1 /* 2 * Copyright (C) 2009 The Guava Authors 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package com.google.common.cache; 18 19 import static com.google.common.base.Objects.firstNonNull; 20 import static com.google.common.base.Preconditions.checkArgument; 21 import static com.google.common.base.Preconditions.checkNotNull; 22 import static com.google.common.base.Preconditions.checkState; 23 24 import com.google.common.annotations.Beta; 25 import com.google.common.annotations.GwtCompatible; 26 import com.google.common.annotations.GwtIncompatible; 27 import com.google.common.base.Ascii; 28 import com.google.common.base.Equivalence; 29 import com.google.common.base.Equivalences; 30 import com.google.common.base.Objects; 31 import com.google.common.base.Supplier; 32 import com.google.common.base.Suppliers; 33 import com.google.common.base.Ticker; 34 import com.google.common.cache.AbstractCache.SimpleStatsCounter; 35 import com.google.common.cache.AbstractCache.StatsCounter; 36 import com.google.common.cache.LocalCache.Strength; 37 38 import java.lang.ref.SoftReference; 39 import java.lang.ref.WeakReference; 40 import java.util.ConcurrentModificationException; 41 import java.util.concurrent.ConcurrentHashMap; 42 import java.util.concurrent.TimeUnit; 43 import java.util.logging.Level; 44 import java.util.logging.Logger; 45 46 import javax.annotation.CheckReturnValue; 47 48 /** 49 * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 50 * following features: 51 * 52 * <ul> 53 * <li>automatic loading of entries into the cache 54 * <li>least-recently-used eviction when a maximum size is exceeded 55 * <li>time-based expiration of entries, measured since last access or last write 56 * <li>keys automatically wrapped in {@linkplain WeakReference weak} references 57 * <li>values automatically wrapped in {@linkplain WeakReference weak} or 58 * {@linkplain SoftReference soft} references 59 * <li>notification of evicted (or otherwise removed) entries 60 * </ul> 61 * 62 * <p>Usage example: <pre> {@code 63 * 64 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 65 * .maximumSize(10000) 66 * .expireAfterWrite(10, TimeUnit.MINUTES) 67 * .removalListener(MY_LISTENER) 68 * .build( 69 * new CacheLoader<Key, Graph>() { 70 * public Graph load(Key key) throws AnyException { 71 * return createExpensiveGraph(key); 72 * } 73 * });}</pre> 74 * 75 * 76 * These features are all optional. 77 * 78 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 79 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 80 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 81 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 82 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 83 * are reflected in that iterator. These iterators never throw {@link 84 * ConcurrentModificationException}. 85 * 86 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the 87 * {@link Object#equals equals} method) to determine equality for keys or values. However, if 88 * {@link #weakKeys} was specified, the cache uses identity ({@code ==}) 89 * comparisons instead for keys. Likewise, if {@link #weakValues} or {@link #softValues} was 90 * specified, the cache uses identity comparisons for values. 91 * 92 * <p>Entries are automatically evicted from the cache when any of 93 * {@linkplain #maximumSize(long) maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, 94 * {@linkplain #expireAfterWrite expireAfterWrite}, 95 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 96 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are requested. 97 * 98 * <p>If {@linkplain #maximumSize(long) maximumSize} or 99 * {@linkplain #maximumWeight(long) maximumWeight} is requested entries may be evicted on each cache 100 * modification. 101 * 102 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or 103 * {@linkplain #expireAfterAccess expireAfterAccess} is requested entries may be evicted on each 104 * cache modification, on occasional cache accesses, or on calls to {@link Cache#cleanUp}. Expired 105 * entries may be counted in {@link Cache#size}, but will never be visible to read or write 106 * operations. 107 * 108 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or 109 * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in 110 * the cache to be reclaimed by the garbage collector. Entries with reclaimed keys or values may be 111 * removed from the cache on each cache modification, on occasional cache accesses, or on calls to 112 * {@link Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be 113 * visible to read or write operations. 114 * 115 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 116 * will be performed during write operations, or during occasional read operations in the absense of 117 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 118 * calling it should not be necessary with a high throughput cache. Only caches built with 119 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 120 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 121 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic 122 * maintenance. 123 * 124 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 125 * retain all the configuration properties of the original cache. Note that the serialized form does 126 * <i>not</i> include cache contents, but only configuration. 