• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Mc/McInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
11 // are used to describe target instructions and their operands.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_MC_MCINSTRDESC_H
16 #define LLVM_MC_MCINSTRDESC_H
17 
18 #include "llvm/Support/DataTypes.h"
19 
20 namespace llvm {
21 
22 //===----------------------------------------------------------------------===//
23 // Machine Operand Flags and Description
24 //===----------------------------------------------------------------------===//
25 
26 namespace MCOI {
27   // Operand constraints
28   enum OperandConstraint {
29     TIED_TO = 0,    // Must be allocated the same register as.
30     EARLY_CLOBBER   // Operand is an early clobber register operand
31   };
32 
33   /// OperandFlags - These are flags set on operands, but should be considered
34   /// private, all access should go through the MCOperandInfo accessors.
35   /// See the accessors for a description of what these are.
36   enum OperandFlags {
37     LookupPtrRegClass = 0,
38     Predicate,
39     OptionalDef
40   };
41 
42   /// Operand Type - Operands are tagged with one of the values of this enum.
43   enum OperandType {
44     OPERAND_UNKNOWN,
45     OPERAND_IMMEDIATE,
46     OPERAND_REGISTER,
47     OPERAND_MEMORY,
48     OPERAND_PCREL
49   };
50 }
51 
52 /// MCOperandInfo - This holds information about one operand of a machine
53 /// instruction, indicating the register class for register operands, etc.
54 ///
55 class MCOperandInfo {
56 public:
57   /// RegClass - This specifies the register class enumeration of the operand
58   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
59   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
60   /// get a dynamic register class.
61   int16_t RegClass;
62 
63   /// Flags - These are flags from the MCOI::OperandFlags enum.
64   uint8_t Flags;
65 
66   /// OperandType - Information about the type of the operand.
67   uint8_t OperandType;
68 
69   /// Lower 16 bits are used to specify which constraints are set. The higher 16
70   /// bits are used to specify the value of constraints (4 bits each).
71   uint32_t Constraints;
72   /// Currently no other information.
73 
74   /// isLookupPtrRegClass - Set if this operand is a pointer value and it
75   /// requires a callback to look up its register class.
isLookupPtrRegClass()76   bool isLookupPtrRegClass() const {return Flags&(1 <<MCOI::LookupPtrRegClass);}
77 
78   /// isPredicate - Set if this is one of the operands that made up of
79   /// the predicate operand that controls an isPredicable() instruction.
isPredicate()80   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
81 
82   /// isOptionalDef - Set if this operand is a optional def.
83   ///
isOptionalDef()84   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
85 };
86 
87 
88 //===----------------------------------------------------------------------===//
89 // Machine Instruction Flags and Description
90 //===----------------------------------------------------------------------===//
91 
92 /// MCInstrDesc flags - These should be considered private to the
93 /// implementation of the MCInstrDesc class.  Clients should use the predicate
94 /// methods on MCInstrDesc, not use these directly.  These all correspond to
95 /// bitfields in the MCInstrDesc::Flags field.
96 namespace MCID {
97   enum {
98     Variadic = 0,
99     HasOptionalDef,
100     Pseudo,
101     Return,
102     Call,
103     Barrier,
104     Terminator,
105     Branch,
106     IndirectBranch,
107     Compare,
108     MoveImm,
109     Bitcast,
110     Select,
111     DelaySlot,
112     FoldableAsLoad,
113     MayLoad,
114     MayStore,
115     Predicable,
116     NotDuplicable,
117     UnmodeledSideEffects,
118     Commutable,
119     ConvertibleTo3Addr,
120     UsesCustomInserter,
121     HasPostISelHook,
122     Rematerializable,
123     CheapAsAMove,
124     ExtraSrcRegAllocReq,
125     ExtraDefRegAllocReq
126   };
127 }
128 
129 /// MCInstrDesc - Describe properties that are true of each instruction in the
130 /// target description file.  This captures information about side effects,
131 /// register use and many other things.  There is one instance of this struct
132 /// for each target instruction class, and the MachineInstr class points to
133 /// this struct directly to describe itself.
