• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/ConvertUTF.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/MDBuilder.h"
29 #include "llvm/Target/TargetData.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 //===--------------------------------------------------------------------===//
34 //                        Miscellaneous Helper Methods
35 //===--------------------------------------------------------------------===//
36 
EmitCastToVoidPtr(llvm::Value * value)37 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
38   unsigned addressSpace =
39     cast<llvm::PointerType>(value->getType())->getAddressSpace();
40 
41   llvm::PointerType *destType = Int8PtrTy;
42   if (addressSpace)
43     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
44 
45   if (value->getType() == destType) return value;
46   return Builder.CreateBitCast(value, destType);
47 }
48 
49 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
50 /// block.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name)51 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
52                                                     const Twine &Name) {
53   if (!Builder.isNamePreserving())
54     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
55   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
56 }
57 
InitTempAlloca(llvm::AllocaInst * Var,llvm::Value * Init)58 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
59                                      llvm::Value *Init) {
60   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
61   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
62   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
63 }
64 
CreateIRTemp(QualType Ty,const Twine & Name)65 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
66                                                 const Twine &Name) {
67   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
68   // FIXME: Should we prefer the preferred type alignment here?
69   CharUnits Align = getContext().getTypeAlignInChars(Ty);
70   Alloc->setAlignment(Align.getQuantity());
71   return Alloc;
72 }
73 
CreateMemTemp(QualType Ty,const Twine & Name)74 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
75                                                  const Twine &Name) {
76   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
77   // FIXME: Should we prefer the preferred type alignment here?
78   CharUnits Align = getContext().getTypeAlignInChars(Ty);
79   Alloc->setAlignment(Align.getQuantity());
80   return Alloc;
81 }
82 
83 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
84 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)85 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
86   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
87     llvm::Value *MemPtr = EmitScalarExpr(E);
88     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
89   }
90 
91   QualType BoolTy = getContext().BoolTy;
92   if (!E->getType()->isAnyComplexType())
93     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
94 
95   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
96 }
97 
98 /// EmitIgnoredExpr - Emit code to compute the specified expression,
99 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)100 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
101   if (E->isRValue())
102     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
103 
104   // Just emit it as an l-value and drop the result.
105   EmitLValue(E);
106 }
107 
108 /// EmitAnyExpr - Emit code to compute the specified expression which
109 /// can have any type.  The result is returned as an RValue struct.
110 /// If this is an aggregate expression, AggSlot indicates where the
111 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)112 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
113                                     AggValueSlot aggSlot,
114                                     bool ignoreResult) {
115   if (!hasAggregateLLVMType(E->getType()))
116     return RValue::get(EmitScalarExpr(E, ignoreResult));
117   else if (E->getType()->isAnyComplexType())
118     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
119 
120   if (!ignoreResult && aggSlot.isIgnored())
121     aggSlot = CreateAggTemp(E->getType(), "agg-temp");
122   EmitAggExpr(E, aggSlot);
123   return aggSlot.asRValue();
124 }
125 
126 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
127 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)128 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
129   AggValueSlot AggSlot = AggValueSlot::ignored();
130 
131   if (hasAggregateLLVMType(E->getType()) &&
132       !E->getType()->isAnyComplexType())
133     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
134   return EmitAnyExpr(E, AggSlot);
135 }
136 
137 /// EmitAnyExprToMem - Evaluate an expression into a given memory
138 /// location.
EmitAnyExprToMem(const Expr * E,llvm::Value * Location,Qualifiers Quals,bool IsInit)139 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
140                                        llvm::Value *Location,
141                                        Qualifiers Quals,
142                                        bool IsInit) {
143   // FIXME: This function should take an LValue as an argument.
144   if (E->getType()->isAnyComplexType()) {
145     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
146   } else if (hasAggregateLLVMType(E->getType())) {
147     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
148     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
149                                          AggValueSlot::IsDestructed_t(IsInit),
150                                          AggValueSlot::DoesNotNeedGCBarriers,
151                                          AggValueSlot::IsAliased_t(!IsInit)));
152   } else {
153     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
154     LValue LV = MakeAddrLValue(Location, E->getType());
155     EmitStoreThroughLValue(RV, LV);
156   }
157 }
158 
159 namespace {
160 /// \brief An adjustment to be made to the temporary created when emitting a
161 /// reference binding, which accesses a particular subobject of that temporary.
162   struct SubobjectAdjustment {
163     enum {
164       DerivedToBaseAdjustment,
165       FieldAdjustment,
166       MemberPointerAdjustment
167     } Kind;
168 
169     union {
170       struct {
171         const CastExpr *BasePath;
172         const CXXRecordDecl *DerivedClass;
173       } DerivedToBase;
174 
175       FieldDecl *Field;
176 
177       struct {
178         const MemberPointerType *MPT;
179         llvm::Value *Ptr;
180       } Ptr;
181     };
182 
SubobjectAdjustment__anondbe36e2f0111::SubobjectAdjustment183     SubobjectAdjustment(const CastExpr *BasePath,
184                         const CXXRecordDecl *DerivedClass)
185       : Kind(DerivedToBaseAdjustment) {
186       DerivedToBase.BasePath = BasePath;
187       DerivedToBase.DerivedClass = DerivedClass;
188     }
189 
SubobjectAdjustment__anondbe36e2f0111::SubobjectAdjustment190     SubobjectAdjustment(FieldDecl *Field)
191       : Kind(FieldAdjustment) {
192       this->Field = Field;
193     }
194 
SubobjectAdjustment__anondbe36e2f0111::SubobjectAdjustment195     SubobjectAdjustment(const MemberPointerType *MPT, llvm::Value *Ptr)
196       : Kind(MemberPointerAdjustment) {
197       this->Ptr.MPT = MPT;
198       this->Ptr.Ptr = Ptr;
199     }
200   };
201 }
202 
203 static llvm::Value *
CreateReferenceTemporary(CodeGenFunction & CGF,QualType Type,const NamedDecl * InitializedDecl)204 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
205                          const NamedDecl *InitializedDecl) {
206   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
207     if (VD->hasGlobalStorage()) {
208       SmallString<256> Name;
209       llvm::raw_svector_ostream Out(Name);
210       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
211       Out.flush();
212 
213       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
214 
215       // Create the reference temporary.
216       llvm::GlobalValue *RefTemp =
217         new llvm::GlobalVariable(CGF.CGM.getModule(),
218                                  RefTempTy, /*isConstant=*/false,
219                                  llvm::GlobalValue::InternalLinkage,
220                                  llvm::Constant::getNullValue(RefTempTy),
221                                  Name.str());
222       return RefTemp;
223     }
224   }
225 
226   return CGF.CreateMemTemp(Type, "ref.tmp");
227 }
228 
229 static llvm::Value *
EmitExprForReferenceBinding(CodeGenFunction & CGF,const Expr * E,llvm::Value * & ReferenceTemporary,const CXXDestructorDecl * & ReferenceTemporaryDtor,QualType & ObjCARCReferenceLifetimeType,const NamedDecl * InitializedDecl)230 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
231                             llvm::Value *&ReferenceTemporary,
232                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
233                             QualType &ObjCARCReferenceLifetimeType,
234                             const NamedDecl *InitializedDecl) {
235   // Look through single-element init lists that claim to be lvalues. They're
236   // just syntactic wrappers in this case.
237   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
238     if (ILE->getNumInits() == 1 && ILE->isGLValue())
239       E = ILE->getInit(0);
240   }
241 
242   // Look through expressions for materialized temporaries (for now).
243   if (const MaterializeTemporaryExpr *M
244                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
245     // Objective-C++ ARC:
246     //   If we are binding a reference to a temporary that has ownership, we
247     //   need to perform retain/release operations on the temporary.
248     if (CGF.getContext().getLangOpts().ObjCAutoRefCount &&
249         E->getType()->isObjCLifetimeType() &&
250         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
251          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
252          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
253       ObjCARCReferenceLifetimeType = E->getType();
254 
255     E = M->GetTemporaryExpr();
256   }
257 
258   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
259     E = DAE->getExpr();
260 
261   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
262     CGF.enterFullExpression(EWC);
263     CodeGenFunction::RunCleanupsScope Scope(CGF);
264 
265     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
266                                        ReferenceTemporary,
267                                        ReferenceTemporaryDtor,
268                                        ObjCARCReferenceLifetimeType,
269                                        InitializedDecl);
270   }
271 
272   RValue RV;
273   if (E->isGLValue()) {
274     // Emit the expression as an lvalue.
275     LValue LV = CGF.EmitLValue(E);
276 
277     if (LV.isSimple())
278       return LV.getAddress();
279 
280     // We have to load the lvalue.
281     RV = CGF.EmitLoadOfLValue(LV);
282   } else {
283     if (!ObjCARCReferenceLifetimeType.isNull()) {
284       ReferenceTemporary = CreateReferenceTemporary(CGF,
285                                                   ObjCARCReferenceLifetimeType,
286                                                     InitializedDecl);
287 
288 
289       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
290                                              ObjCARCReferenceLifetimeType);
291 
292       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
293                          RefTempDst, false);
294 
295       bool ExtendsLifeOfTemporary = false;
296       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
297         if (Var->extendsLifetimeOfTemporary())
298           ExtendsLifeOfTemporary = true;
299       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
300         ExtendsLifeOfTemporary = true;
301       }
302 
303       if (!ExtendsLifeOfTemporary) {
304         // Since the lifetime of this temporary isn't going to be extended,
305         // we need to clean it up ourselves at the end of the full expression.
306         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
307         case Qualifiers::OCL_None:
308         case Qualifiers::OCL_ExplicitNone:
309         case Qualifiers::OCL_Autoreleasing:
310           break;
311 
312         case Qualifiers::OCL_Strong: {
313           assert(!ObjCARCReferenceLifetimeType->isArrayType());
314           CleanupKind cleanupKind = CGF.getARCCleanupKind();
315           CGF.pushDestroy(cleanupKind,
316                           ReferenceTemporary,
317                           ObjCARCReferenceLifetimeType,
318                           CodeGenFunction::destroyARCStrongImprecise,
319                           cleanupKind & EHCleanup);
320           break;
321         }
322 
323         case Qualifiers::OCL_Weak:
324           assert(!ObjCARCReferenceLifetimeType->isArrayType());
325           CGF.pushDestroy(NormalAndEHCleanup,
326                           ReferenceTemporary,
327                           ObjCARCReferenceLifetimeType,
328                           CodeGenFunction::destroyARCWeak,
329                           /*useEHCleanupForArray*/ true);
330           break;
331         }
332 
333         ObjCARCReferenceLifetimeType = QualType();
334       }
335 
336       return ReferenceTemporary;
337     }
338 
339     SmallVector<SubobjectAdjustment, 2> Adjustments;
340     while (true) {
341       E = E->IgnoreParens();
342 
343       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
344         if ((CE->getCastKind() == CK_DerivedToBase ||
345              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
346             E->getType()->isRecordType()) {
347           E = CE->getSubExpr();
348           CXXRecordDecl *Derived
349             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
350           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
351           continue;
352         }
353 
354         if (CE->getCastKind() == CK_NoOp) {
355           E = CE->getSubExpr();
356           continue;
357         }
358       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
359         if (!ME->isArrow() && ME->getBase()->isRValue()) {
360           assert(ME->getBase()->getType()->isRecordType());
361           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
362             E = ME->getBase();
363             Adjustments.push_back(SubobjectAdjustment(Field));
364             continue;
365           }
366         }
367       } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
368         if (BO->isPtrMemOp()) {
369           assert(BO->getLHS()->isRValue());
370           E = BO->getLHS();
371           const MemberPointerType *MPT =
372               BO->getRHS()->getType()->getAs<MemberPointerType>();
373           llvm::Value *Ptr = CGF.EmitScalarExpr(BO->getRHS());
374           Adjustments.push_back(SubobjectAdjustment(MPT, Ptr));
375         }
376       }
377 
378       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
379         if (opaque->getType()->isRecordType())
380           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
381 
382       // Nothing changed.
383       break;
384     }
385 
386     // Create a reference temporary if necessary.
387     AggValueSlot AggSlot = AggValueSlot::ignored();
388     if (CGF.hasAggregateLLVMType(E->getType()) &&
389         !E->getType()->isAnyComplexType()) {
390       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
391                                                     InitializedDecl);
392       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
393       AggValueSlot::IsDestructed_t isDestructed
394         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
395       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
396                                       Qualifiers(), isDestructed,
397                                       AggValueSlot::DoesNotNeedGCBarriers,
398                                       AggValueSlot::IsNotAliased);
399     }
400 
401     if (InitializedDecl) {
402       // Get the destructor for the reference temporary.
403       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
404         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
405         if (!ClassDecl->hasTrivialDestructor())
406           ReferenceTemporaryDtor = ClassDecl->getDestructor();
407       }
408     }
409 
410     RV = CGF.EmitAnyExpr(E, AggSlot);
411 
412     // Check if need to perform derived-to-base casts and/or field accesses, to
413     // get from the temporary object we created (and, potentially, for which we
414     // extended the lifetime) to the subobject we're binding the reference to.
415     if (!Adjustments.empty()) {
416       llvm::Value *Object = RV.getAggregateAddr();
417       for (unsigned I = Adjustments.size(); I != 0; --I) {
418         SubobjectAdjustment &Adjustment = Adjustments[I-1];
419         switch (Adjustment.Kind) {
420         case SubobjectAdjustment::DerivedToBaseAdjustment:
421           Object =
422               CGF.GetAddressOfBaseClass(Object,
423                                         Adjustment.DerivedToBase.DerivedClass,
424                               Adjustment.DerivedToBase.BasePath->path_begin(),
425                               Adjustment.DerivedToBase.BasePath->path_end(),
426                                         /*NullCheckValue=*/false);
427           break;
428 
429         case SubobjectAdjustment::FieldAdjustment: {
430           LValue LV = CGF.MakeAddrLValue(Object, E->getType());
431           LV = CGF.EmitLValueForField(LV, Adjustment.Field);
432           if (LV.isSimple()) {
433             Object = LV.getAddress();
434             break;
435           }
436 
437           // For non-simple lvalues, we actually have to create a copy of
438           // the object we're binding to.
