & Context,CXXMethodDecl * Method,SmallVectorImpl<QualType> & ArgTypes)3642 static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
3643 CXXMethodDecl *Method,
3644 SmallVectorImpl<QualType> &ArgTypes) {
3645 if (Method->isStatic())
3646 return;
3647
3648 // C++ [over.match.funcs]p4:
3649 //
3650 // For non-static member functions, the type of the implicit
3651 // object parameter is
3652 // - "lvalue reference to cv X" for functions declared without a
3653 // ref-qualifier or with the & ref-qualifier
3654 // - "rvalue reference to cv X" for functions declared with the
3655 // && ref-qualifier
3656 //
3657 // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
3658 QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3659 ArgTy = Context.getQualifiedType(ArgTy,
3660 Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3661 ArgTy = Context.getLValueReferenceType(ArgTy);
3662 ArgTypes.push_back(ArgTy);
3663 }
3664
3665 /// \brief Determine whether the function template \p FT1 is at least as
3666 /// specialized as \p FT2.
isAtLeastAsSpecializedAs(Sema & S,SourceLocation Loc,FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)3667 static bool isAtLeastAsSpecializedAs(Sema &S,
3668 SourceLocation Loc,
3669 FunctionTemplateDecl *FT1,
3670 FunctionTemplateDecl *FT2,
3671 TemplatePartialOrderingContext TPOC,
3672 unsigned NumCallArguments,
3673 SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3674 FunctionDecl *FD1 = FT1->getTemplatedDecl();
3675 FunctionDecl *FD2 = FT2->getTemplatedDecl();
3676 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3677 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3678
3679 assert(Proto1 && Proto2 && "Function templates must have prototypes");
3680 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3681 SmallVector<DeducedTemplateArgument, 4> Deduced;
3682 Deduced.resize(TemplateParams->size());
3683
3684 // C++0x [temp.deduct.partial]p3:
3685 // The types used to determine the ordering depend on the context in which
3686 // the partial ordering is done:
3687 TemplateDeductionInfo Info(S.Context, Loc);
3688 CXXMethodDecl *Method1 = 0;
3689 CXXMethodDecl *Method2 = 0;
3690 bool IsNonStatic2 = false;
3691 bool IsNonStatic1 = false;
3692 unsigned Skip2 = 0;
3693 switch (TPOC) {
3694 case TPOC_Call: {
3695 // - In the context of a function call, the function parameter types are
3696 // used.
3697 Method1 = dyn_cast<CXXMethodDecl>(FD1);
3698 Method2 = dyn_cast<CXXMethodDecl>(FD2);
3699 IsNonStatic1 = Method1 && !Method1->isStatic();
3700 IsNonStatic2 = Method2 && !Method2->isStatic();
3701
3702 // C++0x [temp.func.order]p3:
3703 // [...] If only one of the function templates is a non-static
3704 // member, that function template is considered to have a new
3705 // first parameter inserted in its function parameter list. The
3706 // new parameter is of type "reference to cv A," where cv are
3707 // the cv-qualifiers of the function template (if any) and A is
3708 // the class of which the function template is a member.
3709 //
3710 // C++98/03 doesn't have this provision, so instead we drop the
3711 // first argument of the free function or static member, which
3712 // seems to match existing practice.
3713 SmallVector<QualType, 4> Args1;
3714 unsigned Skip1 = !S.getLangOpts().CPlusPlus0x &&
3715 IsNonStatic2 && !IsNonStatic1;
3716 if (S.getLangOpts().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
3717 MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
3718 Args1.insert(Args1.end(),
3719 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
3720
3721 SmallVector<QualType, 4> Args2;
3722 Skip2 = !S.getLangOpts().CPlusPlus0x &&
3723 IsNonStatic1 && !IsNonStatic2;
3724 if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3725 MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
3726 Args2.insert(Args2.end(),
3727 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
3728
3729 // C++ [temp.func.order]p5:
3730 // The presence of unused ellipsis and default arguments has no effect on
3731 // the partial ordering of function templates.