134 class MCInstrDesc {
135 public:
136   unsigned short  Opcode;        // The opcode number
137   unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
138   unsigned short  NumDefs;       // Num of args that are definitions
139   unsigned short  SchedClass;    // enum identifying instr sched class
140   unsigned short  Size;          // Number of bytes in encoding.
141   unsigned        Flags;         // Flags identifying machine instr class
142   uint64_t        TSFlags;       // Target Specific Flag values
143   const uint16_t *ImplicitUses;  // Registers implicitly read by this instr
144   const uint16_t *ImplicitDefs;  // Registers implicitly defined by this instr
145   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
146 
147   /// getOperandConstraint - Returns the value of the specific constraint if
148   /// it is set. Returns -1 if it is not set.
getOperandConstraint(unsigned OpNum,MCOI::OperandConstraint Constraint)149   int getOperandConstraint(unsigned OpNum,
150                            MCOI::OperandConstraint Constraint) const {
151     if (OpNum < NumOperands &&
152         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
153       unsigned Pos = 16 + Constraint * 4;
154       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
155     }
156     return -1;
157   }
158 
159   /// getOpcode - Return the opcode number for this descriptor.
getOpcode()160   unsigned getOpcode() const {
161     return Opcode;
162   }
163 
164   /// getNumOperands - Return the number of declared MachineOperands for this
165   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
166   /// instructions may have additional operands at the end of the list, and note
167   /// that the machine instruction may include implicit register def/uses as
168   /// well.
getNumOperands()169   unsigned getNumOperands() const {
170     return NumOperands;
171   }
172 
173   /// getNumDefs - Return the number of MachineOperands that are register
174   /// definitions.  Register definitions always occur at the start of the
175   /// machine operand list.  This is the number of "outs" in the .td file,
176   /// and does not include implicit defs.
getNumDefs()177   unsigned getNumDefs() const {
178     return NumDefs;
179   }
180 
181   /// getFlags - Return flags of this instruction.
182   ///
getFlags()183   unsigned getFlags() const { return Flags; }
184 
185   /// isVariadic - Return true if this instruction can have a variable number of
186   /// operands.  In this case, the variable operands will be after the normal
187   /// operands but before the implicit definitions and uses (if any are
188   /// present).
isVariadic()189   bool isVariadic() const {
190     return Flags & (1 << MCID::Variadic);
191   }
192 
193   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
194   /// ARM instructions which can set condition code if 's' bit is set.
hasOptionalDef()195   bool hasOptionalDef() const {
196     return Flags & (1 << MCID::HasOptionalDef);
197   }
198 
199   /// isPseudo - Return true if this is a pseudo instruction that doesn't
200   /// correspond to a real machine instruction.
201   ///
isPseudo()202   bool isPseudo() const {
203     return Flags & (1 << MCID::Pseudo);
204   }
205 
isReturn()206   bool isReturn() const {
207     return Flags & (1 << MCID::Return);
208   }
209 
isCall()210   bool isCall() const {
211     return Flags & (1 << MCID::Call);
212   }
213 
214   /// isBarrier - Returns true if the specified instruction stops control flow
215   /// from executing the instruction immediately following it.  Examples include
216   /// unconditional branches and return instructions.
isBarrier()217   bool isBarrier() const {
218     return Flags & (1 << MCID::Barrier);
219   }
220 
221   /// isTerminator - Returns true if this instruction part of the terminator for
222   /// a basic block.  Typically this is things like return and branch
223   /// instructions.
224   ///
225   /// Various passes use this to insert code into the bottom of a basic block,
226   /// but before control flow occurs.
isTerminator()227   bool isTerminator() const {
228     return Flags & (1 << MCID::Terminator);
229   }
230 
231   /// isBranch - Returns true if this is a conditional, unconditional, or
232   /// indirect branch.  Predicates below can be used to discriminate between
233   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
234   /// get more information.
isBranch()235   bool isBranch() const {
236     return Flags & (1 << MCID::Branch);
237   }
238 
239   /// isIndirectBranch - Return true if this is an indirect branch, such as a
240   /// branch through a register.
