1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/ConvertUTF.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/MDBuilder.h"
29 #include "llvm/Target/TargetData.h"
30 using namespace clang;
31 using namespace CodeGen;
32
33 //===--------------------------------------------------------------------===//
34 // Miscellaneous Helper Methods
35 //===--------------------------------------------------------------------===//
36
EmitCastToVoidPtr(llvm::Value * value)37 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
38 unsigned addressSpace =
39 cast<llvm::PointerType>(value->getType())->getAddressSpace();
40
41 llvm::PointerType *destType = Int8PtrTy;
42 if (addressSpace)
43 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
44
45 if (value->getType() == destType) return value;
46 return Builder.CreateBitCast(value, destType);
47 }
48
49 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
50 /// block.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name)51 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
52 const Twine &Name) {
53 if (!Builder.isNamePreserving())
54 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
55 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
56 }
57
InitTempAlloca(llvm::AllocaInst * Var,llvm::Value * Init)58 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
59 llvm::Value *Init) {
60 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
61 llvm::BasicBlock *Block = AllocaInsertPt->getParent();
62 Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
63 }
64
CreateIRTemp(QualType Ty,const Twine & Name)65 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
66 const Twine &Name) {
67 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
68 // FIXME: Should we prefer the preferred type alignment here?
69 CharUnits Align = getContext().getTypeAlignInChars(Ty);
70 Alloc->setAlignment(Align.getQuantity());
71 return Alloc;
72 }
73
CreateMemTemp(QualType Ty,const Twine & Name)74 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
75 const Twine &Name) {
76 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
77 // FIXME: Should we prefer the preferred type alignment here?
78 CharUnits Align = getContext().getTypeAlignInChars(Ty);
79 Alloc->setAlignment(Align.getQuantity());
80 return Alloc;
81 }
82
83 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
84 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)85 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
86 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
87 llvm::Value *MemPtr = EmitScalarExpr(E);
88 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
89 }
90
91 QualType BoolTy = getContext().BoolTy;
92 if (!E->getType()->isAnyComplexType())
93 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
94
95 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
96 }
97
98 /// EmitIgnoredExpr - Emit code to compute the specified expression,
99 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)100 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
101 if (E->isRValue())
102 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
103
104 // Just emit it as an l-value and drop the result.
105 EmitLValue(E);
106 }
107
108 /// EmitAnyExpr - Emit code to compute the specified expression which
109 /// can have any type. The result is returned as an RValue struct.
110 /// If this is an aggregate expression, AggSlot indicates where the
111 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)112 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
113 AggValueSlot aggSlot,
114 bool ignoreResult) {
115 if (!hasAggregateLLVMType(E->getType()))
116 return RValue::get(EmitScalarExpr(E, ignoreResult));
117 else if (E->getType()->isAnyComplexType())
118 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
119
120 if (!ignoreResult && aggSlot.isIgnored())
121 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
122 EmitAggExpr(E, aggSlot);
123 return aggSlot.asRValue();
124 }
125
126 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
127 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)128 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
129 AggValueSlot AggSlot = AggValueSlot::ignored();
130
131 if (hasAggregateLLVMType(E->getType()) &&
132 !E->getType()->isAnyComplexType())
133 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
134 return EmitAnyExpr(E, AggSlot);
135 }
136
137 /// EmitAnyExprToMem - Evaluate an expression into a given memory
138 /// location.
EmitAnyExprToMem(const Expr * E,llvm::Value * Location,Qualifiers Quals,bool IsInit)139 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
140 llvm::Value *Location,
141 Qualifiers Quals,
142 bool IsInit) {
143 // FIXME: This function should take an LValue as an argument.
144 if (E->getType()->isAnyComplexType()) {
145 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
146 } else if (hasAggregateLLVMType(E->getType())) {
147 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
148 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
149 AggValueSlot::IsDestructed_t(IsInit),
150 AggValueSlot::DoesNotNeedGCBarriers,
151 AggValueSlot::IsAliased_t(!IsInit)));
152 } else {
153 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
154 LValue LV = MakeAddrLValue(Location, E->getType());
155 EmitStoreThroughLValue(RV, LV);
156 }
157 }
158
159 namespace {
160 /// \brief An adjustment to be made to the temporary created when emitting a
161 /// reference binding, which accesses a particular subobject of that temporary.
162 struct SubobjectAdjustment {
163 enum {
164 DerivedToBaseAdjustment,
165 FieldAdjustment,
166 MemberPointerAdjustment
167 } Kind;
168
169 union {
170 struct {
171 const CastExpr *BasePath;
172 const CXXRecordDecl *DerivedClass;
173 } DerivedToBase;
174
175 FieldDecl *Field;
176
177 struct {
178 const MemberPointerType *MPT;
179 llvm::Value *Ptr;
180 } Ptr;
181 };
182
SubobjectAdjustment__anondbe36e2f0111::SubobjectAdjustment183 SubobjectAdjustment(const CastExpr *BasePath,
184 const CXXRecordDecl *DerivedClass)
185 : Kind(DerivedToBaseAdjustment) {
186 DerivedToBase.BasePath = BasePath;
187 DerivedToBase.DerivedClass = DerivedClass;
188 }
189
SubobjectAdjustment__anondbe36e2f0111::SubobjectAdjustment190 SubobjectAdjustment(FieldDecl *Field)
191 : Kind(FieldAdjustment) {
192 this->Field = Field;
193 }
194
SubobjectAdjustment__anondbe36e2f0111::SubobjectAdjustment195 SubobjectAdjustment(const MemberPointerType *MPT, llvm::Value *Ptr)
196 : Kind(MemberPointerAdjustment) {
197 this->Ptr.MPT = MPT;
198 this->Ptr.Ptr = Ptr;
199 }
200 };
201 }
202
203 static llvm::Value *
CreateReferenceTemporary(CodeGenFunction & CGF,QualType Type,const NamedDecl * InitializedDecl)204 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
205 const NamedDecl *InitializedDecl) {
206 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
207 if (VD->hasGlobalStorage()) {
208 SmallString<256> Name;
209 llvm::raw_svector_ostream Out(Name);
210 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
211 Out.flush();
212
213 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
214
215 // Create the reference temporary.
216 llvm::GlobalValue *RefTemp =
217 new llvm::GlobalVariable(CGF.CGM.getModule(),
218 RefTempTy, /*isConstant=*/false,
219 llvm::GlobalValue::InternalLinkage,
220 llvm::Constant::getNullValue(RefTempTy),
221 Name.str());
222 return RefTemp;
223 }
224 }
225
226 return CGF.CreateMemTemp(Type, "ref.tmp");
227 }
228
229 static llvm::Value *
EmitExprForReferenceBinding(CodeGenFunction & CGF,const Expr * E,llvm::Value * & ReferenceTemporary,const CXXDestructorDecl * & ReferenceTemporaryDtor,QualType & ObjCARCReferenceLifetimeType,const NamedDecl * InitializedDecl)230 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
231 llvm::Value *&ReferenceTemporary,
232 const CXXDestructorDecl *&ReferenceTemporaryDtor,
233 QualType &ObjCARCReferenceLifetimeType,
234 const NamedDecl *InitializedDecl) {
235 // Look through single-element init lists that claim to be lvalues. They're
236 // just syntactic wrappers in this case.
237 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
238 if (ILE->getNumInits() == 1 && ILE->isGLValue())
239 E = ILE->getInit(0);
240 }
241
242 // Look through expressions for materialized temporaries (for now).
243 if (const MaterializeTemporaryExpr *M
244 = dyn_cast<MaterializeTemporaryExpr>(E)) {
245 // Objective-C++ ARC:
246 // If we are binding a reference to a temporary that has ownership, we
247 // need to perform retain/release operations on the temporary.
248 if (CGF.getContext().getLangOpts().ObjCAutoRefCount &&
249 E->getType()->isObjCLifetimeType() &&
250 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
251 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
252 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
253 ObjCARCReferenceLifetimeType = E->getType();
254
255 E = M->GetTemporaryExpr();
256 }
257
258 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
259 E = DAE->getExpr();
260
261 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
262 CGF.enterFullExpression(EWC);
263 CodeGenFunction::RunCleanupsScope Scope(CGF);
264
265 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
266 ReferenceTemporary,
267 ReferenceTemporaryDtor,
268 ObjCARCReferenceLifetimeType,
269 InitializedDecl);
270 }
271
272 RValue RV;
273 if (E->isGLValue()) {
274 // Emit the expression as an lvalue.
275 LValue LV = CGF.EmitLValue(E);
276
277 if (LV.isSimple())
278 return LV.getAddress();
279
280 // We have to load the lvalue.
281 RV = CGF.EmitLoadOfLValue(LV);
282 } else {
283 if (!ObjCARCReferenceLifetimeType.isNull()) {
284 ReferenceTemporary = CreateReferenceTemporary(CGF,
285 ObjCARCReferenceLifetimeType,
286 InitializedDecl);
287
288
289 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
290 ObjCARCReferenceLifetimeType);
291
292 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
293 RefTempDst, false);
294
295 bool ExtendsLifeOfTemporary = false;
296 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
297 if (Var->extendsLifetimeOfTemporary())
298 ExtendsLifeOfTemporary = true;
299 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
300 ExtendsLifeOfTemporary = true;
301 }
302
303 if (!ExtendsLifeOfTemporary) {
304 // Since the lifetime of this temporary isn't going to be extended,
305 // we need to clean it up ourselves at the end of the full expression.
306 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
307 case Qualifiers::OCL_None:
308 case Qualifiers::OCL_ExplicitNone:
309 case Qualifiers::OCL_Autoreleasing:
310 break;
311
312 case Qualifiers::OCL_Strong: {
313 assert(!ObjCARCReferenceLifetimeType->isArrayType());
314 CleanupKind cleanupKind = CGF.getARCCleanupKind();
315 CGF.pushDestroy(cleanupKind,
316 ReferenceTemporary,
317 ObjCARCReferenceLifetimeType,
318 CodeGenFunction::destroyARCStrongImprecise,
319 cleanupKind & EHCleanup);
320 break;
321 }
322
323 case Qualifiers::OCL_Weak:
324 assert(!ObjCARCReferenceLifetimeType->isArrayType());
325 CGF.pushDestroy(NormalAndEHCleanup,
326 ReferenceTemporary,
327 ObjCARCReferenceLifetimeType,
328 CodeGenFunction::destroyARCWeak,
329 /*useEHCleanupForArray*/ true);
330 break;
331 }
332
333 ObjCARCReferenceLifetimeType = QualType();
334 }
335
336 return ReferenceTemporary;
337 }
338
339 SmallVector<SubobjectAdjustment, 2> Adjustments;
340 while (true) {
341 E = E->IgnoreParens();
342
343 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
344 if ((CE->getCastKind() == CK_DerivedToBase ||
345 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
346 E->getType()->isRecordType()) {
347 E = CE->getSubExpr();
348 CXXRecordDecl *Derived
349 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
350 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
351 continue;
352 }
353
354 if (CE->getCastKind() == CK_NoOp) {
355 E = CE->getSubExpr();
356 continue;
357 }
358 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
359 if (!ME->isArrow() && ME->getBase()->isRValue()) {
360 assert(ME->getBase()->getType()->isRecordType());
361 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
362 E = ME->getBase();
363 Adjustments.push_back(SubobjectAdjustment(Field));
364 continue;
365 }
366 }
367 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
368 if (BO->isPtrMemOp()) {
369 assert(BO->getLHS()->isRValue());
370 E = BO->getLHS();
371 const MemberPointerType *MPT =
372 BO->getRHS()->getType()->getAs<MemberPointerType>();
373 llvm::Value *Ptr = CGF.EmitScalarExpr(BO->getRHS());
374 Adjustments.push_back(SubobjectAdjustment(MPT, Ptr));
375 }
376 }
377
378 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
379 if (opaque->getType()->isRecordType())
380 return CGF.EmitOpaqueValueLValue(opaque).getAddress();
381
382 // Nothing changed.
383 break;
384 }
385
386 // Create a reference temporary if necessary.
387 AggValueSlot AggSlot = AggValueSlot::ignored();
388 if (CGF.hasAggregateLLVMType(E->getType()) &&
389 !E->getType()->isAnyComplexType()) {
390 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
391 InitializedDecl);
392 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
393 AggValueSlot::IsDestructed_t isDestructed
394 = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
395 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
396 Qualifiers(), isDestructed,
397 AggValueSlot::DoesNotNeedGCBarriers,
398 AggValueSlot::IsNotAliased);
399 }
400
401 if (InitializedDecl) {
402 // Get the destructor for the reference temporary.
403 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
404 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
405 if (!ClassDecl->hasTrivialDestructor())
406 ReferenceTemporaryDtor = ClassDecl->getDestructor();
407 }
408 }
409
410 RV = CGF.EmitAnyExpr(E, AggSlot);
411
412 // Check if need to perform derived-to-base casts and/or field accesses, to
413 // get from the temporary object we created (and, potentially, for which we
414 // extended the lifetime) to the subobject we're binding the reference to.
415 if (!Adjustments.empty()) {
416 llvm::Value *Object = RV.getAggregateAddr();
417 for (unsigned I = Adjustments.size(); I != 0; --I) {
418 SubobjectAdjustment &Adjustment = Adjustments[I-1];
419 switch (Adjustment.Kind) {
420 case SubobjectAdjustment::DerivedToBaseAdjustment:
421 Object =
422 CGF.GetAddressOfBaseClass(Object,
423 Adjustment.DerivedToBase.DerivedClass,
424 Adjustment.DerivedToBase.BasePath->path_begin(),
425 Adjustment.DerivedToBase.BasePath->path_end(),
426 /*NullCheckValue=*/false);
427 break;
428
429 case SubobjectAdjustment::FieldAdjustment: {
430 LValue LV = CGF.MakeAddrLValue(Object, E->getType());
431 LV = CGF.EmitLValueForField(LV, Adjustment.Field);
432 if (LV.isSimple()) {
433 Object = LV.getAddress();
434 break;
435 }
436
437 // For non-simple lvalues, we actually have to create a copy of
438 // the object we're binding to.
439 QualType T = Adjustment.Field->getType().getNonReferenceType()
440 .getUnqualifiedType();
441 Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
442 LValue TempLV = CGF.MakeAddrLValue(Object,
443 Adjustment.Field->getType());
444 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
445 break;
446 }
447
448 case SubobjectAdjustment::MemberPointerAdjustment: {
449 Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
450 CGF, Object, Adjustment.Ptr.Ptr, Adjustment.Ptr.MPT);
451 break;
452 }
453 }
454 }
455
456 return Object;
457 }
458 }
459
460 if (RV.isAggregate())
461 return RV.getAggregateAddr();
462
463 // Create a temporary variable that we can bind the reference to.