439           QualType T = Adjustment.Field->getType().getNonReferenceType()
440                                                   .getUnqualifiedType();
441           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
442           LValue TempLV = CGF.MakeAddrLValue(Object,
443                                              Adjustment.Field->getType());
444           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
445           break;
446         }
447 
448         case SubobjectAdjustment::MemberPointerAdjustment: {
449           Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
450                         CGF, Object, Adjustment.Ptr.Ptr, Adjustment.Ptr.MPT);
451           break;
452         }
453         }
454       }
455 
456       return Object;
457     }
458   }
459 
460   if (RV.isAggregate())
461     return RV.getAggregateAddr();
462 
463   // Create a temporary variable that we can bind the reference to.
464   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
465                                                 InitializedDecl);
466 
467 
468   unsigned Alignment =
469     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
470   if (RV.isScalar())
471     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
472                           /*Volatile=*/false, Alignment, E->getType());
473   else
474     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
475                            /*Volatile=*/false);
476   return ReferenceTemporary;
477 }
478 
479 RValue
EmitReferenceBindingToExpr(const Expr * E,const NamedDecl * InitializedDecl)480 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
481                                             const NamedDecl *InitializedDecl) {
482   llvm::Value *ReferenceTemporary = 0;
483   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
484   QualType ObjCARCReferenceLifetimeType;
485   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
486                                                    ReferenceTemporaryDtor,
487                                                    ObjCARCReferenceLifetimeType,
488                                                    InitializedDecl);
489   if (CatchUndefined && !E->getType()->isFunctionType()) {
490     // C++11 [dcl.ref]p5 (as amended by core issue 453):
491     //   If a glvalue to which a reference is directly bound designates neither
492     //   an existing object or function of an appropriate type nor a region of
493     //   storage of suitable size and alignment to contain an object of the
494     //   reference's type, the behavior is undefined.
495     QualType Ty = E->getType();
496     EmitTypeCheck(TCK_ReferenceBinding, Value, Ty);
497   }
498   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
499     return RValue::get(Value);
500 
501   // Make sure to call the destructor for the reference temporary.
502   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
503   if (VD && VD->hasGlobalStorage()) {
504     if (ReferenceTemporaryDtor) {
505       llvm::Constant *DtorFn =
506         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
507       CGM.getCXXABI().registerGlobalDtor(*this, DtorFn,
508                                     cast<llvm::Constant>(ReferenceTemporary));
509     } else {
510       assert(!ObjCARCReferenceLifetimeType.isNull());
511       // Note: We intentionally do not register a global "destructor" to
512       // release the object.
513     }
514 
515     return RValue::get(Value);
516   }
517 
518   if (ReferenceTemporaryDtor)
519     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
520   else {
521     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
522     case Qualifiers::OCL_None:
523       llvm_unreachable(
524                       "Not a reference temporary that needs to be deallocated");
525     case Qualifiers::OCL_ExplicitNone:
526     case Qualifiers::OCL_Autoreleasing:
527       // Nothing to do.
528       break;
529 
530     case Qualifiers::OCL_Strong: {
531       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
532       CleanupKind cleanupKind = getARCCleanupKind();
533       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
534                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
535                   cleanupKind & EHCleanup);
536       break;
537     }
538 
539     case Qualifiers::OCL_Weak: {
540       // __weak objects always get EH cleanups; otherwise, exceptions
541       // could cause really nasty crashes instead of mere leaks.
542       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
543                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
544       break;
545     }
546     }
547   }
548 
549   return RValue::get(Value);
550 }
551 
552 
553 /// getAccessedFieldNo - Given an encoded value and a result number, return the
554 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)555 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
556                                              const llvm::Constant *Elts) {
557   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
558       ->getZExtValue();
559 }
560 
EmitTypeCheck(TypeCheckKind TCK,llvm::Value * Address,QualType Ty,CharUnits Alignment)561 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, llvm::Value *Address,
562                                     QualType Ty, CharUnits Alignment) {
563   if (!CatchUndefined)
564     return;
565 
566   llvm::Value *Cond = 0;
567 
568   if (TCK != TCK_Load && TCK != TCK_Store) {
569     // The glvalue must not be an empty glvalue. Don't bother checking this for
570     // loads and stores, because we will get a segfault anyway (if the operation
571     // isn't optimized out).
572     Cond = Builder.CreateICmpNE(
573         Address, llvm::Constant::getNullValue(Address->getType()));
574   }
575 
576   if (!Ty->isIncompleteType()) {
577     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
578     uint64_t AlignVal = Alignment.getQuantity();
579     if (!AlignVal)
580       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
581 
582     // This needs to be to the standard address space.
583     Address = Builder.CreateBitCast(Address, Int8PtrTy);
584 
585     // The glvalue must refer to a large enough storage region.
586     // FIXME: If -faddress-sanitizer is enabled, insert dynamic instrumentation
587     //        to check this.
588     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
589     llvm::Value *Min = Builder.getFalse();
590     llvm::Value *LargeEnough =
591         Builder.CreateICmpUGE(Builder.CreateCall2(F, Address, Min),
592                               llvm::ConstantInt::get(IntPtrTy, Size));
593     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
594 
595     // The glvalue must be suitably aligned.
596     llvm::Value *Align =
597         Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
598                           llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
599     Cond = Builder.CreateAnd(Cond,
600         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)));
601   }
602 
603   if (Cond)
604     EmitCheck(Cond);
605 }
606 
607 
608 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)609 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
610                          bool isInc, bool isPre) {
611   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
612                                             LV.isVolatileQualified());
613 
614   llvm::Value *NextVal;
615   if (isa<llvm::IntegerType>(InVal.first->getType())) {
616     uint64_t AmountVal = isInc ? 1 : -1;
617     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
618 
619     // Add the inc/dec to the real part.
620     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
621   } else {
622     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
623     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
624     if (!isInc)
625       FVal.changeSign();
626     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
627 
628     // Add the inc/dec to the real part.
629     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
630   }
631 
632   ComplexPairTy IncVal(NextVal, InVal.second);
633 
634   // Store the updated result through the lvalue.
635   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
636 
637   // If this is a postinc, return the value read from memory, otherwise use the
638   // updated value.
639   return isPre ? IncVal : InVal;
640 }
641 
642 
643 //===----------------------------------------------------------------------===//
644 //                         LValue Expression Emission
645 //===----------------------------------------------------------------------===//
646 
GetUndefRValue(QualType Ty)647 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
648   if (Ty->isVoidType())
649     return RValue::get(0);
650 
651   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
652     llvm::Type *EltTy = ConvertType(CTy->getElementType());
653     llvm::Value *U = llvm::UndefValue::get(EltTy);
654     return RValue::getComplex(std::make_pair(U, U));
655   }
656 
657   // If this is a use of an undefined aggregate type, the aggregate must have an
658   // identifiable address.  Just because the contents of the value are undefined
659   // doesn't mean that the address can't be taken and compared.
660   if (hasAggregateLLVMType(Ty)) {
661     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
662     return RValue::getAggregate(DestPtr);
663   }
664 
665   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
666 }
667 
EmitUnsupportedRValue(const Expr * E,const char * Name)668 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
669                                               const char *Name) {
670   ErrorUnsupported(E, Name);
671   return GetUndefRValue(E->getType());
672 }
673 
EmitUnsupportedLValue(const Expr * E,const char * Name)674 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
675                                               const char *Name) {
676   ErrorUnsupported(E, Name);
677   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
678   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
679 }
680 
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)681 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
682   LValue LV = EmitLValue(E);
683   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
684     EmitTypeCheck(TCK, LV.getAddress(), E->getType(), LV.getAlignment());
685   return LV;
686 }
687 
688 /// EmitLValue - Emit code to compute a designator that specifies the location
689 /// of the expression.
690 ///
691 /// This can return one of two things: a simple address or a bitfield reference.
692 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
693 /// an LLVM pointer type.
694 ///
695 /// If this returns a bitfield reference, nothing about the pointee type of the
696 /// LLVM value is known: For example, it may not be a pointer to an integer.
697 ///
698 /// If this returns a normal address, and if the lvalue's C type is fixed size,
699 /// this method guarantees that the returned pointer type will point to an LLVM
700 /// type of the same size of the lvalue's type.  If the lvalue has a variable
701 /// length type, this is not possible.
702 ///
EmitLValue(const Expr * E)703 LValue CodeGenFunction::EmitLValue(const Expr *E) {
704   switch (E->getStmtClass()) {
705   default: return EmitUnsupportedLValue(E, "l-value expression");
706 
707   case Expr::ObjCPropertyRefExprClass:
708     llvm_unreachable("cannot emit a property reference directly");
709 
710   case Expr::ObjCSelectorExprClass:
711   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
712   case Expr::ObjCIsaExprClass:
713     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
714   case Expr::BinaryOperatorClass:
715     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
716   case Expr::CompoundAssignOperatorClass:
717     if (!E->getType()->isAnyComplexType())
718       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
719     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
720   case Expr::CallExprClass:
721   case Expr::CXXMemberCallExprClass:
722   case Expr::CXXOperatorCallExprClass:
723   case Expr::UserDefinedLiteralClass:
724     return EmitCallExprLValue(cast<CallExpr>(E));
725   case Expr::VAArgExprClass:
726     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
727   case Expr::DeclRefExprClass:
728     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
729   case Expr::ParenExprClass:
730     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
731   case Expr::GenericSelectionExprClass:
732     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
733   case Expr::PredefinedExprClass:
734     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
735   case Expr::StringLiteralClass:
736     return EmitStringLiteralLValue(cast<StringLiteral>(E));
737   case Expr::ObjCEncodeExprClass:
738     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
739   case Expr::PseudoObjectExprClass:
740     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
741   case Expr::InitListExprClass:
742     return EmitInitListLValue(cast<InitListExpr>(E));
743   case Expr::CXXTemporaryObjectExprClass:
744   case Expr::CXXConstructExprClass:
745     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
746   case Expr::CXXBindTemporaryExprClass:
747     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
748   case Expr::LambdaExprClass:
749     return EmitLambdaLValue(cast<LambdaExpr>(E));
750 
751   case Expr::ExprWithCleanupsClass: {
752     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
753     enterFullExpression(cleanups);
754     RunCleanupsScope Scope(*this);
755     return EmitLValue(cleanups->getSubExpr());
756   }
757 
758   case Expr::CXXScalarValueInitExprClass:
759     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
760   case Expr::CXXDefaultArgExprClass:
761     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
762   case Expr::CXXTypeidExprClass:
763     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
764 
765   case Expr::ObjCMessageExprClass:
766     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
767   case Expr::ObjCIvarRefExprClass:
768     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
769   case Expr::StmtExprClass:
770     return EmitStmtExprLValue(cast<StmtExpr>(E));
771   case Expr::UnaryOperatorClass:
772     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
773   case Expr::ArraySubscriptExprClass:
774     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
775   case Expr::ExtVectorElementExprClass:
776     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
777   case Expr::MemberExprClass:
778     return EmitMemberExpr(cast<MemberExpr>(E));
779   case Expr::CompoundLiteralExprClass:
780     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
781   case Expr::ConditionalOperatorClass:
782     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
783   case Expr::BinaryConditionalOperatorClass:
784     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
785   case Expr::ChooseExprClass:
786     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
787   case Expr::OpaqueValueExprClass:
788     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
789   case Expr::SubstNonTypeTemplateParmExprClass:
790     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
791   case Expr::ImplicitCastExprClass:
792   case Expr::CStyleCastExprClass:
793   case Expr::CXXFunctionalCastExprClass:
794   case Expr::CXXStaticCastExprClass:
795   case Expr::CXXDynamicCastExprClass:
796   case Expr::CXXReinterpretCastExprClass:
797   case Expr::CXXConstCastExprClass:
798   case Expr::ObjCBridgedCastExprClass:
799     return EmitCastLValue(cast<CastExpr>(E));
800 
801   case Expr::MaterializeTemporaryExprClass:
802     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
803   }
804 }
805 
806 /// Given an object of the given canonical type, can we safely copy a
807 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)808 static bool isConstantEmittableObjectType(QualType type) {
809   assert(type.isCanonical());
810   assert(!type->isReferenceType());
811 
812   // Must be const-qualified but non-volatile.
813   Qualifiers qs = type.getLocalQualifiers();
814   if (!qs.hasConst() || qs.hasVolatile()) return false;
815 
816   // Otherwise, all object types satisfy this except C++ classes with
817   // mutable subobjects or non-trivial copy/destroy behavior.
818   if (const RecordType *RT = dyn_cast<RecordType>(type))
819     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
820       if (RD->hasMutableFields() || !RD->isTrivial())
821         return false;
822 
823   return true;
824 }
825 
826 /// Can we constant-emit a load of a reference to a variable of the
827 /// given type?  This is different from predicates like
828 /// Decl::isUsableInConstantExpressions because we do want it to apply
829 /// in situations that don't necessarily satisfy the language's rules
830 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
831 /// to do this with const float variables even if those variables
832 /// aren't marked 'constexpr'.
833 enum ConstantEmissionKind {
834   CEK_None,
835   CEK_AsReferenceOnly,
836   CEK_AsValueOrReference,
837   CEK_AsValueOnly
838 };
checkVarTypeForConstantEmission(QualType type)839 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
840   type = type.getCanonicalType();
841   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
842     if (isConstantEmittableObjectType(ref->getPointeeType()))
843       return CEK_AsValueOrReference;
844     return CEK_AsReferenceOnly;
845   }
846   if (isConstantEmittableObjectType(type))
847     return CEK_AsValueOnly;
848   return CEK_None;
849 }
850 
851 /// Try to emit a reference to the given value without producing it as
852 /// an l-value.  This is actually more than an optimization: we can't
853 /// produce an l-value for variables that we never actually captured
854 /// in a block or lambda, which means const int variables or constexpr
855 /// literals or similar.
856 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)857 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
858   ValueDecl *value = refExpr->getDecl();
859 
860   // The value needs to be an enum constant or a constant variable.
861   ConstantEmissionKind CEK;
862   if (isa<ParmVarDecl>(value)) {
863     CEK = CEK_None;
864   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
865     CEK = checkVarTypeForConstantEmission(var->getType());
866   } else if (isa<EnumConstantDecl>(value)) {
867     CEK = CEK_AsValueOnly;
868   } else {
869     CEK = CEK_None;
870   }
871   if (CEK == CEK_None) return ConstantEmission();
872 
873   Expr::EvalResult result;
874   bool resultIsReference;
875   QualType resultType;
876 
877   // It's best to evaluate all the way as an r-value if that's permitted.
878   if (CEK != CEK_AsReferenceOnly &&
879       refExpr->EvaluateAsRValue(result, getContext())) {
880     resultIsReference = false;
881     resultType = refExpr->getType();
882 
883   // Otherwise, try to evaluate as an l-value.
