• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the Expr interface and subclasses for C++ expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_EXPRCXX_H
15 #define LLVM_CLANG_AST_EXPRCXX_H
16 
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/UnresolvedSet.h"
20 #include "clang/AST/TemplateBase.h"
21 #include "clang/Basic/ExpressionTraits.h"
22 #include "clang/Basic/Lambda.h"
23 #include "clang/Basic/TypeTraits.h"
24 #include "llvm/Support/Compiler.h"
25 
26 namespace clang {
27 
28 class CXXConstructorDecl;
29 class CXXDestructorDecl;
30 class CXXMethodDecl;
31 class CXXTemporary;
32 class TemplateArgumentListInfo;
33 
34 //===--------------------------------------------------------------------===//
35 // C++ Expressions.
36 //===--------------------------------------------------------------------===//
37 
38 /// \brief A call to an overloaded operator written using operator
39 /// syntax.
40 ///
41 /// Represents a call to an overloaded operator written using operator
42 /// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
43 /// normal call, this AST node provides better information about the
44 /// syntactic representation of the call.
45 ///
46 /// In a C++ template, this expression node kind will be used whenever
47 /// any of the arguments are type-dependent. In this case, the
48 /// function itself will be a (possibly empty) set of functions and
49 /// function templates that were found by name lookup at template
50 /// definition time.
51 class CXXOperatorCallExpr : public CallExpr {
52   /// \brief The overloaded operator.
53   OverloadedOperatorKind Operator;
54   SourceRange Range;
55 
56   SourceRange getSourceRangeImpl() const LLVM_READONLY;
57 public:
CXXOperatorCallExpr(ASTContext & C,OverloadedOperatorKind Op,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation operatorloc)58   CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
59                       ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
60                       SourceLocation operatorloc)
61     : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
62                operatorloc),
63       Operator(Op) {
64     Range = getSourceRangeImpl();
65   }
CXXOperatorCallExpr(ASTContext & C,EmptyShell Empty)66   explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
67     CallExpr(C, CXXOperatorCallExprClass, Empty) { }
68 
69 
70   /// getOperator - Returns the kind of overloaded operator that this
71   /// expression refers to.
getOperator()72   OverloadedOperatorKind getOperator() const { return Operator; }
73 
74   /// getOperatorLoc - Returns the location of the operator symbol in
75   /// the expression. When @c getOperator()==OO_Call, this is the
76   /// location of the right parentheses; when @c
77   /// getOperator()==OO_Subscript, this is the location of the right
78   /// bracket.
getOperatorLoc()79   SourceLocation getOperatorLoc() const { return getRParenLoc(); }
80 
getSourceRange()81   SourceRange getSourceRange() const { return Range; }
82 
classof(const Stmt * T)83   static bool classof(const Stmt *T) {
84     return T->getStmtClass() == CXXOperatorCallExprClass;
85   }
classof(const CXXOperatorCallExpr *)86   static bool classof(const CXXOperatorCallExpr *) { return true; }
87 
88   friend class ASTStmtReader;
89   friend class ASTStmtWriter;
90 };
91 
92 /// CXXMemberCallExpr - Represents a call to a member function that
93 /// may be written either with member call syntax (e.g., "obj.func()"
94 /// or "objptr->func()") or with normal function-call syntax
95 /// ("func()") within a member function that ends up calling a member
96 /// function. The callee in either case is a MemberExpr that contains
97 /// both the object argument and the member function, while the
98 /// arguments are the arguments within the parentheses (not including
99 /// the object argument).
100 class CXXMemberCallExpr : public CallExpr {
101 public:
CXXMemberCallExpr(ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation RP)102   CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
103                     QualType t, ExprValueKind VK, SourceLocation RP)
104     : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
105 
CXXMemberCallExpr(ASTContext & C,EmptyShell Empty)106   CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
107     : CallExpr(C, CXXMemberCallExprClass, Empty) { }
108 
109   /// getImplicitObjectArgument - Retrieves the implicit object
110   /// argument for the member call. For example, in "x.f(5)", this
111   /// operation would return "x".
112   Expr *getImplicitObjectArgument() const;
113 
114   /// Retrieves the declaration of the called method.