3732 if (Args1.size() > NumCallArguments)
3733 Args1.resize(NumCallArguments);
3734 if (Args2.size() > NumCallArguments)
3735 Args2.resize(NumCallArguments);
3736 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3737 Args1.data(), Args1.size(), Info, Deduced,
3738 TDF_None, /*PartialOrdering=*/true,
3739 RefParamComparisons))
3740 return false;
3741
3742 break;
3743 }
3744
3745 case TPOC_Conversion:
3746 // - In the context of a call to a conversion operator, the return types
3747 // of the conversion function templates are used.
3748 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3749 Proto2->getResultType(),
3750 Proto1->getResultType(),
3751 Info, Deduced, TDF_None,
3752 /*PartialOrdering=*/true,
3753 RefParamComparisons))
3754 return false;
3755 break;
3756
3757 case TPOC_Other:
3758 // - In other contexts (14.6.6.2) the function template's function type
3759 // is used.
3760 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3761 FD2->getType(), FD1->getType(),
3762 Info, Deduced, TDF_None,
3763 /*PartialOrdering=*/true,
3764 RefParamComparisons))
3765 return false;
3766 break;
3767 }
3768
3769 // C++0x [temp.deduct.partial]p11:
3770 // In most cases, all template parameters must have values in order for
3771 // deduction to succeed, but for partial ordering purposes a template
3772 // parameter may remain without a value provided it is not used in the
3773 // types being used for partial ordering. [ Note: a template parameter used
3774 // in a non-deduced context is considered used. -end note]
3775 unsigned ArgIdx = 0, NumArgs = Deduced.size();
3776 for (; ArgIdx != NumArgs; ++ArgIdx)
3777 if (Deduced[ArgIdx].isNull())
3778 break;
3779
3780 if (ArgIdx == NumArgs) {
3781 // All template arguments were deduced. FT1 is at least as specialized
3782 // as FT2.
3783 return true;
3784 }
3785
3786 // Figure out which template parameters were used.
3787 llvm::SmallBitVector UsedParameters(TemplateParams->size());
3788 switch (TPOC) {
3789 case TPOC_Call: {
3790 unsigned NumParams = std::min(NumCallArguments,
3791 std::min(Proto1->getNumArgs(),
3792 Proto2->getNumArgs()));
3793 if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3794 ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
3795 false,
3796 TemplateParams->getDepth(), UsedParameters);
3797 for (unsigned I = Skip2; I < NumParams; ++I)
3798 ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
3799 TemplateParams->getDepth(),
3800 UsedParameters);
3801 break;
3802 }
3803
3804 case TPOC_Conversion:
3805 ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
3806 TemplateParams->getDepth(),
3807 UsedParameters);
3808 break;
3809
3810 case TPOC_Other:
3811 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
3812 TemplateParams->getDepth(),
3813 UsedParameters);
3814 break;
3815 }
3816
3817 for (; ArgIdx != NumArgs; ++ArgIdx)
3818 // If this argument had no value deduced but was used in one of the types
3819 // used for partial ordering, then deduction fails.
3820 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3821 return false;
3822
3823 return true;
3824 }
3825
3826 /// \brief Determine whether this a function template whose parameter-type-list
3827 /// ends with a function parameter pack.
isVariadicFunctionTemplate(FunctionTemplateDecl * FunTmpl)3828 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3829 FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3830 unsigned NumParams = Function->getNumParams();
3831 if (NumParams == 0)
3832 return false;
3833
3834 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3835 if (!Last->isParameterPack())
3836 return false;
3837
3838 // Make sure that no previous parameter is a parameter pack.
3839 while (--NumParams > 0) {
3840 if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3841 return false;
3842 }
3843
3844 return true;
3845 }
3846
3847 /// \brief Returns the more specialized function template according
3848 /// to the rules of function template partial ordering (C++ [temp.func.order]).
3849 ///
3850 /// \param FT1 the first function template
3851 ///
3852 /// \param FT2 the second function template
3853 ///
3854 /// \param TPOC the context in which we are performing partial ordering of
3855 /// function templates.
3856 ///
3857 /// \param NumCallArguments The number of arguments in a call, used only
3858 /// when \c TPOC is \c TPOC_Call.
3859 ///
3860 /// \returns the more specialized function template. If neither
3861 /// template is more specialized, returns NULL.