884   } else if (CEK != CEK_AsValueOnly &&
885              refExpr->EvaluateAsLValue(result, getContext())) {
886     resultIsReference = true;
887     resultType = value->getType();
888 
889   // Failure.
890   } else {
891     return ConstantEmission();
892   }
893 
894   // In any case, if the initializer has side-effects, abandon ship.
895   if (result.HasSideEffects)
896     return ConstantEmission();
897 
898   // Emit as a constant.
899   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
900 
901   // Make sure we emit a debug reference to the global variable.
902   // This should probably fire even for
903   if (isa<VarDecl>(value)) {
904     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
905       EmitDeclRefExprDbgValue(refExpr, C);
906   } else {
907     assert(isa<EnumConstantDecl>(value));
908     EmitDeclRefExprDbgValue(refExpr, C);
909   }
910 
911   // If we emitted a reference constant, we need to dereference that.
912   if (resultIsReference)
913     return ConstantEmission::forReference(C);
914 
915   return ConstantEmission::forValue(C);
916 }
917 
EmitLoadOfScalar(LValue lvalue)918 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
919   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
920                           lvalue.getAlignment().getQuantity(),
921                           lvalue.getType(), lvalue.getTBAAInfo());
922 }
923 
hasBooleanRepresentation(QualType Ty)924 static bool hasBooleanRepresentation(QualType Ty) {
925   if (Ty->isBooleanType())
926     return true;
927 
928   if (const EnumType *ET = Ty->getAs<EnumType>())
929     return ET->getDecl()->getIntegerType()->isBooleanType();
930 
931   if (const AtomicType *AT = Ty->getAs<AtomicType>())
932     return hasBooleanRepresentation(AT->getValueType());
933 
934   return false;
935 }
936 
getRangeForLoadFromType(QualType Ty)937 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
938   const EnumType *ET = Ty->getAs<EnumType>();
939   bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
940                                  CGM.getCodeGenOpts().StrictEnums &&
941                                  !ET->getDecl()->isFixed());
942   bool IsBool = hasBooleanRepresentation(Ty);
943   if (!IsBool && !IsRegularCPlusPlusEnum)
944     return NULL;
945 
946   llvm::APInt Min;
947   llvm::APInt End;
948   if (IsBool) {
949     Min = llvm::APInt(8, 0);
950     End = llvm::APInt(8, 2);
951   } else {
952     const EnumDecl *ED = ET->getDecl();
953     llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType());
954     unsigned Bitwidth = LTy->getScalarSizeInBits();
955     unsigned NumNegativeBits = ED->getNumNegativeBits();
956     unsigned NumPositiveBits = ED->getNumPositiveBits();
957 
958     if (NumNegativeBits) {
959       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
960       assert(NumBits <= Bitwidth);
961       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
962       Min = -End;
963     } else {
964       assert(NumPositiveBits <= Bitwidth);
965       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
966       Min = llvm::APInt(Bitwidth, 0);
967     }
968   }
969 
970   llvm::MDBuilder MDHelper(getLLVMContext());
971   return MDHelper.createRange(Min, End);
972 }
973 
EmitLoadOfScalar(llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo)974 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
975                                               unsigned Alignment, QualType Ty,
976                                               llvm::MDNode *TBAAInfo) {
977 
978   // For better performance, handle vector loads differently.
979   if (Ty->isVectorType()) {
980     llvm::Value *V;
981     const llvm::Type *EltTy =
982     cast<llvm::PointerType>(Addr->getType())->getElementType();
983 
984     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
985 
986     // Handle vectors of size 3, like size 4 for better performance.
987     if (VTy->getNumElements() == 3) {
988 
989       // Bitcast to vec4 type.
990       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
991                                                          4);
992       llvm::PointerType *ptVec4Ty =
993       llvm::PointerType::get(vec4Ty,
994                              (cast<llvm::PointerType>(
995                                       Addr->getType()))->getAddressSpace());
996       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
997                                                 "castToVec4");
998       // Now load value.
999       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1000 
1001       // Shuffle vector to get vec3.
1002       llvm::SmallVector<llvm::Constant*, 3> Mask;
1003       Mask.push_back(llvm::ConstantInt::get(
1004                                     llvm::Type::getInt32Ty(getLLVMContext()),
1005                                             0));
1006       Mask.push_back(llvm::ConstantInt::get(
1007                                     llvm::Type::getInt32Ty(getLLVMContext()),
1008                                             1));
1009       Mask.push_back(llvm::ConstantInt::get(
1010                                      llvm::Type::getInt32Ty(getLLVMContext()),
1011                                             2));
1012 
1013       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1014       V = Builder.CreateShuffleVector(LoadVal,
1015                                       llvm::UndefValue::get(vec4Ty),
1016                                       MaskV, "extractVec");
1017       return EmitFromMemory(V, Ty);
1018     }
1019   }
1020 
1021   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1022   if (Volatile)
1023     Load->setVolatile(true);
1024   if (Alignment)
1025     Load->setAlignment(Alignment);
1026   if (TBAAInfo)
1027     CGM.DecorateInstruction(Load, TBAAInfo);
1028   // If this is an atomic type, all normal reads must be atomic
1029   if (Ty->isAtomicType())
1030     Load->setAtomic(llvm::SequentiallyConsistent);
1031 
1032   if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1033     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1034       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1035 
1036   return EmitFromMemory(Load, Ty);
1037 }
1038 
EmitToMemory(llvm::Value * Value,QualType Ty)1039 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1040   // Bool has a different representation in memory than in registers.
1041   if (hasBooleanRepresentation(Ty)) {
1042     // This should really always be an i1, but sometimes it's already
1043     // an i8, and it's awkward to track those cases down.
1044     if (Value->getType()->isIntegerTy(1))
1045       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
1046     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
1047   }
1048 
1049   return Value;
1050 }
1051 
EmitFromMemory(llvm::Value * Value,QualType Ty)1052 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1053   // Bool has a different representation in memory than in registers.
1054   if (hasBooleanRepresentation(Ty)) {
1055     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
1056     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1057   }
1058 
1059   return Value;
1060 }
1061 
EmitStoreOfScalar(llvm::Value * Value,llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo,bool isInit)1062 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1063                                         bool Volatile, unsigned Alignment,
1064                                         QualType Ty,
1065                                         llvm::MDNode *TBAAInfo,
1066                                         bool isInit) {
1067 
1068   // Handle vectors differently to get better performance.
1069   if (Ty->isVectorType()) {
1070     llvm::Type *SrcTy = Value->getType();
1071     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1072     // Handle vec3 special.
1073     if (VecTy->getNumElements() == 3) {
1074       llvm::LLVMContext &VMContext = getLLVMContext();
1075 
1076       // Our source is a vec3, do a shuffle vector to make it a vec4.
1077       llvm::SmallVector<llvm::Constant*, 4> Mask;
1078       Mask.push_back(llvm::ConstantInt::get(
1079                                             llvm::Type::getInt32Ty(VMContext),
1080                                             0));
1081       Mask.push_back(llvm::ConstantInt::get(
1082                                             llvm::Type::getInt32Ty(VMContext),
1083                                             1));
1084       Mask.push_back(llvm::ConstantInt::get(
1085                                             llvm::Type::getInt32Ty(VMContext),
1086                                             2));
1087       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1088 
1089       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1090       Value = Builder.CreateShuffleVector(Value,
1091                                           llvm::UndefValue::get(VecTy),
1092                                           MaskV, "extractVec");
1093       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1094     }
1095     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1096     if (DstPtr->getElementType() != SrcTy) {
1097       llvm::Type *MemTy =
1098       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1099       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1100     }
1101   }
1102 
1103   Value = EmitToMemory(Value, Ty);
1104 
1105   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1106   if (Alignment)
1107     Store->setAlignment(Alignment);
1108   if (TBAAInfo)
1109     CGM.DecorateInstruction(Store, TBAAInfo);
1110   if (!isInit && Ty->isAtomicType())
1111     Store->setAtomic(llvm::SequentiallyConsistent);
1112 }
1113 
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1114 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1115     bool isInit) {
1116   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1117                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1118                     lvalue.getTBAAInfo(), isInit);
1119 }
1120 
1121 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1122 /// method emits the address of the lvalue, then loads the result as an rvalue,
1123 /// returning the rvalue.
EmitLoadOfLValue(LValue LV)1124 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1125   if (LV.isObjCWeak()) {
1126     // load of a __weak object.
1127     llvm::Value *AddrWeakObj = LV.getAddress();
1128     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1129                                                              AddrWeakObj));
1130   }
1131   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
1132     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1133 
1134   if (LV.isSimple()) {
1135     assert(!LV.getType()->isFunctionType());
1136 
1137     // Everything needs a load.
1138     return RValue::get(EmitLoadOfScalar(LV));
1139   }
1140 
1141   if (LV.isVectorElt()) {
1142     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1143                                               LV.isVolatileQualified());
1144     Load->setAlignment(LV.getAlignment().getQuantity());
1145     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1146                                                     "vecext"));
1147   }
1148 
1149   // If this is a reference to a subset of the elements of a vector, either
1150   // shuffle the input or extract/insert them as appropriate.
1151   if (LV.isExtVectorElt())
1152     return EmitLoadOfExtVectorElementLValue(LV);
1153 
1154   assert(LV.isBitField() && "Unknown LValue type!");
1155   return EmitLoadOfBitfieldLValue(LV);
1156 }
1157 
EmitLoadOfBitfieldLValue(LValue LV)1158 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1159   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1160 
1161   // Get the output type.
1162   llvm::Type *ResLTy = ConvertType(LV.getType());
1163   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1164 
1165   // Compute the result as an OR of all of the individual component accesses.
1166   llvm::Value *Res = 0;
1167   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1168     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1169     CharUnits AccessAlignment = AI.AccessAlignment;
1170     if (!LV.getAlignment().isZero())
1171       AccessAlignment = std::min(AccessAlignment, LV.getAlignment());
1172 
1173     // Get the field pointer.
1174     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
1175 
1176     // Only offset by the field index if used, so that incoming values are not
1177     // required to be structures.
1178     if (AI.FieldIndex)
1179       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1180 
1181     // Offset by the byte offset, if used.
1182     if (!AI.FieldByteOffset.isZero()) {
1183       Ptr = EmitCastToVoidPtr(Ptr);
1184       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1185                                        "bf.field.offs");
1186     }
1187 
1188     // Cast to the access type.
1189     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
1190                        CGM.getContext().getTargetAddressSpace(LV.getType()));
1191     Ptr = Builder.CreateBitCast(Ptr, PTy);
1192 
1193     // Perform the load.
1194     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1195     Load->setAlignment(AccessAlignment.getQuantity());
1196 
1197     // Shift out unused low bits and mask out unused high bits.
1198     llvm::Value *Val = Load;
1199     if (AI.FieldBitStart)
1200       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1201     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1202                                                             AI.TargetBitWidth),
1203                             "bf.clear");
1204 
1205     // Extend or truncate to the target size.
1206     if (AI.AccessWidth < ResSizeInBits)
1207       Val = Builder.CreateZExt(Val, ResLTy);
1208     else if (AI.AccessWidth > ResSizeInBits)
1209       Val = Builder.CreateTrunc(Val, ResLTy);
1210 
1211     // Shift into place, and OR into the result.
1212     if (AI.TargetBitOffset)
1213       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1214     Res = Res ? Builder.CreateOr(Res, Val) : Val;
1215   }
1216 
1217   // If the bit-field is signed, perform the sign-extension.
1218   //
1219   // FIXME: This can easily be folded into the load of the high bits, which
1220   // could also eliminate the mask of high bits in some situations.
1221   if (Info.isSigned()) {
1222     unsigned ExtraBits = ResSizeInBits - Info.getSize();
1223     if (ExtraBits)
1224       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1225                                ExtraBits, "bf.val.sext");
1226   }
1227 
1228   return RValue::get(Res);
1229 }
1230 
1231 // If this is a reference to a subset of the elements of a vector, create an
1232 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)1233 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1234   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1235                                             LV.isVolatileQualified());
1236   Load->setAlignment(LV.getAlignment().getQuantity());
1237   llvm::Value *Vec = Load;
1238 
1239   const llvm::Constant *Elts = LV.getExtVectorElts();
1240 
1241   // If the result of the expression is a non-vector type, we must be extracting
1242   // a single element.  Just codegen as an extractelement.
1243   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1244   if (!ExprVT) {
1245     unsigned InIdx = getAccessedFieldNo(0, Elts);
1246     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1247     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1248   }
1249 
1250   // Always use shuffle vector to try to retain the original program structure
1251   unsigned NumResultElts = ExprVT->getNumElements();
1252 
1253   SmallVector<llvm::Constant*, 4> Mask;
1254   for (unsigned i = 0; i != NumResultElts; ++i)
1255     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1256 
1257   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1258   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1259                                     MaskV);
1260   return RValue::get(Vec);
1261 }
1262 
1263 
1264 
1265 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1266 /// lvalue, where both are guaranteed to the have the same type, and that type
1267 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)1268 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1269   if (!Dst.isSimple()) {
1270     if (Dst.isVectorElt()) {
1271       // Read/modify/write the vector, inserting the new element.
1272       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1273                                                 Dst.isVolatileQualified());
1274       Load->setAlignment(Dst.getAlignment().getQuantity());
1275       llvm::Value *Vec = Load;
1276       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1277                                         Dst.getVectorIdx(), "vecins");
1278       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1279                                                    Dst.isVolatileQualified());
1280       Store->setAlignment(Dst.getAlignment().getQuantity());
1281       return;
1282     }
1283 
1284     // If this is an update of extended vector elements, insert them as
1285     // appropriate.
1286     if (Dst.isExtVectorElt())
1287       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1288 
1289     assert(Dst.isBitField() && "Unknown LValue type");
1290     return EmitStoreThroughBitfieldLValue(Src, Dst);
1291   }
1292 
1293   // There's special magic for assigning into an ARC-qualified l-value.
1294   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1295     switch (Lifetime) {
1296     case Qualifiers::OCL_None:
1297       llvm_unreachable("present but none");
1298 
1299     case Qualifiers::OCL_ExplicitNone:
1300       // nothing special
1301       break;
1302 
1303     case Qualifiers::OCL_Strong:
1304       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1305       return;
1306 
1307     case Qualifiers::OCL_Weak:
1308       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1309       return;
1310 
1311     case Qualifiers::OCL_Autoreleasing:
1312       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1313                                                      Src.getScalarVal()));
1314       // fall into the normal path
1315       break;
1316     }
1317   }
1318 
1319   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1320     // load of a __weak object.