115   CXXMethodDecl *getMethodDecl() const;
116 
117   /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
118   /// the implicit object argument. Note that this is may not be the same
119   /// declaration as that of the class context of the CXXMethodDecl which this
120   /// function is calling.
121   /// FIXME: Returns 0 for member pointer call exprs.
122   CXXRecordDecl *getRecordDecl() const;
123 
classof(const Stmt * T)124   static bool classof(const Stmt *T) {
125     return T->getStmtClass() == CXXMemberCallExprClass;
126   }
classof(const CXXMemberCallExpr *)127   static bool classof(const CXXMemberCallExpr *) { return true; }
128 };
129 
130 /// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
131 class CUDAKernelCallExpr : public CallExpr {
132 private:
133   enum { CONFIG, END_PREARG };
134 
135 public:
CUDAKernelCallExpr(ASTContext & C,Expr * fn,CallExpr * Config,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation RP)136   CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
137                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
138                      SourceLocation RP)
139     : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
140     setConfig(Config);
141   }
142 
CUDAKernelCallExpr(ASTContext & C,EmptyShell Empty)143   CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
144     : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
145 
getConfig()146   const CallExpr *getConfig() const {
147     return cast_or_null<CallExpr>(getPreArg(CONFIG));
148   }
getConfig()149   CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
setConfig(CallExpr * E)150   void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
151 
classof(const Stmt * T)152   static bool classof(const Stmt *T) {
153     return T->getStmtClass() == CUDAKernelCallExprClass;
154   }
classof(const CUDAKernelCallExpr *)155   static bool classof(const CUDAKernelCallExpr *) { return true; }
156 };
157 
158 /// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
159 /// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
160 /// const_cast.
161 ///
162 /// This abstract class is inherited by all of the classes
163 /// representing "named" casts, e.g., CXXStaticCastExpr,
164 /// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
165 class CXXNamedCastExpr : public ExplicitCastExpr {
166 private:
167   SourceLocation Loc; // the location of the casting op
168   SourceLocation RParenLoc; // the location of the right parenthesis
169 
170 protected:
CXXNamedCastExpr(StmtClass SC,QualType ty,ExprValueKind VK,CastKind kind,Expr * op,unsigned PathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc)171   CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
172                    CastKind kind, Expr *op, unsigned PathSize,
173                    TypeSourceInfo *writtenTy, SourceLocation l,
174                    SourceLocation RParenLoc)
175     : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
176       RParenLoc(RParenLoc) {}
177 
CXXNamedCastExpr(StmtClass SC,EmptyShell Shell,unsigned PathSize)178   explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
179     : ExplicitCastExpr(SC, Shell, PathSize) { }
180 
181   friend class ASTStmtReader;
182 
183 public:
184   const char *getCastName() const;
185 
186   /// \brief Retrieve the location of the cast operator keyword, e.g.,
187   /// "static_cast".
getOperatorLoc()188   SourceLocation getOperatorLoc() const { return Loc; }
189 
190   /// \brief Retrieve the location of the closing parenthesis.
getRParenLoc()191   SourceLocation getRParenLoc() const { return RParenLoc; }
192 
getSourceRange()193   SourceRange getSourceRange() const LLVM_READONLY {
194     return SourceRange(Loc, RParenLoc);
195   }
classof(const Stmt * T)196   static bool classof(const Stmt *T) {
197     switch (T->getStmtClass()) {
198     case CXXStaticCastExprClass:
199     case CXXDynamicCastExprClass:
200     case CXXReinterpretCastExprClass:
201     case CXXConstCastExprClass:
202       return true;
203     default:
204       return false;
205     }
206   }
classof(const CXXNamedCastExpr *)207   static bool classof(const CXXNamedCastExpr *) { return true; }
208 };
209 
210 /// CXXStaticCastExpr - A C++ @c static_cast expression
211 /// (C++ [expr.static.cast]).
212 ///
213 /// This expression node represents a C++ static cast, e.g.,
214 /// @c static_cast<int>(1.0).