127 * 128 * @param <K> the base key type for all caches created by this builder 129 * @param <V> the base value type for all caches created by this builder 130 * @author Charles Fry 131 * @author Kevin Bourrillion 132 * @since 10.0 133 */ 134 @Beta 135 @GwtCompatible(emulated = true) 136 public final class CacheBuilder<K, V> { 137 private static final int DEFAULT_INITIAL_CAPACITY = 16; 138 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 139 private static final int DEFAULT_EXPIRATION_NANOS = 0; 140 private static final int DEFAULT_REFRESH_NANOS = 0; 141 142 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance( 143 new StatsCounter() { 144 @Override 145 public void recordHits(int count) {} 146 147 @Override 148 public void recordMisses(int count) {} 149 150 @Override 151 public void recordLoadSuccess(long loadTime) {} 152 153 @Override 154 public void recordLoadException(long loadTime) {} 155 156 @Override 157 public void recordEviction() {} 158 159 @Override 160 public CacheStats snapshot() { 161 return EMPTY_STATS; 162 } 163 }); 164 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 165 166 static final Supplier<SimpleStatsCounter> CACHE_STATS_COUNTER = 167 new Supplier<SimpleStatsCounter>() { 168 @Override 169 public SimpleStatsCounter get() { 170 return new SimpleStatsCounter(); 171 } 172 }; 173 174 enum NullListener implements RemovalListener<Object, Object> { 175 INSTANCE; 176 177 @Override onRemoval(RemovalNotification<Object, Object> notification)178 public void onRemoval(RemovalNotification<Object, Object> notification) {} 179 } 180 181 enum OneWeigher implements Weigher<Object, Object> { 182 INSTANCE; 183 184 @Override weigh(Object key, Object value)185 public int weigh(Object key, Object value) { 186 return 1; 187 } 188 } 189 190 static final Ticker NULL_TICKER = new Ticker() { 191 @Override 192 public long read() { 193 return 0; 194 } 195 }; 196 197 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 198 199 static final int UNSET_INT = -1; 200 201 boolean strictParsing = true; 202 203 int initialCapacity = UNSET_INT; 204 int concurrencyLevel = UNSET_INT; 205 long maximumSize = UNSET_INT; 206 long maximumWeight = UNSET_INT; 207 Weigher<? super K, ? super V> weigher; 208 209 Strength keyStrength; 210 Strength valueStrength; 211 212 long expireAfterWriteNanos = UNSET_INT; 213 long expireAfterAccessNanos = UNSET_INT; 214 long refreshNanos = UNSET_INT; 215 216 Equivalence<Object> keyEquivalence; 217 Equivalence<Object> valueEquivalence; 218 219 RemovalListener<? super K, ? super V> removalListener; 220 Ticker ticker; 221 222 Supplier<? extends StatsCounter> statsCounterSupplier = CACHE_STATS_COUNTER; 223 224 // TODO(fry): make constructor private and update tests to use newBuilder CacheBuilder()225 CacheBuilder() {} 226 227 /** 228 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 229 * strong values, and no automatic eviction of any kind. 230 */ newBuilder()231 public static CacheBuilder<Object, Object> newBuilder() { 232 return new CacheBuilder<Object, Object>(); 233 } 234 235 /** 236 * Enables lenient parsing. Useful for tests and spec parsing. 237 */ lenientParsing()238 CacheBuilder<K, V> lenientParsing() { 239 strictParsing = false; 240 return this; 241 } 242 243 /** 244 * Sets a custom {@code Equivalence} strategy for comparing keys. 245 * 246 * <p>By default, the cache uses {@link Equivalences#identity} to determine key equality when 247 * {@link #weakKeys} is specified, and {@link Equivalences#equals()} otherwise. 248 */ keyEquivalence(Equivalence<Object> equivalence)249 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 250 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 251 keyEquivalence = checkNotNull(equivalence); 252 return this; 253 } 254 getKeyEquivalence()255 Equivalence<Object> getKeyEquivalence() { 256 return firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 257 } 258 259 /** 260 * Sets a custom {@code Equivalence} strategy for comparing values. 261 * 262 * <p>By default, the cache uses {@link Equivalences#identity} to determine value equality when 263 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalences#equals()} 264 * otherwise. 265 */ valueEquivalence(Equivalence<Object> equivalence)266 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 267 checkState(valueEquivalence == null, 268 "value equivalence was already set to %s", valueEquivalence); 269 this.valueEquivalence = checkNotNull(equivalence); 270 return this; 271 } 272 getValueEquivalence()273 Equivalence<Object> getValueEquivalence() { 274 return firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 275 } 276 277 /** 278 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 279 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 280 * having a hash table of size eight. Providing a large enough estimate at construction time 281 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 282 * high wastes memory. 