1321     llvm::Value *LvalueDst = Dst.getAddress();
1322     llvm::Value *src = Src.getScalarVal();
1323      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1324     return;
1325   }
1326 
1327   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1328     // load of a __strong object.
1329     llvm::Value *LvalueDst = Dst.getAddress();
1330     llvm::Value *src = Src.getScalarVal();
1331     if (Dst.isObjCIvar()) {
1332       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1333       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1334       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1335       llvm::Value *dst = RHS;
1336       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1337       llvm::Value *LHS =
1338         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1339       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1340       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1341                                               BytesBetween);
1342     } else if (Dst.isGlobalObjCRef()) {
1343       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1344                                                 Dst.isThreadLocalRef());
1345     }
1346     else
1347       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1348     return;
1349   }
1350 
1351   assert(Src.isScalar() && "Can't emit an agg store with this method");
1352   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1353 }
1354 
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)1355 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1356                                                      llvm::Value **Result) {
1357   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1358 
1359   // Get the output type.
1360   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1361   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1362 
1363   // Get the source value, truncated to the width of the bit-field.
1364   llvm::Value *SrcVal = Src.getScalarVal();
1365 
1366   if (hasBooleanRepresentation(Dst.getType()))
1367     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1368 
1369   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1370                                                                 Info.getSize()),
1371                              "bf.value");
1372 
1373   // Return the new value of the bit-field, if requested.
1374   if (Result) {
1375     // Cast back to the proper type for result.
1376     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1377     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1378                                                    "bf.reload.val");
1379 
1380     // Sign extend if necessary.
1381     if (Info.isSigned()) {
1382       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1383       if (ExtraBits)
1384         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1385                                        ExtraBits, "bf.reload.sext");
1386     }
1387 
1388     *Result = ReloadVal;
1389   }
1390 
1391   // Iterate over the components, writing each piece to memory.
1392   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1393     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1394     CharUnits AccessAlignment = AI.AccessAlignment;
1395     if (!Dst.getAlignment().isZero())
1396       AccessAlignment = std::min(AccessAlignment, Dst.getAlignment());
1397 
1398     // Get the field pointer.
1399     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1400     unsigned addressSpace =
1401       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1402 
1403     // Only offset by the field index if used, so that incoming values are not
1404     // required to be structures.
1405     if (AI.FieldIndex)
1406       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1407 
1408     // Offset by the byte offset, if used.
1409     if (!AI.FieldByteOffset.isZero()) {
1410       Ptr = EmitCastToVoidPtr(Ptr);
1411       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1412                                        "bf.field.offs");
1413     }
1414 
1415     // Cast to the access type.
1416     llvm::Type *AccessLTy =
1417       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1418 
1419     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1420     Ptr = Builder.CreateBitCast(Ptr, PTy);
1421 
1422     // Extract the piece of the bit-field value to write in this access, limited
1423     // to the values that are part of this access.
1424     llvm::Value *Val = SrcVal;
1425     if (AI.TargetBitOffset)
1426       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1427     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1428                                                             AI.TargetBitWidth));
1429 
1430     // Extend or truncate to the access size.
1431     if (ResSizeInBits < AI.AccessWidth)
1432       Val = Builder.CreateZExt(Val, AccessLTy);
1433     else if (ResSizeInBits > AI.AccessWidth)
1434       Val = Builder.CreateTrunc(Val, AccessLTy);
1435 
1436     // Shift into the position in memory.
1437     if (AI.FieldBitStart)
1438       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1439 
1440     // If necessary, load and OR in bits that are outside of the bit-field.
1441     if (AI.TargetBitWidth != AI.AccessWidth) {
1442       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1443       Load->setAlignment(AccessAlignment.getQuantity());
1444 
1445       // Compute the mask for zeroing the bits that are part of the bit-field.
1446       llvm::APInt InvMask =
1447         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1448                                  AI.FieldBitStart + AI.TargetBitWidth);
1449 
1450       // Apply the mask and OR in to the value to write.
1451       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1452     }
1453 
1454     // Write the value.
1455     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1456                                                  Dst.isVolatileQualified());
1457     Store->setAlignment(AccessAlignment.getQuantity());
1458   }
1459 }
1460 
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)1461 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1462                                                                LValue Dst) {
1463   // This access turns into a read/modify/write of the vector.  Load the input
1464   // value now.
1465   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1466                                             Dst.isVolatileQualified());
1467   Load->setAlignment(Dst.getAlignment().getQuantity());
1468   llvm::Value *Vec = Load;
1469   const llvm::Constant *Elts = Dst.getExtVectorElts();
1470 
1471   llvm::Value *SrcVal = Src.getScalarVal();
1472 
1473   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1474     unsigned NumSrcElts = VTy->getNumElements();
1475     unsigned NumDstElts =
1476        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1477     if (NumDstElts == NumSrcElts) {
1478       // Use shuffle vector is the src and destination are the same number of
1479       // elements and restore the vector mask since it is on the side it will be
1480       // stored.
1481       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1482       for (unsigned i = 0; i != NumSrcElts; ++i)
1483         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1484 
1485       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1486       Vec = Builder.CreateShuffleVector(SrcVal,
1487                                         llvm::UndefValue::get(Vec->getType()),
1488                                         MaskV);
1489     } else if (NumDstElts > NumSrcElts) {
1490       // Extended the source vector to the same length and then shuffle it
1491       // into the destination.
1492       // FIXME: since we're shuffling with undef, can we just use the indices
1493       //        into that?  This could be simpler.
1494       SmallVector<llvm::Constant*, 4> ExtMask;
1495       for (unsigned i = 0; i != NumSrcElts; ++i)
1496         ExtMask.push_back(Builder.getInt32(i));
1497       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1498       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1499       llvm::Value *ExtSrcVal =
1500         Builder.CreateShuffleVector(SrcVal,
1501                                     llvm::UndefValue::get(SrcVal->getType()),
1502                                     ExtMaskV);
1503       // build identity
1504       SmallVector<llvm::Constant*, 4> Mask;
1505       for (unsigned i = 0; i != NumDstElts; ++i)
1506         Mask.push_back(Builder.getInt32(i));
1507 
1508       // modify when what gets shuffled in
1509       for (unsigned i = 0; i != NumSrcElts; ++i)
1510         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1511       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1512       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1513     } else {
1514       // We should never shorten the vector
1515       llvm_unreachable("unexpected shorten vector length");
1516     }
1517   } else {
1518     // If the Src is a scalar (not a vector) it must be updating one element.
1519     unsigned InIdx = getAccessedFieldNo(0, Elts);
1520     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1521     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1522   }
1523 
1524   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1525                                                Dst.isVolatileQualified());
1526   Store->setAlignment(Dst.getAlignment().getQuantity());
1527 }
1528 
1529 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1530 // generating write-barries API. It is currently a global, ivar,
1531 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)1532 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1533                                  LValue &LV,
1534                                  bool IsMemberAccess=false) {
1535   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1536     return;
1537 
1538   if (isa<ObjCIvarRefExpr>(E)) {
1539     QualType ExpTy = E->getType();
1540     if (IsMemberAccess && ExpTy->isPointerType()) {
1541       // If ivar is a structure pointer, assigning to field of
1542       // this struct follows gcc's behavior and makes it a non-ivar
1543       // writer-barrier conservatively.
1544       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1545       if (ExpTy->isRecordType()) {
1546         LV.setObjCIvar(false);
1547         return;
1548       }
1549     }
1550     LV.setObjCIvar(true);
1551     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1552     LV.setBaseIvarExp(Exp->getBase());
1553     LV.setObjCArray(E->getType()->isArrayType());
1554     return;
1555   }
1556 
1557   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1558     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1559       if (VD->hasGlobalStorage()) {
1560         LV.setGlobalObjCRef(true);
1561         LV.setThreadLocalRef(VD->isThreadSpecified());
1562       }
1563     }
1564     LV.setObjCArray(E->getType()->isArrayType());
1565     return;
1566   }
1567 
1568   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1569     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1570     return;
1571   }
1572 
1573   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1574     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1575     if (LV.isObjCIvar()) {
1576       // If cast is to a structure pointer, follow gcc's behavior and make it
1577       // a non-ivar write-barrier.
1578       QualType ExpTy = E->getType();
1579       if (ExpTy->isPointerType())
1580         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1581       if (ExpTy->isRecordType())
1582         LV.setObjCIvar(false);
1583     }
1584     return;
1585   }
1586 
1587   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1588     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1589     return;
1590   }
1591 
1592   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1593     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1594     return;
1595   }
1596 
1597   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1598     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1599     return;
1600   }
1601 
1602   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1603     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1604     return;
1605   }
1606 
1607   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1608     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1609     if (LV.isObjCIvar() && !LV.isObjCArray())
1610       // Using array syntax to assigning to what an ivar points to is not
1611       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1612       LV.setObjCIvar(false);
1613     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1614       // Using array syntax to assigning to what global points to is not
1615       // same as assigning to the global itself. {id *G;} G[i] = 0;
1616       LV.setGlobalObjCRef(false);
1617     return;
1618   }
1619 
1620   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1621     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1622     // We don't know if member is an 'ivar', but this flag is looked at
1623     // only in the context of LV.isObjCIvar().
1624     LV.setObjCArray(E->getType()->isArrayType());
1625     return;
1626   }
1627 }
1628 
1629 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())1630 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1631                                 llvm::Value *V, llvm::Type *IRType,
1632                                 StringRef Name = StringRef()) {
1633   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1634   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1635 }
1636 
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)1637 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1638                                       const Expr *E, const VarDecl *VD) {
1639   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1640          "Var decl must have external storage or be a file var decl!");
1641 
1642   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1643   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1644   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1645   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1646   QualType T = E->getType();
1647   LValue LV;
1648   if (VD->getType()->isReferenceType()) {
1649     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1650     LI->setAlignment(Alignment.getQuantity());
1651     V = LI;
1652     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1653   } else {
1654     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1655   }
1656   setObjCGCLValueClass(CGF.getContext(), E, LV);
1657   return LV;
1658 }
1659 
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,const FunctionDecl * FD)1660 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1661                                      const Expr *E, const FunctionDecl *FD) {
1662   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1663   if (!FD->hasPrototype()) {
1664     if (const FunctionProtoType *Proto =
1665             FD->getType()->getAs<FunctionProtoType>()) {
1666       // Ugly case: for a K&R-style definition, the type of the definition
1667       // isn't the same as the type of a use.  Correct for this with a
1668       // bitcast.
1669       QualType NoProtoType =
1670           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1671       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1672       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1673     }
1674   }
1675   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1676   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1677 }
1678 
EmitDeclRefLValue(const DeclRefExpr * E)1679 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1680   const NamedDecl *ND = E->getDecl();
1681   CharUnits Alignment = getContext().getDeclAlign(ND);
1682   QualType T = E->getType();
1683 
1684   // FIXME: We should be able to assert this for FunctionDecls as well!
1685   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1686   // those with a valid source location.
1687   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1688           !E->getLocation().isValid()) &&
1689          "Should not use decl without marking it used!");
1690 
1691   if (ND->hasAttr<WeakRefAttr>()) {
1692     const ValueDecl *VD = cast<ValueDecl>(ND);
1693     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1694     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1695   }
1696 
1697   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1698     // Check if this is a global variable.
1699     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1700       return EmitGlobalVarDeclLValue(*this, E, VD);
1701 
1702     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1703 
1704     bool NonGCable = VD->hasLocalStorage() &&
1705                      !VD->getType()->isReferenceType() &&
1706                      !isBlockVariable;
1707 
1708     llvm::Value *V = LocalDeclMap[VD];
1709     if (!V && VD->isStaticLocal())
1710       V = CGM.getStaticLocalDeclAddress(VD);
1711 
1712     // Use special handling for lambdas.
1713     if (!V) {
1714       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1715         QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1716         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1717                                                      LambdaTagType);
1718         return EmitLValueForField(LambdaLV, FD);
1719       }
1720 
1721       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1722       CharUnits alignment = getContext().getDeclAlign(VD);
1723       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1724                             E->getType(), alignment);
1725     }
1726 
1727     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1728 
1729     if (isBlockVariable)
1730       V = BuildBlockByrefAddress(V, VD);
1731 
1732     LValue LV;
1733     if (VD->getType()->isReferenceType()) {
1734       llvm::LoadInst *LI = Builder.CreateLoad(V);
1735       LI->setAlignment(Alignment.getQuantity());
1736       V = LI;
1737       LV = MakeNaturalAlignAddrLValue(V, T);
1738     } else {
1739       LV = MakeAddrLValue(V, T, Alignment);
1740     }
1741 
1742     if (NonGCable) {
1743       LV.getQuals().removeObjCGCAttr();
1744       LV.setNonGC(true);
1745     }
1746     setObjCGCLValueClass(getContext(), E, LV);
1747     return LV;
1748   }
1749 
1750   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1751     return EmitFunctionDeclLValue(*this, E, fn);
1752 
1753   llvm_unreachable("Unhandled DeclRefExpr");
1754 }
1755 
EmitUnaryOpLValue(const UnaryOperator * E)1756 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1757   // __extension__ doesn't affect lvalue-ness.
1758   if (E->getOpcode() == UO_Extension)
1759     return EmitLValue(E->getSubExpr());
1760 
1761   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1762   switch (E->getOpcode()) {
1763   default: llvm_unreachable("Unknown unary operator lvalue!");
1764   case UO_Deref: {
1765     QualType T = E->getSubExpr()->getType()->getPointeeType();
1766     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1767 
1768     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1769     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1770 
1771     // We should not generate __weak write barrier on indirect reference
1772     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1773     // But, we continue to generate __strong write barrier on indirect write
1774     // into a pointer to object.
1775     if (getContext().getLangOpts().ObjC1 &&
1776         getContext().getLangOpts().getGC() != LangOptions::NonGC &&
1777         LV.isObjCWeak())
1778       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1779     return LV;
1780   }
1781   case UO_Real:
1782   case UO_Imag: {
1783     LValue LV = EmitLValue(E->getSubExpr());
1784     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1785     llvm::Value *Addr = LV.getAddress();
1786 
1787     // __real is valid on scalars.  This is a faster way of testing that.
1788     // __imag can only produce an rvalue on scalars.