215 class CXXStaticCastExpr : public CXXNamedCastExpr {
CXXStaticCastExpr(QualType ty,ExprValueKind vk,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc)216   CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
217                     unsigned pathSize, TypeSourceInfo *writtenTy,
218                     SourceLocation l, SourceLocation RParenLoc)
219     : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
220                        writtenTy, l, RParenLoc) {}
221 
CXXStaticCastExpr(EmptyShell Empty,unsigned PathSize)222   explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
223     : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
224 
225 public:
226   static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
227                                    ExprValueKind VK, CastKind K, Expr *Op,
228                                    const CXXCastPath *Path,
229                                    TypeSourceInfo *Written, SourceLocation L,
230                                    SourceLocation RParenLoc);
231   static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
232                                         unsigned PathSize);
233 
classof(const Stmt * T)234   static bool classof(const Stmt *T) {
235     return T->getStmtClass() == CXXStaticCastExprClass;
236   }
classof(const CXXStaticCastExpr *)237   static bool classof(const CXXStaticCastExpr *) { return true; }
238 };
239 
240 /// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
241 /// (C++ [expr.dynamic.cast]), which may perform a run-time check to
242 /// determine how to perform the type cast.
243 ///
244 /// This expression node represents a dynamic cast, e.g.,
245 /// @c dynamic_cast<Derived*>(BasePtr).
246 class CXXDynamicCastExpr : public CXXNamedCastExpr {
CXXDynamicCastExpr(QualType ty,ExprValueKind VK,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc)247   CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
248                      Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
249                      SourceLocation l, SourceLocation RParenLoc)
250     : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
251                        writtenTy, l, RParenLoc) {}
252 
CXXDynamicCastExpr(EmptyShell Empty,unsigned pathSize)253   explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
254     : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
255 
256 public:
257   static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
258                                     ExprValueKind VK, CastKind Kind, Expr *Op,
259                                     const CXXCastPath *Path,
260                                     TypeSourceInfo *Written, SourceLocation L,
261                                     SourceLocation RParenLoc);
262 
263   static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
264                                          unsigned pathSize);
265 
266   bool isAlwaysNull() const;
267 
classof(const Stmt * T)268   static bool classof(const Stmt *T) {
269     return T->getStmtClass() == CXXDynamicCastExprClass;
270   }
classof(const CXXDynamicCastExpr *)271   static bool classof(const CXXDynamicCastExpr *) { return true; }
272 };
273 
274 /// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
275 /// [expr.reinterpret.cast]), which provides a differently-typed view
276 /// of a value but performs no actual work at run time.
277 ///
278 /// This expression node represents a reinterpret cast, e.g.,
279 /// @c reinterpret_cast<int>(VoidPtr).
280 class CXXReinterpretCastExpr : public CXXNamedCastExpr {
CXXReinterpretCastExpr(QualType ty,ExprValueKind vk,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc)281   CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
282                          Expr *op, unsigned pathSize,
283                          TypeSourceInfo *writtenTy, SourceLocation l,
284                          SourceLocation RParenLoc)
285     : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
286                        pathSize, writtenTy, l, RParenLoc) {}
287 
CXXReinterpretCastExpr(EmptyShell Empty,unsigned pathSize)288   CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
289     : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
290 
291 public:
292   static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
293                                         ExprValueKind VK, CastKind Kind,
294                                         Expr *Op, const CXXCastPath *Path,
295                                  TypeSourceInfo *WrittenTy, SourceLocation L,
296                                         SourceLocation RParenLoc);
297   static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
298                                              unsigned pathSize);
299 
classof(const Stmt * T)300   static bool classof(const Stmt *T) {
301     return T->getStmtClass() == CXXReinterpretCastExprClass;
302   }
classof(const CXXReinterpretCastExpr *)303   static bool classof(const CXXReinterpretCastExpr *) { return true; }
304 };
305 
306 /// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
307 /// which can remove type qualifiers but does not change the underlying value.
308 ///
309 /// This expression node represents a const cast, e.g.,
310 /// @c const_cast<char*>(PtrToConstChar).