464 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
465 InitializedDecl);
466
467
468 unsigned Alignment =
469 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
470 if (RV.isScalar())
471 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
472 /*Volatile=*/false, Alignment, E->getType());
473 else
474 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
475 /*Volatile=*/false);
476 return ReferenceTemporary;
477 }
478
479 RValue
EmitReferenceBindingToExpr(const Expr * E,const NamedDecl * InitializedDecl)480 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
481 const NamedDecl *InitializedDecl) {
482 llvm::Value *ReferenceTemporary = 0;
483 const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
484 QualType ObjCARCReferenceLifetimeType;
485 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
486 ReferenceTemporaryDtor,
487 ObjCARCReferenceLifetimeType,
488 InitializedDecl);
489 if (CatchUndefined && !E->getType()->isFunctionType()) {
490 // C++11 [dcl.ref]p5 (as amended by core issue 453):
491 // If a glvalue to which a reference is directly bound designates neither
492 // an existing object or function of an appropriate type nor a region of
493 // storage of suitable size and alignment to contain an object of the
494 // reference's type, the behavior is undefined.
495 QualType Ty = E->getType();
496 EmitTypeCheck(TCK_ReferenceBinding, Value, Ty);
497 }
498 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
499 return RValue::get(Value);
500
501 // Make sure to call the destructor for the reference temporary.
502 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
503 if (VD && VD->hasGlobalStorage()) {
504 if (ReferenceTemporaryDtor) {
505 llvm::Constant *DtorFn =
506 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
507 CGM.getCXXABI().registerGlobalDtor(*this, DtorFn,
508 cast<llvm::Constant>(ReferenceTemporary));
509 } else {
510 assert(!ObjCARCReferenceLifetimeType.isNull());
511 // Note: We intentionally do not register a global "destructor" to
512 // release the object.
513 }
514
515 return RValue::get(Value);
516 }
517
518 if (ReferenceTemporaryDtor)
519 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
520 else {
521 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
522 case Qualifiers::OCL_None:
523 llvm_unreachable(
524 "Not a reference temporary that needs to be deallocated");
525 case Qualifiers::OCL_ExplicitNone:
526 case Qualifiers::OCL_Autoreleasing:
527 // Nothing to do.
528 break;
529
530 case Qualifiers::OCL_Strong: {
531 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
532 CleanupKind cleanupKind = getARCCleanupKind();
533 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
534 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
535 cleanupKind & EHCleanup);
536 break;
537 }
538
539 case Qualifiers::OCL_Weak: {
540 // __weak objects always get EH cleanups; otherwise, exceptions
541 // could cause really nasty crashes instead of mere leaks.
542 pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
543 ObjCARCReferenceLifetimeType, destroyARCWeak, true);
544 break;
545 }
546 }
547 }
548
549 return RValue::get(Value);
550 }
551
552
553 /// getAccessedFieldNo - Given an encoded value and a result number, return the
554 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)555 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
556 const llvm::Constant *Elts) {
557 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
558 ->getZExtValue();
559 }
560
EmitTypeCheck(TypeCheckKind TCK,llvm::Value * Address,QualType Ty,CharUnits Alignment)561 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, llvm::Value *Address,
562 QualType Ty, CharUnits Alignment) {
563 if (!CatchUndefined)
564 return;
565
566 llvm::Value *Cond = 0;
567
568 if (TCK != TCK_Load && TCK != TCK_Store) {
569 // The glvalue must not be an empty glvalue. Don't bother checking this for
570 // loads and stores, because we will get a segfault anyway (if the operation
571 // isn't optimized out).
572 Cond = Builder.CreateICmpNE(
573 Address, llvm::Constant::getNullValue(Address->getType()));
574 }
575
576 if (!Ty->isIncompleteType()) {
577 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
578 uint64_t AlignVal = Alignment.getQuantity();
579 if (!AlignVal)
580 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
581
582 // This needs to be to the standard address space.
583 Address = Builder.CreateBitCast(Address, Int8PtrTy);
584
585 // The glvalue must refer to a large enough storage region.
586 // FIXME: If -faddress-sanitizer is enabled, insert dynamic instrumentation
587 // to check this.
588 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
589 llvm::Value *Min = Builder.getFalse();
590 llvm::Value *LargeEnough =
591 Builder.CreateICmpUGE(Builder.CreateCall2(F, Address, Min),
592 llvm::ConstantInt::get(IntPtrTy, Size));
593 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
594
595 // The glvalue must be suitably aligned.
596 llvm::Value *Align =
597 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
598 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
599 Cond = Builder.CreateAnd(Cond,
600 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)));
601 }
602
603 if (Cond)
604 EmitCheck(Cond);
605 }
606
607
608 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)609 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
610 bool isInc, bool isPre) {
611 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
612 LV.isVolatileQualified());
613
614 llvm::Value *NextVal;
615 if (isa<llvm::IntegerType>(InVal.first->getType())) {
616 uint64_t AmountVal = isInc ? 1 : -1;
617 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
618
619 // Add the inc/dec to the real part.
620 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
621 } else {
622 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
623 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
624 if (!isInc)
625 FVal.changeSign();
626 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
627
628 // Add the inc/dec to the real part.
629 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
630 }
631
632 ComplexPairTy IncVal(NextVal, InVal.second);
633
634 // Store the updated result through the lvalue.
635 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
636
637 // If this is a postinc, return the value read from memory, otherwise use the
638 // updated value.
639 return isPre ? IncVal : InVal;
640 }
641
642
643 //===----------------------------------------------------------------------===//
644 // LValue Expression Emission
645 //===----------------------------------------------------------------------===//
646
GetUndefRValue(QualType Ty)647 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
648 if (Ty->isVoidType())
649 return RValue::get(0);
650
651 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
652 llvm::Type *EltTy = ConvertType(CTy->getElementType());
653 llvm::Value *U = llvm::UndefValue::get(EltTy);
654 return RValue::getComplex(std::make_pair(U, U));
655 }
656
657 // If this is a use of an undefined aggregate type, the aggregate must have an
658 // identifiable address. Just because the contents of the value are undefined
659 // doesn't mean that the address can't be taken and compared.
660 if (hasAggregateLLVMType(Ty)) {
661 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
662 return RValue::getAggregate(DestPtr);
663 }
664
665 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
666 }
667
EmitUnsupportedRValue(const Expr * E,const char * Name)668 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
669 const char *Name) {
670 ErrorUnsupported(E, Name);
671 return GetUndefRValue(E->getType());
672 }
673
EmitUnsupportedLValue(const Expr * E,const char * Name)674 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
675 const char *Name) {
676 ErrorUnsupported(E, Name);
677 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
678 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
679 }
680
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)681 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
682 LValue LV = EmitLValue(E);
683 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
684 EmitTypeCheck(TCK, LV.getAddress(), E->getType(), LV.getAlignment());
685 return LV;
686 }
687
688 /// EmitLValue - Emit code to compute a designator that specifies the location
689 /// of the expression.
690 ///
691 /// This can return one of two things: a simple address or a bitfield reference.
692 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
693 /// an LLVM pointer type.
694 ///
695 /// If this returns a bitfield reference, nothing about the pointee type of the
696 /// LLVM value is known: For example, it may not be a pointer to an integer.
697 ///
698 /// If this returns a normal address, and if the lvalue's C type is fixed size,
699 /// this method guarantees that the returned pointer type will point to an LLVM
700 /// type of the same size of the lvalue's type. If the lvalue has a variable
701 /// length type, this is not possible.
702 ///
EmitLValue(const Expr * E)703 LValue CodeGenFunction::EmitLValue(const Expr *E) {
704 switch (E->getStmtClass()) {
705 default: return EmitUnsupportedLValue(E, "l-value expression");
706
707 case Expr::ObjCPropertyRefExprClass:
708 llvm_unreachable("cannot emit a property reference directly");
709
710 case Expr::ObjCSelectorExprClass:
711 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
712 case Expr::ObjCIsaExprClass:
713 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
714 case Expr::BinaryOperatorClass:
715 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
716 case Expr::CompoundAssignOperatorClass:
717 if (!E->getType()->isAnyComplexType())
718 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
719 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
720 case Expr::CallExprClass:
721 case Expr::CXXMemberCallExprClass:
722 case Expr::CXXOperatorCallExprClass:
723 case Expr::UserDefinedLiteralClass:
724 return EmitCallExprLValue(cast<CallExpr>(E));
725 case Expr::VAArgExprClass:
726 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
727 case Expr::DeclRefExprClass:
728 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
729 case Expr::ParenExprClass:
730 return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
731 case Expr::GenericSelectionExprClass:
732 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
733 case Expr::PredefinedExprClass:
734 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
735 case Expr::StringLiteralClass:
736 return EmitStringLiteralLValue(cast<StringLiteral>(E));
737 case Expr::ObjCEncodeExprClass:
738 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
739 case Expr::PseudoObjectExprClass:
740 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
741 case Expr::InitListExprClass:
742 return EmitInitListLValue(cast<InitListExpr>(E));
743 case Expr::CXXTemporaryObjectExprClass:
744 case Expr::CXXConstructExprClass:
745 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
746 case Expr::CXXBindTemporaryExprClass:
747 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
748 case Expr::LambdaExprClass:
749 return EmitLambdaLValue(cast<LambdaExpr>(E));
750
751 case Expr::ExprWithCleanupsClass: {
752 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
753 enterFullExpression(cleanups);
754 RunCleanupsScope Scope(*this);
755 return EmitLValue(cleanups->getSubExpr());
756 }
757
758 case Expr::CXXScalarValueInitExprClass:
759 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
760 case Expr::CXXDefaultArgExprClass:
761 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
762 case Expr::CXXTypeidExprClass:
763 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
764
765 case Expr::ObjCMessageExprClass:
766 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
767 case Expr::ObjCIvarRefExprClass:
768 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
769 case Expr::StmtExprClass:
770 return EmitStmtExprLValue(cast<StmtExpr>(E));
771 case Expr::UnaryOperatorClass:
772 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
773 case Expr::ArraySubscriptExprClass:
774 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
775 case Expr::ExtVectorElementExprClass:
776 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
777 case Expr::MemberExprClass:
778 return EmitMemberExpr(cast<MemberExpr>(E));
779 case Expr::CompoundLiteralExprClass:
780 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
781 case Expr::ConditionalOperatorClass:
782 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
783 case Expr::BinaryConditionalOperatorClass:
784 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
785 case Expr::ChooseExprClass:
786 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
787 case Expr::OpaqueValueExprClass:
788 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
789 case Expr::SubstNonTypeTemplateParmExprClass:
790 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
791 case Expr::ImplicitCastExprClass:
792 case Expr::CStyleCastExprClass:
793 case Expr::CXXFunctionalCastExprClass:
794 case Expr::CXXStaticCastExprClass:
795 case Expr::CXXDynamicCastExprClass:
796 case Expr::CXXReinterpretCastExprClass:
797 case Expr::CXXConstCastExprClass:
798 case Expr::ObjCBridgedCastExprClass:
799 return EmitCastLValue(cast<CastExpr>(E));
800
801 case Expr::MaterializeTemporaryExprClass:
802 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
803 }
804 }
805
806 /// Given an object of the given canonical type, can we safely copy a
807 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)808 static bool isConstantEmittableObjectType(QualType type) {
809 assert(type.isCanonical());
810 assert(!type->isReferenceType());
811
812 // Must be const-qualified but non-volatile.
813 Qualifiers qs = type.getLocalQualifiers();
814 if (!qs.hasConst() || qs.hasVolatile()) return false;
815
816 // Otherwise, all object types satisfy this except C++ classes with
817 // mutable subobjects or non-trivial copy/destroy behavior.
818 if (const RecordType *RT = dyn_cast<RecordType>(type))
819 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
820 if (RD->hasMutableFields() || !RD->isTrivial())
821 return false;
822
823 return true;
824 }
825
826 /// Can we constant-emit a load of a reference to a variable of the
827 /// given type? This is different from predicates like
828 /// Decl::isUsableInConstantExpressions because we do want it to apply
829 /// in situations that don't necessarily satisfy the language's rules
830 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
831 /// to do this with const float variables even if those variables
832 /// aren't marked 'constexpr'.
833 enum ConstantEmissionKind {
834 CEK_None,
835 CEK_AsReferenceOnly,
836 CEK_AsValueOrReference,
837 CEK_AsValueOnly
838 };
checkVarTypeForConstantEmission(QualType type)839 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
840 type = type.getCanonicalType();
841 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
842 if (isConstantEmittableObjectType(ref->getPointeeType()))
843 return CEK_AsValueOrReference;
844 return CEK_AsReferenceOnly;
845 }
846 if (isConstantEmittableObjectType(type))
847 return CEK_AsValueOnly;
848 return CEK_None;
849 }
850
851 /// Try to emit a reference to the given value without producing it as
852 /// an l-value. This is actually more than an optimization: we can't
853 /// produce an l-value for variables that we never actually captured
854 /// in a block or lambda, which means const int variables or constexpr
855 /// literals or similar.
856 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)857 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
858 ValueDecl *value = refExpr->getDecl();
859
860 // The value needs to be an enum constant or a constant variable.
861 ConstantEmissionKind CEK;
862 if (isa<ParmVarDecl>(value)) {
863 CEK = CEK_None;
864 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
865 CEK = checkVarTypeForConstantEmission(var->getType());
866 } else if (isa<EnumConstantDecl>(value)) {
867 CEK = CEK_AsValueOnly;
868 } else {
869 CEK = CEK_None;
870 }
871 if (CEK == CEK_None) return ConstantEmission();
872
873 Expr::EvalResult result;
874 bool resultIsReference;
875 QualType resultType;
876
877 // It's best to evaluate all the way as an r-value if that's permitted.
878 if (CEK != CEK_AsReferenceOnly &&
879 refExpr->EvaluateAsRValue(result, getContext())) {
880 resultIsReference = false;
881 resultType = refExpr->getType();
882
883 // Otherwise, try to evaluate as an l-value.
884 } else if (CEK != CEK_AsValueOnly &&
885 refExpr->EvaluateAsLValue(result, getContext())) {
886 resultIsReference = true;
887 resultType = value->getType();
888
889 // Failure.