1789     if (E->getOpcode() == UO_Real &&
1790         !cast<llvm::PointerType>(Addr->getType())
1791            ->getElementType()->isStructTy()) {
1792       assert(E->getSubExpr()->getType()->isArithmeticType());
1793       return LV;
1794     }
1795 
1796     assert(E->getSubExpr()->getType()->isAnyComplexType());
1797 
1798     unsigned Idx = E->getOpcode() == UO_Imag;
1799     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1800                                                   Idx, "idx"),
1801                           ExprTy);
1802   }
1803   case UO_PreInc:
1804   case UO_PreDec: {
1805     LValue LV = EmitLValue(E->getSubExpr());
1806     bool isInc = E->getOpcode() == UO_PreInc;
1807 
1808     if (E->getType()->isAnyComplexType())
1809       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1810     else
1811       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1812     return LV;
1813   }
1814   }
1815 }
1816 
EmitStringLiteralLValue(const StringLiteral * E)1817 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1818   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1819                         E->getType());
1820 }
1821 
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)1822 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1823   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1824                         E->getType());
1825 }
1826 
1827 static llvm::Constant*
GetAddrOfConstantWideString(StringRef Str,const char * GlobalName,ASTContext & Context,QualType Ty,SourceLocation Loc,CodeGenModule & CGM)1828 GetAddrOfConstantWideString(StringRef Str,
1829                             const char *GlobalName,
1830                             ASTContext &Context,
1831                             QualType Ty, SourceLocation Loc,
1832                             CodeGenModule &CGM) {
1833 
1834   StringLiteral *SL = StringLiteral::Create(Context,
1835                                             Str,
1836                                             StringLiteral::Wide,
1837                                             /*Pascal = */false,
1838                                             Ty, Loc);
1839   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1840   llvm::GlobalVariable *GV =
1841     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1842                              !CGM.getLangOpts().WritableStrings,
1843                              llvm::GlobalValue::PrivateLinkage,
1844                              C, GlobalName);
1845   const unsigned WideAlignment =
1846     Context.getTypeAlignInChars(Ty).getQuantity();
1847   GV->setAlignment(WideAlignment);
1848   return GV;
1849 }
1850 
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)1851 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1852                                     SmallString<32>& Target) {
1853   Target.resize(CharByteWidth * (Source.size() + 1));
1854   char *ResultPtr = &Target[0];
1855   const UTF8 *ErrorPtr;
1856   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1857   (void)success;
1858   assert(success);
1859   Target.resize(ResultPtr - &Target[0]);
1860 }
1861 
EmitPredefinedLValue(const PredefinedExpr * E)1862 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1863   switch (E->getIdentType()) {
1864   default:
1865     return EmitUnsupportedLValue(E, "predefined expression");
1866 
1867   case PredefinedExpr::Func:
1868   case PredefinedExpr::Function:
1869   case PredefinedExpr::LFunction:
1870   case PredefinedExpr::PrettyFunction: {
1871     unsigned IdentType = E->getIdentType();
1872     std::string GlobalVarName;
1873 
1874     switch (IdentType) {
1875     default: llvm_unreachable("Invalid type");
1876     case PredefinedExpr::Func:
1877       GlobalVarName = "__func__.";
1878       break;
1879     case PredefinedExpr::Function:
1880       GlobalVarName = "__FUNCTION__.";
1881       break;
1882     case PredefinedExpr::LFunction:
1883       GlobalVarName = "L__FUNCTION__.";
1884       break;
1885     case PredefinedExpr::PrettyFunction:
1886       GlobalVarName = "__PRETTY_FUNCTION__.";
1887       break;
1888     }
1889 
1890     StringRef FnName = CurFn->getName();
1891     if (FnName.startswith("\01"))
1892       FnName = FnName.substr(1);
1893     GlobalVarName += FnName;
1894 
1895     const Decl *CurDecl = CurCodeDecl;
1896     if (CurDecl == 0)
1897       CurDecl = getContext().getTranslationUnitDecl();
1898 
1899     std::string FunctionName =
1900         (isa<BlockDecl>(CurDecl)
1901          ? FnName.str()
1902          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1903                                        CurDecl));
1904 
1905     const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1906     llvm::Constant *C;
1907     if (ElemType->isWideCharType()) {
1908       SmallString<32> RawChars;
1909       ConvertUTF8ToWideString(
1910           getContext().getTypeSizeInChars(ElemType).getQuantity(),
1911           FunctionName, RawChars);
1912       C = GetAddrOfConstantWideString(RawChars,
1913                                       GlobalVarName.c_str(),
1914                                       getContext(),
1915                                       E->getType(),
1916                                       E->getLocation(),
1917                                       CGM);
1918     } else {
1919       C = CGM.GetAddrOfConstantCString(FunctionName,
1920                                        GlobalVarName.c_str(),
1921                                        1);
1922     }
1923     return MakeAddrLValue(C, E->getType());
1924   }
1925   }
1926 }
1927 
EmitCheck(llvm::Value * Checked)1928 void CodeGenFunction::EmitCheck(llvm::Value *Checked) {
1929   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1930 
1931   llvm::BasicBlock *Cont = createBasicBlock("cont");
1932 
1933   // If we are not optimzing, don't collapse all calls to trap in the function
1934   // to the same call, that way, in the debugger they can see which operation
1935   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1936   // to just one per function to save on codesize.
1937   bool NeedNewTrapBB = !GCO.OptimizationLevel || !TrapBB;
1938 
1939   if (NeedNewTrapBB)
1940     TrapBB = createBasicBlock("trap");
1941 
1942   Builder.CreateCondBr(Checked, Cont, TrapBB);
1943 
1944   if (NeedNewTrapBB) {
1945     EmitBlock(TrapBB);
1946 
1947     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1948     llvm::CallInst *TrapCall = Builder.CreateCall(F);
1949     TrapCall->setDoesNotReturn();
1950     TrapCall->setDoesNotThrow();
1951     Builder.CreateUnreachable();
1952   }
1953 
1954   EmitBlock(Cont);
1955 }
1956 
1957 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1958 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)1959 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1960   // If this isn't just an array->pointer decay, bail out.
1961   const CastExpr *CE = dyn_cast<CastExpr>(E);
1962   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1963     return 0;
1964 
1965   // If this is a decay from variable width array, bail out.
1966   const Expr *SubExpr = CE->getSubExpr();
1967   if (SubExpr->getType()->isVariableArrayType())
1968     return 0;
1969 
1970   return SubExpr;
1971 }
1972 
EmitArraySubscriptExpr(const ArraySubscriptExpr * E)1973 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1974   // The index must always be an integer, which is not an aggregate.  Emit it.
1975   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1976   QualType IdxTy  = E->getIdx()->getType();
1977   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1978 
1979   // If the base is a vector type, then we are forming a vector element lvalue
1980   // with this subscript.
1981   if (E->getBase()->getType()->isVectorType()) {
1982     // Emit the vector as an lvalue to get its address.
1983     LValue LHS = EmitLValue(E->getBase());
1984     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1985     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1986     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1987                                  E->getBase()->getType(), LHS.getAlignment());
1988   }
1989 
1990   // Extend or truncate the index type to 32 or 64-bits.
1991   if (Idx->getType() != IntPtrTy)
1992     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1993 
1994   // We know that the pointer points to a type of the correct size, unless the
1995   // size is a VLA or Objective-C interface.
1996   llvm::Value *Address = 0;
1997   CharUnits ArrayAlignment;
1998   if (const VariableArrayType *vla =
1999         getContext().getAsVariableArrayType(E->getType())) {
2000     // The base must be a pointer, which is not an aggregate.  Emit
2001     // it.  It needs to be emitted first in case it's what captures
2002     // the VLA bounds.
2003     Address = EmitScalarExpr(E->getBase());
2004 
2005     // The element count here is the total number of non-VLA elements.
2006     llvm::Value *numElements = getVLASize(vla).first;
2007 
2008     // Effectively, the multiply by the VLA size is part of the GEP.
2009     // GEP indexes are signed, and scaling an index isn't permitted to
2010     // signed-overflow, so we use the same semantics for our explicit
2011     // multiply.  We suppress this if overflow is not undefined behavior.
2012     if (getLangOpts().isSignedOverflowDefined()) {
2013       Idx = Builder.CreateMul(Idx, numElements);
2014       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2015     } else {
2016       Idx = Builder.CreateNSWMul(Idx, numElements);
2017       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2018     }
2019   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2020     // Indexing over an interface, as in "NSString *P; P[4];"
2021     llvm::Value *InterfaceSize =
2022       llvm::ConstantInt::get(Idx->getType(),
2023           getContext().getTypeSizeInChars(OIT).getQuantity());
2024 
2025     Idx = Builder.CreateMul(Idx, InterfaceSize);
2026 
2027     // The base must be a pointer, which is not an aggregate.  Emit it.
2028     llvm::Value *Base = EmitScalarExpr(E->getBase());
2029     Address = EmitCastToVoidPtr(Base);
2030     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2031     Address = Builder.CreateBitCast(Address, Base->getType());
2032   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2033     // If this is A[i] where A is an array, the frontend will have decayed the
2034     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2035     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2036     // "gep x, i" here.  Emit one "gep A, 0, i".
2037     assert(Array->getType()->isArrayType() &&
2038            "Array to pointer decay must have array source type!");
2039     LValue ArrayLV = EmitLValue(Array);
2040     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2041     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2042     llvm::Value *Args[] = { Zero, Idx };
2043 
2044     // Propagate the alignment from the array itself to the result.
2045     ArrayAlignment = ArrayLV.getAlignment();
2046 
2047     if (getContext().getLangOpts().isSignedOverflowDefined())
2048       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2049     else
2050       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2051   } else {
2052     // The base must be a pointer, which is not an aggregate.  Emit it.
2053     llvm::Value *Base = EmitScalarExpr(E->getBase());
2054     if (getContext().getLangOpts().isSignedOverflowDefined())
2055       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2056     else
2057       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2058   }
2059 
2060   QualType T = E->getBase()->getType()->getPointeeType();
2061   assert(!T.isNull() &&
2062          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2063 
2064 
2065   // Limit the alignment to that of the result type.
2066   LValue LV;
2067   if (!ArrayAlignment.isZero()) {
2068     CharUnits Align = getContext().getTypeAlignInChars(T);
2069     ArrayAlignment = std::min(Align, ArrayAlignment);
2070     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2071   } else {
2072     LV = MakeNaturalAlignAddrLValue(Address, T);
2073   }
2074 
2075   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2076 
2077   if (getContext().getLangOpts().ObjC1 &&
2078       getContext().getLangOpts().getGC() != LangOptions::NonGC) {
2079     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2080     setObjCGCLValueClass(getContext(), E, LV);
2081   }
2082   return LV;
2083 }
2084 
2085 static
GenerateConstantVector(CGBuilderTy & Builder,SmallVector<unsigned,4> & Elts)2086 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2087                                        SmallVector<unsigned, 4> &Elts) {
2088   SmallVector<llvm::Constant*, 4> CElts;
2089   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2090     CElts.push_back(Builder.getInt32(Elts[i]));
2091 
2092   return llvm::ConstantVector::get(CElts);
2093 }
2094 
2095 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)2096 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2097   // Emit the base vector as an l-value.
2098   LValue Base;
2099 
2100   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2101   if (E->isArrow()) {
2102     // If it is a pointer to a vector, emit the address and form an lvalue with
2103     // it.
2104     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2105     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2106     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2107     Base.getQuals().removeObjCGCAttr();
2108   } else if (E->getBase()->isGLValue()) {
2109     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2110     // emit the base as an lvalue.
2111     assert(E->getBase()->getType()->isVectorType());
2112     Base = EmitLValue(E->getBase());
2113   } else {
2114     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2115     assert(E->getBase()->getType()->isVectorType() &&
2116            "Result must be a vector");
2117     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2118 
2119     // Store the vector to memory (because LValue wants an address).
2120     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2121     Builder.CreateStore(Vec, VecMem);
2122     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2123   }
2124 
2125   QualType type =
2126     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2127 
2128   // Encode the element access list into a vector of unsigned indices.
2129   SmallVector<unsigned, 4> Indices;
2130   E->getEncodedElementAccess(Indices);
2131 
2132   if (Base.isSimple()) {
2133     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2134     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2135                                     Base.getAlignment());
2136   }
2137   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2138 
2139   llvm::Constant *BaseElts = Base.getExtVectorElts();
2140   SmallVector<llvm::Constant *, 4> CElts;
2141 
2142   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2143     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2144   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2145   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2146                                   Base.getAlignment());
2147 }
2148 
EmitMemberExpr(const MemberExpr * E)2149 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2150   Expr *BaseExpr = E->getBase();
2151 
2152   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2153   LValue BaseLV;
2154   if (E->isArrow()) {
2155     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2156     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2157     EmitTypeCheck(TCK_MemberAccess, Ptr, PtrTy);
2158     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2159   } else
2160     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2161 
2162   NamedDecl *ND = E->getMemberDecl();
2163   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2164     LValue LV = EmitLValueForField(BaseLV, Field);
2165     setObjCGCLValueClass(getContext(), E, LV);
2166     return LV;
2167   }
2168 
2169   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2170     return EmitGlobalVarDeclLValue(*this, E, VD);
2171 
2172   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2173     return EmitFunctionDeclLValue(*this, E, FD);
2174 
2175   llvm_unreachable("Unhandled member declaration!");
2176 }
2177 
EmitLValueForField(LValue base,const FieldDecl * field)2178 LValue CodeGenFunction::EmitLValueForField(LValue base,
2179                                            const FieldDecl *field) {
2180   if (field->isBitField()) {
2181     const CGRecordLayout &RL =
2182       CGM.getTypes().getCGRecordLayout(field->getParent());
2183     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2184     QualType fieldType =
2185       field->getType().withCVRQualifiers(base.getVRQualifiers());
2186     return LValue::MakeBitfield(base.getAddress(), Info, fieldType,
2187                                 base.getAlignment());
2188   }
2189 
2190   const RecordDecl *rec = field->getParent();
2191   QualType type = field->getType();
2192   CharUnits alignment = getContext().getDeclAlign(field);
2193 
2194   // FIXME: It should be impossible to have an LValue without alignment for a
2195   // complete type.
2196   if (!base.getAlignment().isZero())
2197     alignment = std::min(alignment, base.getAlignment());
2198 
2199   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2200 
2201   llvm::Value *addr = base.getAddress();
2202   unsigned cvr = base.getVRQualifiers();
2203   if (rec->isUnion()) {
2204     // For unions, there is no pointer adjustment.
2205     assert(!type->isReferenceType() && "union has reference member");
2206   } else {
2207     // For structs, we GEP to the field that the record layout suggests.
2208     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2209     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2210 
2211     // If this is a reference field, load the reference right now.