311 class CXXConstCastExpr : public CXXNamedCastExpr {
CXXConstCastExpr(QualType ty,ExprValueKind VK,Expr * op,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc)312   CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
313                    TypeSourceInfo *writtenTy, SourceLocation l,
314                    SourceLocation RParenLoc)
315     : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
316                        0, writtenTy, l, RParenLoc) {}
317 
CXXConstCastExpr(EmptyShell Empty)318   explicit CXXConstCastExpr(EmptyShell Empty)
319     : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
320 
321 public:
322   static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
323                                   ExprValueKind VK, Expr *Op,
324                                   TypeSourceInfo *WrittenTy, SourceLocation L,
325                                   SourceLocation RParenLoc);
326   static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
327 
classof(const Stmt * T)328   static bool classof(const Stmt *T) {
329     return T->getStmtClass() == CXXConstCastExprClass;
330   }
classof(const CXXConstCastExpr *)331   static bool classof(const CXXConstCastExpr *) { return true; }
332 };
333 
334 /// UserDefinedLiteral - A call to a literal operator (C++11 [over.literal])
335 /// written as a user-defined literal (C++11 [lit.ext]).
336 ///
337 /// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
338 /// is semantically equivalent to a normal call, this AST node provides better
339 /// information about the syntactic representation of the literal.
340 ///
341 /// Since literal operators are never found by ADL and can only be declared at
342 /// namespace scope, a user-defined literal is never dependent.
343 class UserDefinedLiteral : public CallExpr {
344   /// \brief The location of a ud-suffix within the literal.
345   SourceLocation UDSuffixLoc;
346 
347 public:
UserDefinedLiteral(ASTContext & C,Expr * Fn,ArrayRef<Expr * > Args,QualType T,ExprValueKind VK,SourceLocation LitEndLoc,SourceLocation SuffixLoc)348   UserDefinedLiteral(ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
349                      QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
350                      SourceLocation SuffixLoc)
351     : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
352       UDSuffixLoc(SuffixLoc) {}
UserDefinedLiteral(ASTContext & C,EmptyShell Empty)353   explicit UserDefinedLiteral(ASTContext &C, EmptyShell Empty)
354     : CallExpr(C, UserDefinedLiteralClass, Empty) {}
355 
356   /// The kind of literal operator which is invoked.
357   enum LiteralOperatorKind {
358     LOK_Raw,      ///< Raw form: operator "" X (const char *)
359     LOK_Template, ///< Raw form: operator "" X<cs...> ()
360     LOK_Integer,  ///< operator "" X (unsigned long long)
361     LOK_Floating, ///< operator "" X (long double)
362     LOK_String,   ///< operator "" X (const CharT *, size_t)
363     LOK_Character ///< operator "" X (CharT)
364   };
365 
366   /// getLiteralOperatorKind - Returns the kind of literal operator invocation
367   /// which this expression represents.
368   LiteralOperatorKind getLiteralOperatorKind() const;
369 
370   /// getCookedLiteral - If this is not a raw user-defined literal, get the
371   /// underlying cooked literal (representing the literal with the suffix
372   /// removed).
373   Expr *getCookedLiteral();
getCookedLiteral()374   const Expr *getCookedLiteral() const {
375     return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
376   }
377 
getLocStart()378   SourceLocation getLocStart() const {
379     if (getLiteralOperatorKind() == LOK_Template)
380       return getRParenLoc();
381     return getArg(0)->getLocStart();
382   }
getLocEnd()383   SourceLocation getLocEnd() const { return getRParenLoc(); }
getSourceRange()384   SourceRange getSourceRange() const {
385     return SourceRange(getLocStart(), getLocEnd());
386   }
387 
388 
389   /// getUDSuffixLoc - Returns the location of a ud-suffix in the expression.
390   /// For a string literal, there may be multiple identical suffixes. This
391   /// returns the first.
getUDSuffixLoc()392   SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
393 
394   /// getUDSuffix - Returns the ud-suffix specified for this literal.