890 } else {
891 return ConstantEmission();
892 }
893
894 // In any case, if the initializer has side-effects, abandon ship.
895 if (result.HasSideEffects)
896 return ConstantEmission();
897
898 // Emit as a constant.
899 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
900
901 // Make sure we emit a debug reference to the global variable.
902 // This should probably fire even for
903 if (isa<VarDecl>(value)) {
904 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
905 EmitDeclRefExprDbgValue(refExpr, C);
906 } else {
907 assert(isa<EnumConstantDecl>(value));
908 EmitDeclRefExprDbgValue(refExpr, C);
909 }
910
911 // If we emitted a reference constant, we need to dereference that.
912 if (resultIsReference)
913 return ConstantEmission::forReference(C);
914
915 return ConstantEmission::forValue(C);
916 }
917
EmitLoadOfScalar(LValue lvalue)918 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
919 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
920 lvalue.getAlignment().getQuantity(),
921 lvalue.getType(), lvalue.getTBAAInfo());
922 }
923
hasBooleanRepresentation(QualType Ty)924 static bool hasBooleanRepresentation(QualType Ty) {
925 if (Ty->isBooleanType())
926 return true;
927
928 if (const EnumType *ET = Ty->getAs<EnumType>())
929 return ET->getDecl()->getIntegerType()->isBooleanType();
930
931 if (const AtomicType *AT = Ty->getAs<AtomicType>())
932 return hasBooleanRepresentation(AT->getValueType());
933
934 return false;
935 }
936
getRangeForLoadFromType(QualType Ty)937 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
938 const EnumType *ET = Ty->getAs<EnumType>();
939 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
940 CGM.getCodeGenOpts().StrictEnums &&
941 !ET->getDecl()->isFixed());
942 bool IsBool = hasBooleanRepresentation(Ty);
943 if (!IsBool && !IsRegularCPlusPlusEnum)
944 return NULL;
945
946 llvm::APInt Min;
947 llvm::APInt End;
948 if (IsBool) {
949 Min = llvm::APInt(8, 0);
950 End = llvm::APInt(8, 2);
951 } else {
952 const EnumDecl *ED = ET->getDecl();
953 llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType());
954 unsigned Bitwidth = LTy->getScalarSizeInBits();
955 unsigned NumNegativeBits = ED->getNumNegativeBits();
956 unsigned NumPositiveBits = ED->getNumPositiveBits();
957
958 if (NumNegativeBits) {
959 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
960 assert(NumBits <= Bitwidth);
961 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
962 Min = -End;
963 } else {
964 assert(NumPositiveBits <= Bitwidth);
965 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
966 Min = llvm::APInt(Bitwidth, 0);
967 }
968 }
969
970 llvm::MDBuilder MDHelper(getLLVMContext());
971 return MDHelper.createRange(Min, End);
972 }
973
EmitLoadOfScalar(llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo)974 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
975 unsigned Alignment, QualType Ty,
976 llvm::MDNode *TBAAInfo) {
977
978 // For better performance, handle vector loads differently.
979 if (Ty->isVectorType()) {
980 llvm::Value *V;
981 const llvm::Type *EltTy =
982 cast<llvm::PointerType>(Addr->getType())->getElementType();
983
984 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
985
986 // Handle vectors of size 3, like size 4 for better performance.
987 if (VTy->getNumElements() == 3) {
988
989 // Bitcast to vec4 type.
990 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
991 4);
992 llvm::PointerType *ptVec4Ty =
993 llvm::PointerType::get(vec4Ty,
994 (cast<llvm::PointerType>(
995 Addr->getType()))->getAddressSpace());
996 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
997 "castToVec4");
998 // Now load value.
999 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1000
1001 // Shuffle vector to get vec3.
1002 llvm::SmallVector<llvm::Constant*, 3> Mask;
1003 Mask.push_back(llvm::ConstantInt::get(
1004 llvm::Type::getInt32Ty(getLLVMContext()),
1005 0));
1006 Mask.push_back(llvm::ConstantInt::get(
1007 llvm::Type::getInt32Ty(getLLVMContext()),
1008 1));
1009 Mask.push_back(llvm::ConstantInt::get(
1010 llvm::Type::getInt32Ty(getLLVMContext()),
1011 2));
1012
1013 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1014 V = Builder.CreateShuffleVector(LoadVal,
1015 llvm::UndefValue::get(vec4Ty),
1016 MaskV, "extractVec");
1017 return EmitFromMemory(V, Ty);
1018 }
1019 }
1020
1021 llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1022 if (Volatile)
1023 Load->setVolatile(true);
1024 if (Alignment)
1025 Load->setAlignment(Alignment);
1026 if (TBAAInfo)
1027 CGM.DecorateInstruction(Load, TBAAInfo);
1028 // If this is an atomic type, all normal reads must be atomic
1029 if (Ty->isAtomicType())
1030 Load->setAtomic(llvm::SequentiallyConsistent);
1031
1032 if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1033 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1034 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1035
1036 return EmitFromMemory(Load, Ty);
1037 }
1038
EmitToMemory(llvm::Value * Value,QualType Ty)1039 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1040 // Bool has a different representation in memory than in registers.
1041 if (hasBooleanRepresentation(Ty)) {
1042 // This should really always be an i1, but sometimes it's already
1043 // an i8, and it's awkward to track those cases down.
1044 if (Value->getType()->isIntegerTy(1))
1045 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
1046 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
1047 }
1048
1049 return Value;
1050 }
1051
EmitFromMemory(llvm::Value * Value,QualType Ty)1052 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1053 // Bool has a different representation in memory than in registers.
1054 if (hasBooleanRepresentation(Ty)) {
1055 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
1056 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1057 }
1058
1059 return Value;
1060 }
1061
EmitStoreOfScalar(llvm::Value * Value,llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo,bool isInit)1062 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1063 bool Volatile, unsigned Alignment,
1064 QualType Ty,
1065 llvm::MDNode *TBAAInfo,
1066 bool isInit) {
1067
1068 // Handle vectors differently to get better performance.
1069 if (Ty->isVectorType()) {
1070 llvm::Type *SrcTy = Value->getType();
1071 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1072 // Handle vec3 special.
1073 if (VecTy->getNumElements() == 3) {
1074 llvm::LLVMContext &VMContext = getLLVMContext();
1075
1076 // Our source is a vec3, do a shuffle vector to make it a vec4.
1077 llvm::SmallVector<llvm::Constant*, 4> Mask;
1078 Mask.push_back(llvm::ConstantInt::get(
1079 llvm::Type::getInt32Ty(VMContext),
1080 0));
1081 Mask.push_back(llvm::ConstantInt::get(
1082 llvm::Type::getInt32Ty(VMContext),
1083 1));
1084 Mask.push_back(llvm::ConstantInt::get(
1085 llvm::Type::getInt32Ty(VMContext),
1086 2));
1087 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1088
1089 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1090 Value = Builder.CreateShuffleVector(Value,
1091 llvm::UndefValue::get(VecTy),
1092 MaskV, "extractVec");
1093 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1094 }
1095 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1096 if (DstPtr->getElementType() != SrcTy) {
1097 llvm::Type *MemTy =
1098 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1099 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1100 }
1101 }
1102
1103 Value = EmitToMemory(Value, Ty);
1104
1105 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1106 if (Alignment)
1107 Store->setAlignment(Alignment);
1108 if (TBAAInfo)
1109 CGM.DecorateInstruction(Store, TBAAInfo);
1110 if (!isInit && Ty->isAtomicType())
1111 Store->setAtomic(llvm::SequentiallyConsistent);
1112 }
1113
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1114 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1115 bool isInit) {
1116 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1117 lvalue.getAlignment().getQuantity(), lvalue.getType(),
1118 lvalue.getTBAAInfo(), isInit);
1119 }
1120
1121 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1122 /// method emits the address of the lvalue, then loads the result as an rvalue,
1123 /// returning the rvalue.
EmitLoadOfLValue(LValue LV)1124 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1125 if (LV.isObjCWeak()) {
1126 // load of a __weak object.
1127 llvm::Value *AddrWeakObj = LV.getAddress();
1128 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1129 AddrWeakObj));
1130 }
1131 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
1132 return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1133
1134 if (LV.isSimple()) {
1135 assert(!LV.getType()->isFunctionType());
1136
1137 // Everything needs a load.
1138 return RValue::get(EmitLoadOfScalar(LV));
1139 }
1140
1141 if (LV.isVectorElt()) {
1142 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1143 LV.isVolatileQualified());
1144 Load->setAlignment(LV.getAlignment().getQuantity());
1145 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1146 "vecext"));
1147 }
1148
1149 // If this is a reference to a subset of the elements of a vector, either
1150 // shuffle the input or extract/insert them as appropriate.
1151 if (LV.isExtVectorElt())
1152 return EmitLoadOfExtVectorElementLValue(LV);
1153
1154 assert(LV.isBitField() && "Unknown LValue type!");
1155 return EmitLoadOfBitfieldLValue(LV);
1156 }
1157
EmitLoadOfBitfieldLValue(LValue LV)1158 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1159 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1160
1161 // Get the output type.
1162 llvm::Type *ResLTy = ConvertType(LV.getType());
1163 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1164
1165 // Compute the result as an OR of all of the individual component accesses.
1166 llvm::Value *Res = 0;
1167 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1168 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1169 CharUnits AccessAlignment = AI.AccessAlignment;
1170 if (!LV.getAlignment().isZero())
1171 AccessAlignment = std::min(AccessAlignment, LV.getAlignment());
1172
1173 // Get the field pointer.
1174 llvm::Value *Ptr = LV.getBitFieldBaseAddr();
1175
1176 // Only offset by the field index if used, so that incoming values are not
1177 // required to be structures.
1178 if (AI.FieldIndex)
1179 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1180
1181 // Offset by the byte offset, if used.
1182 if (!AI.FieldByteOffset.isZero()) {
1183 Ptr = EmitCastToVoidPtr(Ptr);
1184 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1185 "bf.field.offs");
1186 }
1187
1188 // Cast to the access type.
1189 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
1190 CGM.getContext().getTargetAddressSpace(LV.getType()));
1191 Ptr = Builder.CreateBitCast(Ptr, PTy);
1192
1193 // Perform the load.
1194 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1195 Load->setAlignment(AccessAlignment.getQuantity());
1196
1197 // Shift out unused low bits and mask out unused high bits.
1198 llvm::Value *Val = Load;
1199 if (AI.FieldBitStart)
1200 Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1201 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1202 AI.TargetBitWidth),
1203 "bf.clear");
1204
1205 // Extend or truncate to the target size.
1206 if (AI.AccessWidth < ResSizeInBits)
1207 Val = Builder.CreateZExt(Val, ResLTy);
1208 else if (AI.AccessWidth > ResSizeInBits)
1209 Val = Builder.CreateTrunc(Val, ResLTy);
1210
1211 // Shift into place, and OR into the result.
1212 if (AI.TargetBitOffset)
1213 Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1214 Res = Res ? Builder.CreateOr(Res, Val) : Val;
1215 }
1216
1217 // If the bit-field is signed, perform the sign-extension.
1218 //
1219 // FIXME: This can easily be folded into the load of the high bits, which
1220 // could also eliminate the mask of high bits in some situations.
1221 if (Info.isSigned()) {
1222 unsigned ExtraBits = ResSizeInBits - Info.getSize();
1223 if (ExtraBits)
1224 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1225 ExtraBits, "bf.val.sext");
1226 }
1227
1228 return RValue::get(Res);
1229 }
1230
1231 // If this is a reference to a subset of the elements of a vector, create an
1232 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)1233 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1234 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1235 LV.isVolatileQualified());
1236 Load->setAlignment(LV.getAlignment().getQuantity());
1237 llvm::Value *Vec = Load;
1238
1239 const llvm::Constant *Elts = LV.getExtVectorElts();
1240
1241 // If the result of the expression is a non-vector type, we must be extracting
1242 // a single element. Just codegen as an extractelement.
1243 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1244 if (!ExprVT) {
1245 unsigned InIdx = getAccessedFieldNo(0, Elts);
1246 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1247 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1248 }
1249
1250 // Always use shuffle vector to try to retain the original program structure
1251 unsigned NumResultElts = ExprVT->getNumElements();
1252
1253 SmallVector<llvm::Constant*, 4> Mask;
1254 for (unsigned i = 0; i != NumResultElts; ++i)
1255 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1256
1257 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1258 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1259 MaskV);
1260 return RValue::get(Vec);
1261 }
1262
1263
1264
1265 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1266 /// lvalue, where both are guaranteed to the have the same type, and that type
1267 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)1268 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1269 if (!Dst.isSimple()) {
1270 if (Dst.isVectorElt()) {
1271 // Read/modify/write the vector, inserting the new element.
1272 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1273 Dst.isVolatileQualified());
1274 Load->setAlignment(Dst.getAlignment().getQuantity());
1275 llvm::Value *Vec = Load;
1276 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1277 Dst.getVectorIdx(), "vecins");
1278 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1279 Dst.isVolatileQualified());
1280 Store->setAlignment(Dst.getAlignment().getQuantity());
1281 return;
1282 }
1283
1284 // If this is an update of extended vector elements, insert them as
1285 // appropriate.
1286 if (Dst.isExtVectorElt())
1287 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1288
1289 assert(Dst.isBitField() && "Unknown LValue type");
1290 return EmitStoreThroughBitfieldLValue(Src, Dst);
1291 }
1292
1293 // There's special magic for assigning into an ARC-qualified l-value.
1294 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1295 switch (Lifetime) {
1296 case Qualifiers::OCL_None:
1297 llvm_unreachable("present but none");
1298
1299 case Qualifiers::OCL_ExplicitNone:
1300 // nothing special
1301 break;
1302
1303 case Qualifiers::OCL_Strong:
1304 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1305 return;
1306
1307 case Qualifiers::OCL_Weak:
1308 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1309 return;
1310
1311 case Qualifiers::OCL_Autoreleasing:
1312 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1313 Src.getScalarVal()));
1314 // fall into the normal path
1315 break;
1316 }
1317 }
1318
1319 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1320 // load of a __weak object.
1321 llvm::Value *LvalueDst = Dst.getAddress();
1322 llvm::Value *src = Src.getScalarVal();
1323 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1324 return;
1325 }
1326
1327 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1328 // load of a __strong object.
