• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the VirtRegMap class.
11 //
12 // It also contains implementations of the Spiller interface, which, given a
13 // virtual register map and a machine function, eliminates all virtual
14 // references by replacing them with physical register references - adding spill
15 // code as necessary.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #define DEBUG_TYPE "regalloc"
20 #include "VirtRegMap.h"
21 #include "LiveDebugVariables.h"
22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
41 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
42 
43 //===----------------------------------------------------------------------===//
44 //  VirtRegMap implementation
45 //===----------------------------------------------------------------------===//
46 
47 char VirtRegMap::ID = 0;
48 
49 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
50 
runOnMachineFunction(MachineFunction & mf)51 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
52   MRI = &mf.getRegInfo();
53   TII = mf.getTarget().getInstrInfo();
54   TRI = mf.getTarget().getRegisterInfo();
55   MF = &mf;
56 
57   Virt2PhysMap.clear();
58   Virt2StackSlotMap.clear();
59   Virt2SplitMap.clear();
60 
61   grow();
62   return false;
63 }
64 
grow()65 void VirtRegMap::grow() {
66   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
67   Virt2PhysMap.resize(NumRegs);
68   Virt2StackSlotMap.resize(NumRegs);
69   Virt2SplitMap.resize(NumRegs);
70 }
71 
createSpillSlot(const TargetRegisterClass * RC)72 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
73   int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
74                                                       RC->getAlignment());
75   ++NumSpillSlots;
76   return SS;
77 }
78 
getRegAllocPref(unsigned virtReg)79 unsigned VirtRegMap::getRegAllocPref(unsigned virtReg) {
80   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(virtReg);
81   unsigned physReg = Hint.second;
82   if (TargetRegisterInfo::isVirtualRegister(physReg) && hasPhys(physReg))
83     physReg = getPhys(physReg);
84   if (Hint.first == 0)
85     return (TargetRegisterInfo::isPhysicalRegister(physReg))
86       ? physReg : 0;
87   return TRI->ResolveRegAllocHint(Hint.first, physReg, *MF);
88 }
89 
assignVirt2StackSlot(unsigned virtReg)90 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
91   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
92   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
93          "attempt to assign stack slot to already spilled register");
94   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
95   return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
96 }
97 
assignVirt2StackSlot(unsigned virtReg,int SS)98 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
99   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
100   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
101          "attempt to assign stack slot to already spilled register");
102   assert((SS >= 0 ||
103           (SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
104          "illegal fixed frame index");
105   Virt2StackSlotMap[virtReg] = SS;
106 }
107 
print(raw_ostream & OS,const Module *) const108 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
109   OS << "********** REGISTER MAP **********\n";
110   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
111     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
112     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
113       OS << '[' << PrintReg(Reg, TRI) << " -> "
114          << PrintReg(Virt2PhysMap[Reg], TRI) << "] "
115          << MRI->getRegClass(Reg)->getName() << "\n";
116     }
117   }
118 
119   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
120     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
121     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
122       OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
123          << "] " << MRI->getRegClass(Reg)->getName() << "\n";
124     }
125   }
126   OS << '\n';
127 }
128 
129 #ifndef NDEBUG
dump() const130 void VirtRegMap::dump() const {
131   print(dbgs());
132 }
133 #endif
134 
135 //===----------------------------------------------------------------------===//
136 //                              VirtRegRewriter
137 //===----------------------------------------------------------------------===//
138 //
139 // The VirtRegRewriter is the last of the register allocator passes.
140 // It rewrites virtual registers to physical registers as specified in the
141 // VirtRegMap analysis. It also updates live-in information on basic blocks
142 // according to LiveIntervals.
143 //
144 namespace {
145 class VirtRegRewriter : public MachineFunctionPass {
146   MachineFunction *MF;
147   const TargetMachine *TM;
148   const TargetRegisterInfo *TRI;
149   const TargetInstrInfo *TII;
150   MachineRegisterInfo *MRI;
151   SlotIndexes *Indexes;
152   LiveIntervals *LIS;
153   VirtRegMap *VRM;
154 
155   void rewrite();
156   void addMBBLiveIns();
157 public:
158   static char ID;
VirtRegRewriter()159   VirtRegRewriter() : MachineFunctionPass(ID) {}
160 
161   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
162 
163   virtual bool runOnMachineFunction(MachineFunction&);
164 };
165 } // end anonymous namespace
166 
167 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
168 
169 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
170                       "Virtual Register Rewriter", false, false)
171 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
172 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
173 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
174 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
175 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
176                     "Virtual Register Rewriter", false, false)
177 
178 char VirtRegRewriter::ID = 0;
179 
getAnalysisUsage(AnalysisUsage & AU) const180 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
181   AU.setPreservesCFG();
182   AU.addRequired<LiveIntervals>();
183   AU.addRequired<SlotIndexes>();
184   AU.addPreserved<SlotIndexes>();
185   AU.addRequired<LiveDebugVariables>();
186   AU.addRequired<VirtRegMap>();
187   MachineFunctionPass::getAnalysisUsage(AU);
188 }
189 
runOnMachineFunction(MachineFunction & fn)190 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
191   MF = &fn;
192   TM = &MF->getTarget();
193   TRI = TM->getRegisterInfo();
194   TII = TM->getInstrInfo();
195   MRI = &MF->getRegInfo();
196   Indexes = &getAnalysis<SlotIndexes>();
197   LIS = &getAnalysis<LiveIntervals>();
198   VRM = &getAnalysis<VirtRegMap>();
199   DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
200                << "********** Function: "
201                << MF->getName() << '\n');
202   DEBUG(VRM->dump());
203 
204   // Add kill flags while we still have virtual registers.