2212     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2213       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2214       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2215       load->setAlignment(alignment.getQuantity());
2216 
2217       if (CGM.shouldUseTBAA()) {
2218         llvm::MDNode *tbaa;
2219         if (mayAlias)
2220           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2221         else
2222           tbaa = CGM.getTBAAInfo(type);
2223         CGM.DecorateInstruction(load, tbaa);
2224       }
2225 
2226       addr = load;
2227       mayAlias = false;
2228       type = refType->getPointeeType();
2229       if (type->isIncompleteType())
2230         alignment = CharUnits();
2231       else
2232         alignment = getContext().getTypeAlignInChars(type);
2233       cvr = 0; // qualifiers don't recursively apply to referencee
2234     }
2235   }
2236 
2237   // Make sure that the address is pointing to the right type.  This is critical
2238   // for both unions and structs.  A union needs a bitcast, a struct element
2239   // will need a bitcast if the LLVM type laid out doesn't match the desired
2240   // type.
2241   addr = EmitBitCastOfLValueToProperType(*this, addr,
2242                                          CGM.getTypes().ConvertTypeForMem(type),
2243                                          field->getName());
2244 
2245   if (field->hasAttr<AnnotateAttr>())
2246     addr = EmitFieldAnnotations(field, addr);
2247 
2248   LValue LV = MakeAddrLValue(addr, type, alignment);
2249   LV.getQuals().addCVRQualifiers(cvr);
2250 
2251   // __weak attribute on a field is ignored.
2252   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2253     LV.getQuals().removeObjCGCAttr();
2254 
2255   // Fields of may_alias structs act like 'char' for TBAA purposes.
2256   // FIXME: this should get propagated down through anonymous structs
2257   // and unions.
2258   if (mayAlias && LV.getTBAAInfo())
2259     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2260 
2261   return LV;
2262 }
2263 
2264 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)2265 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2266                                                   const FieldDecl *Field) {
2267   QualType FieldType = Field->getType();
2268 
2269   if (!FieldType->isReferenceType())
2270     return EmitLValueForField(Base, Field);
2271 
2272   const CGRecordLayout &RL =
2273     CGM.getTypes().getCGRecordLayout(Field->getParent());
2274   unsigned idx = RL.getLLVMFieldNo(Field);
2275   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2276   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2277 
2278   // Make sure that the address is pointing to the right type.  This is critical
2279   // for both unions and structs.  A union needs a bitcast, a struct element
2280   // will need a bitcast if the LLVM type laid out doesn't match the desired
2281   // type.
2282   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2283   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2284 
2285   CharUnits Alignment = getContext().getDeclAlign(Field);
2286 
2287   // FIXME: It should be impossible to have an LValue without alignment for a
2288   // complete type.
2289   if (!Base.getAlignment().isZero())
2290     Alignment = std::min(Alignment, Base.getAlignment());
2291 
2292   return MakeAddrLValue(V, FieldType, Alignment);
2293 }
2294 
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)2295 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2296   if (E->isFileScope()) {
2297     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2298     return MakeAddrLValue(GlobalPtr, E->getType());
2299   }
2300   if (E->getType()->isVariablyModifiedType())
2301     // make sure to emit the VLA size.
2302     EmitVariablyModifiedType(E->getType());
2303 
2304   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2305   const Expr *InitExpr = E->getInitializer();
2306   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2307 
2308   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2309                    /*Init*/ true);
2310 
2311   return Result;
2312 }
2313 
EmitInitListLValue(const InitListExpr * E)2314 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2315   if (!E->isGLValue())
2316     // Initializing an aggregate temporary in C++11: T{...}.
2317     return EmitAggExprToLValue(E);
2318 
2319   // An lvalue initializer list must be initializing a reference.
2320   assert(E->getNumInits() == 1 && "reference init with multiple values");
2321   return EmitLValue(E->getInit(0));
2322 }
2323 
2324 LValue CodeGenFunction::
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)2325 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2326   if (!expr->isGLValue()) {
2327     // ?: here should be an aggregate.
2328     assert((hasAggregateLLVMType(expr->getType()) &&
2329             !expr->getType()->isAnyComplexType()) &&
2330            "Unexpected conditional operator!");
2331     return EmitAggExprToLValue(expr);
2332   }
2333 
2334   OpaqueValueMapping binding(*this, expr);
2335 
2336   const Expr *condExpr = expr->getCond();
2337   bool CondExprBool;
2338   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2339     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2340     if (!CondExprBool) std::swap(live, dead);
2341 
2342     if (!ContainsLabel(dead))
2343       return EmitLValue(live);
2344   }
2345 
2346   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2347   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2348   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2349 
2350   ConditionalEvaluation eval(*this);
2351   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2352 
2353   // Any temporaries created here are conditional.
2354   EmitBlock(lhsBlock);
2355   eval.begin(*this);
2356   LValue lhs = EmitLValue(expr->getTrueExpr());
2357   eval.end(*this);
2358 
2359   if (!lhs.isSimple())
2360     return EmitUnsupportedLValue(expr, "conditional operator");
2361 
2362   lhsBlock = Builder.GetInsertBlock();
2363   Builder.CreateBr(contBlock);
2364 
2365   // Any temporaries created here are conditional.
2366   EmitBlock(rhsBlock);
2367   eval.begin(*this);
2368   LValue rhs = EmitLValue(expr->getFalseExpr());
2369   eval.end(*this);
2370   if (!rhs.isSimple())
2371     return EmitUnsupportedLValue(expr, "conditional operator");
2372   rhsBlock = Builder.GetInsertBlock();
2373 
2374   EmitBlock(contBlock);
2375 
2376   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2377                                          "cond-lvalue");
2378   phi->addIncoming(lhs.getAddress(), lhsBlock);
2379   phi->addIncoming(rhs.getAddress(), rhsBlock);
2380   return MakeAddrLValue(phi, expr->getType());
2381 }
2382 
2383 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2384 /// type. If the cast is to a reference, we can have the usual lvalue result,
2385 /// otherwise if a cast is needed by the code generator in an lvalue context,
2386 /// then it must mean that we need the address of an aggregate in order to
2387 /// access one of its members.  This can happen for all the reasons that casts
2388 /// are permitted with aggregate result, including noop aggregate casts, and
2389 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)2390 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2391   switch (E->getCastKind()) {
2392   case CK_ToVoid:
2393     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2394 
2395   case CK_Dependent:
2396     llvm_unreachable("dependent cast kind in IR gen!");
2397 
2398   case CK_BuiltinFnToFnPtr:
2399     llvm_unreachable("builtin functions are handled elsewhere");
2400 
2401   // These two casts are currently treated as no-ops, although they could
2402   // potentially be real operations depending on the target's ABI.
2403   case CK_NonAtomicToAtomic:
2404   case CK_AtomicToNonAtomic:
2405 
2406   case CK_NoOp:
2407   case CK_LValueToRValue:
2408     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2409         || E->getType()->isRecordType())
2410       return EmitLValue(E->getSubExpr());
2411     // Fall through to synthesize a temporary.
2412 
2413   case CK_BitCast:
2414   case CK_ArrayToPointerDecay:
2415   case CK_FunctionToPointerDecay:
2416   case CK_NullToMemberPointer:
2417   case CK_NullToPointer:
2418   case CK_IntegralToPointer:
2419   case CK_PointerToIntegral:
2420   case CK_PointerToBoolean:
2421   case CK_VectorSplat:
2422   case CK_IntegralCast:
2423   case CK_IntegralToBoolean:
2424   case CK_IntegralToFloating:
2425   case CK_FloatingToIntegral:
2426   case CK_FloatingToBoolean:
2427   case CK_FloatingCast:
2428   case CK_FloatingRealToComplex:
2429   case CK_FloatingComplexToReal:
2430   case CK_FloatingComplexToBoolean:
2431   case CK_FloatingComplexCast:
2432   case CK_FloatingComplexToIntegralComplex:
2433   case CK_IntegralRealToComplex:
2434   case CK_IntegralComplexToReal:
2435   case CK_IntegralComplexToBoolean:
2436   case CK_IntegralComplexCast:
2437   case CK_IntegralComplexToFloatingComplex:
2438   case CK_DerivedToBaseMemberPointer:
2439   case CK_BaseToDerivedMemberPointer:
2440   case CK_MemberPointerToBoolean:
2441   case CK_ReinterpretMemberPointer:
2442   case CK_AnyPointerToBlockPointerCast:
2443   case CK_ARCProduceObject:
2444   case CK_ARCConsumeObject:
2445   case CK_ARCReclaimReturnedObject:
2446   case CK_ARCExtendBlockObject:
2447   case CK_CopyAndAutoreleaseBlockObject: {
2448     // These casts only produce lvalues when we're binding a reference to a
2449     // temporary realized from a (converted) pure rvalue. Emit the expression
2450     // as a value, copy it into a temporary, and return an lvalue referring to
2451     // that temporary.
2452     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2453     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2454     return MakeAddrLValue(V, E->getType());
2455   }
2456 
2457   case CK_Dynamic: {
2458     LValue LV = EmitLValue(E->getSubExpr());
2459     llvm::Value *V = LV.getAddress();
2460     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2461     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2462   }
2463 
2464   case CK_ConstructorConversion:
2465   case CK_UserDefinedConversion:
2466   case CK_CPointerToObjCPointerCast:
2467   case CK_BlockPointerToObjCPointerCast:
2468     return EmitLValue(E->getSubExpr());
2469 
2470   case CK_UncheckedDerivedToBase:
2471   case CK_DerivedToBase: {
2472     const RecordType *DerivedClassTy =
2473       E->getSubExpr()->getType()->getAs<RecordType>();
2474     CXXRecordDecl *DerivedClassDecl =
2475       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2476 
2477     LValue LV = EmitLValue(E->getSubExpr());
2478     llvm::Value *This = LV.getAddress();
2479 
2480     // Perform the derived-to-base conversion
2481     llvm::Value *Base =
2482       GetAddressOfBaseClass(This, DerivedClassDecl,
2483                             E->path_begin(), E->path_end(),
2484                             /*NullCheckValue=*/false);
2485 
2486     return MakeAddrLValue(Base, E->getType());
2487   }
2488   case CK_ToUnion:
2489     return EmitAggExprToLValue(E);
2490   case CK_BaseToDerived: {
2491     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2492     CXXRecordDecl *DerivedClassDecl =
2493       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2494 
2495     LValue LV = EmitLValue(E->getSubExpr());
2496 
2497     // Perform the base-to-derived conversion
2498     llvm::Value *Derived =
2499       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2500                                E->path_begin(), E->path_end(),
2501                                /*NullCheckValue=*/false);
2502 
2503     return MakeAddrLValue(Derived, E->getType());
2504   }
2505   case CK_LValueBitCast: {
2506     // This must be a reinterpret_cast (or c-style equivalent).
2507     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2508 
2509     LValue LV = EmitLValue(E->getSubExpr());
2510     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2511                                            ConvertType(CE->getTypeAsWritten()));
2512     return MakeAddrLValue(V, E->getType());
2513   }
2514   case CK_ObjCObjectLValueCast: {
2515     LValue LV = EmitLValue(E->getSubExpr());
2516     QualType ToType = getContext().getLValueReferenceType(E->getType());
2517     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2518                                            ConvertType(ToType));
2519     return MakeAddrLValue(V, E->getType());
2520   }
2521   }
2522 
2523   llvm_unreachable("Unhandled lvalue cast kind?");
2524 }
2525 
EmitNullInitializationLValue(const CXXScalarValueInitExpr * E)2526 LValue CodeGenFunction::EmitNullInitializationLValue(
2527                                               const CXXScalarValueInitExpr *E) {
2528   QualType Ty = E->getType();
2529   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2530   EmitNullInitialization(LV.getAddress(), Ty);
2531   return LV;
2532 }
2533 
EmitOpaqueValueLValue(const OpaqueValueExpr * e)2534 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2535   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2536   return getOpaqueLValueMapping(e);
2537 }
2538 
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)2539 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2540                                            const MaterializeTemporaryExpr *E) {
2541   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2542   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2543 }
2544 
EmitRValueForField(LValue LV,const FieldDecl * FD)2545 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2546                                            const FieldDecl *FD) {
2547   QualType FT = FD->getType();
2548   LValue FieldLV = EmitLValueForField(LV, FD);
2549   if (FT->isAnyComplexType())
2550     return RValue::getComplex(
2551         LoadComplexFromAddr(FieldLV.getAddress(),
2552                             FieldLV.isVolatileQualified()));
2553   else if (CodeGenFunction::hasAggregateLLVMType(FT))
2554     return FieldLV.asAggregateRValue();
2555 
2556   return EmitLoadOfLValue(FieldLV);
2557 }
2558 
2559 //===--------------------------------------------------------------------===//
2560 //                             Expression Emission
2561 //===--------------------------------------------------------------------===//
2562 
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)2563 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2564                                      ReturnValueSlot ReturnValue) {
2565   if (CGDebugInfo *DI = getDebugInfo())
2566     DI->EmitLocation(Builder, E->getLocStart());
2567 
2568   // Builtins never have block type.
2569   if (E->getCallee()->getType()->isBlockPointerType())
2570     return EmitBlockCallExpr(E, ReturnValue);
2571 
2572   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2573     return EmitCXXMemberCallExpr(CE, ReturnValue);
2574 
2575   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2576     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2577 
2578   const Decl *TargetDecl = E->getCalleeDecl();
2579   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2580     if (unsigned builtinID = FD->getBuiltinID())
2581       return EmitBuiltinExpr(FD, builtinID, E);
2582   }
2583 
2584   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2585     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2586       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2587 
2588   if (const CXXPseudoDestructorExpr *PseudoDtor
2589           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2590     QualType DestroyedType = PseudoDtor->getDestroyedType();
2591     if (getContext().getLangOpts().ObjCAutoRefCount &&
2592         DestroyedType->isObjCLifetimeType() &&
2593         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2594          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2595       // Automatic Reference Counting:
2596       //   If the pseudo-expression names a retainable object with weak or
2597       //   strong lifetime, the object shall be released.