283 * 284 * @throws IllegalArgumentException if {@code initialCapacity} is negative 285 * @throws IllegalStateException if an initial capacity was already set 286 */ initialCapacity(int initialCapacity)287 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 288 checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s", 289 this.initialCapacity); 290 checkArgument(initialCapacity >= 0); 291 this.initialCapacity = initialCapacity; 292 return this; 293 } 294 getInitialCapacity()295 int getInitialCapacity() { 296 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 297 } 298 299 /** 300 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 301 * table is internally partitioned to try to permit the indicated number of concurrent updates 302 * without contention. Because assignment of entries to these partitions is not necessarily 303 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 304 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 305 * higher value than you need can waste space and time, and a significantly lower value can lead 306 * to thread contention. But overestimates and underestimates within an order of magnitude do not 307 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 308 * at a time, but since read operations can proceed concurrently, this still yields higher 309 * concurrency than full synchronization. Defaults to 4. 310 * 311 * <p><b>Note:</b>The default may change in the future. If you care about this value, you should 312 * always choose it explicitly. 313 * 314 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 315 * @throws IllegalStateException if a concurrency level was already set 316 */ concurrencyLevel(int concurrencyLevel)317 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 318 checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s", 319 this.concurrencyLevel); 320 checkArgument(concurrencyLevel > 0); 321 this.concurrencyLevel = concurrencyLevel; 322 return this; 323 } 324 getConcurrencyLevel()325 int getConcurrencyLevel() { 326 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 327 } 328 329 /** 330 * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict 331 * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the 332 * cache evicts entries that are less likely to be used again. For example, the cache may evict an 333 * entry because it hasn't been used recently or very often. 334 * 335 * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the 336 * cache. This can be useful in testing, or to disable caching temporarily without a code change. 337 * 338 * @param size the maximum size of the cache 339 * @throws IllegalArgumentException if {@code size} is negative 340 * @throws IllegalStateException if a maximum size was already set 341 */ maximumSize(long size)342 public CacheBuilder<K, V> maximumSize(long size) { 343 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 344 this.maximumSize); 345 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 346 this.maximumWeight); 347 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 348 checkArgument(size >= 0, "maximum size must not be negative"); 349 this.maximumSize = size; 350 return this; 351 } 352 353 /** 354 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 355 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 356 * corresponding call to {@link #weigher} prior to calling {@link #build}. 357 * 358 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache 359 * size grows close to the maximum, the cache evicts entries that are less likely to be used 360 * again. For example, the cache may evict an entry because it hasn't been used recently or very 361 * often. 362 * 363 * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into 364 * cache. This can be useful in testing, or to disable caching temporarily without a code 365 * change. 366 * 367 * @param weight the maximum weight the cache may contain 368 * @throws IllegalArgumentException if {@code size} is negative 369 * @throws IllegalStateException if a maximum size was already set 370 * @since 11.0 371 */ maximumWeight(long weight)372 public CacheBuilder<K, V> maximumWeight(long weight) { 373 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 374 this.maximumWeight); 375 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 376 this.maximumSize); 377 this.maximumWeight = weight; 378 checkArgument(weight >= 0, "maximum weight must not be negative"); 379 return this; 380 } 381 382 /** 383 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken 384 * into consideration by {@link #maximumWeight(long)} when determining which entries to evict, and 385 * use of this method requires a corresponding call to {@link #maximumWeight(long)} prior to 386 * calling {@link #build}. Weights are measured and recorded when entries are inserted into the 387 * cache, and are thus effectively static during the lifetime of a cache entry. 388 * 389 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 390 * (though it still may be evicted by other means). 391 * 392 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 393 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 394 * original reference or the returned reference may be used to complete configuration and build 395 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 396 * building caches whose key or value types are incompatible with the types accepted by the 397 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 398 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 399 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 400 * 401 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 402 * a cache whose key or value type is incompatible with the weigher, you will likely experience 403 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 404 * 405 * @param weigher the weigher to use in calculating the weight of cache entries 406 * @throws IllegalArgumentException if {@code size} is negative 407 * @throws IllegalStateException if a maximum size was already set 408 * @since 11.0 409 */ weigher( Weigher<? super K1, ? super V1> weigher)410 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 411 