205   LIS->addKillFlags(VRM);
206 
207   // Live-in lists on basic blocks are required for physregs.
208   addMBBLiveIns();
209 
210   // Rewrite virtual registers.
211   rewrite();
212 
213   // Write out new DBG_VALUE instructions.
214   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
215 
216   // All machine operands and other references to virtual registers have been
217   // replaced. Remove the virtual registers and release all the transient data.
218   VRM->clearAllVirt();
219   MRI->clearVirtRegs();
220   return true;
221 }
222 
223 // Compute MBB live-in lists from virtual register live ranges and their
224 // assignments.
addMBBLiveIns()225 void VirtRegRewriter::addMBBLiveIns() {
226   SmallVector<MachineBasicBlock*, 16> LiveIn;
227   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
228     unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
229     if (MRI->reg_nodbg_empty(VirtReg))
230       continue;
231     LiveInterval &LI = LIS->getInterval(VirtReg);
232     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
233       continue;
234     // This is a virtual register that is live across basic blocks. Its
235     // assigned PhysReg must be marked as live-in to those blocks.
236     unsigned PhysReg = VRM->getPhys(VirtReg);
237     assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
238 
239     // Scan the segments of LI.
240     for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E;
241          ++I) {
242       if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn))
243         continue;
244       for (unsigned i = 0, e = LiveIn.size(); i != e; ++i)
245         if (!LiveIn[i]->isLiveIn(PhysReg))
246           LiveIn[i]->addLiveIn(PhysReg);
247       LiveIn.clear();
248     }
249   }
250 }
251 
rewrite()252 void VirtRegRewriter::rewrite() {
253   SmallVector<unsigned, 8> SuperDeads;
254   SmallVector<unsigned, 8> SuperDefs;
255   SmallVector<unsigned, 8> SuperKills;
256 #ifndef NDEBUG
257   BitVector Reserved = TRI->getReservedRegs(*MF);
258 #endif
259 
260   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
261        MBBI != MBBE; ++MBBI) {
262     DEBUG(MBBI->print(dbgs(), Indexes));
263     for (MachineBasicBlock::instr_iterator
264            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
265       MachineInstr *MI = MII;
266       ++MII;
267 
268       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
269            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
270         MachineOperand &MO = *MOI;
271 
272         // Make sure MRI knows about registers clobbered by regmasks.
273         if (MO.isRegMask())
274           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
275 
276         if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
277           continue;
278         unsigned VirtReg = MO.getReg();
279         unsigned PhysReg = VRM->getPhys(VirtReg);
280         assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
281                "Instruction uses unmapped VirtReg");
282         assert(!Reserved.test(PhysReg) && "Reserved register assignment");
283 
284         // Preserve semantics of sub-register operands.
285         if (MO.getSubReg()) {
286           // A virtual register kill refers to the whole register, so we may
287           // have to add <imp-use,kill> operands for the super-register.  A
288           // partial redef always kills and redefines the super-register.
289           if (MO.readsReg() && (MO.isDef() || MO.isKill()))
290             SuperKills.push_back(PhysReg);
291 
292           if (MO.isDef()) {
293             // The <def,undef> flag only makes sense for sub-register defs, and
294             // we are substituting a full physreg.  An <imp-use,kill> operand
295             // from the SuperKills list will represent the partial read of the
296             // super-register.
297             MO.setIsUndef(false);
298 
299             // Also add implicit defs for the super-register.
300             if (MO.isDead())
301               SuperDeads.push_back(PhysReg);
302             else
303               SuperDefs.push_back(PhysReg);
304           }
305 
306           // PhysReg operands cannot have subregister indexes.
307           PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg());
308           assert(PhysReg && "Invalid SubReg for physical register");
309           MO.setSubReg(0);
310         }
311         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
312         // we need the inlining here.
313         MO.setReg(PhysReg);
314       }
315 
316       // Add any missing super-register kills after rewriting the whole
317       // instruction.
318       while (!SuperKills.empty())
319         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
320 
321       while (!SuperDeads.empty())
322         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
323 
324       while (!SuperDefs.empty())
325         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
326 
327       DEBUG(dbgs() << "> " << *MI);
328 
329       // Finally, remove any identity copies.
330       if (MI->isIdentityCopy()) {
331         ++NumIdCopies;
332         if (MI->getNumOperands() == 2) {
333           DEBUG(dbgs() << "Deleting identity copy.\n");
334           if (Indexes)
335             Indexes->removeMachineInstrFromMaps(MI);
336           // It's safe to erase MI because MII has already been incremented.
337           MI->eraseFromParent();
338         } else {
339           // Transform identity copy to a KILL to deal with subregisters.
340           MI->setDesc(TII->get(TargetOpcode::KILL));
341           DEBUG(dbgs() << "Identity copy: " << *MI);
342         }
343       }
344     }
345   }
346 
347   // Tell MRI about physical registers in use.
348   for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg)
349     if (!MRI->reg_nodbg_empty(Reg))
350       MRI->setPhysRegUsed(Reg);
351 }
352