395   const IdentifierInfo *getUDSuffix() const;
396 
classof(const Stmt * S)397   static bool classof(const Stmt *S) {
398     return S->getStmtClass() == UserDefinedLiteralClass;
399   }
classof(const UserDefinedLiteral *)400   static bool classof(const UserDefinedLiteral *) { return true; }
401 
402   friend class ASTStmtReader;
403   friend class ASTStmtWriter;
404 };
405 
406 /// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
407 ///
408 class CXXBoolLiteralExpr : public Expr {
409   bool Value;
410   SourceLocation Loc;
411 public:
CXXBoolLiteralExpr(bool val,QualType Ty,SourceLocation l)412   CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
413     Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
414          false, false),
415     Value(val), Loc(l) {}
416 
CXXBoolLiteralExpr(EmptyShell Empty)417   explicit CXXBoolLiteralExpr(EmptyShell Empty)
418     : Expr(CXXBoolLiteralExprClass, Empty) { }
419 
getValue()420   bool getValue() const { return Value; }
setValue(bool V)421   void setValue(bool V) { Value = V; }
422 
getSourceRange()423   SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
424 
getLocation()425   SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation L)426   void setLocation(SourceLocation L) { Loc = L; }
427 
classof(const Stmt * T)428   static bool classof(const Stmt *T) {
429     return T->getStmtClass() == CXXBoolLiteralExprClass;
430   }
classof(const CXXBoolLiteralExpr *)431   static bool classof(const CXXBoolLiteralExpr *) { return true; }
432 
433   // Iterators
children()434   child_range children() { return child_range(); }
435 };
436 
437 /// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
438 class CXXNullPtrLiteralExpr : public Expr {
439   SourceLocation Loc;
440 public:
CXXNullPtrLiteralExpr(QualType Ty,SourceLocation l)441   CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
442     Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
443          false, false),
444     Loc(l) {}
445 
CXXNullPtrLiteralExpr(EmptyShell Empty)446   explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
447     : Expr(CXXNullPtrLiteralExprClass, Empty) { }
448 
getSourceRange()449   SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
450 
getLocation()451   SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation L)452   void setLocation(SourceLocation L) { Loc = L; }
453 
classof(const Stmt * T)454   static bool classof(const Stmt *T) {
455     return T->getStmtClass() == CXXNullPtrLiteralExprClass;
456   }
classof(const CXXNullPtrLiteralExpr *)457   static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
458 
children()459   child_range children() { return child_range(); }
460 };
461 
462 /// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
463 /// the type_info that corresponds to the supplied type, or the (possibly
464 /// dynamic) type of the supplied expression.
465 ///
466 /// This represents code like @c typeid(int) or @c typeid(*objPtr)
467 class CXXTypeidExpr : public Expr {
468 private:
469   llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
470   SourceRange Range;
471 
472 public:
CXXTypeidExpr(QualType Ty,TypeSourceInfo * Operand,SourceRange R)473   CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
474     : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
475            // typeid is never type-dependent (C++ [temp.dep.expr]p4)
476            false,
477            // typeid is value-dependent if the type or expression are dependent
478            Operand->getType()->isDependentType(),
479            Operand->getType()->isInstantiationDependentType(),
480            Operand->getType()->containsUnexpandedParameterPack()),
481       Operand(Operand), Range(R) { }
482 
CXXTypeidExpr(QualType Ty,Expr * Operand,SourceRange R)483   CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
484     : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
485         // typeid is never type-dependent (C++ [temp.dep.expr]p4)
486            false,
487         // typeid is value-dependent if the type or expression are dependent
488            Operand->isTypeDependent() || Operand->isValueDependent(),
489            Operand->isInstantiationDependent(),
490            Operand->containsUnexpandedParameterPack()),
491       Operand(Operand), Range(R) { }
492 
CXXTypeidExpr(EmptyShell Empty,bool isExpr)493   CXXTypeidExpr(EmptyShell Empty, bool isExpr)
494     : Expr(CXXTypeidExprClass, Empty) {
495     if (isExpr)
496       Operand = (Expr*)0;
497     else
498       Operand = (TypeSourceInfo*)0;
499   }
500 
501   /// Determine whether this typeid has a type operand which is potentially
502   /// evaluated, per C++11 [expr.typeid]p3.
503   bool isPotentiallyEvaluated() const;
504 
isTypeOperand()505   bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
506 
507   /// \brief Retrieves the type operand of this typeid() expression after
508   /// various required adjustments (removing reference types, cv-qualifiers).