1329 llvm::Value *LvalueDst = Dst.getAddress();
1330 llvm::Value *src = Src.getScalarVal();
1331 if (Dst.isObjCIvar()) {
1332 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1333 llvm::Type *ResultType = ConvertType(getContext().LongTy);
1334 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1335 llvm::Value *dst = RHS;
1336 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1337 llvm::Value *LHS =
1338 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1339 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1340 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1341 BytesBetween);
1342 } else if (Dst.isGlobalObjCRef()) {
1343 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1344 Dst.isThreadLocalRef());
1345 }
1346 else
1347 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1348 return;
1349 }
1350
1351 assert(Src.isScalar() && "Can't emit an agg store with this method");
1352 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1353 }
1354
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)1355 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1356 llvm::Value **Result) {
1357 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1358
1359 // Get the output type.
1360 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1361 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1362
1363 // Get the source value, truncated to the width of the bit-field.
1364 llvm::Value *SrcVal = Src.getScalarVal();
1365
1366 if (hasBooleanRepresentation(Dst.getType()))
1367 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1368
1369 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1370 Info.getSize()),
1371 "bf.value");
1372
1373 // Return the new value of the bit-field, if requested.
1374 if (Result) {
1375 // Cast back to the proper type for result.
1376 llvm::Type *SrcTy = Src.getScalarVal()->getType();
1377 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1378 "bf.reload.val");
1379
1380 // Sign extend if necessary.
1381 if (Info.isSigned()) {
1382 unsigned ExtraBits = ResSizeInBits - Info.getSize();
1383 if (ExtraBits)
1384 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1385 ExtraBits, "bf.reload.sext");
1386 }
1387
1388 *Result = ReloadVal;
1389 }
1390
1391 // Iterate over the components, writing each piece to memory.
1392 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1393 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1394 CharUnits AccessAlignment = AI.AccessAlignment;
1395 if (!Dst.getAlignment().isZero())
1396 AccessAlignment = std::min(AccessAlignment, Dst.getAlignment());
1397
1398 // Get the field pointer.
1399 llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1400 unsigned addressSpace =
1401 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1402
1403 // Only offset by the field index if used, so that incoming values are not
1404 // required to be structures.
1405 if (AI.FieldIndex)
1406 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1407
1408 // Offset by the byte offset, if used.
1409 if (!AI.FieldByteOffset.isZero()) {
1410 Ptr = EmitCastToVoidPtr(Ptr);
1411 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1412 "bf.field.offs");
1413 }
1414
1415 // Cast to the access type.
1416 llvm::Type *AccessLTy =
1417 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1418
1419 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1420 Ptr = Builder.CreateBitCast(Ptr, PTy);
1421
1422 // Extract the piece of the bit-field value to write in this access, limited
1423 // to the values that are part of this access.
1424 llvm::Value *Val = SrcVal;
1425 if (AI.TargetBitOffset)
1426 Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1427 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1428 AI.TargetBitWidth));
1429
1430 // Extend or truncate to the access size.
1431 if (ResSizeInBits < AI.AccessWidth)
1432 Val = Builder.CreateZExt(Val, AccessLTy);
1433 else if (ResSizeInBits > AI.AccessWidth)
1434 Val = Builder.CreateTrunc(Val, AccessLTy);
1435
1436 // Shift into the position in memory.
1437 if (AI.FieldBitStart)
1438 Val = Builder.CreateShl(Val, AI.FieldBitStart);
1439
1440 // If necessary, load and OR in bits that are outside of the bit-field.
1441 if (AI.TargetBitWidth != AI.AccessWidth) {
1442 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1443 Load->setAlignment(AccessAlignment.getQuantity());
1444
1445 // Compute the mask for zeroing the bits that are part of the bit-field.
1446 llvm::APInt InvMask =
1447 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1448 AI.FieldBitStart + AI.TargetBitWidth);
1449
1450 // Apply the mask and OR in to the value to write.
1451 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1452 }
1453
1454 // Write the value.
1455 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1456 Dst.isVolatileQualified());
1457 Store->setAlignment(AccessAlignment.getQuantity());
1458 }
1459 }
1460
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)1461 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1462 LValue Dst) {
1463 // This access turns into a read/modify/write of the vector. Load the input
1464 // value now.
1465 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1466 Dst.isVolatileQualified());
1467 Load->setAlignment(Dst.getAlignment().getQuantity());
1468 llvm::Value *Vec = Load;
1469 const llvm::Constant *Elts = Dst.getExtVectorElts();
1470
1471 llvm::Value *SrcVal = Src.getScalarVal();
1472
1473 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1474 unsigned NumSrcElts = VTy->getNumElements();
1475 unsigned NumDstElts =
1476 cast<llvm::VectorType>(Vec->getType())->getNumElements();
1477 if (NumDstElts == NumSrcElts) {
1478 // Use shuffle vector is the src and destination are the same number of
1479 // elements and restore the vector mask since it is on the side it will be
1480 // stored.
1481 SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1482 for (unsigned i = 0; i != NumSrcElts; ++i)
1483 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1484
1485 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1486 Vec = Builder.CreateShuffleVector(SrcVal,
1487 llvm::UndefValue::get(Vec->getType()),
1488 MaskV);
1489 } else if (NumDstElts > NumSrcElts) {
1490 // Extended the source vector to the same length and then shuffle it
1491 // into the destination.
1492 // FIXME: since we're shuffling with undef, can we just use the indices
1493 // into that? This could be simpler.
1494 SmallVector<llvm::Constant*, 4> ExtMask;
1495 for (unsigned i = 0; i != NumSrcElts; ++i)
1496 ExtMask.push_back(Builder.getInt32(i));
1497 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1498 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1499 llvm::Value *ExtSrcVal =
1500 Builder.CreateShuffleVector(SrcVal,
1501 llvm::UndefValue::get(SrcVal->getType()),
1502 ExtMaskV);
1503 // build identity
1504 SmallVector<llvm::Constant*, 4> Mask;
1505 for (unsigned i = 0; i != NumDstElts; ++i)
1506 Mask.push_back(Builder.getInt32(i));
1507
1508 // modify when what gets shuffled in
1509 for (unsigned i = 0; i != NumSrcElts; ++i)
1510 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1511 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1512 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1513 } else {
1514 // We should never shorten the vector
1515 llvm_unreachable("unexpected shorten vector length");
1516 }
1517 } else {
1518 // If the Src is a scalar (not a vector) it must be updating one element.
1519 unsigned InIdx = getAccessedFieldNo(0, Elts);
1520 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1521 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1522 }
1523
1524 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1525 Dst.isVolatileQualified());
1526 Store->setAlignment(Dst.getAlignment().getQuantity());
1527 }
1528
1529 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1530 // generating write-barries API. It is currently a global, ivar,
1531 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)1532 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1533 LValue &LV,
1534 bool IsMemberAccess=false) {
1535 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1536 return;
1537
1538 if (isa<ObjCIvarRefExpr>(E)) {
1539 QualType ExpTy = E->getType();
1540 if (IsMemberAccess && ExpTy->isPointerType()) {
1541 // If ivar is a structure pointer, assigning to field of
1542 // this struct follows gcc's behavior and makes it a non-ivar
1543 // writer-barrier conservatively.
1544 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1545 if (ExpTy->isRecordType()) {
1546 LV.setObjCIvar(false);
1547 return;
1548 }
1549 }
1550 LV.setObjCIvar(true);
1551 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1552 LV.setBaseIvarExp(Exp->getBase());
1553 LV.setObjCArray(E->getType()->isArrayType());
1554 return;
1555 }
1556
1557 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1558 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1559 if (VD->hasGlobalStorage()) {
1560 LV.setGlobalObjCRef(true);
1561 LV.setThreadLocalRef(VD->isThreadSpecified());
1562 }
1563 }
1564 LV.setObjCArray(E->getType()->isArrayType());
1565 return;
1566 }
1567
1568 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1569 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1570 return;
1571 }
1572
1573 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1574 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1575 if (LV.isObjCIvar()) {
1576 // If cast is to a structure pointer, follow gcc's behavior and make it
1577 // a non-ivar write-barrier.
1578 QualType ExpTy = E->getType();
1579 if (ExpTy->isPointerType())
1580 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1581 if (ExpTy->isRecordType())
1582 LV.setObjCIvar(false);
1583 }
1584 return;
1585 }
1586
1587 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1588 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1589 return;
1590 }
1591
1592 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1593 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1594 return;
1595 }
1596
1597 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1598 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1599 return;
1600 }
1601
1602 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1603 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1604 return;
1605 }
1606
1607 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1608 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1609 if (LV.isObjCIvar() && !LV.isObjCArray())
1610 // Using array syntax to assigning to what an ivar points to is not
1611 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1612 LV.setObjCIvar(false);
1613 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1614 // Using array syntax to assigning to what global points to is not
1615 // same as assigning to the global itself. {id *G;} G[i] = 0;
1616 LV.setGlobalObjCRef(false);
1617 return;
1618 }
1619
1620 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1621 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1622 // We don't know if member is an 'ivar', but this flag is looked at
1623 // only in the context of LV.isObjCIvar().
1624 LV.setObjCArray(E->getType()->isArrayType());
1625 return;
1626 }
1627 }
1628
1629 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())1630 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1631 llvm::Value *V, llvm::Type *IRType,
1632 StringRef Name = StringRef()) {
1633 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1634 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1635 }
1636
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)1637 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1638 const Expr *E, const VarDecl *VD) {
1639 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1640 "Var decl must have external storage or be a file var decl!");
1641
1642 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1643 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1644 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1645 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1646 QualType T = E->getType();
1647 LValue LV;
1648 if (VD->getType()->isReferenceType()) {
1649 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1650 LI->setAlignment(Alignment.getQuantity());
1651 V = LI;
1652 LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1653 } else {
1654 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1655 }
1656 setObjCGCLValueClass(CGF.getContext(), E, LV);
1657 return LV;
1658 }
1659
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,const FunctionDecl * FD)1660 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1661 const Expr *E, const FunctionDecl *FD) {
1662 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1663 if (!FD->hasPrototype()) {
1664 if (const FunctionProtoType *Proto =
1665 FD->getType()->getAs<FunctionProtoType>()) {
1666 // Ugly case: for a K&R-style definition, the type of the definition
1667 // isn't the same as the type of a use. Correct for this with a
1668 // bitcast.
1669 QualType NoProtoType =
1670 CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1671 NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1672 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1673 }
1674 }
1675 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1676 return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1677 }
1678
EmitDeclRefLValue(const DeclRefExpr * E)1679 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1680 const NamedDecl *ND = E->getDecl();
1681 CharUnits Alignment = getContext().getDeclAlign(ND);
1682 QualType T = E->getType();
1683
1684 // FIXME: We should be able to assert this for FunctionDecls as well!
1685 // FIXME: We should be able to assert this for all DeclRefExprs, not just
1686 // those with a valid source location.
1687 assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1688 !E->getLocation().isValid()) &&
1689 "Should not use decl without marking it used!");
1690
1691 if (ND->hasAttr<WeakRefAttr>()) {
1692 const ValueDecl *VD = cast<ValueDecl>(ND);
1693 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1694 return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1695 }
1696
1697 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1698 // Check if this is a global variable.
1699 if (VD->hasExternalStorage() || VD->isFileVarDecl())
1700 return EmitGlobalVarDeclLValue(*this, E, VD);
1701
1702 bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1703
1704 bool NonGCable = VD->hasLocalStorage() &&
1705 !VD->getType()->isReferenceType() &&
1706 !isBlockVariable;
1707
1708 llvm::Value *V = LocalDeclMap[VD];
1709 if (!V && VD->isStaticLocal())
1710 V = CGM.getStaticLocalDeclAddress(VD);
1711
1712 // Use special handling for lambdas.
1713 if (!V) {
1714 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1715 QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1716 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1717 LambdaTagType);
1718 return EmitLValueForField(LambdaLV, FD);
1719 }
1720
1721 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1722 CharUnits alignment = getContext().getDeclAlign(VD);
1723 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1724 E->getType(), alignment);
1725 }
1726
1727 assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1728
1729 if (isBlockVariable)
1730 V = BuildBlockByrefAddress(V, VD);
1731
1732 LValue LV;
1733 if (VD->getType()->isReferenceType()) {
1734 llvm::LoadInst *LI = Builder.CreateLoad(V);
1735 LI->setAlignment(Alignment.getQuantity());
1736 V = LI;
1737 LV = MakeNaturalAlignAddrLValue(V, T);
1738 } else {
1739 LV = MakeAddrLValue(V, T, Alignment);
1740 }
1741
1742 if (NonGCable) {
1743 LV.getQuals().removeObjCGCAttr();
1744 LV.setNonGC(true);
1745 }
1746 setObjCGCLValueClass(getContext(), E, LV);
1747 return LV;
1748 }
1749
1750 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1751 return EmitFunctionDeclLValue(*this, E, fn);
1752
1753 llvm_unreachable("Unhandled DeclRefExpr");
1754 }
1755
EmitUnaryOpLValue(const UnaryOperator * E)1756 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1757 // __extension__ doesn't affect lvalue-ness.
1758 if (E->getOpcode() == UO_Extension)
1759 return EmitLValue(E->getSubExpr());
1760
1761 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1762 switch (E->getOpcode()) {
1763 default: llvm_unreachable("Unknown unary operator lvalue!");
1764 case UO_Deref: {
1765 QualType T = E->getSubExpr()->getType()->getPointeeType();
1766 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1767
1768 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1769 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1770
1771 // We should not generate __weak write barrier on indirect reference
1772 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1773 // But, we continue to generate __strong write barrier on indirect write
1774 // into a pointer to object.
1775 if (getContext().getLangOpts().ObjC1 &&
1776 getContext().getLangOpts().getGC() != LangOptions::NonGC &&
1777 LV.isObjCWeak())
1778 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1779 return LV;
1780 }
1781 case UO_Real:
1782 case UO_Imag: {
1783 LValue LV = EmitLValue(E->getSubExpr());
1784 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1785 llvm::Value *Addr = LV.getAddress();
1786
1787 // __real is valid on scalars. This is a faster way of testing that.
1788 // __imag can only produce an rvalue on scalars.