isIndirectBranch()241   bool isIndirectBranch() const {
242     return Flags & (1 << MCID::IndirectBranch);
243   }
244 
245   /// isConditionalBranch - Return true if this is a branch which may fall
246   /// through to the next instruction or may transfer control flow to some other
247   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
248   /// information about this branch.
isConditionalBranch()249   bool isConditionalBranch() const {
250     return isBranch() & !isBarrier() & !isIndirectBranch();
251   }
252 
253   /// isUnconditionalBranch - Return true if this is a branch which always
254   /// transfers control flow to some other block.  The
255   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
256   /// about this branch.
isUnconditionalBranch()257   bool isUnconditionalBranch() const {
258     return isBranch() & isBarrier() & !isIndirectBranch();
259   }
260 
261   // isPredicable - Return true if this instruction has a predicate operand that
262   // controls execution.  It may be set to 'always', or may be set to other
263   /// values.   There are various methods in TargetInstrInfo that can be used to
264   /// control and modify the predicate in this instruction.
isPredicable()265   bool isPredicable() const {
266     return Flags & (1 << MCID::Predicable);
267   }
268 
269   /// isCompare - Return true if this instruction is a comparison.
isCompare()270   bool isCompare() const {
271     return Flags & (1 << MCID::Compare);
272   }
273 
274   /// isMoveImmediate - Return true if this instruction is a move immediate
275   /// (including conditional moves) instruction.
isMoveImmediate()276   bool isMoveImmediate() const {
277     return Flags & (1 << MCID::MoveImm);
278   }
279 
280   /// isBitcast - Return true if this instruction is a bitcast instruction.
281   ///
isBitcast()282   bool isBitcast() const {
283     return Flags & (1 << MCID::Bitcast);
284   }
285 
286   /// isSelect - Return true if this is a select instruction.
287   ///
isSelect()288   bool isSelect() const {
289     return Flags & (1 << MCID::Select);
290   }
291 
292   /// isNotDuplicable - Return true if this instruction cannot be safely
293   /// duplicated.  For example, if the instruction has a unique labels attached
294   /// to it, duplicating it would cause multiple definition errors.
isNotDuplicable()295   bool isNotDuplicable() const {
296     return Flags & (1 << MCID::NotDuplicable);
297   }
298 
299   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
300   /// which must be filled by the code generator.
hasDelaySlot()301   bool hasDelaySlot() const {
302     return Flags & (1 << MCID::DelaySlot);
303   }
304 
305   /// canFoldAsLoad - Return true for instructions that can be folded as
306   /// memory operands in other instructions. The most common use for this
307   /// is instructions that are simple loads from memory that don't modify
308   /// the loaded value in any way, but it can also be used for instructions
309   /// that can be expressed as constant-pool loads, such as V_SETALLONES
310   /// on x86, to allow them to be folded when it is beneficial.
311   /// This should only be set on instructions that return a value in their
312   /// only virtual register definition.
canFoldAsLoad()313   bool canFoldAsLoad() const {
314     return Flags & (1 << MCID::FoldableAsLoad);
315   }
316 
317   //===--------------------------------------------------------------------===//
318   // Side Effect Analysis
319   //===--------------------------------------------------------------------===//
320 
321   /// mayLoad - Return true if this instruction could possibly read memory.
322   /// Instructions with this flag set are not necessarily simple load
323   /// instructions, they may load a value and modify it, for example.
mayLoad()324   bool mayLoad() const {
325     return Flags & (1 << MCID::MayLoad);
326   }
327 
328 
329   /// mayStore - Return true if this instruction could possibly modify memory.
330   /// Instructions with this flag set are not necessarily simple store
331   /// instructions, they may store a modified value based on their operands, or
332   /// may not actually modify anything, for example.
mayStore()333   bool mayStore() const {
334     return Flags & (1 << MCID::MayStore);
335   }
336 
337   /// hasUnmodeledSideEffects - Return true if this instruction has side
338   /// effects that are not modeled by other flags.  This does not return true
339   /// for instructions whose effects are captured by:
340   ///
341   ///  1. Their operand list and implicit definition/use list.  Register use/def
342   ///     info is explicit for instructions.
343   ///  2. Memory accesses.  Use mayLoad/mayStore.