3862 FunctionTemplateDecl *
getMoreSpecializedTemplate(FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,SourceLocation Loc,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments)3863 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
3864 FunctionTemplateDecl *FT2,
3865 SourceLocation Loc,
3866 TemplatePartialOrderingContext TPOC,
3867 unsigned NumCallArguments) {
3868 SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
3869 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
3870 NumCallArguments, 0);
3871 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
3872 NumCallArguments,
3873 &RefParamComparisons);
3874
3875 if (Better1 != Better2) // We have a clear winner
3876 return Better1? FT1 : FT2;
3877
3878 if (!Better1 && !Better2) // Neither is better than the other
3879 return 0;
3880
3881 // C++0x [temp.deduct.partial]p10:
3882 // If for each type being considered a given template is at least as
3883 // specialized for all types and more specialized for some set of types and
3884 // the other template is not more specialized for any types or is not at
3885 // least as specialized for any types, then the given template is more
3886 // specialized than the other template. Otherwise, neither template is more
3887 // specialized than the other.
3888 Better1 = false;
3889 Better2 = false;
3890 for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
3891 // C++0x [temp.deduct.partial]p9:
3892 // If, for a given type, deduction succeeds in both directions (i.e., the
3893 // types are identical after the transformations above) and both P and A
3894 // were reference types (before being replaced with the type referred to
3895 // above):
3896
3897 // -- if the type from the argument template was an lvalue reference
3898 // and the type from the parameter template was not, the argument
3899 // type is considered to be more specialized than the other;
3900 // otherwise,
3901 if (!RefParamComparisons[I].ArgIsRvalueRef &&
3902 RefParamComparisons[I].ParamIsRvalueRef) {
3903 Better2 = true;
3904 if (Better1)
3905 return 0;
3906 continue;
3907 } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
3908 RefParamComparisons[I].ArgIsRvalueRef) {
3909 Better1 = true;
3910 if (Better2)
3911 return 0;
3912 continue;
3913 }
3914
3915 // -- if the type from the argument template is more cv-qualified than
3916 // the type from the parameter template (as described above), the
3917 // argument type is considered to be more specialized than the
3918 // other; otherwise,
3919 switch (RefParamComparisons[I].Qualifiers) {
3920 case NeitherMoreQualified:
3921 break;
3922
3923 case ParamMoreQualified:
3924 Better1 = true;
3925 if (Better2)
3926 return 0;
3927 continue;
3928
3929 case ArgMoreQualified:
3930 Better2 = true;
3931 if (Better1)
3932 return 0;
3933 continue;
3934 }
3935
3936 // -- neither type is more specialized than the other.
3937 }
3938
3939 assert(!(Better1 && Better2) && "Should have broken out in the loop above");
3940 if (Better1)
3941 return FT1;
3942 else if (Better2)
3943 return FT2;
3944
3945 // FIXME: This mimics what GCC implements, but doesn't match up with the
3946 // proposed resolution for core issue 692. This area needs to be sorted out,
3947 // but for now we attempt to maintain compatibility.
3948 bool Variadic1 = isVariadicFunctionTemplate(FT1);
3949 bool Variadic2 = isVariadicFunctionTemplate(FT2);
3950 if (Variadic1 != Variadic2)
3951 return Variadic1? FT2 : FT1;
3952
3953 return 0;
3954 }
3955
3956 /// \brief Determine if the two templates are equivalent.
isSameTemplate(TemplateDecl * T1,TemplateDecl * T2)3957 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
3958 if (T1 == T2)
3959 return true;
3960
3961 if (!T1 || !T2)
3962 return false;
3963
3964 return T1->getCanonicalDecl() == T2->getCanonicalDecl();
3965 }
3966
3967 /// \brief Retrieve the most specialized of the given function template
3968 /// specializations.
3969 ///
3970 /// \param SpecBegin the start iterator of the function template
3971 /// specializations that we will be comparing.
3972 ///
3973 /// \param SpecEnd the end iterator of the function template
3974 /// specializations, paired with \p SpecBegin.
3975 ///
3976 /// \param TPOC the partial ordering context to use to compare the function
3977 /// template specializations.
3978 ///
3979 /// \param NumCallArguments The number of arguments in a call, used only
3980 /// when \c TPOC is \c TPOC_Call.