1789 if (E->getOpcode() == UO_Real &&
1790 !cast<llvm::PointerType>(Addr->getType())
1791 ->getElementType()->isStructTy()) {
1792 assert(E->getSubExpr()->getType()->isArithmeticType());
1793 return LV;
1794 }
1795
1796 assert(E->getSubExpr()->getType()->isAnyComplexType());
1797
1798 unsigned Idx = E->getOpcode() == UO_Imag;
1799 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1800 Idx, "idx"),
1801 ExprTy);
1802 }
1803 case UO_PreInc:
1804 case UO_PreDec: {
1805 LValue LV = EmitLValue(E->getSubExpr());
1806 bool isInc = E->getOpcode() == UO_PreInc;
1807
1808 if (E->getType()->isAnyComplexType())
1809 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1810 else
1811 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1812 return LV;
1813 }
1814 }
1815 }
1816
EmitStringLiteralLValue(const StringLiteral * E)1817 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1818 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1819 E->getType());
1820 }
1821
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)1822 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1823 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1824 E->getType());
1825 }
1826
1827 static llvm::Constant*
GetAddrOfConstantWideString(StringRef Str,const char * GlobalName,ASTContext & Context,QualType Ty,SourceLocation Loc,CodeGenModule & CGM)1828 GetAddrOfConstantWideString(StringRef Str,
1829 const char *GlobalName,
1830 ASTContext &Context,
1831 QualType Ty, SourceLocation Loc,
1832 CodeGenModule &CGM) {
1833
1834 StringLiteral *SL = StringLiteral::Create(Context,
1835 Str,
1836 StringLiteral::Wide,
1837 /*Pascal = */false,
1838 Ty, Loc);
1839 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1840 llvm::GlobalVariable *GV =
1841 new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1842 !CGM.getLangOpts().WritableStrings,
1843 llvm::GlobalValue::PrivateLinkage,
1844 C, GlobalName);
1845 const unsigned WideAlignment =
1846 Context.getTypeAlignInChars(Ty).getQuantity();
1847 GV->setAlignment(WideAlignment);
1848 return GV;
1849 }
1850
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)1851 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1852 SmallString<32>& Target) {
1853 Target.resize(CharByteWidth * (Source.size() + 1));
1854 char *ResultPtr = &Target[0];
1855 const UTF8 *ErrorPtr;
1856 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1857 (void)success;
1858 assert(success);
1859 Target.resize(ResultPtr - &Target[0]);
1860 }
1861
EmitPredefinedLValue(const PredefinedExpr * E)1862 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1863 switch (E->getIdentType()) {
1864 default:
1865 return EmitUnsupportedLValue(E, "predefined expression");
1866
1867 case PredefinedExpr::Func:
1868 case PredefinedExpr::Function:
1869 case PredefinedExpr::LFunction:
1870 case PredefinedExpr::PrettyFunction: {
1871 unsigned IdentType = E->getIdentType();
1872 std::string GlobalVarName;
1873
1874 switch (IdentType) {
1875 default: llvm_unreachable("Invalid type");
1876 case PredefinedExpr::Func:
1877 GlobalVarName = "__func__.";
1878 break;
1879 case PredefinedExpr::Function:
1880 GlobalVarName = "__FUNCTION__.";
1881 break;
1882 case PredefinedExpr::LFunction:
1883 GlobalVarName = "L__FUNCTION__.";
1884 break;
1885 case PredefinedExpr::PrettyFunction:
1886 GlobalVarName = "__PRETTY_FUNCTION__.";
1887 break;
1888 }
1889
1890 StringRef FnName = CurFn->getName();
1891 if (FnName.startswith("\01"))
1892 FnName = FnName.substr(1);
1893 GlobalVarName += FnName;
1894
1895 const Decl *CurDecl = CurCodeDecl;
1896 if (CurDecl == 0)
1897 CurDecl = getContext().getTranslationUnitDecl();
1898
1899 std::string FunctionName =
1900 (isa<BlockDecl>(CurDecl)
1901 ? FnName.str()
1902 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1903 CurDecl));
1904
1905 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1906 llvm::Constant *C;
1907 if (ElemType->isWideCharType()) {
1908 SmallString<32> RawChars;
1909 ConvertUTF8ToWideString(
1910 getContext().getTypeSizeInChars(ElemType).getQuantity(),
1911 FunctionName, RawChars);
1912 C = GetAddrOfConstantWideString(RawChars,
1913 GlobalVarName.c_str(),
1914 getContext(),
1915 E->getType(),
1916 E->getLocation(),
1917 CGM);
1918 } else {
1919 C = CGM.GetAddrOfConstantCString(FunctionName,
1920 GlobalVarName.c_str(),
1921 1);
1922 }
1923 return MakeAddrLValue(C, E->getType());
1924 }
1925 }
1926 }
1927
EmitCheck(llvm::Value * Checked)1928 void CodeGenFunction::EmitCheck(llvm::Value *Checked) {
1929 const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1930
1931 llvm::BasicBlock *Cont = createBasicBlock("cont");
1932
1933 // If we are not optimzing, don't collapse all calls to trap in the function
1934 // to the same call, that way, in the debugger they can see which operation
1935 // did in fact fail. If we are optimizing, we collapse all calls to trap down
1936 // to just one per function to save on codesize.
1937 bool NeedNewTrapBB = !GCO.OptimizationLevel || !TrapBB;
1938
1939 if (NeedNewTrapBB)
1940 TrapBB = createBasicBlock("trap");
1941
1942 Builder.CreateCondBr(Checked, Cont, TrapBB);
1943
1944 if (NeedNewTrapBB) {
1945 EmitBlock(TrapBB);
1946
1947 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1948 llvm::CallInst *TrapCall = Builder.CreateCall(F);
1949 TrapCall->setDoesNotReturn();
1950 TrapCall->setDoesNotThrow();
1951 Builder.CreateUnreachable();
1952 }
1953
1954 EmitBlock(Cont);
1955 }
1956
1957 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1958 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)1959 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1960 // If this isn't just an array->pointer decay, bail out.
1961 const CastExpr *CE = dyn_cast<CastExpr>(E);
1962 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1963 return 0;
1964
1965 // If this is a decay from variable width array, bail out.
1966 const Expr *SubExpr = CE->getSubExpr();
1967 if (SubExpr->getType()->isVariableArrayType())
1968 return 0;
1969
1970 return SubExpr;
1971 }
1972
EmitArraySubscriptExpr(const ArraySubscriptExpr * E)1973 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1974 // The index must always be an integer, which is not an aggregate. Emit it.
1975 llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1976 QualType IdxTy = E->getIdx()->getType();
1977 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1978
1979 // If the base is a vector type, then we are forming a vector element lvalue
1980 // with this subscript.
1981 if (E->getBase()->getType()->isVectorType()) {
1982 // Emit the vector as an lvalue to get its address.
1983 LValue LHS = EmitLValue(E->getBase());
1984 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1985 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1986 return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1987 E->getBase()->getType(), LHS.getAlignment());
1988 }
1989
1990 // Extend or truncate the index type to 32 or 64-bits.
1991 if (Idx->getType() != IntPtrTy)
1992 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1993
1994 // We know that the pointer points to a type of the correct size, unless the
1995 // size is a VLA or Objective-C interface.
1996 llvm::Value *Address = 0;
1997 CharUnits ArrayAlignment;
1998 if (const VariableArrayType *vla =
1999 getContext().getAsVariableArrayType(E->getType())) {
2000 // The base must be a pointer, which is not an aggregate. Emit
2001 // it. It needs to be emitted first in case it's what captures
2002 // the VLA bounds.
2003 Address = EmitScalarExpr(E->getBase());
2004
2005 // The element count here is the total number of non-VLA elements.
2006 llvm::Value *numElements = getVLASize(vla).first;
2007
2008 // Effectively, the multiply by the VLA size is part of the GEP.
2009 // GEP indexes are signed, and scaling an index isn't permitted to
2010 // signed-overflow, so we use the same semantics for our explicit
2011 // multiply. We suppress this if overflow is not undefined behavior.
2012 if (getLangOpts().isSignedOverflowDefined()) {
2013 Idx = Builder.CreateMul(Idx, numElements);
2014 Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2015 } else {
2016 Idx = Builder.CreateNSWMul(Idx, numElements);
2017 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2018 }
2019 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2020 // Indexing over an interface, as in "NSString *P; P[4];"
2021 llvm::Value *InterfaceSize =
2022 llvm::ConstantInt::get(Idx->getType(),
2023 getContext().getTypeSizeInChars(OIT).getQuantity());
2024
2025 Idx = Builder.CreateMul(Idx, InterfaceSize);
2026
2027 // The base must be a pointer, which is not an aggregate. Emit it.
2028 llvm::Value *Base = EmitScalarExpr(E->getBase());
2029 Address = EmitCastToVoidPtr(Base);
2030 Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2031 Address = Builder.CreateBitCast(Address, Base->getType());
2032 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2033 // If this is A[i] where A is an array, the frontend will have decayed the
2034 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
2035 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2036 // "gep x, i" here. Emit one "gep A, 0, i".
2037 assert(Array->getType()->isArrayType() &&
2038 "Array to pointer decay must have array source type!");
2039 LValue ArrayLV = EmitLValue(Array);
2040 llvm::Value *ArrayPtr = ArrayLV.getAddress();
2041 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2042 llvm::Value *Args[] = { Zero, Idx };
2043
2044 // Propagate the alignment from the array itself to the result.
2045 ArrayAlignment = ArrayLV.getAlignment();
2046
2047 if (getContext().getLangOpts().isSignedOverflowDefined())
2048 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2049 else
2050 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2051 } else {
2052 // The base must be a pointer, which is not an aggregate. Emit it.
2053 llvm::Value *Base = EmitScalarExpr(E->getBase());
2054 if (getContext().getLangOpts().isSignedOverflowDefined())
2055 Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2056 else
2057 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2058 }
2059
2060 QualType T = E->getBase()->getType()->getPointeeType();
2061 assert(!T.isNull() &&
2062 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2063
2064
2065 // Limit the alignment to that of the result type.
2066 LValue LV;
2067 if (!ArrayAlignment.isZero()) {
2068 CharUnits Align = getContext().getTypeAlignInChars(T);
2069 ArrayAlignment = std::min(Align, ArrayAlignment);
2070 LV = MakeAddrLValue(Address, T, ArrayAlignment);
2071 } else {
2072 LV = MakeNaturalAlignAddrLValue(Address, T);
2073 }
2074
2075 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2076
2077 if (getContext().getLangOpts().ObjC1 &&
2078 getContext().getLangOpts().getGC() != LangOptions::NonGC) {
2079 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2080 setObjCGCLValueClass(getContext(), E, LV);
2081 }
2082 return LV;
2083 }
2084
2085 static
GenerateConstantVector(CGBuilderTy & Builder,SmallVector<unsigned,4> & Elts)2086 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2087 SmallVector<unsigned, 4> &Elts) {
2088 SmallVector<llvm::Constant*, 4> CElts;
2089 for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2090 CElts.push_back(Builder.getInt32(Elts[i]));
2091
2092 return llvm::ConstantVector::get(CElts);
2093 }
2094
2095 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)2096 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2097 // Emit the base vector as an l-value.
2098 LValue Base;
2099
2100 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2101 if (E->isArrow()) {
2102 // If it is a pointer to a vector, emit the address and form an lvalue with
2103 // it.
2104 llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2105 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2106 Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2107 Base.getQuals().removeObjCGCAttr();
2108 } else if (E->getBase()->isGLValue()) {
2109 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2110 // emit the base as an lvalue.
2111 assert(E->getBase()->getType()->isVectorType());
2112 Base = EmitLValue(E->getBase());
2113 } else {
2114 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2115 assert(E->getBase()->getType()->isVectorType() &&
2116 "Result must be a vector");
2117 llvm::Value *Vec = EmitScalarExpr(E->getBase());
2118
2119 // Store the vector to memory (because LValue wants an address).
2120 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2121 Builder.CreateStore(Vec, VecMem);
2122 Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2123 }
2124
2125 QualType type =
2126 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2127
2128 // Encode the element access list into a vector of unsigned indices.
2129 SmallVector<unsigned, 4> Indices;
2130 E->getEncodedElementAccess(Indices);
2131
2132 if (Base.isSimple()) {
2133 llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2134 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2135 Base.getAlignment());
2136 }
2137 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2138
2139 llvm::Constant *BaseElts = Base.getExtVectorElts();
2140 SmallVector<llvm::Constant *, 4> CElts;
2141
2142 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2143 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2144 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2145 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2146 Base.getAlignment());
2147 }
2148
EmitMemberExpr(const MemberExpr * E)2149 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2150 Expr *BaseExpr = E->getBase();
2151
2152 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2153 LValue BaseLV;
2154 if (E->isArrow()) {
2155 llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2156 QualType PtrTy = BaseExpr->getType()->getPointeeType();
2157 EmitTypeCheck(TCK_MemberAccess, Ptr, PtrTy);
2158 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2159 } else
2160 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2161
2162 NamedDecl *ND = E->getMemberDecl();
2163 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2164 LValue LV = EmitLValueForField(BaseLV, Field);
2165 setObjCGCLValueClass(getContext(), E, LV);
2166 return LV;
2167 }
2168
2169 if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2170 return EmitGlobalVarDeclLValue(*this, E, VD);
2171
2172 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2173 return EmitFunctionDeclLValue(*this, E, FD);
2174
2175 llvm_unreachable("Unhandled member declaration!");
2176 }
2177
EmitLValueForField(LValue base,const FieldDecl * field)2178 LValue CodeGenFunction::EmitLValueForField(LValue base,
2179 const FieldDecl *field) {
2180 if (field->isBitField()) {
2181 const CGRecordLayout &RL =
2182 CGM.getTypes().getCGRecordLayout(field->getParent());
2183 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2184 QualType fieldType =
2185 field->getType().withCVRQualifiers(base.getVRQualifiers());
2186 return LValue::MakeBitfield(base.getAddress(), Info, fieldType,
2187 base.getAlignment());
2188 }
2189
2190 const RecordDecl *rec = field->getParent();
2191 QualType type = field->getType();
2192 CharUnits alignment = getContext().getDeclAlign(field);
2193
2194 // FIXME: It should be impossible to have an LValue without alignment for a
2195 // complete type.
2196 if (!base.getAlignment().isZero())
2197 alignment = std::min(alignment, base.getAlignment());
2198
2199 bool mayAlias = rec->hasAttr<MayAliasAttr>();
2200
2201 llvm::Value *addr = base.getAddress();
2202 unsigned cvr = base.getVRQualifiers();
2203 if (rec->isUnion()) {
2204 // For unions, there is no pointer adjustment.
2205 assert(!type->isReferenceType() && "union has reference member");
2206 } else {
2207 // For structs, we GEP to the field that the record layout suggests.
2208 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2209 addr = Builder.CreateStructGEP(addr, idx, field->getName());
2210
2211 // If this is a reference field, load the reference right now.