344   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
345   ///
346   /// Examples of side effects would be modifying 'invisible' machine state like
347   /// a control register, flushing a cache, modifying a register invisible to
348   /// LLVM, etc.
349   ///
hasUnmodeledSideEffects()350   bool hasUnmodeledSideEffects() const {
351     return Flags & (1 << MCID::UnmodeledSideEffects);
352   }
353 
354   //===--------------------------------------------------------------------===//
355   // Flags that indicate whether an instruction can be modified by a method.
356   //===--------------------------------------------------------------------===//
357 
358   /// isCommutable - Return true if this may be a 2- or 3-address
359   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
360   /// result if Y and Z are exchanged.  If this flag is set, then the
361   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
362   /// instruction.
363   ///
364   /// Note that this flag may be set on instructions that are only commutable
365   /// sometimes.  In these cases, the call to commuteInstruction will fail.
366   /// Also note that some instructions require non-trivial modification to
367   /// commute them.
isCommutable()368   bool isCommutable() const {
369     return Flags & (1 << MCID::Commutable);
370   }
371 
372   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
373   /// which can be changed into a 3-address instruction if needed.  Doing this
374   /// transformation can be profitable in the register allocator, because it
375   /// means that the instruction can use a 2-address form if possible, but
376   /// degrade into a less efficient form if the source and dest register cannot
377   /// be assigned to the same register.  For example, this allows the x86
378   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
379   /// is the same speed as the shift but has bigger code size.
380   ///
381   /// If this returns true, then the target must implement the
382   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
383   /// is allowed to fail if the transformation isn't valid for this specific
384   /// instruction (e.g. shl reg, 4 on x86).
385   ///
isConvertibleTo3Addr()386   bool isConvertibleTo3Addr() const {
387     return Flags & (1 << MCID::ConvertibleTo3Addr);
388   }
389 
390   /// usesCustomInsertionHook - Return true if this instruction requires
391   /// custom insertion support when the DAG scheduler is inserting it into a
392   /// machine basic block.  If this is true for the instruction, it basically
393   /// means that it is a pseudo instruction used at SelectionDAG time that is
394   /// expanded out into magic code by the target when MachineInstrs are formed.
395   ///
396   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
397   /// is used to insert this into the MachineBasicBlock.
usesCustomInsertionHook()398   bool usesCustomInsertionHook() const {
399     return Flags & (1 << MCID::UsesCustomInserter);
400   }
401 
402   /// hasPostISelHook - Return true if this instruction requires *adjustment*
403   /// after instruction selection by calling a target hook. For example, this
404   /// can be used to fill in ARM 's' optional operand depending on whether
405   /// the conditional flag register is used.
hasPostISelHook()406   bool hasPostISelHook() const {
407     return Flags & (1 << MCID::HasPostISelHook);
408   }
409 
410   /// isRematerializable - Returns true if this instruction is a candidate for
411   /// remat.  This flag is deprecated, please don't use it anymore.  If this
412   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
413   /// verify the instruction is really rematable.
isRematerializable()414   bool isRematerializable() const {
415     return Flags & (1 << MCID::Rematerializable);
416   }
417 
418   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
419   /// less) than a move instruction. This is useful during certain types of
420   /// optimizations (e.g., remat during two-address conversion or machine licm)
421   /// where we would like to remat or hoist the instruction, but not if it costs
422   /// more than moving the instruction into the appropriate register. Note, we
423   /// are not marking copies from and to the same register class with this flag.
isAsCheapAsAMove()424   bool isAsCheapAsAMove() const {
425     return Flags & (1 << MCID::CheapAsAMove);
426   }
427 
428   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
429   /// have special register allocation requirements that are not captured by the
430   /// operand register classes. e.g. ARM::STRD's two source registers must be an
431   /// even / odd pair, ARM::STM registers have to be in ascending order.
432   /// Post-register allocation passes should not attempt to change allocations
433   /// for sources of instructions with this flag.
hasExtraSrcRegAllocReq()434   bool hasExtraSrcRegAllocReq() const {
435     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
436   }
437 
438   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
439   /// have special register allocation requirements that are not captured by the
440   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
441   /// even / odd pair, ARM::LDM registers have to be in ascending order.