3981 ///
3982 /// \param Loc the location where the ambiguity or no-specializations
3983 /// diagnostic should occur.
3984 ///
3985 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
3986 /// no matching candidates.
3987 ///
3988 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
3989 /// occurs.
3990 ///
3991 /// \param CandidateDiag partial diagnostic used for each function template
3992 /// specialization that is a candidate in the ambiguous ordering. One parameter
3993 /// in this diagnostic should be unbound, which will correspond to the string
3994 /// describing the template arguments for the function template specialization.
3995 ///
3996 /// \param Index if non-NULL and the result of this function is non-nULL,
3997 /// receives the index corresponding to the resulting function template
3998 /// specialization.
3999 ///
4000 /// \returns the most specialized function template specialization, if
4001 /// found. Otherwise, returns SpecEnd.
4002 ///
4003 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed
4004 /// template argument deduction.
4005 UnresolvedSetIterator
getMostSpecialized(UnresolvedSetIterator SpecBegin,UnresolvedSetIterator SpecEnd,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SourceLocation Loc,const PartialDiagnostic & NoneDiag,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & CandidateDiag,bool Complain,QualType TargetType)4006 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
4007 UnresolvedSetIterator SpecEnd,
4008 TemplatePartialOrderingContext TPOC,
4009 unsigned NumCallArguments,
4010 SourceLocation Loc,
4011 const PartialDiagnostic &NoneDiag,
4012 const PartialDiagnostic &AmbigDiag,
4013 const PartialDiagnostic &CandidateDiag,
4014 bool Complain,
4015 QualType TargetType) {
4016 if (SpecBegin == SpecEnd) {
4017 if (Complain)
4018 Diag(Loc, NoneDiag);
4019 return SpecEnd;
4020 }
4021
4022 if (SpecBegin + 1 == SpecEnd)
4023 return SpecBegin;
4024
4025 // Find the function template that is better than all of the templates it
4026 // has been compared to.
4027 UnresolvedSetIterator Best = SpecBegin;
4028 FunctionTemplateDecl *BestTemplate
4029 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
4030 assert(BestTemplate && "Not a function template specialization?");
4031 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
4032 FunctionTemplateDecl *Challenger
4033 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4034 assert(Challenger && "Not a function template specialization?");
4035 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4036 Loc, TPOC, NumCallArguments),
4037 Challenger)) {
4038 Best = I;
4039 BestTemplate = Challenger;
4040 }
4041 }
4042
4043 // Make sure that the "best" function template is more specialized than all
4044 // of the others.
4045 bool Ambiguous = false;
4046 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4047 FunctionTemplateDecl *Challenger
4048 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4049 if (I != Best &&
4050 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4051 Loc, TPOC, NumCallArguments),
4052 BestTemplate)) {
4053 Ambiguous = true;
4054 break;
4055 }
4056 }
4057
4058 if (!Ambiguous) {
4059 // We found an answer. Return it.
4060 return Best;
4061 }
4062
4063 // Diagnose the ambiguity.
4064 if (Complain)
4065 Diag(Loc, AmbigDiag);
4066
4067 if (Complain)
4068 // FIXME: Can we order the candidates in some sane way?
4069 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4070 PartialDiagnostic PD = CandidateDiag;
4071 PD << getTemplateArgumentBindingsText(
4072 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4073 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4074 if (!TargetType.isNull())
4075 HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4076 TargetType);
4077 Diag((*I)->getLocation(), PD);
4078 }
4079
4080 return SpecEnd;
4081 }
4082
4083 /// \brief Returns the more specialized class template partial specialization
4084 /// according to the rules of partial ordering of class template partial
4085 /// specializations (C++ [temp.class.order]).
4086 ///
4087 /// \param PS1 the first class template partial specialization
4088 ///
4089 /// \param PS2 the second class template partial specialization
4090 ///
4091 /// \returns the more specialized class template partial specialization. If
4092 /// neither partial specialization is more specialized, returns NULL.