2212 if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2213 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2214 if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2215 load->setAlignment(alignment.getQuantity());
2216
2217 if (CGM.shouldUseTBAA()) {
2218 llvm::MDNode *tbaa;
2219 if (mayAlias)
2220 tbaa = CGM.getTBAAInfo(getContext().CharTy);
2221 else
2222 tbaa = CGM.getTBAAInfo(type);
2223 CGM.DecorateInstruction(load, tbaa);
2224 }
2225
2226 addr = load;
2227 mayAlias = false;
2228 type = refType->getPointeeType();
2229 if (type->isIncompleteType())
2230 alignment = CharUnits();
2231 else
2232 alignment = getContext().getTypeAlignInChars(type);
2233 cvr = 0; // qualifiers don't recursively apply to referencee
2234 }
2235 }
2236
2237 // Make sure that the address is pointing to the right type. This is critical
2238 // for both unions and structs. A union needs a bitcast, a struct element
2239 // will need a bitcast if the LLVM type laid out doesn't match the desired
2240 // type.
2241 addr = EmitBitCastOfLValueToProperType(*this, addr,
2242 CGM.getTypes().ConvertTypeForMem(type),
2243 field->getName());
2244
2245 if (field->hasAttr<AnnotateAttr>())
2246 addr = EmitFieldAnnotations(field, addr);
2247
2248 LValue LV = MakeAddrLValue(addr, type, alignment);
2249 LV.getQuals().addCVRQualifiers(cvr);
2250
2251 // __weak attribute on a field is ignored.
2252 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2253 LV.getQuals().removeObjCGCAttr();
2254
2255 // Fields of may_alias structs act like 'char' for TBAA purposes.
2256 // FIXME: this should get propagated down through anonymous structs
2257 // and unions.
2258 if (mayAlias && LV.getTBAAInfo())
2259 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2260
2261 return LV;
2262 }
2263
2264 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)2265 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2266 const FieldDecl *Field) {
2267 QualType FieldType = Field->getType();
2268
2269 if (!FieldType->isReferenceType())
2270 return EmitLValueForField(Base, Field);
2271
2272 const CGRecordLayout &RL =
2273 CGM.getTypes().getCGRecordLayout(Field->getParent());
2274 unsigned idx = RL.getLLVMFieldNo(Field);
2275 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2276 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2277
2278 // Make sure that the address is pointing to the right type. This is critical
2279 // for both unions and structs. A union needs a bitcast, a struct element
2280 // will need a bitcast if the LLVM type laid out doesn't match the desired
2281 // type.
2282 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2283 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2284
2285 CharUnits Alignment = getContext().getDeclAlign(Field);
2286
2287 // FIXME: It should be impossible to have an LValue without alignment for a
2288 // complete type.
2289 if (!Base.getAlignment().isZero())
2290 Alignment = std::min(Alignment, Base.getAlignment());
2291
2292 return MakeAddrLValue(V, FieldType, Alignment);
2293 }
2294
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)2295 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2296 if (E->isFileScope()) {
2297 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2298 return MakeAddrLValue(GlobalPtr, E->getType());
2299 }
2300 if (E->getType()->isVariablyModifiedType())
2301 // make sure to emit the VLA size.
2302 EmitVariablyModifiedType(E->getType());
2303
2304 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2305 const Expr *InitExpr = E->getInitializer();
2306 LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2307
2308 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2309 /*Init*/ true);
2310
2311 return Result;
2312 }
2313
EmitInitListLValue(const InitListExpr * E)2314 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2315 if (!E->isGLValue())
2316 // Initializing an aggregate temporary in C++11: T{...}.
2317 return EmitAggExprToLValue(E);
2318
2319 // An lvalue initializer list must be initializing a reference.
2320 assert(E->getNumInits() == 1 && "reference init with multiple values");
2321 return EmitLValue(E->getInit(0));
2322 }
2323
2324 LValue CodeGenFunction::
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)2325 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2326 if (!expr->isGLValue()) {
2327 // ?: here should be an aggregate.
2328 assert((hasAggregateLLVMType(expr->getType()) &&
2329 !expr->getType()->isAnyComplexType()) &&
2330 "Unexpected conditional operator!");
2331 return EmitAggExprToLValue(expr);
2332 }
2333
2334 OpaqueValueMapping binding(*this, expr);
2335
2336 const Expr *condExpr = expr->getCond();
2337 bool CondExprBool;
2338 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2339 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2340 if (!CondExprBool) std::swap(live, dead);
2341
2342 if (!ContainsLabel(dead))
2343 return EmitLValue(live);
2344 }
2345
2346 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2347 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2348 llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2349
2350 ConditionalEvaluation eval(*this);
2351 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2352
2353 // Any temporaries created here are conditional.
2354 EmitBlock(lhsBlock);
2355 eval.begin(*this);
2356 LValue lhs = EmitLValue(expr->getTrueExpr());
2357 eval.end(*this);
2358
2359 if (!lhs.isSimple())
2360 return EmitUnsupportedLValue(expr, "conditional operator");
2361
2362 lhsBlock = Builder.GetInsertBlock();
2363 Builder.CreateBr(contBlock);
2364
2365 // Any temporaries created here are conditional.
2366 EmitBlock(rhsBlock);
2367 eval.begin(*this);
2368 LValue rhs = EmitLValue(expr->getFalseExpr());
2369 eval.end(*this);
2370 if (!rhs.isSimple())
2371 return EmitUnsupportedLValue(expr, "conditional operator");
2372 rhsBlock = Builder.GetInsertBlock();
2373
2374 EmitBlock(contBlock);
2375
2376 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2377 "cond-lvalue");
2378 phi->addIncoming(lhs.getAddress(), lhsBlock);
2379 phi->addIncoming(rhs.getAddress(), rhsBlock);
2380 return MakeAddrLValue(phi, expr->getType());
2381 }
2382
2383 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2384 /// type. If the cast is to a reference, we can have the usual lvalue result,
2385 /// otherwise if a cast is needed by the code generator in an lvalue context,
2386 /// then it must mean that we need the address of an aggregate in order to
2387 /// access one of its members. This can happen for all the reasons that casts
2388 /// are permitted with aggregate result, including noop aggregate casts, and
2389 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)2390 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2391 switch (E->getCastKind()) {
2392 case CK_ToVoid:
2393 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2394
2395 case CK_Dependent:
2396 llvm_unreachable("dependent cast kind in IR gen!");
2397
2398 case CK_BuiltinFnToFnPtr:
2399 llvm_unreachable("builtin functions are handled elsewhere");
2400
2401 // These two casts are currently treated as no-ops, although they could
2402 // potentially be real operations depending on the target's ABI.
2403 case CK_NonAtomicToAtomic:
2404 case CK_AtomicToNonAtomic:
2405
2406 case CK_NoOp:
2407 case CK_LValueToRValue:
2408 if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2409 || E->getType()->isRecordType())
2410 return EmitLValue(E->getSubExpr());
2411 // Fall through to synthesize a temporary.
2412
2413 case CK_BitCast:
2414 case CK_ArrayToPointerDecay:
2415 case CK_FunctionToPointerDecay:
2416 case CK_NullToMemberPointer:
2417 case CK_NullToPointer:
2418 case CK_IntegralToPointer:
2419 case CK_PointerToIntegral:
2420 case CK_PointerToBoolean:
2421 case CK_VectorSplat:
2422 case CK_IntegralCast:
2423 case CK_IntegralToBoolean:
2424 case CK_IntegralToFloating:
2425 case CK_FloatingToIntegral:
2426 case CK_FloatingToBoolean:
2427 case CK_FloatingCast:
2428 case CK_FloatingRealToComplex:
2429 case CK_FloatingComplexToReal:
2430 case CK_FloatingComplexToBoolean:
2431 case CK_FloatingComplexCast:
2432 case CK_FloatingComplexToIntegralComplex:
2433 case CK_IntegralRealToComplex:
2434 case CK_IntegralComplexToReal:
2435 case CK_IntegralComplexToBoolean:
2436 case CK_IntegralComplexCast:
2437 case CK_IntegralComplexToFloatingComplex:
2438 case CK_DerivedToBaseMemberPointer:
2439 case CK_BaseToDerivedMemberPointer:
2440 case CK_MemberPointerToBoolean:
2441 case CK_ReinterpretMemberPointer:
2442 case CK_AnyPointerToBlockPointerCast:
2443 case CK_ARCProduceObject:
2444 case CK_ARCConsumeObject:
2445 case CK_ARCReclaimReturnedObject:
2446 case CK_ARCExtendBlockObject:
2447 case CK_CopyAndAutoreleaseBlockObject: {
2448 // These casts only produce lvalues when we're binding a reference to a
2449 // temporary realized from a (converted) pure rvalue. Emit the expression
2450 // as a value, copy it into a temporary, and return an lvalue referring to
2451 // that temporary.
2452 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2453 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2454 return MakeAddrLValue(V, E->getType());
2455 }
2456
2457 case CK_Dynamic: {
2458 LValue LV = EmitLValue(E->getSubExpr());
2459 llvm::Value *V = LV.getAddress();
2460 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2461 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2462 }
2463
2464 case CK_ConstructorConversion:
2465 case CK_UserDefinedConversion:
2466 case CK_CPointerToObjCPointerCast:
2467 case CK_BlockPointerToObjCPointerCast:
2468 return EmitLValue(E->getSubExpr());
2469
2470 case CK_UncheckedDerivedToBase:
2471 case CK_DerivedToBase: {
2472 const RecordType *DerivedClassTy =
2473 E->getSubExpr()->getType()->getAs<RecordType>();
2474 CXXRecordDecl *DerivedClassDecl =
2475 cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2476
2477 LValue LV = EmitLValue(E->getSubExpr());
2478 llvm::Value *This = LV.getAddress();
2479
2480 // Perform the derived-to-base conversion
2481 llvm::Value *Base =
2482 GetAddressOfBaseClass(This, DerivedClassDecl,
2483 E->path_begin(), E->path_end(),
2484 /*NullCheckValue=*/false);
2485
2486 return MakeAddrLValue(Base, E->getType());
2487 }
2488 case CK_ToUnion:
2489 return EmitAggExprToLValue(E);
2490 case CK_BaseToDerived: {
2491 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2492 CXXRecordDecl *DerivedClassDecl =
2493 cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2494
2495 LValue LV = EmitLValue(E->getSubExpr());
2496
2497 // Perform the base-to-derived conversion
2498 llvm::Value *Derived =
2499 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2500 E->path_begin(), E->path_end(),
2501 /*NullCheckValue=*/false);
2502
2503 return MakeAddrLValue(Derived, E->getType());
2504 }
2505 case CK_LValueBitCast: {
2506 // This must be a reinterpret_cast (or c-style equivalent).
2507 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2508
2509 LValue LV = EmitLValue(E->getSubExpr());
2510 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2511 ConvertType(CE->getTypeAsWritten()));
2512 return MakeAddrLValue(V, E->getType());
2513 }
2514 case CK_ObjCObjectLValueCast: {
2515 LValue LV = EmitLValue(E->getSubExpr());
2516 QualType ToType = getContext().getLValueReferenceType(E->getType());
2517 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2518 ConvertType(ToType));
2519 return MakeAddrLValue(V, E->getType());
2520 }
2521 }
2522
2523 llvm_unreachable("Unhandled lvalue cast kind?");
2524 }
2525
EmitNullInitializationLValue(const CXXScalarValueInitExpr * E)2526 LValue CodeGenFunction::EmitNullInitializationLValue(
2527 const CXXScalarValueInitExpr *E) {
2528 QualType Ty = E->getType();
2529 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2530 EmitNullInitialization(LV.getAddress(), Ty);
2531 return LV;
2532 }
2533
EmitOpaqueValueLValue(const OpaqueValueExpr * e)2534 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2535 assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2536 return getOpaqueLValueMapping(e);
2537 }
2538
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)2539 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2540 const MaterializeTemporaryExpr *E) {
2541 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2542 return MakeAddrLValue(RV.getScalarVal(), E->getType());
2543 }
2544
EmitRValueForField(LValue LV,const FieldDecl * FD)2545 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2546 const FieldDecl *FD) {
2547 QualType FT = FD->getType();
2548 LValue FieldLV = EmitLValueForField(LV, FD);
2549 if (FT->isAnyComplexType())
2550 return RValue::getComplex(
2551 LoadComplexFromAddr(FieldLV.getAddress(),
2552 FieldLV.isVolatileQualified()));
2553 else if (CodeGenFunction::hasAggregateLLVMType(FT))
2554 return FieldLV.asAggregateRValue();
2555
2556 return EmitLoadOfLValue(FieldLV);
2557 }
2558
2559 //===--------------------------------------------------------------------===//
2560 // Expression Emission
2561 //===--------------------------------------------------------------------===//
2562
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)2563 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2564 ReturnValueSlot ReturnValue) {
2565 if (CGDebugInfo *DI = getDebugInfo())
2566 DI->EmitLocation(Builder, E->getLocStart());
2567
2568 // Builtins never have block type.
2569 if (E->getCallee()->getType()->isBlockPointerType())
2570 return EmitBlockCallExpr(E, ReturnValue);
2571
2572 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2573 return EmitCXXMemberCallExpr(CE, ReturnValue);
2574
2575 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2576 return EmitCUDAKernelCallExpr(CE, ReturnValue);
2577
2578 const Decl *TargetDecl = E->getCalleeDecl();
2579 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2580 if (unsigned builtinID = FD->getBuiltinID())
2581 return EmitBuiltinExpr(FD, builtinID, E);
2582 }
2583
2584 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2585 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2586 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2587
2588 if (const CXXPseudoDestructorExpr *PseudoDtor
2589 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2590 QualType DestroyedType = PseudoDtor->getDestroyedType();
2591 if (getContext().getLangOpts().ObjCAutoRefCount &&
2592 DestroyedType->isObjCLifetimeType() &&
2593 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2594 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2595 // Automatic Reference Counting:
2596 // If the pseudo-expression names a retainable object with weak or
2597 // strong lifetime, the object shall be released.