2598       Expr *BaseExpr = PseudoDtor->getBase();
2599       llvm::Value *BaseValue = NULL;
2600       Qualifiers BaseQuals;
2601 
2602       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2603       if (PseudoDtor->isArrow()) {
2604         BaseValue = EmitScalarExpr(BaseExpr);
2605         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2606         BaseQuals = PTy->getPointeeType().getQualifiers();
2607       } else {
2608         LValue BaseLV = EmitLValue(BaseExpr);
2609         BaseValue = BaseLV.getAddress();
2610         QualType BaseTy = BaseExpr->getType();
2611         BaseQuals = BaseTy.getQualifiers();
2612       }
2613 
2614       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2615       case Qualifiers::OCL_None:
2616       case Qualifiers::OCL_ExplicitNone:
2617       case Qualifiers::OCL_Autoreleasing:
2618         break;
2619 
2620       case Qualifiers::OCL_Strong:
2621         EmitARCRelease(Builder.CreateLoad(BaseValue,
2622                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2623                        /*precise*/ true);
2624         break;
2625 
2626       case Qualifiers::OCL_Weak:
2627         EmitARCDestroyWeak(BaseValue);
2628         break;
2629       }
2630     } else {
2631       // C++ [expr.pseudo]p1:
2632       //   The result shall only be used as the operand for the function call
2633       //   operator (), and the result of such a call has type void. The only
2634       //   effect is the evaluation of the postfix-expression before the dot or
2635       //   arrow.
2636       EmitScalarExpr(E->getCallee());
2637     }
2638 
2639     return RValue::get(0);
2640   }
2641 
2642   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2643   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2644                   E->arg_begin(), E->arg_end(), TargetDecl);
2645 }
2646 
EmitBinaryOperatorLValue(const BinaryOperator * E)2647 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2648   // Comma expressions just emit their LHS then their RHS as an l-value.
2649   if (E->getOpcode() == BO_Comma) {
2650     EmitIgnoredExpr(E->getLHS());
2651     EnsureInsertPoint();
2652     return EmitLValue(E->getRHS());
2653   }
2654 
2655   if (E->getOpcode() == BO_PtrMemD ||
2656       E->getOpcode() == BO_PtrMemI)
2657     return EmitPointerToDataMemberBinaryExpr(E);
2658 
2659   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2660 
2661   // Note that in all of these cases, __block variables need the RHS
2662   // evaluated first just in case the variable gets moved by the RHS.
2663 
2664   if (!hasAggregateLLVMType(E->getType())) {
2665     switch (E->getLHS()->getType().getObjCLifetime()) {
2666     case Qualifiers::OCL_Strong:
2667       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2668 
2669     case Qualifiers::OCL_Autoreleasing:
2670       return EmitARCStoreAutoreleasing(E).first;
2671 
2672     // No reason to do any of these differently.
2673     case Qualifiers::OCL_None:
2674     case Qualifiers::OCL_ExplicitNone:
2675     case Qualifiers::OCL_Weak:
2676       break;
2677     }
2678 
2679     RValue RV = EmitAnyExpr(E->getRHS());
2680     LValue LV = EmitLValue(E->getLHS());
2681     EmitStoreThroughLValue(RV, LV);
2682     return LV;
2683   }
2684 
2685   if (E->getType()->isAnyComplexType())
2686     return EmitComplexAssignmentLValue(E);
2687 
2688   return EmitAggExprToLValue(E);
2689 }
2690 
EmitCallExprLValue(const CallExpr * E)2691 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2692   RValue RV = EmitCallExpr(E);
2693 
2694   if (!RV.isScalar())
2695     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2696 
2697   assert(E->getCallReturnType()->isReferenceType() &&
2698          "Can't have a scalar return unless the return type is a "
2699          "reference type!");
2700 
2701   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2702 }
2703 
EmitVAArgExprLValue(const VAArgExpr * E)2704 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2705   // FIXME: This shouldn't require another copy.
2706   return EmitAggExprToLValue(E);
2707 }
2708 
EmitCXXConstructLValue(const CXXConstructExpr * E)2709 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2710   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2711          && "binding l-value to type which needs a temporary");
2712   AggValueSlot Slot = CreateAggTemp(E->getType());
2713   EmitCXXConstructExpr(E, Slot);
2714   return MakeAddrLValue(Slot.getAddr(), E->getType());
2715 }
2716 
2717 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)2718 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2719   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2720 }
2721 
2722 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)2723 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2724   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2725   Slot.setExternallyDestructed();
2726   EmitAggExpr(E->getSubExpr(), Slot);
2727   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2728   return MakeAddrLValue(Slot.getAddr(), E->getType());
2729 }
2730 
2731 LValue
EmitLambdaLValue(const LambdaExpr * E)2732 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2733   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2734   EmitLambdaExpr(E, Slot);
2735   return MakeAddrLValue(Slot.getAddr(), E->getType());
2736 }
2737 
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)2738 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2739   RValue RV = EmitObjCMessageExpr(E);
2740 
2741   if (!RV.isScalar())
2742     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2743 
2744   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2745          "Can't have a scalar return unless the return type is a "
2746          "reference type!");
2747 
2748   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2749 }
2750 
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)2751 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2752   llvm::Value *V =
2753     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2754   return MakeAddrLValue(V, E->getType());
2755 }
2756 
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)2757 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2758                                              const ObjCIvarDecl *Ivar) {
2759   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2760 }
2761 
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)2762 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2763                                           llvm::Value *BaseValue,
2764                                           const ObjCIvarDecl *Ivar,
2765                                           unsigned CVRQualifiers) {
2766   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2767                                                    Ivar, CVRQualifiers);
2768 }
2769 
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)2770 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2771   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2772   llvm::Value *BaseValue = 0;
2773   const Expr *BaseExpr = E->getBase();
2774   Qualifiers BaseQuals;
2775   QualType ObjectTy;
2776   if (E->isArrow()) {
2777     BaseValue = EmitScalarExpr(BaseExpr);
2778     ObjectTy = BaseExpr->getType()->getPointeeType();
2779     BaseQuals = ObjectTy.getQualifiers();
2780   } else {
2781     LValue BaseLV = EmitLValue(BaseExpr);
2782     // FIXME: this isn't right for bitfields.
2783     BaseValue = BaseLV.getAddress();
2784     ObjectTy = BaseExpr->getType();
2785     BaseQuals = ObjectTy.getQualifiers();
2786   }
2787 
2788   LValue LV =
2789     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2790                       BaseQuals.getCVRQualifiers());
2791   setObjCGCLValueClass(getContext(), E, LV);
2792   return LV;
2793 }
2794 
EmitStmtExprLValue(const StmtExpr * E)2795 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2796   // Can only get l-value for message expression returning aggregate type
2797   RValue RV = EmitAnyExprToTemp(E);
2798   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2799 }
2800 
EmitCall(QualType CalleeType,llvm::Value * Callee,ReturnValueSlot ReturnValue,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd,const Decl * TargetDecl)2801 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2802                                  ReturnValueSlot ReturnValue,
2803                                  CallExpr::const_arg_iterator ArgBeg,
2804                                  CallExpr::const_arg_iterator ArgEnd,
2805                                  const Decl *TargetDecl) {
2806   // Get the actual function type. The callee type will always be a pointer to
2807   // function type or a block pointer type.
2808   assert(CalleeType->isFunctionPointerType() &&
2809          "Call must have function pointer type!");
2810 
2811   CalleeType = getContext().getCanonicalType(CalleeType);
2812 
2813   const FunctionType *FnType
2814     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2815 
2816   CallArgList Args;
2817   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2818 
2819   const CGFunctionInfo &FnInfo =
2820     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
2821 
2822   // C99 6.5.2.2p6:
2823   //   If the expression that denotes the called function has a type
2824   //   that does not include a prototype, [the default argument
2825   //   promotions are performed]. If the number of arguments does not
2826   //   equal the number of parameters, the behavior is undefined. If
2827   //   the function is defined with a type that includes a prototype,
2828   //   and either the prototype ends with an ellipsis (, ...) or the
2829   //   types of the arguments after promotion are not compatible with
2830   //   the types of the parameters, the behavior is undefined. If the
2831   //   function is defined with a type that does not include a
2832   //   prototype, and the types of the arguments after promotion are
2833   //   not compatible with those of the parameters after promotion,
2834   //   the behavior is undefined [except in some trivial cases].
2835   // That is, in the general case, we should assume that a call
2836   // through an unprototyped function type works like a *non-variadic*
2837   // call.  The way we make this work is to cast to the exact type
2838   // of the promoted arguments.
2839   if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2840     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2841     CalleeTy = CalleeTy->getPointerTo();
2842     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2843   }
2844 
2845   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2846 }
2847 
2848 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)2849 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2850   llvm::Value *BaseV;
2851   if (E->getOpcode() == BO_PtrMemI)
2852     BaseV = EmitScalarExpr(E->getLHS());
2853   else
2854     BaseV = EmitLValue(E->getLHS()).getAddress();
2855 
2856   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2857 
2858   const MemberPointerType *MPT
2859     = E->getRHS()->getType()->getAs<MemberPointerType>();
2860 
2861   llvm::Value *AddV =
2862     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2863 
2864   return MakeAddrLValue(AddV, MPT->getPointeeType());
2865 }
2866 
2867 static void
EmitAtomicOp(CodeGenFunction & CGF,AtomicExpr * E,llvm::Value * Dest,llvm::Value * Ptr,llvm::Value * Val1,llvm::Value * Val2,uint64_t Size,unsigned Align,llvm::AtomicOrdering Order)2868 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2869              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2870              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2871   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2872   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
2873 
2874   switch (E->getOp()) {
2875   case AtomicExpr::AO__c11_atomic_init:
2876     llvm_unreachable("Already handled!");
2877 
2878   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2879   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2880   case AtomicExpr::AO__atomic_compare_exchange:
2881   case AtomicExpr::AO__atomic_compare_exchange_n: {
2882     // Note that cmpxchg only supports specifying one ordering and
2883     // doesn't support weak cmpxchg, at least at the moment.
2884     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2885     LoadVal1->setAlignment(Align);
2886     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2887     LoadVal2->setAlignment(Align);
2888     llvm::AtomicCmpXchgInst *CXI =
2889         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2890     CXI->setVolatile(E->isVolatile());
2891     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2892     StoreVal1->setAlignment(Align);
2893     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2894     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2895     return;
2896   }
2897 
2898   case AtomicExpr::AO__c11_atomic_load:
2899   case AtomicExpr::AO__atomic_load_n:
2900   case AtomicExpr::AO__atomic_load: {
2901     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2902     Load->setAtomic(Order);
2903     Load->setAlignment(Size);
2904     Load->setVolatile(E->isVolatile());
2905     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2906     StoreDest->setAlignment(Align);
2907     return;
2908   }
2909 
2910   case AtomicExpr::AO__c11_atomic_store:
2911   case AtomicExpr::AO__atomic_store:
2912   case AtomicExpr::AO__atomic_store_n: {
2913     assert(!Dest && "Store does not return a value");
2914     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2915     LoadVal1->setAlignment(Align);
2916     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2917     Store->setAtomic(Order);
2918     Store->setAlignment(Size);
2919     Store->setVolatile(E->isVolatile());
2920     return;
2921   }
2922 
2923   case AtomicExpr::AO__c11_atomic_exchange:
2924   case AtomicExpr::AO__atomic_exchange_n:
2925   case AtomicExpr::AO__atomic_exchange:
2926     Op = llvm::AtomicRMWInst::Xchg;
2927     break;
2928 
2929   case AtomicExpr::AO__atomic_add_fetch:
2930     PostOp = llvm::Instruction::Add;
2931     // Fall through.
2932   case AtomicExpr::AO__c11_atomic_fetch_add:
2933   case AtomicExpr::AO__atomic_fetch_add:
2934     Op = llvm::AtomicRMWInst::Add;
2935     break;
2936 
2937   case AtomicExpr::AO__atomic_sub_fetch:
2938     PostOp = llvm::Instruction::Sub;
2939     // Fall through.
2940   case AtomicExpr::AO__c11_atomic_fetch_sub:
2941   case AtomicExpr::AO__atomic_fetch_sub:
2942     Op = llvm::AtomicRMWInst::Sub;
2943     break;
2944 
2945   case AtomicExpr::AO__atomic_and_fetch:
2946     PostOp = llvm::Instruction::And;
2947     // Fall through.
2948   case AtomicExpr::AO__c11_atomic_fetch_and:
2949   case AtomicExpr::AO__atomic_fetch_and:
2950     Op = llvm::AtomicRMWInst::And;
2951     break;
2952 
2953   case AtomicExpr::AO__atomic_or_fetch:
2954     PostOp = llvm::Instruction::Or;
2955     // Fall through.
2956   case AtomicExpr::AO__c11_atomic_fetch_or:
2957   case AtomicExpr::AO__atomic_fetch_or:
2958     Op = llvm::AtomicRMWInst::Or;
2959     break;
2960 
2961   case AtomicExpr::AO__atomic_xor_fetch:
2962     PostOp = llvm::Instruction::Xor;
2963     // Fall through.
2964   case AtomicExpr::AO__c11_atomic_fetch_xor:
2965   case AtomicExpr::AO__atomic_fetch_xor:
2966     Op = llvm::AtomicRMWInst::Xor;
2967     break;
2968 
2969   case AtomicExpr::AO__atomic_nand_fetch:
2970     PostOp = llvm::Instruction::And;
2971     // Fall through.
2972   case AtomicExpr::AO__atomic_fetch_nand:
2973     Op = llvm::AtomicRMWInst::Nand;
2974     break;
2975   }
2976 
2977   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2978   LoadVal1->setAlignment(Align);
2979   llvm::AtomicRMWInst *RMWI =
2980       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2981   RMWI->setVolatile(E->isVolatile());
2982 
2983   // For __atomic_*_fetch operations, perform the operation again to
2984   // determine the value which was written.
2985   llvm::Value *Result = RMWI;
2986   if (PostOp)
2987     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
2988   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
2989     Result = CGF.Builder.CreateNot(Result);
2990   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
2991   StoreDest->setAlignment(Align);
2992 }
2993 
2994 // This function emits any expression (scalar, complex, or aggregate)
2995 // into a temporary alloca.