509   QualType getTypeOperand() const;
510 
511   /// \brief Retrieve source information for the type operand.
getTypeOperandSourceInfo()512   TypeSourceInfo *getTypeOperandSourceInfo() const {
513     assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
514     return Operand.get<TypeSourceInfo *>();
515   }
516 
setTypeOperandSourceInfo(TypeSourceInfo * TSI)517   void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
518     assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
519     Operand = TSI;
520   }
521 
getExprOperand()522   Expr *getExprOperand() const {
523     assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
524     return static_cast<Expr*>(Operand.get<Stmt *>());
525   }
526 
setExprOperand(Expr * E)527   void setExprOperand(Expr *E) {
528     assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
529     Operand = E;
530   }
531 
getSourceRange()532   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
setSourceRange(SourceRange R)533   void setSourceRange(SourceRange R) { Range = R; }
534 
classof(const Stmt * T)535   static bool classof(const Stmt *T) {
536     return T->getStmtClass() == CXXTypeidExprClass;
537   }
classof(const CXXTypeidExpr *)538   static bool classof(const CXXTypeidExpr *) { return true; }
539 
540   // Iterators
children()541   child_range children() {
542     if (isTypeOperand()) return child_range();
543     Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
544     return child_range(begin, begin + 1);
545   }
546 };
547 
548 /// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
549 /// the _GUID that corresponds to the supplied type or expression.
550 ///
551 /// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
552 class CXXUuidofExpr : public Expr {
553 private:
554   llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
555   SourceRange Range;
556 
557 public:
CXXUuidofExpr(QualType Ty,TypeSourceInfo * Operand,SourceRange R)558   CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
559     : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
560            false, Operand->getType()->isDependentType(),
561            Operand->getType()->isInstantiationDependentType(),
562            Operand->getType()->containsUnexpandedParameterPack()),
563       Operand(Operand), Range(R) { }
564 
CXXUuidofExpr(QualType Ty,Expr * Operand,SourceRange R)565   CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
566     : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
567            false, Operand->isTypeDependent(),
568            Operand->isInstantiationDependent(),
569            Operand->containsUnexpandedParameterPack()),
570       Operand(Operand), Range(R) { }
571 
CXXUuidofExpr(EmptyShell Empty,bool isExpr)572   CXXUuidofExpr(EmptyShell Empty, bool isExpr)
573     : Expr(CXXUuidofExprClass, Empty) {
574     if (isExpr)
575       Operand = (Expr*)0;
576     else
577       Operand = (TypeSourceInfo*)0;
578   }
579 
isTypeOperand()580   bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
581 
582   /// \brief Retrieves the type operand of this __uuidof() expression after
583   /// various required adjustments (removing reference types, cv-qualifiers).
584   QualType getTypeOperand() const;
585 
586   /// \brief Retrieve source information for the type operand.
getTypeOperandSourceInfo()587   TypeSourceInfo *getTypeOperandSourceInfo() const {
588     assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
589     return Operand.get<TypeSourceInfo *>();
590   }
591 
setTypeOperandSourceInfo(TypeSourceInfo * TSI)592   void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
593     assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
594     Operand = TSI;
595   }
596 
getExprOperand()597   Expr *getExprOperand() const {
598     assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
599     return static_cast<Expr*>(Operand.get<Stmt *>());
600   }
601 
setExprOperand(Expr * E)602   void setExprOperand(Expr *E) {
603     assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
604     Operand = E;
605   }
606 
getSourceRange()607   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
setSourceRange(SourceRange R)608   void setSourceRange(SourceRange R) { Range = R; }
609 
classof(const Stmt * T)610   static bool classof(const Stmt *T) {
611     return T->getStmtClass() == CXXUuidofExprClass;
612   }
classof(const CXXUuidofExpr *)613   static bool classof(const CXXUuidofExpr *) { return true; }
614 
615   // Iterators
children()616   child_range children() {
617     if (isTypeOperand()) return child_range();
618     Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
619     return child_range(begin, begin + 1);
620   }
621 };
622 
623 /// CXXThisExpr - Represents the "this" expression in C++, which is a
624 /// pointer to the object on which the current member function is