2598 Expr *BaseExpr = PseudoDtor->getBase();
2599 llvm::Value *BaseValue = NULL;
2600 Qualifiers BaseQuals;
2601
2602 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2603 if (PseudoDtor->isArrow()) {
2604 BaseValue = EmitScalarExpr(BaseExpr);
2605 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2606 BaseQuals = PTy->getPointeeType().getQualifiers();
2607 } else {
2608 LValue BaseLV = EmitLValue(BaseExpr);
2609 BaseValue = BaseLV.getAddress();
2610 QualType BaseTy = BaseExpr->getType();
2611 BaseQuals = BaseTy.getQualifiers();
2612 }
2613
2614 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2615 case Qualifiers::OCL_None:
2616 case Qualifiers::OCL_ExplicitNone:
2617 case Qualifiers::OCL_Autoreleasing:
2618 break;
2619
2620 case Qualifiers::OCL_Strong:
2621 EmitARCRelease(Builder.CreateLoad(BaseValue,
2622 PseudoDtor->getDestroyedType().isVolatileQualified()),
2623 /*precise*/ true);
2624 break;
2625
2626 case Qualifiers::OCL_Weak:
2627 EmitARCDestroyWeak(BaseValue);
2628 break;
2629 }
2630 } else {
2631 // C++ [expr.pseudo]p1:
2632 // The result shall only be used as the operand for the function call
2633 // operator (), and the result of such a call has type void. The only
2634 // effect is the evaluation of the postfix-expression before the dot or
2635 // arrow.
2636 EmitScalarExpr(E->getCallee());
2637 }
2638
2639 return RValue::get(0);
2640 }
2641
2642 llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2643 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2644 E->arg_begin(), E->arg_end(), TargetDecl);
2645 }
2646
EmitBinaryOperatorLValue(const BinaryOperator * E)2647 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2648 // Comma expressions just emit their LHS then their RHS as an l-value.
2649 if (E->getOpcode() == BO_Comma) {
2650 EmitIgnoredExpr(E->getLHS());
2651 EnsureInsertPoint();
2652 return EmitLValue(E->getRHS());
2653 }
2654
2655 if (E->getOpcode() == BO_PtrMemD ||
2656 E->getOpcode() == BO_PtrMemI)
2657 return EmitPointerToDataMemberBinaryExpr(E);
2658
2659 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2660
2661 // Note that in all of these cases, __block variables need the RHS
2662 // evaluated first just in case the variable gets moved by the RHS.
2663
2664 if (!hasAggregateLLVMType(E->getType())) {
2665 switch (E->getLHS()->getType().getObjCLifetime()) {
2666 case Qualifiers::OCL_Strong:
2667 return EmitARCStoreStrong(E, /*ignored*/ false).first;
2668
2669 case Qualifiers::OCL_Autoreleasing:
2670 return EmitARCStoreAutoreleasing(E).first;
2671
2672 // No reason to do any of these differently.
2673 case Qualifiers::OCL_None:
2674 case Qualifiers::OCL_ExplicitNone:
2675 case Qualifiers::OCL_Weak:
2676 break;
2677 }
2678
2679 RValue RV = EmitAnyExpr(E->getRHS());
2680 LValue LV = EmitLValue(E->getLHS());
2681 EmitStoreThroughLValue(RV, LV);
2682 return LV;
2683 }
2684
2685 if (E->getType()->isAnyComplexType())
2686 return EmitComplexAssignmentLValue(E);
2687
2688 return EmitAggExprToLValue(E);
2689 }
2690
EmitCallExprLValue(const CallExpr * E)2691 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2692 RValue RV = EmitCallExpr(E);
2693
2694 if (!RV.isScalar())
2695 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2696
2697 assert(E->getCallReturnType()->isReferenceType() &&
2698 "Can't have a scalar return unless the return type is a "
2699 "reference type!");
2700
2701 return MakeAddrLValue(RV.getScalarVal(), E->getType());
2702 }
2703
EmitVAArgExprLValue(const VAArgExpr * E)2704 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2705 // FIXME: This shouldn't require another copy.
2706 return EmitAggExprToLValue(E);
2707 }
2708
EmitCXXConstructLValue(const CXXConstructExpr * E)2709 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2710 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2711 && "binding l-value to type which needs a temporary");
2712 AggValueSlot Slot = CreateAggTemp(E->getType());
2713 EmitCXXConstructExpr(E, Slot);
2714 return MakeAddrLValue(Slot.getAddr(), E->getType());
2715 }
2716
2717 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)2718 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2719 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2720 }
2721
2722 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)2723 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2724 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2725 Slot.setExternallyDestructed();
2726 EmitAggExpr(E->getSubExpr(), Slot);
2727 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2728 return MakeAddrLValue(Slot.getAddr(), E->getType());
2729 }
2730
2731 LValue
EmitLambdaLValue(const LambdaExpr * E)2732 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2733 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2734 EmitLambdaExpr(E, Slot);
2735 return MakeAddrLValue(Slot.getAddr(), E->getType());
2736 }
2737
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)2738 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2739 RValue RV = EmitObjCMessageExpr(E);
2740
2741 if (!RV.isScalar())
2742 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2743
2744 assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2745 "Can't have a scalar return unless the return type is a "
2746 "reference type!");
2747
2748 return MakeAddrLValue(RV.getScalarVal(), E->getType());
2749 }
2750
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)2751 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2752 llvm::Value *V =
2753 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2754 return MakeAddrLValue(V, E->getType());
2755 }
2756
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)2757 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2758 const ObjCIvarDecl *Ivar) {
2759 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2760 }
2761
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)2762 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2763 llvm::Value *BaseValue,
2764 const ObjCIvarDecl *Ivar,
2765 unsigned CVRQualifiers) {
2766 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2767 Ivar, CVRQualifiers);
2768 }
2769
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)2770 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2771 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2772 llvm::Value *BaseValue = 0;
2773 const Expr *BaseExpr = E->getBase();
2774 Qualifiers BaseQuals;
2775 QualType ObjectTy;
2776 if (E->isArrow()) {
2777 BaseValue = EmitScalarExpr(BaseExpr);
2778 ObjectTy = BaseExpr->getType()->getPointeeType();
2779 BaseQuals = ObjectTy.getQualifiers();
2780 } else {
2781 LValue BaseLV = EmitLValue(BaseExpr);
2782 // FIXME: this isn't right for bitfields.
2783 BaseValue = BaseLV.getAddress();
2784 ObjectTy = BaseExpr->getType();
2785 BaseQuals = ObjectTy.getQualifiers();
2786 }
2787
2788 LValue LV =
2789 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2790 BaseQuals.getCVRQualifiers());
2791 setObjCGCLValueClass(getContext(), E, LV);
2792 return LV;
2793 }
2794
EmitStmtExprLValue(const StmtExpr * E)2795 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2796 // Can only get l-value for message expression returning aggregate type
2797 RValue RV = EmitAnyExprToTemp(E);
2798 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2799 }
2800
EmitCall(QualType CalleeType,llvm::Value * Callee,ReturnValueSlot ReturnValue,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd,const Decl * TargetDecl)2801 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2802 ReturnValueSlot ReturnValue,
2803 CallExpr::const_arg_iterator ArgBeg,
2804 CallExpr::const_arg_iterator ArgEnd,
2805 const Decl *TargetDecl) {
2806 // Get the actual function type. The callee type will always be a pointer to
2807 // function type or a block pointer type.
2808 assert(CalleeType->isFunctionPointerType() &&
2809 "Call must have function pointer type!");
2810
2811 CalleeType = getContext().getCanonicalType(CalleeType);
2812
2813 const FunctionType *FnType
2814 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2815
2816 CallArgList Args;
2817 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2818
2819 const CGFunctionInfo &FnInfo =
2820 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
2821
2822 // C99 6.5.2.2p6:
2823 // If the expression that denotes the called function has a type
2824 // that does not include a prototype, [the default argument
2825 // promotions are performed]. If the number of arguments does not
2826 // equal the number of parameters, the behavior is undefined. If
2827 // the function is defined with a type that includes a prototype,
2828 // and either the prototype ends with an ellipsis (, ...) or the
2829 // types of the arguments after promotion are not compatible with
2830 // the types of the parameters, the behavior is undefined. If the
2831 // function is defined with a type that does not include a
2832 // prototype, and the types of the arguments after promotion are
2833 // not compatible with those of the parameters after promotion,
2834 // the behavior is undefined [except in some trivial cases].
2835 // That is, in the general case, we should assume that a call
2836 // through an unprototyped function type works like a *non-variadic*
2837 // call. The way we make this work is to cast to the exact type
2838 // of the promoted arguments.
2839 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2840 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2841 CalleeTy = CalleeTy->getPointerTo();
2842 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2843 }
2844
2845 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2846 }
2847
2848 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)2849 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2850 llvm::Value *BaseV;
2851 if (E->getOpcode() == BO_PtrMemI)
2852 BaseV = EmitScalarExpr(E->getLHS());
2853 else
2854 BaseV = EmitLValue(E->getLHS()).getAddress();
2855
2856 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2857
2858 const MemberPointerType *MPT
2859 = E->getRHS()->getType()->getAs<MemberPointerType>();
2860
2861 llvm::Value *AddV =
2862 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2863
2864 return MakeAddrLValue(AddV, MPT->getPointeeType());
2865 }
2866
2867 static void
EmitAtomicOp(CodeGenFunction & CGF,AtomicExpr * E,llvm::Value * Dest,llvm::Value * Ptr,llvm::Value * Val1,llvm::Value * Val2,uint64_t Size,unsigned Align,llvm::AtomicOrdering Order)2868 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2869 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2870 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2871 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2872 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
2873
2874 switch (E->getOp()) {
2875 case AtomicExpr::AO__c11_atomic_init:
2876 llvm_unreachable("Already handled!");
2877
2878 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2879 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2880 case AtomicExpr::AO__atomic_compare_exchange:
2881 case AtomicExpr::AO__atomic_compare_exchange_n: {
2882 // Note that cmpxchg only supports specifying one ordering and
2883 // doesn't support weak cmpxchg, at least at the moment.
2884 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2885 LoadVal1->setAlignment(Align);
2886 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2887 LoadVal2->setAlignment(Align);
2888 llvm::AtomicCmpXchgInst *CXI =
2889 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2890 CXI->setVolatile(E->isVolatile());
2891 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2892 StoreVal1->setAlignment(Align);
2893 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2894 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2895 return;
2896 }
2897
2898 case AtomicExpr::AO__c11_atomic_load:
2899 case AtomicExpr::AO__atomic_load_n:
2900 case AtomicExpr::AO__atomic_load: {
2901 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2902 Load->setAtomic(Order);
2903 Load->setAlignment(Size);
2904 Load->setVolatile(E->isVolatile());
2905 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2906 StoreDest->setAlignment(Align);
2907 return;
2908 }
2909
2910 case AtomicExpr::AO__c11_atomic_store:
2911 case AtomicExpr::AO__atomic_store:
2912 case AtomicExpr::AO__atomic_store_n: {
2913 assert(!Dest && "Store does not return a value");
2914 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2915 LoadVal1->setAlignment(Align);
2916 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2917 Store->setAtomic(Order);
2918 Store->setAlignment(Size);
2919 Store->setVolatile(E->isVolatile());
2920 return;
2921 }
2922
2923 case AtomicExpr::AO__c11_atomic_exchange:
2924 case AtomicExpr::AO__atomic_exchange_n:
2925 case AtomicExpr::AO__atomic_exchange:
2926 Op = llvm::AtomicRMWInst::Xchg;
2927 break;
2928
2929 case AtomicExpr::AO__atomic_add_fetch:
2930 PostOp = llvm::Instruction::Add;
2931 // Fall through.
2932 case AtomicExpr::AO__c11_atomic_fetch_add:
2933 case AtomicExpr::AO__atomic_fetch_add:
2934 Op = llvm::AtomicRMWInst::Add;
2935 break;
2936
2937 case AtomicExpr::AO__atomic_sub_fetch:
2938 PostOp = llvm::Instruction::Sub;
2939 // Fall through.
2940 case AtomicExpr::AO__c11_atomic_fetch_sub:
2941 case AtomicExpr::AO__atomic_fetch_sub:
2942 Op = llvm::AtomicRMWInst::Sub;
2943 break;
2944
2945 case AtomicExpr::AO__atomic_and_fetch:
2946 PostOp = llvm::Instruction::And;
2947 // Fall through.
2948 case AtomicExpr::AO__c11_atomic_fetch_and:
2949 case AtomicExpr::AO__atomic_fetch_and:
2950 Op = llvm::AtomicRMWInst::And;
2951 break;
2952
2953 case AtomicExpr::AO__atomic_or_fetch:
2954 PostOp = llvm::Instruction::Or;
2955 // Fall through.
2956 case AtomicExpr::AO__c11_atomic_fetch_or:
2957 case AtomicExpr::AO__atomic_fetch_or:
2958 Op = llvm::AtomicRMWInst::Or;
2959 break;
2960
2961 case AtomicExpr::AO__atomic_xor_fetch:
2962 PostOp = llvm::Instruction::Xor;
2963 // Fall through.
2964 case AtomicExpr::AO__c11_atomic_fetch_xor:
2965 case AtomicExpr::AO__atomic_fetch_xor:
2966 Op = llvm::AtomicRMWInst::Xor;
2967 break;
2968
2969 case AtomicExpr::AO__atomic_nand_fetch:
2970 PostOp = llvm::Instruction::And;
2971 // Fall through.
2972 case AtomicExpr::AO__atomic_fetch_nand:
2973 Op = llvm::AtomicRMWInst::Nand;
2974 break;
2975 }
2976
2977 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2978 LoadVal1->setAlignment(Align);
2979 llvm::AtomicRMWInst *RMWI =
2980 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2981 RMWI->setVolatile(E->isVolatile());
2982
2983 // For __atomic_*_fetch operations, perform the operation again to
2984 // determine the value which was written.
2985 llvm::Value *Result = RMWI;
2986 if (PostOp)
2987 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
2988 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
2989 Result = CGF.Builder.CreateNot(Result);
2990 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
2991 StoreDest->setAlignment(Align);
2992 }
2993
2994 // This function emits any expression (scalar, complex, or aggregate)
2995 // into a temporary alloca.