4093 ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl * PS1,ClassTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4094 Sema::getMoreSpecializedPartialSpecialization(
4095 ClassTemplatePartialSpecializationDecl *PS1,
4096 ClassTemplatePartialSpecializationDecl *PS2,
4097 SourceLocation Loc) {
4098 // C++ [temp.class.order]p1:
4099 // For two class template partial specializations, the first is at least as
4100 // specialized as the second if, given the following rewrite to two
4101 // function templates, the first function template is at least as
4102 // specialized as the second according to the ordering rules for function
4103 // templates (14.6.6.2):
4104 // - the first function template has the same template parameters as the
4105 // first partial specialization and has a single function parameter
4106 // whose type is a class template specialization with the template
4107 // arguments of the first partial specialization, and
4108 // - the second function template has the same template parameters as the
4109 // second partial specialization and has a single function parameter
4110 // whose type is a class template specialization with the template
4111 // arguments of the second partial specialization.
4112 //
4113 // Rather than synthesize function templates, we merely perform the
4114 // equivalent partial ordering by performing deduction directly on
4115 // the template arguments of the class template partial
4116 // specializations. This computation is slightly simpler than the
4117 // general problem of function template partial ordering, because
4118 // class template partial specializations are more constrained. We
4119 // know that every template parameter is deducible from the class
4120 // template partial specialization's template arguments, for
4121 // example.
4122 SmallVector<DeducedTemplateArgument, 4> Deduced;
4123 TemplateDeductionInfo Info(Context, Loc);
4124
4125 QualType PT1 = PS1->getInjectedSpecializationType();
4126 QualType PT2 = PS2->getInjectedSpecializationType();
4127
4128 // Determine whether PS1 is at least as specialized as PS2
4129 Deduced.resize(PS2->getTemplateParameters()->size());
4130 bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4131 PS2->getTemplateParameters(),
4132 PT2, PT1, Info, Deduced, TDF_None,
4133 /*PartialOrdering=*/true,
4134 /*RefParamComparisons=*/0);
4135 if (Better1) {
4136 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4137 InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
4138 DeducedArgs, Info);
4139 Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4140 PS1->getTemplateArgs(),
4141 Deduced, Info);
4142 }
4143
4144 // Determine whether PS2 is at least as specialized as PS1
4145 Deduced.clear();
4146 Deduced.resize(PS1->getTemplateParameters()->size());
4147 bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4148 PS1->getTemplateParameters(),
4149 PT1, PT2, Info, Deduced, TDF_None,
4150 /*PartialOrdering=*/true,
4151 /*RefParamComparisons=*/0);
4152 if (Better2) {
4153 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4154 InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
4155 DeducedArgs, Info);
4156 Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4157 PS2->getTemplateArgs(),
4158 Deduced, Info);
4159 }
4160
4161 if (Better1 == Better2)
4162 return 0;
4163
4164 return Better1? PS1 : PS2;
4165 }
4166
4167 static void
4168 MarkUsedTemplateParameters(ASTContext &Ctx,
4169 const TemplateArgument &TemplateArg,
4170 bool OnlyDeduced,
4171 unsigned Depth,
4172 llvm::SmallBitVector &Used);
4173
4174 /// \brief Mark the template parameters that are used by the given
4175 /// expression.
4176 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4177 MarkUsedTemplateParameters(ASTContext &Ctx,
4178 const Expr *E,
4179 bool OnlyDeduced,
4180 unsigned Depth,
4181 llvm::SmallBitVector &Used) {
4182 // We can deduce from a pack expansion.
4183 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4184 E = Expansion->getPattern();
4185
4186 // Skip through any implicit casts we added while type-checking, and any
4187 // substitutions performed by template alias expansion.
4188 while (1) {
4189 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4190 E = ICE->getSubExpr();
4191 else if (const SubstNonTypeTemplateParmExpr *Subst =
4192 dyn_cast<SubstNonTypeTemplateParmExpr>(E))
4193 E = Subst->getReplacement();
4194 else
4195 break;
4196 }
4197
4198 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4199 // find other occurrences of template parameters.
4200 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4201 if (!DRE)
4202 return;
4203
4204 const NonTypeTemplateParmDecl *NTTP
4205 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4206 if (!NTTP)
4207 return;
4208
4209 if (NTTP->getDepth() == Depth)
4210 Used[NTTP->getIndex()] = true;
4211 }
4212
4213 /// \brief Mark the template parameters that are used by the given
4214 /// nested name specifier.