Weigher<? super K1, ? super V1> weigher) { 412 checkState(this.weigher == null); 413 if (strictParsing) { 414 checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size", 415 this.maximumSize); 416 } 417 418 // safely limiting the kinds of caches this can produce 419 @SuppressWarnings("unchecked") 420 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 421 me.weigher = checkNotNull(weigher); 422 return me; 423 } 424 getMaximumWeight()425 long getMaximumWeight() { 426 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 427 return 0; 428 } 429 return (weigher == null) ? maximumSize : maximumWeight; 430 } 431 432 // Make a safe contravariant cast now so we don't have to do it over and over. 433 @SuppressWarnings("unchecked") getWeigher()434 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 435 return (Weigher<K1, V1>) Objects.firstNonNull(weigher, OneWeigher.INSTANCE); 436 } 437 438 /** 439 * Specifies that each key (not value) stored in the cache should be strongly referenced. 440 * 441 * @throws IllegalStateException if the key strength was already set 442 */ strongKeys()443 CacheBuilder<K, V> strongKeys() { 444 return setKeyStrength(Strength.STRONG); 445 } 446 447 /** 448 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 449 * WeakReference} (by default, strong references are used). 450 * 451 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 452 * comparison to determine equality of keys. 453 * 454 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, 455 * but will never be visible to read or write operations; such entries are cleaned up as part of 456 * the routine maintenance described in the class javadoc. 457 * 458 * @throws IllegalStateException if the key strength was already set 459 */ 460 @GwtIncompatible("java.lang.ref.WeakReference") weakKeys()461 public CacheBuilder<K, V> weakKeys() { 462 return setKeyStrength(Strength.WEAK); 463 } 464 setKeyStrength(Strength strength)465 CacheBuilder<K, V> setKeyStrength(Strength strength) { 466 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 467 keyStrength = checkNotNull(strength); 468 return this; 469 } 470 getKeyStrength()471 Strength getKeyStrength() { 472 return firstNonNull(keyStrength, Strength.STRONG); 473 } 474 475 /** 476 * Specifies that each value (not key) stored in the cache should be strongly referenced. 477 * 478 * @throws IllegalStateException if the value strength was already set 479 */ strongValues()480 CacheBuilder<K, V> strongValues() { 481 return setValueStrength(Strength.STRONG); 482 } 483 484 /** 485 * Specifies that each value (not key) stored in the cache should be wrapped in a 486 * {@link WeakReference} (by default, strong references are used). 487 * 488 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 489 * candidate for caching; consider {@link #softValues} instead. 490 * 491 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 492 * comparison to determine equality of values. 493 * 494 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 495 * but will never be visible to read or write operations; such entries are cleaned up as part of 496 * the routine maintenance described in the class javadoc. 497 * 498 * @throws IllegalStateException if the value strength was already set 499 */ 500 @GwtIncompatible("java.lang.ref.WeakReference") weakValues()501 public CacheBuilder<K, V> weakValues() { 502 return setValueStrength(Strength.WEAK); 503 } 504 505 /** 506 * Specifies that each value (not key) stored in the cache should be wrapped in a 507 * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will 508 * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 509 * demand. 510 * 511 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 512 * #maximumSize(long) maximum size} instead of using soft references. You should only use this 513 * method if you are well familiar with the practical consequences of soft references. 514 * 515 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 516 * comparison to determine equality of values. 517 * 518 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 519 * but will never be visible to read or write operations; such entries are cleaned up as part of 520 * the routine maintenance described in the class javadoc. 521 * 522 * @throws IllegalStateException if the value strength was already set 523 */ 524 @GwtIncompatible("java.lang.ref.SoftReference") softValues()525 public CacheBuilder<K, V> softValues() { 526 return setValueStrength(Strength.SOFT); 527 } 528 setValueStrength(Strength strength)529 CacheBuilder<K, V> setValueStrength(Strength strength) { 530 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 531 valueStrength = checkNotNull(strength); 532 return this; 533 } 534 getValueStrength()535 Strength getValueStrength() { 536 return firstNonNull(valueStrength, Strength.STRONG); 537 } 538 539 /** 540 * Specifies that each entry should be automatically removed from the cache once a fixed duration 541 * has elapsed after the entry's creation, or the most recent replacement of its value. 542 * 543 * <p>When {@code duration} is zero, this method hands off to 544 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 545 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 546 * change. 547 * 548 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 549 * write operations. Expired entries are cleaned up as part of the routine maintenance described 550 * in the class javadoc. 