2996 static llvm::Value *
EmitValToTemp(CodeGenFunction & CGF,Expr * E)2997 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2998 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2999 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
3000 /*Init*/ true);
3001 return DeclPtr;
3002 }
3003
ConvertTempToRValue(CodeGenFunction & CGF,QualType Ty,llvm::Value * Dest)3004 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
3005 llvm::Value *Dest) {
3006 if (Ty->isAnyComplexType())
3007 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
3008 if (CGF.hasAggregateLLVMType(Ty))
3009 return RValue::getAggregate(Dest);
3010 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
3011 }
3012
EmitAtomicExpr(AtomicExpr * E,llvm::Value * Dest)3013 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
3014 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
3015 QualType MemTy = AtomicTy;
3016 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
3017 MemTy = AT->getValueType();
3018 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
3019 uint64_t Size = sizeChars.getQuantity();
3020 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
3021 unsigned Align = alignChars.getQuantity();
3022 unsigned MaxInlineWidth =
3023 getContext().getTargetInfo().getMaxAtomicInlineWidth();
3024 bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
3025
3026
3027
3028 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
3029 Ptr = EmitScalarExpr(E->getPtr());
3030
3031 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
3032 assert(!Dest && "Init does not return a value");
3033 if (!hasAggregateLLVMType(E->getVal1()->getType())) {
3034 QualType PointeeType
3035 = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
3036 EmitScalarInit(EmitScalarExpr(E->getVal1()),
3037 LValue::MakeAddr(Ptr, PointeeType, alignChars,
3038 getContext()));
3039 } else if (E->getType()->isAnyComplexType()) {
3040 EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
3041 } else {
3042 AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
3043 AtomicTy.getQualifiers(),
3044 AggValueSlot::IsNotDestructed,
3045 AggValueSlot::DoesNotNeedGCBarriers,
3046 AggValueSlot::IsNotAliased);
3047 EmitAggExpr(E->getVal1(), Slot);
3048 }
3049 return RValue::get(0);
3050 }
3051
3052 Order = EmitScalarExpr(E->getOrder());
3053
3054 switch (E->getOp()) {
3055 case AtomicExpr::AO__c11_atomic_init:
3056 llvm_unreachable("Already handled!");
3057
3058 case AtomicExpr::AO__c11_atomic_load:
3059 case AtomicExpr::AO__atomic_load_n:
3060 break;
3061
3062 case AtomicExpr::AO__atomic_load:
3063 Dest = EmitScalarExpr(E->getVal1());
3064 break;
3065
3066 case AtomicExpr::AO__atomic_store:
3067 Val1 = EmitScalarExpr(E->getVal1());
3068 break;
3069
3070 case AtomicExpr::AO__atomic_exchange:
3071 Val1 = EmitScalarExpr(E->getVal1());
3072 Dest = EmitScalarExpr(E->getVal2());
3073 break;
3074
3075 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3076 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3077 case AtomicExpr::AO__atomic_compare_exchange_n:
3078 case AtomicExpr::AO__atomic_compare_exchange:
3079 Val1 = EmitScalarExpr(E->getVal1());
3080 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
3081 Val2 = EmitScalarExpr(E->getVal2());
3082 else
3083 Val2 = EmitValToTemp(*this, E->getVal2());
3084 OrderFail = EmitScalarExpr(E->getOrderFail());
3085 // Evaluate and discard the 'weak' argument.
3086 if (E->getNumSubExprs() == 6)
3087 EmitScalarExpr(E->getWeak());
3088 break;
3089
3090 case AtomicExpr::AO__c11_atomic_fetch_add:
3091 case AtomicExpr::AO__c11_atomic_fetch_sub:
3092 if (MemTy->isPointerType()) {
3093 // For pointer arithmetic, we're required to do a bit of math:
3094 // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
3095 // ... but only for the C11 builtins. The GNU builtins expect the
3096 // user to multiply by sizeof(T).
3097 QualType Val1Ty = E->getVal1()->getType();
3098 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
3099 CharUnits PointeeIncAmt =
3100 getContext().getTypeSizeInChars(MemTy->getPointeeType());
3101 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
3102 Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
3103 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
3104 break;
3105 }
3106 // Fall through.
3107 case AtomicExpr::AO__atomic_fetch_add:
3108 case AtomicExpr::AO__atomic_fetch_sub:
3109 case AtomicExpr::AO__atomic_add_fetch:
3110 case AtomicExpr::AO__atomic_sub_fetch:
3111 case AtomicExpr::AO__c11_atomic_store:
3112 case AtomicExpr::AO__c11_atomic_exchange:
3113 case AtomicExpr::AO__atomic_store_n:
3114 case AtomicExpr::AO__atomic_exchange_n:
3115 case AtomicExpr::AO__c11_atomic_fetch_and:
3116 case AtomicExpr::AO__c11_atomic_fetch_or:
3117 case AtomicExpr::AO__c11_atomic_fetch_xor:
3118 case AtomicExpr::AO__atomic_fetch_and:
3119 case AtomicExpr::AO__atomic_fetch_or:
3120 case AtomicExpr::AO__atomic_fetch_xor:
3121 case AtomicExpr::AO__atomic_fetch_nand:
3122 case AtomicExpr::AO__atomic_and_fetch:
3123 case AtomicExpr::AO__atomic_or_fetch:
3124 case AtomicExpr::AO__atomic_xor_fetch:
3125 case AtomicExpr::AO__atomic_nand_fetch:
3126 Val1 = EmitValToTemp(*this, E->getVal1());
3127 break;
3128 }
3129
3130 if (!E->getType()->isVoidType() && !Dest)
3131 Dest = CreateMemTemp(E->getType(), ".atomicdst");
3132
3133 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
3134 if (UseLibcall) {
3135
3136 llvm::SmallVector<QualType, 5> Params;
3137 CallArgList Args;
3138 // Size is always the first parameter
3139 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
3140 getContext().getSizeType());
3141 // Atomic address is always the second parameter
3142 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
3143 getContext().VoidPtrTy);
3144
3145 const char* LibCallName;
3146 QualType RetTy = getContext().VoidTy;
3147 switch (E->getOp()) {
3148 // There is only one libcall for compare an exchange, because there is no
3149 // optimisation benefit possible from a libcall version of a weak compare
3150 // and exchange.
3151 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
3152 // void *desired, int success, int failure)
3153 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3154 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3155 case AtomicExpr::AO__atomic_compare_exchange:
3156 case AtomicExpr::AO__atomic_compare_exchange_n:
3157 LibCallName = "__atomic_compare_exchange";
3158 RetTy = getContext().BoolTy;
3159 Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3160 getContext().VoidPtrTy);
3161 Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
3162 getContext().VoidPtrTy);
3163 Args.add(RValue::get(Order),
3164 getContext().IntTy);
3165 Order = OrderFail;
3166 break;
3167 // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
3168 // int order)
3169 case AtomicExpr::AO__c11_atomic_exchange:
3170 case AtomicExpr::AO__atomic_exchange_n:
3171 case AtomicExpr::AO__atomic_exchange:
3172 LibCallName = "__atomic_exchange";
3173 Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3174 getContext().VoidPtrTy);
3175 Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3176 getContext().VoidPtrTy);
3177 break;
3178 // void __atomic_store(size_t size, void *mem, void *val, int order)
3179 case AtomicExpr::AO__c11_atomic_store:
3180 case AtomicExpr::AO__atomic_store:
3181 case AtomicExpr::AO__atomic_store_n:
3182 LibCallName = "__atomic_store";
3183 Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3184 getContext().VoidPtrTy);
3185 break;
3186 // void __atomic_load(size_t size, void *mem, void *return, int order)
3187 case AtomicExpr::AO__c11_atomic_load:
3188 case AtomicExpr::AO__atomic_load:
3189 case AtomicExpr::AO__atomic_load_n:
3190 LibCallName = "__atomic_load";
3191 Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3192 getContext().VoidPtrTy);
3193 break;
3194 #if 0
3195 // These are only defined for 1-16 byte integers. It is not clear what
3196 // their semantics would be on anything else...
3197 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break;
3198 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break;
3199 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break;
3200 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break;
3201 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break;
3202 #endif
3203 default: return EmitUnsupportedRValue(E, "atomic library call");
3204 }
3205 // order is always the last parameter
3206 Args.add(RValue::get(Order),
3207 getContext().IntTy);
3208
3209 const CGFunctionInfo &FuncInfo =
3210 CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
3211 FunctionType::ExtInfo(), RequiredArgs::All);
3212 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3213 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3214 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3215 if (E->isCmpXChg())
3216 return Res;
3217 if (E->getType()->isVoidType())
3218 return RValue::get(0);
3219 return ConvertTempToRValue(*this, E->getType(), Dest);
3220 }
3221
3222 llvm::Type *IPtrTy =
3223 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3224 llvm::Value *OrigDest = Dest;
3225 Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3226 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3227 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3228 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3229
3230 if (isa<llvm::ConstantInt>(Order)) {
3231 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3232 switch (ord) {
3233 case 0: // memory_order_relaxed
3234 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3235 llvm::Monotonic);
3236 break;
3237 case 1: // memory_order_consume
3238 case 2: // memory_order_acquire
3239 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3240 llvm::Acquire);
3241 break;
3242 case 3: // memory_order_release
3243 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3244 llvm::Release);
3245 break;
3246 case 4: // memory_order_acq_rel
3247 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3248 llvm::AcquireRelease);
3249 break;
3250 case 5: // memory_order_seq_cst
3251 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3252 llvm::SequentiallyConsistent);
3253 break;
3254 default: // invalid order
3255 // We should not ever get here normally, but it's hard to
3256 // enforce that in general.
3257 break;
3258 }
3259 if (E->getType()->isVoidType())
3260 return RValue::get(0);
3261 return ConvertTempToRValue(*this, E->getType(), OrigDest);
3262 }
3263
3264 // Long case, when Order isn't obviously constant.
3265
3266 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3267 E->getOp() == AtomicExpr::AO__atomic_store ||
3268 E->getOp() == AtomicExpr::AO__atomic_store_n;
3269 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3270 E->getOp() == AtomicExpr::AO__atomic_load ||
3271 E->getOp() == AtomicExpr::AO__atomic_load_n;
3272
3273 // Create all the relevant BB's
3274 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3275 *AcqRelBB = 0, *SeqCstBB = 0;
3276 MonotonicBB = createBasicBlock("monotonic", CurFn);
3277 if (!IsStore)
3278 AcquireBB = createBasicBlock("acquire", CurFn);
3279 if (!IsLoad)
3280 ReleaseBB = createBasicBlock("release", CurFn);
3281 if (!IsLoad && !IsStore)
3282 AcqRelBB = createBasicBlock("acqrel", CurFn);
3283 SeqCstBB = createBasicBlock("seqcst", CurFn);
3284 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3285
3286 // Create the switch for the split
3287 // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3288 // doesn't matter unless someone is crazy enough to use something that
3289 // doesn't fold to a constant for the ordering.
3290 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3291 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3292
3293 // Emit all the different atomics
3294 Builder.SetInsertPoint(MonotonicBB);
3295 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3296 llvm::Monotonic);
3297 Builder.CreateBr(ContBB);
3298 if (!IsStore) {
3299 Builder.SetInsertPoint(AcquireBB);
3300 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3301 llvm::Acquire);
3302 Builder.CreateBr(ContBB);
3303 SI->addCase(Builder.getInt32(1), AcquireBB);
3304 SI->addCase(Builder.getInt32(2), AcquireBB);
3305 }
3306 if (!IsLoad) {
3307 Builder.SetInsertPoint(ReleaseBB);
3308 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3309 llvm::Release);
3310 Builder.CreateBr(ContBB);
3311 SI->addCase(Builder.getInt32(3), ReleaseBB);
3312 }
3313 if (!IsLoad && !IsStore) {
3314 Builder.SetInsertPoint(AcqRelBB);
3315 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3316 llvm::AcquireRelease);
3317 Builder.CreateBr(ContBB);
3318 SI->addCase(Builder.getInt32(4), AcqRelBB);
3319 }
3320 Builder.SetInsertPoint(SeqCstBB);
3321 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3322 llvm::SequentiallyConsistent);
3323 Builder.CreateBr(ContBB);
3324 SI->addCase(Builder.getInt32(5), SeqCstBB);
3325
3326 // Cleanup and return
3327 Builder.SetInsertPoint(ContBB);
3328 if (E->getType()->isVoidType())
3329 return RValue::get(0);
3330 return ConvertTempToRValue(*this, E->getType(), OrigDest);
3331 }
3332
SetFPAccuracy(llvm::Value * Val,float Accuracy)3333 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3334 assert(Val->getType()->isFPOrFPVectorTy());
3335 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3336 return;
3337
3338 llvm::MDBuilder MDHelper(getLLVMContext());
3339 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3340
3341 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3342 }
3343
3344 namespace {
3345 struct LValueOrRValue {
3346 LValue LV;
3347 RValue RV;
3348 };
3349 }
3350
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)3351 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3352 const PseudoObjectExpr *E,
3353 bool forLValue,
3354 AggValueSlot slot) {
3355 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3356
3357 // Find the result expression, if any.
3358 const Expr *resultExpr = E->getResultExpr();
3359 LValueOrRValue result;
3360
3361 for (PseudoObjectExpr::const_semantics_iterator
3362 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3363 const Expr *semantic = *i;
3364
3365 // If this semantic expression is an opaque value, bind it
3366 // to the result of its source expression.
3367 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3368
3369 // If this is the result expression, we may need to evaluate
3370 // directly into the slot.
3371 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3372 OVMA opaqueData;
3373 if (ov == resultExpr && ov->isRValue() && !forLValue &&
3374 CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3375 !ov->getType()->isAnyComplexType()) {
3376 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3377
3378 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3379 opaqueData = OVMA::bind(CGF, ov, LV);
3380 result.RV = slot.asRValue();
3381
3382 // Otherwise, emit as normal.
3383 } else {
3384 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3385
3386 // If this is the result, also evaluate the result now.
3387 if (ov == resultExpr) {
3388 if (forLValue)
3389 result.LV = CGF.EmitLValue(ov);
3390 else
3391 result.RV = CGF.EmitAnyExpr(ov, slot);
3392 }
3393 }
3394
3395 opaques.push_back(opaqueData);
3396
3397 // Otherwise, if the expression is the result, evaluate it
3398 // and remember the result.
3399 } else if (semantic == resultExpr) {
3400 if (forLValue)
3401 result.LV = CGF.EmitLValue(semantic);
3402 else
3403 result.RV = CGF.EmitAnyExpr(semantic, slot);
3404
3405 // Otherwise, evaluate the expression in an ignored context.
3406 } else {
3407 CGF.EmitIgnoredExpr(semantic);
3408 }
3409 }
3410
3411 // Unbind all the opaques now.
3412 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3413 opaques[i].unbind(CGF);
3414
3415 return result;
3416 }
3417
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)3418 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3419 AggValueSlot slot) {
3420 return emitPseudoObjectExpr(*this, E, false, slot).RV;
3421 }
3422
EmitPseudoObjectLValue(const PseudoObjectExpr * E)3423 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3424 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3425 }
3426