442   /// Post-register allocation passes should not attempt to change allocations
443   /// for definitions of instructions with this flag.
hasExtraDefRegAllocReq()444   bool hasExtraDefRegAllocReq() const {
445     return Flags & (1 << MCID::ExtraDefRegAllocReq);
446   }
447 
448 
449   /// getImplicitUses - Return a list of registers that are potentially
450   /// read by any instance of this machine instruction.  For example, on X86,
451   /// the "adc" instruction adds two register operands and adds the carry bit in
452   /// from the flags register.  In this case, the instruction is marked as
453   /// implicitly reading the flags.  Likewise, the variable shift instruction on
454   /// X86 is marked as implicitly reading the 'CL' register, which it always
455   /// does.
456   ///
457   /// This method returns null if the instruction has no implicit uses.
getImplicitUses()458   const uint16_t *getImplicitUses() const {
459     return ImplicitUses;
460   }
461 
462   /// getNumImplicitUses - Return the number of implicit uses this instruction
463   /// has.
getNumImplicitUses()464   unsigned getNumImplicitUses() const {
465     if (ImplicitUses == 0) return 0;
466     unsigned i = 0;
467     for (; ImplicitUses[i]; ++i) /*empty*/;
468     return i;
469   }
470 
471   /// getImplicitDefs - Return a list of registers that are potentially
472   /// written by any instance of this machine instruction.  For example, on X86,
473   /// many instructions implicitly set the flags register.  In this case, they
474   /// are marked as setting the FLAGS.  Likewise, many instructions always
475   /// deposit their result in a physical register.  For example, the X86 divide
476   /// instruction always deposits the quotient and remainder in the EAX/EDX
477   /// registers.  For that instruction, this will return a list containing the
478   /// EAX/EDX/EFLAGS registers.
479   ///
480   /// This method returns null if the instruction has no implicit defs.
getImplicitDefs()481   const uint16_t *getImplicitDefs() const {
482     return ImplicitDefs;
483   }
484 
485   /// getNumImplicitDefs - Return the number of implicit defs this instruction
486   /// has.
getNumImplicitDefs()487   unsigned getNumImplicitDefs() const {
488     if (ImplicitDefs == 0) return 0;
489     unsigned i = 0;
490     for (; ImplicitDefs[i]; ++i) /*empty*/;
491     return i;
492   }
493 
494   /// hasImplicitUseOfPhysReg - Return true if this instruction implicitly
495   /// uses the specified physical register.
hasImplicitUseOfPhysReg(unsigned Reg)496   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
497     if (const uint16_t *ImpUses = ImplicitUses)
498       for (; *ImpUses; ++ImpUses)
499         if (*ImpUses == Reg) return true;
500     return false;
501   }
502 
503   /// hasImplicitDefOfPhysReg - Return true if this instruction implicitly
504   /// defines the specified physical register.
hasImplicitDefOfPhysReg(unsigned Reg)505   bool hasImplicitDefOfPhysReg(unsigned Reg) const {
506     if (const uint16_t *ImpDefs = ImplicitDefs)
507       for (; *ImpDefs; ++ImpDefs)
508         if (*ImpDefs == Reg) return true;
509     return false;
510   }
511 
512   /// getSchedClass - Return the scheduling class for this instruction.  The
513   /// scheduling class is an index into the InstrItineraryData table.  This
514   /// returns zero if there is no known scheduling information for the
515   /// instruction.
516   ///
getSchedClass()517   unsigned getSchedClass() const {
518     return SchedClass;
519   }
520 
521   /// getSize - Return the number of bytes in the encoding of this instruction,
522   /// or zero if the encoding size cannot be known from the opcode.
getSize()523   unsigned getSize() const {
524     return Size;
525   }
526 
527   /// findFirstPredOperandIdx() - Find the index of the first operand in the
528   /// operand list that is used to represent the predicate. It returns -1 if
529   /// none is found.
findFirstPredOperandIdx()530   int findFirstPredOperandIdx() const {
531     if (isPredicable()) {
532       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
533         if (OpInfo[i].isPredicate())
534           return i;
535     }
536     return -1;
537   }
538 };
539 
540 } // end namespace llvm
541 
542 #endif
543