4215 static void
MarkUsedTemplateParameters(ASTContext & Ctx,NestedNameSpecifier * NNS,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4216 MarkUsedTemplateParameters(ASTContext &Ctx,
4217 NestedNameSpecifier *NNS,
4218 bool OnlyDeduced,
4219 unsigned Depth,
4220 llvm::SmallBitVector &Used) {
4221 if (!NNS)
4222 return;
4223
4224 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4225 Used);
4226 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4227 OnlyDeduced, Depth, Used);
4228 }
4229
4230 /// \brief Mark the template parameters that are used by the given
4231 /// template name.
4232 static void
MarkUsedTemplateParameters(ASTContext & Ctx,TemplateName Name,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4233 MarkUsedTemplateParameters(ASTContext &Ctx,
4234 TemplateName Name,
4235 bool OnlyDeduced,
4236 unsigned Depth,
4237 llvm::SmallBitVector &Used) {
4238 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4239 if (TemplateTemplateParmDecl *TTP
4240 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4241 if (TTP->getDepth() == Depth)
4242 Used[TTP->getIndex()] = true;
4243 }
4244 return;
4245 }
4246
4247 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4248 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4249 Depth, Used);
4250 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4251 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4252 Depth, Used);
4253 }
4254
4255 /// \brief Mark the template parameters that are used by the given
4256 /// type.
4257 static void
MarkUsedTemplateParameters(ASTContext & Ctx,QualType T,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4258 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4259 bool OnlyDeduced,
4260 unsigned Depth,
4261 llvm::SmallBitVector &Used) {
4262 if (T.isNull())
4263 return;
4264
4265 // Non-dependent types have nothing deducible
4266 if (!T->isDependentType())
4267 return;
4268
4269 T = Ctx.getCanonicalType(T);
4270 switch (T->getTypeClass()) {
4271 case Type::Pointer:
4272 MarkUsedTemplateParameters(Ctx,
4273 cast<PointerType>(T)->getPointeeType(),
4274 OnlyDeduced,
4275 Depth,
4276 Used);
4277 break;
4278
4279 case Type::BlockPointer:
4280 MarkUsedTemplateParameters(Ctx,
4281 cast<BlockPointerType>(T)->getPointeeType(),
4282 OnlyDeduced,
4283 Depth,
4284 Used);
4285 break;
4286
4287 case Type::LValueReference:
4288 case Type::RValueReference:
4289 MarkUsedTemplateParameters(Ctx,
4290 cast<ReferenceType>(T)->getPointeeType(),
4291 OnlyDeduced,
4292 Depth,
4293 Used);
4294 break;
4295
4296 case Type::MemberPointer: {
4297 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4298 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4299 Depth, Used);
4300 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4301 OnlyDeduced, Depth, Used);
4302 break;
4303 }
4304
4305 case Type::DependentSizedArray:
4306 MarkUsedTemplateParameters(Ctx,
4307 cast<DependentSizedArrayType>(T)->getSizeExpr(),
4308 OnlyDeduced, Depth, Used);
4309 // Fall through to check the element type
4310
4311 case Type::ConstantArray:
4312 case Type::IncompleteArray:
4313 MarkUsedTemplateParameters(Ctx,
4314 cast<ArrayType>(T)->getElementType(),
4315 OnlyDeduced, Depth, Used);
4316 break;
4317
4318 case Type::Vector:
4319 case Type::ExtVector:
4320 MarkUsedTemplateParameters(Ctx,
4321 cast<VectorType>(T)->getElementType(),
4322 OnlyDeduced, Depth, Used);
4323 break;
4324
4325 case Type::DependentSizedExtVector: {
4326 const DependentSizedExtVectorType *VecType
4327 = cast<DependentSizedExtVectorType>(T);
4328 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4329 Depth, Used);
4330 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4331 Depth, Used);
4332 break;
4333 }
4334
4335 case Type::FunctionProto: {
4336 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4337 MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
4338 Depth, Used);
4339 for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4340 MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
4341 Depth, Used);
4342 break;
4343 }
4344
4345 case Type::TemplateTypeParm: {
4346 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4347 if (TTP->getDepth() == Depth)
4348 Used[TTP->getIndex()] = true;
4349 break;
4350 }
4351
4352 case Type::SubstTemplateTypeParmPack: {
4353 const SubstTemplateTypeParmPackType *Subst
4354 = cast<SubstTemplateTypeParmPackType>(T);
4355 MarkUsedTemplateParameters(Ctx,
4356 QualType(Subst->getReplacedParameter(), 0),
4357 OnlyDeduced, Depth, Used);
4358 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4359 OnlyDeduced, Depth, Used);
4360 break;
4361 }
4362
4363 case Type::InjectedClassName:
4364 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4365 // fall through
4366
4367 case Type::TemplateSpecialization: {
4368 const TemplateSpecializationType *Spec
4369 = cast<TemplateSpecializationType>(T);
4370 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4371 Depth, Used);
4372
4373 // C++0x [temp.deduct.type]p9:
4374 // If the template argument list of P contains a pack expansion that is not
4375 // the last template argument, the entire template argument list is a
4376 // non-deduced context.