551 * 552 * @param duration the length of time after an entry is created that it should be automatically 553 * removed 554 * @param unit the unit that {@code duration} is expressed in 555 * @throws IllegalArgumentException if {@code duration} is negative 556 * @throws IllegalStateException if the time to live or time to idle was already set 557 */ expireAfterWrite(long duration, TimeUnit unit)558 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 559 checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns", 560 expireAfterWriteNanos); 561 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 562 this.expireAfterWriteNanos = unit.toNanos(duration); 563 return this; 564 } 565 getExpireAfterWriteNanos()566 long getExpireAfterWriteNanos() { 567 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 568 } 569 570 /** 571 * Specifies that each entry should be automatically removed from the cache once a fixed duration 572 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 573 * access. Access time is reset by all cache read and write operations (including 574 * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations 575 * on the collection-views of {@link Cache#asMap}. 576 * 577 * <p>When {@code duration} is zero, this method hands off to 578 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 579 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 580 * change. 581 * 582 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 583 * write operations. Expired entries are cleaned up as part of the routine maintenance described 584 * in the class javadoc. 585 * 586 * @param duration the length of time after an entry is last accessed that it should be 587 * automatically removed 588 * @param unit the unit that {@code duration} is expressed in 589 * @throws IllegalArgumentException if {@code duration} is negative 590 * @throws IllegalStateException if the time to idle or time to live was already set 591 */ expireAfterAccess(long duration, TimeUnit unit)592 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 593 checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns", 594 expireAfterAccessNanos); 595 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 596 this.expireAfterAccessNanos = unit.toNanos(duration); 597 return this; 598 } 599 getExpireAfterAccessNanos()600 long getExpireAfterAccessNanos() { 601 return (expireAfterAccessNanos == UNSET_INT) 602 ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos; 603 } 604 605 /** 606 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 607 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 608 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling 609 * {@link CacheLoader#reload}. 610 * 611 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 612 * recommended that users of this method override {@link CacheLoader#reload} with an asynchrnous 613 * implementation; otherwise refreshes will block other cache operations. 614 * 615 * <p>Currently automatic refreshes are performed when the first stale request for an entry 616 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 617 * and immediately return the new value if the returned future is complete, and the old value 618 * otherwise. 619 * 620 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 621 * 622 * @param duration the length of time after an entry is created that it should be considered 623 * stale, and thus eligible for refresh 624 * @param unit the unit that {@code duration} is expressed in 625 * @throws IllegalArgumentException if {@code duration} is negative 626 * @throws IllegalStateException if the refresh interval was already set 627 * @since 11.0 628 */ 629 @GwtIncompatible("To be supported") refreshAfterWrite(long duration, TimeUnit unit)630 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 631 checkNotNull(unit); 632 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 633 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 634 this.refreshNanos = unit.toNanos(duration); 635 return this; 636 } 637 getRefreshNanos()638 long getRefreshNanos() { 639 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 640 } 641 642 /** 643 * Specifies a nanosecond-precision time source for use in determining when entries should be 644 * expired. By default, {@link System#nanoTime} is used. 645 * 646 * <p>The primary intent of this method is to facilitate testing of caches which have been 647 * configured with {@link #expireAfterWrite} or {@link #expireAfterAccess}. 648 * 649 * @throws IllegalStateException if a ticker was already set 650 */ 651 @GwtIncompatible("To be supported") ticker(Ticker ticker)652 public CacheBuilder<K, V> ticker(Ticker ticker) { 653 checkState(this.ticker == null); 654 this.ticker = checkNotNull(ticker); 655 return this; 656 } 657 getTicker(boolean recordsTime)658 Ticker getTicker(boolean recordsTime) { 659 if (ticker != null) { 660 return ticker; 661 } 662 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 663 } 664 665 /** 666 * Specifies a listener instance, which all caches built using this {@code CacheBuilder} will 667 * notify each time an entry is removed from the cache by any means. 668 * 669 * <p>Each cache built by this {@code CacheBuilder} after this method is called invokes the 670 * supplied listener after removing an element for any reason (see removal causes in {@link 671 * RemovalCause}). It will invoke the listener as part of the routine maintenance described 672 * in the class javadoc. 