2996 static llvm::Value *
EmitValToTemp(CodeGenFunction & CGF,Expr * E)2997 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2998   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2999   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
3000                        /*Init*/ true);
3001   return DeclPtr;
3002 }
3003 
ConvertTempToRValue(CodeGenFunction & CGF,QualType Ty,llvm::Value * Dest)3004 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
3005                                   llvm::Value *Dest) {
3006   if (Ty->isAnyComplexType())
3007     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
3008   if (CGF.hasAggregateLLVMType(Ty))
3009     return RValue::getAggregate(Dest);
3010   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
3011 }
3012 
EmitAtomicExpr(AtomicExpr * E,llvm::Value * Dest)3013 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
3014   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
3015   QualType MemTy = AtomicTy;
3016   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
3017     MemTy = AT->getValueType();
3018   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
3019   uint64_t Size = sizeChars.getQuantity();
3020   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
3021   unsigned Align = alignChars.getQuantity();
3022   unsigned MaxInlineWidth =
3023       getContext().getTargetInfo().getMaxAtomicInlineWidth();
3024   bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
3025 
3026 
3027 
3028   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
3029   Ptr = EmitScalarExpr(E->getPtr());
3030 
3031   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
3032     assert(!Dest && "Init does not return a value");
3033     if (!hasAggregateLLVMType(E->getVal1()->getType())) {
3034       QualType PointeeType
3035         = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
3036       EmitScalarInit(EmitScalarExpr(E->getVal1()),
3037                      LValue::MakeAddr(Ptr, PointeeType, alignChars,
3038                                       getContext()));
3039     } else if (E->getType()->isAnyComplexType()) {
3040       EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
3041     } else {
3042       AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
3043                                         AtomicTy.getQualifiers(),
3044                                         AggValueSlot::IsNotDestructed,
3045                                         AggValueSlot::DoesNotNeedGCBarriers,
3046                                         AggValueSlot::IsNotAliased);
3047       EmitAggExpr(E->getVal1(), Slot);
3048     }
3049     return RValue::get(0);
3050   }
3051 
3052   Order = EmitScalarExpr(E->getOrder());
3053 
3054   switch (E->getOp()) {
3055   case AtomicExpr::AO__c11_atomic_init:
3056     llvm_unreachable("Already handled!");
3057 
3058   case AtomicExpr::AO__c11_atomic_load:
3059   case AtomicExpr::AO__atomic_load_n:
3060     break;
3061 
3062   case AtomicExpr::AO__atomic_load:
3063     Dest = EmitScalarExpr(E->getVal1());
3064     break;
3065 
3066   case AtomicExpr::AO__atomic_store:
3067     Val1 = EmitScalarExpr(E->getVal1());
3068     break;
3069 
3070   case AtomicExpr::AO__atomic_exchange:
3071     Val1 = EmitScalarExpr(E->getVal1());
3072     Dest = EmitScalarExpr(E->getVal2());
3073     break;
3074 
3075   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3076   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3077   case AtomicExpr::AO__atomic_compare_exchange_n:
3078   case AtomicExpr::AO__atomic_compare_exchange:
3079     Val1 = EmitScalarExpr(E->getVal1());
3080     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
3081       Val2 = EmitScalarExpr(E->getVal2());
3082     else
3083       Val2 = EmitValToTemp(*this, E->getVal2());
3084     OrderFail = EmitScalarExpr(E->getOrderFail());
3085     // Evaluate and discard the 'weak' argument.
3086     if (E->getNumSubExprs() == 6)
3087       EmitScalarExpr(E->getWeak());
3088     break;
3089 
3090   case AtomicExpr::AO__c11_atomic_fetch_add:
3091   case AtomicExpr::AO__c11_atomic_fetch_sub:
3092     if (MemTy->isPointerType()) {
3093       // For pointer arithmetic, we're required to do a bit of math:
3094       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
3095       // ... but only for the C11 builtins. The GNU builtins expect the
3096       // user to multiply by sizeof(T).
3097       QualType Val1Ty = E->getVal1()->getType();
3098       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
3099       CharUnits PointeeIncAmt =
3100           getContext().getTypeSizeInChars(MemTy->getPointeeType());
3101       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
3102       Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
3103       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
3104       break;
3105     }
3106     // Fall through.
3107   case AtomicExpr::AO__atomic_fetch_add:
3108   case AtomicExpr::AO__atomic_fetch_sub:
3109   case AtomicExpr::AO__atomic_add_fetch:
3110   case AtomicExpr::AO__atomic_sub_fetch:
3111   case AtomicExpr::AO__c11_atomic_store:
3112   case AtomicExpr::AO__c11_atomic_exchange:
3113   case AtomicExpr::AO__atomic_store_n:
3114   case AtomicExpr::AO__atomic_exchange_n:
3115   case AtomicExpr::AO__c11_atomic_fetch_and:
3116   case AtomicExpr::AO__c11_atomic_fetch_or:
3117   case AtomicExpr::AO__c11_atomic_fetch_xor:
3118   case AtomicExpr::AO__atomic_fetch_and:
3119   case AtomicExpr::AO__atomic_fetch_or:
3120   case AtomicExpr::AO__atomic_fetch_xor:
3121   case AtomicExpr::AO__atomic_fetch_nand:
3122   case AtomicExpr::AO__atomic_and_fetch:
3123   case AtomicExpr::AO__atomic_or_fetch:
3124   case AtomicExpr::AO__atomic_xor_fetch:
3125   case AtomicExpr::AO__atomic_nand_fetch:
3126     Val1 = EmitValToTemp(*this, E->getVal1());
3127     break;
3128   }
3129 
3130   if (!E->getType()->isVoidType() && !Dest)
3131     Dest = CreateMemTemp(E->getType(), ".atomicdst");
3132 
3133   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
3134   if (UseLibcall) {
3135 
3136     llvm::SmallVector<QualType, 5> Params;
3137     CallArgList Args;
3138     // Size is always the first parameter
3139     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
3140              getContext().getSizeType());
3141     // Atomic address is always the second parameter
3142     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
3143              getContext().VoidPtrTy);
3144 
3145     const char* LibCallName;
3146     QualType RetTy = getContext().VoidTy;
3147     switch (E->getOp()) {
3148     // There is only one libcall for compare an exchange, because there is no
3149     // optimisation benefit possible from a libcall version of a weak compare
3150     // and exchange.
3151     // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
3152     //                                void *desired, int success, int failure)
3153     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3154     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3155     case AtomicExpr::AO__atomic_compare_exchange:
3156     case AtomicExpr::AO__atomic_compare_exchange_n:
3157       LibCallName = "__atomic_compare_exchange";
3158       RetTy = getContext().BoolTy;
3159       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3160                getContext().VoidPtrTy);
3161       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
3162                getContext().VoidPtrTy);
3163       Args.add(RValue::get(Order),
3164                getContext().IntTy);
3165       Order = OrderFail;
3166       break;
3167     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
3168     //                        int order)
3169     case AtomicExpr::AO__c11_atomic_exchange:
3170     case AtomicExpr::AO__atomic_exchange_n:
3171     case AtomicExpr::AO__atomic_exchange:
3172       LibCallName = "__atomic_exchange";
3173       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3174                getContext().VoidPtrTy);
3175       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3176                getContext().VoidPtrTy);
3177       break;
3178     // void __atomic_store(size_t size, void *mem, void *val, int order)
3179     case AtomicExpr::AO__c11_atomic_store:
3180     case AtomicExpr::AO__atomic_store:
3181     case AtomicExpr::AO__atomic_store_n:
3182       LibCallName = "__atomic_store";
3183       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3184                getContext().VoidPtrTy);
3185       break;
3186     // void __atomic_load(size_t size, void *mem, void *return, int order)
3187     case AtomicExpr::AO__c11_atomic_load:
3188     case AtomicExpr::AO__atomic_load:
3189     case AtomicExpr::AO__atomic_load_n:
3190       LibCallName = "__atomic_load";
3191       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3192                getContext().VoidPtrTy);
3193       break;
3194 #if 0
3195     // These are only defined for 1-16 byte integers.  It is not clear what
3196     // their semantics would be on anything else...
3197     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3198     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3199     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3200     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3201     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3202 #endif
3203     default: return EmitUnsupportedRValue(E, "atomic library call");
3204     }
3205     // order is always the last parameter
3206     Args.add(RValue::get(Order),
3207              getContext().IntTy);
3208 
3209     const CGFunctionInfo &FuncInfo =
3210         CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
3211             FunctionType::ExtInfo(), RequiredArgs::All);
3212     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3213     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3214     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3215     if (E->isCmpXChg())
3216       return Res;
3217     if (E->getType()->isVoidType())
3218       return RValue::get(0);
3219     return ConvertTempToRValue(*this, E->getType(), Dest);
3220   }
3221 
3222   llvm::Type *IPtrTy =
3223       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3224   llvm::Value *OrigDest = Dest;
3225   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3226   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3227   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3228   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3229 
3230   if (isa<llvm::ConstantInt>(Order)) {
3231     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3232     switch (ord) {
3233     case 0:  // memory_order_relaxed
3234       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3235                    llvm::Monotonic);
3236       break;
3237     case 1:  // memory_order_consume
3238     case 2:  // memory_order_acquire
3239       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3240                    llvm::Acquire);
3241       break;
3242     case 3:  // memory_order_release
3243       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3244                    llvm::Release);
3245       break;
3246     case 4:  // memory_order_acq_rel
3247       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3248                    llvm::AcquireRelease);
3249       break;
3250     case 5:  // memory_order_seq_cst
3251       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3252                    llvm::SequentiallyConsistent);
3253       break;
3254     default: // invalid order
3255       // We should not ever get here normally, but it's hard to
3256       // enforce that in general.
3257       break;
3258     }
3259     if (E->getType()->isVoidType())
3260       return RValue::get(0);
3261     return ConvertTempToRValue(*this, E->getType(), OrigDest);
3262   }
3263 
3264   // Long case, when Order isn't obviously constant.
3265 
3266   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3267                  E->getOp() == AtomicExpr::AO__atomic_store ||
3268                  E->getOp() == AtomicExpr::AO__atomic_store_n;
3269   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3270                 E->getOp() == AtomicExpr::AO__atomic_load ||
3271                 E->getOp() == AtomicExpr::AO__atomic_load_n;
3272 
3273   // Create all the relevant BB's
3274   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3275                    *AcqRelBB = 0, *SeqCstBB = 0;
3276   MonotonicBB = createBasicBlock("monotonic", CurFn);
3277   if (!IsStore)
3278     AcquireBB = createBasicBlock("acquire", CurFn);
3279   if (!IsLoad)
3280     ReleaseBB = createBasicBlock("release", CurFn);
3281   if (!IsLoad && !IsStore)
3282     AcqRelBB = createBasicBlock("acqrel", CurFn);
3283   SeqCstBB = createBasicBlock("seqcst", CurFn);
3284   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3285 
3286   // Create the switch for the split
3287   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3288   // doesn't matter unless someone is crazy enough to use something that
3289   // doesn't fold to a constant for the ordering.
3290   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3291   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3292 
3293   // Emit all the different atomics
3294   Builder.SetInsertPoint(MonotonicBB);
3295   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3296                llvm::Monotonic);
3297   Builder.CreateBr(ContBB);
3298   if (!IsStore) {
3299     Builder.SetInsertPoint(AcquireBB);
3300     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3301                  llvm::Acquire);
3302     Builder.CreateBr(ContBB);
3303     SI->addCase(Builder.getInt32(1), AcquireBB);
3304     SI->addCase(Builder.getInt32(2), AcquireBB);
3305   }
3306   if (!IsLoad) {
3307     Builder.SetInsertPoint(ReleaseBB);
3308     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3309                  llvm::Release);
3310     Builder.CreateBr(ContBB);
3311     SI->addCase(Builder.getInt32(3), ReleaseBB);
3312   }
3313   if (!IsLoad && !IsStore) {
3314     Builder.SetInsertPoint(AcqRelBB);
3315     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3316                  llvm::AcquireRelease);
3317     Builder.CreateBr(ContBB);
3318     SI->addCase(Builder.getInt32(4), AcqRelBB);
3319   }
3320   Builder.SetInsertPoint(SeqCstBB);
3321   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3322                llvm::SequentiallyConsistent);
3323   Builder.CreateBr(ContBB);
3324   SI->addCase(Builder.getInt32(5), SeqCstBB);
3325 
3326   // Cleanup and return
3327   Builder.SetInsertPoint(ContBB);
3328   if (E->getType()->isVoidType())
3329     return RValue::get(0);
3330   return ConvertTempToRValue(*this, E->getType(), OrigDest);
3331 }
3332 
SetFPAccuracy(llvm::Value * Val,float Accuracy)3333 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3334   assert(Val->getType()->isFPOrFPVectorTy());
3335   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3336     return;
3337 
3338   llvm::MDBuilder MDHelper(getLLVMContext());
3339   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3340 
3341   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3342 }
3343 
3344 namespace {
3345   struct LValueOrRValue {
3346     LValue LV;
3347     RValue RV;
3348   };
3349 }
3350 
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)3351 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3352                                            const PseudoObjectExpr *E,
3353                                            bool forLValue,
3354                                            AggValueSlot slot) {
3355   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3356 
3357   // Find the result expression, if any.
3358   const Expr *resultExpr = E->getResultExpr();
3359   LValueOrRValue result;
3360 
3361   for (PseudoObjectExpr::const_semantics_iterator
3362          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3363     const Expr *semantic = *i;
3364 
3365     // If this semantic expression is an opaque value, bind it
3366     // to the result of its source expression.
3367     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3368 
3369       // If this is the result expression, we may need to evaluate
3370       // directly into the slot.
3371       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3372       OVMA opaqueData;
3373       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3374           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3375           !ov->getType()->isAnyComplexType()) {
3376         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3377 
3378         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3379         opaqueData = OVMA::bind(CGF, ov, LV);
3380         result.RV = slot.asRValue();
3381 
3382       // Otherwise, emit as normal.
3383       } else {
3384         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3385 
3386         // If this is the result, also evaluate the result now.
3387         if (ov == resultExpr) {
3388           if (forLValue)
3389             result.LV = CGF.EmitLValue(ov);
3390           else
3391             result.RV = CGF.EmitAnyExpr(ov, slot);
3392         }
3393       }
3394 
3395       opaques.push_back(opaqueData);
3396 
3397     // Otherwise, if the expression is the result, evaluate it
3398     // and remember the result.
3399     } else if (semantic == resultExpr) {
3400       if (forLValue)
3401         result.LV = CGF.EmitLValue(semantic);
3402       else
3403         result.RV = CGF.EmitAnyExpr(semantic, slot);
3404 
3405     // Otherwise, evaluate the expression in an ignored context.
3406     } else {
3407       CGF.EmitIgnoredExpr(semantic);
3408     }
3409   }
3410 
3411   // Unbind all the opaques now.
3412   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3413     opaques[i].unbind(CGF);
3414 
3415   return result;
3416 }
3417 
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)3418 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3419                                                AggValueSlot slot) {
3420   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3421 }
3422 
EmitPseudoObjectLValue(const PseudoObjectExpr * E)3423 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3424   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3425 }
3426