4377 if (OnlyDeduced &&
4378 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4379 break;
4380
4381 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4382 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4383 Used);
4384 break;
4385 }
4386
4387 case Type::Complex:
4388 if (!OnlyDeduced)
4389 MarkUsedTemplateParameters(Ctx,
4390 cast<ComplexType>(T)->getElementType(),
4391 OnlyDeduced, Depth, Used);
4392 break;
4393
4394 case Type::Atomic:
4395 if (!OnlyDeduced)
4396 MarkUsedTemplateParameters(Ctx,
4397 cast<AtomicType>(T)->getValueType(),
4398 OnlyDeduced, Depth, Used);
4399 break;
4400
4401 case Type::DependentName:
4402 if (!OnlyDeduced)
4403 MarkUsedTemplateParameters(Ctx,
4404 cast<DependentNameType>(T)->getQualifier(),
4405 OnlyDeduced, Depth, Used);
4406 break;
4407
4408 case Type::DependentTemplateSpecialization: {
4409 const DependentTemplateSpecializationType *Spec
4410 = cast<DependentTemplateSpecializationType>(T);
4411 if (!OnlyDeduced)
4412 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4413 OnlyDeduced, Depth, Used);
4414
4415 // C++0x [temp.deduct.type]p9:
4416 // If the template argument list of P contains a pack expansion that is not
4417 // the last template argument, the entire template argument list is a
4418 // non-deduced context.
4419 if (OnlyDeduced &&
4420 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4421 break;
4422
4423 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4424 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4425 Used);
4426 break;
4427 }
4428
4429 case Type::TypeOf:
4430 if (!OnlyDeduced)
4431 MarkUsedTemplateParameters(Ctx,
4432 cast<TypeOfType>(T)->getUnderlyingType(),
4433 OnlyDeduced, Depth, Used);
4434 break;
4435
4436 case Type::TypeOfExpr:
4437 if (!OnlyDeduced)
4438 MarkUsedTemplateParameters(Ctx,
4439 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4440 OnlyDeduced, Depth, Used);
4441 break;
4442
4443 case Type::Decltype:
4444 if (!OnlyDeduced)
4445 MarkUsedTemplateParameters(Ctx,
4446 cast<DecltypeType>(T)->getUnderlyingExpr(),
4447 OnlyDeduced, Depth, Used);
4448 break;
4449
4450 case Type::UnaryTransform:
4451 if (!OnlyDeduced)
4452 MarkUsedTemplateParameters(Ctx,
4453 cast<UnaryTransformType>(T)->getUnderlyingType(),
4454 OnlyDeduced, Depth, Used);
4455 break;
4456
4457 case Type::PackExpansion:
4458 MarkUsedTemplateParameters(Ctx,
4459 cast<PackExpansionType>(T)->getPattern(),
4460 OnlyDeduced, Depth, Used);
4461 break;
4462
4463 case Type::Auto:
4464 MarkUsedTemplateParameters(Ctx,
4465 cast<AutoType>(T)->getDeducedType(),
4466 OnlyDeduced, Depth, Used);
4467
4468 // None of these types have any template parameters in them.