673 * 674 * <p><b>Note:</b> <i>all exceptions thrown by {@code listener} will be logged (using 675 * {@link java.util.logging.Logger})and then swallowed</i>. 676 * 677 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 678 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 679 * original reference or the returned reference may be used to complete configuration and build 680 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 681 * building caches whose key or value types are incompatible with the types accepted by the 682 * listener already provided; the {@code CacheBuilder} type cannot do this. For best results, 683 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 684 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 685 * 686 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 687 * a cache whose key or value type is incompatible with the listener, you will likely experience 688 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 689 * 690 * @throws IllegalStateException if a removal listener was already set 691 */ 692 @CheckReturnValue 693 @GwtIncompatible("To be supported") removalListener( RemovalListener<? super K1, ? super V1> listener)694 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 695 RemovalListener<? super K1, ? super V1> listener) { 696 checkState(this.removalListener == null); 697 698 // safely limiting the kinds of caches this can produce 699 @SuppressWarnings("unchecked") 700 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 701 me.removalListener = checkNotNull(listener); 702 return me; 703 } 704 705 // Make a safe contravariant cast now so we don't have to do it over and over. 706 @SuppressWarnings("unchecked") getRemovalListener()707 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 708 return (RemovalListener<K1, V1>) Objects.firstNonNull(removalListener, NullListener.INSTANCE); 709 } 710 711 /** 712 * Disable the accumulation of {@link CacheStats} during the operation of the cache. 713 */ disableStats()714 CacheBuilder<K, V> disableStats() { 715 checkState(statsCounterSupplier == CACHE_STATS_COUNTER); 716 statsCounterSupplier = NULL_STATS_COUNTER; 717 return this; 718 } 719 getStatsCounterSupplier()720 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 721 return statsCounterSupplier; 722 } 723 724 /** 725 * Builds a cache, which either returns an already-loaded value for a given key or atomically 726 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 727 * loading the value for this key, simply waits for that thread to finish and returns its 728 * loaded value. Note that multiple threads can concurrently load values for distinct keys. 729 * 730 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 731 * invoked again to create multiple independent caches. 732 * 733 * @param loader the cache loader used to obtain new values 734 * @return a cache having the requested features 735 */ build( CacheLoader<? super K1, V1> loader)736 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 737 CacheLoader<? super K1, V1> loader) { 738 checkWeightWithWeigher(); 739 return new LocalCache.LocalLoadingCache<K1, V1>(this, loader); 740 } 741 742 /** 743 * Builds a cache which does not automatically load values when keys are requested. 744 * 745 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a 746 * {@code CacheLoader}. 747 * 748 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 749 * invoked again to create multiple independent caches. 750 * 751 * @return a cache having the requested features 752 * @since 11.0 753 */ build()754 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 755 checkWeightWithWeigher(); 756 checkNonLoadingCache(); 757 return new LocalCache.LocalManualCache<K1, V1>(this); 758 } 759 checkNonLoadingCache()760 private void checkNonLoadingCache() { 761 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 762 } 763 checkWeightWithWeigher()764 private void checkWeightWithWeigher() { 765 if (weigher == null) { 766 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 767 } else { 768 if (strictParsing) { 769 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 770 } else { 771 if (maximumWeight == UNSET_INT) { 772 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 773 } 774 } 775 } 776 } 777 778 /** 779 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 780 * string is not specified. 781 */ 782 @Override toString()783 public String toString() { 784 Objects.ToStringHelper s = Objects.toStringHelper(this); 785 if (initialCapacity != UNSET_INT) { 786 s.add("initialCapacity", initialCapacity); 787 } 788 if (concurrencyLevel != UNSET_INT) { 789 s.add("concurrencyLevel", concurrencyLevel); 790 } 791 if (maximumWeight != UNSET_INT) { 792 if (weigher == null) { 793 s.add("maximumSize", maximumWeight); 794 } else { 795 s.add("maximumWeight", maximumWeight); 796 } 797 } 798 if (expireAfterWriteNanos != UNSET_INT) { 799 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 800 } 801 if (expireAfterAccessNanos != UNSET_INT) { 802 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 803 } 804 if (keyStrength != null) { 805 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 806 } 807 if (valueStrength != null) { 808 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 809 } 810 if (keyEquivalence != null) { 811 s.addValue("keyEquivalence"); 812 } 813 if (valueEquivalence != null) { 814 s.addValue("valueEquivalence"); 815 } 816 if (removalListener != null) { 817 s.addValue("removalListener"); 818 } 819 return s.toString(); 820 } 821 } 822