4469 case Type::Builtin:
4470 case Type::VariableArray:
4471 case Type::FunctionNoProto:
4472 case Type::Record:
4473 case Type::Enum:
4474 case Type::ObjCInterface:
4475 case Type::ObjCObject:
4476 case Type::ObjCObjectPointer:
4477 case Type::UnresolvedUsing:
4478 #define TYPE(Class, Base)
4479 #define ABSTRACT_TYPE(Class, Base)
4480 #define DEPENDENT_TYPE(Class, Base)
4481 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4482 #include "clang/AST/TypeNodes.def"
4483 break;
4484 }
4485 }
4486
4487 /// \brief Mark the template parameters that are used by this
4488 /// template argument.
4489 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const TemplateArgument & TemplateArg,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4490 MarkUsedTemplateParameters(ASTContext &Ctx,
4491 const TemplateArgument &TemplateArg,
4492 bool OnlyDeduced,
4493 unsigned Depth,
4494 llvm::SmallBitVector &Used) {
4495 switch (TemplateArg.getKind()) {
4496 case TemplateArgument::Null:
4497 case TemplateArgument::Integral:
4498 case TemplateArgument::Declaration:
4499 break;
4500
4501 case TemplateArgument::Type:
4502 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4503 Depth, Used);
4504 break;
4505
4506 case TemplateArgument::Template:
4507 case TemplateArgument::TemplateExpansion:
4508 MarkUsedTemplateParameters(Ctx,
4509 TemplateArg.getAsTemplateOrTemplatePattern(),
4510 OnlyDeduced, Depth, Used);
4511 break;
4512
4513 case TemplateArgument::Expression:
4514 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4515 Depth, Used);
4516 break;
4517
4518 case TemplateArgument::Pack:
4519 for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4520 PEnd = TemplateArg.pack_end();
4521 P != PEnd; ++P)
4522 MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
4523 break;
4524 }
4525 }
4526
4527 /// \brief Mark which template parameters can be deduced from a given
4528 /// template argument list.
4529 ///
4530 /// \param TemplateArgs the template argument list from which template
4531 /// parameters will be deduced.
4532 ///
4533 /// \param Used a bit vector whose elements will be set to \c true
4534 /// to indicate when the corresponding template parameter will be
4535 /// deduced.
4536 void
MarkUsedTemplateParameters(const TemplateArgumentList & TemplateArgs,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4537 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4538 bool OnlyDeduced, unsigned Depth,
4539 llvm::SmallBitVector &Used) {
4540 // C++0x [temp.deduct.type]p9:
4541 // If the template argument list of P contains a pack expansion that is not
4542 // the last template argument, the entire template argument list is a
4543 // non-deduced context.
4544 if (OnlyDeduced &&
4545 hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4546 return;
4547
4548 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4549 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4550 Depth, Used);
4551 }
4552
4553 /// \brief Marks all of the template parameters that will be deduced by a
4554 /// call to the given function template.
4555 void
MarkDeducedTemplateParameters(ASTContext & Ctx,FunctionTemplateDecl * FunctionTemplate,llvm::SmallBitVector & Deduced)4556 Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
4557 FunctionTemplateDecl *FunctionTemplate,
4558 llvm::SmallBitVector &Deduced) {
4559 TemplateParameterList *TemplateParams
4560 = FunctionTemplate->getTemplateParameters();
4561 Deduced.clear();
4562 Deduced.resize(TemplateParams->size());
4563
4564 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4565 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4566 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4567 true, TemplateParams->getDepth(), Deduced);
4568 }
4569
hasDeducibleTemplateParameters(Sema & S,FunctionTemplateDecl * FunctionTemplate,QualType T)4570 bool hasDeducibleTemplateParameters(Sema &S,
4571 FunctionTemplateDecl *FunctionTemplate,
4572 QualType T) {
4573 if (!T->isDependentType())
4574 return false;
4575
4576 TemplateParameterList *TemplateParams
4577 = FunctionTemplate->getTemplateParameters();
4578 llvm::SmallBitVector Deduced(TemplateParams->size());
4579 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4580 Deduced);
4581
4582 return Deduced.any();
4583 }
4584