625 /// executing (C++ [expr.prim]p3). Example:
626 ///
627 /// @code
628 /// class Foo {
629 /// public:
630 ///   void bar();
631 ///   void test() { this->bar(); }
632 /// };
633 /// @endcode
634 class CXXThisExpr : public Expr {
635   SourceLocation Loc;
636   bool Implicit : 1;
637 
638 public:
CXXThisExpr(SourceLocation L,QualType Type,bool isImplicit)639   CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
640     : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
641            // 'this' is type-dependent if the class type of the enclosing
642            // member function is dependent (C++ [temp.dep.expr]p2)
643            Type->isDependentType(), Type->isDependentType(),
644            Type->isInstantiationDependentType(),
645            /*ContainsUnexpandedParameterPack=*/false),
646       Loc(L), Implicit(isImplicit) { }
647 
CXXThisExpr(EmptyShell Empty)648   CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
649 
getLocation()650   SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation L)651   void setLocation(SourceLocation L) { Loc = L; }
652 
getSourceRange()653   SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
654 
isImplicit()655   bool isImplicit() const { return Implicit; }
setImplicit(bool I)656   void setImplicit(bool I) { Implicit = I; }
657 
classof(const Stmt * T)658   static bool classof(const Stmt *T) {
659     return T->getStmtClass() == CXXThisExprClass;
660   }
classof(const CXXThisExpr *)661   static bool classof(const CXXThisExpr *) { return true; }
662 
663   // Iterators
children()664   child_range children() { return child_range(); }
665 };
666 
667 ///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
668 ///  'throw' and 'throw' assignment-expression.  When
669 ///  assignment-expression isn't present, Op will be null.
670 ///
671 class CXXThrowExpr : public Expr {
672   Stmt *Op;
673   SourceLocation ThrowLoc;
674   /// \brief Whether the thrown variable (if any) is in scope.
675   unsigned IsThrownVariableInScope : 1;
676 
677   friend class ASTStmtReader;
678 
679 public:
680   // Ty is the void type which is used as the result type of the
681   // exepression.  The l is the location of the throw keyword.  expr
682   // can by null, if the optional expression to throw isn't present.
CXXThrowExpr(Expr * expr,QualType Ty,SourceLocation l,bool IsThrownVariableInScope)683   CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
684                bool IsThrownVariableInScope) :
685     Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
686          expr && expr->isInstantiationDependent(),
687          expr && expr->containsUnexpandedParameterPack()),
688     Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
CXXThrowExpr(EmptyShell Empty)689   CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
690 
getSubExpr()691   const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
getSubExpr()692   Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
693 
getThrowLoc()694   SourceLocation getThrowLoc() const { return ThrowLoc; }
695 
696   /// \brief Determines whether the variable thrown by this expression (if any!)
697   /// is within the innermost try block.
698   ///
699   /// This information is required to determine whether the NRVO can apply to
700   /// this variable.
isThrownVariableInScope()701   bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
702 
getSourceRange()703   SourceRange getSourceRange() const LLVM_READONLY {
704     if (getSubExpr() == 0)
705       return SourceRange(ThrowLoc, ThrowLoc);
706     return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
707   }
708 
classof(const Stmt * T)709   static bool classof(const Stmt *T) {
710     return T->getStmtClass() == CXXThrowExprClass;
711   }
classof(const CXXThrowExpr *)712   static bool classof(const CXXThrowExpr *) { return true; }
713 
714   // Iterators
children()715   child_range children() {
716     return child_range(&Op, Op ? &Op+1 : &Op);
717   }
718 };
719 
720 /// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
721 /// function call argument that was created from the corresponding
722 /// parameter's default argument, when the call did not explicitly
723 /// supply arguments for all of the parameters.
724 class CXXDefaultArgExpr : public Expr {
725   /// \brief The parameter whose default is being used.
726   ///
727   /// When the bit is set, the subexpression is stored after the
728   /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
729   /// actual default expression is the subexpression.
730   llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
731 
732   /// \brief The location where the default argument expression was used.
733   SourceLocation Loc;
734 
CXXDefaultArgExpr(StmtClass SC,SourceLocation Loc,ParmVarDecl * param)735   CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
736     : Expr(SC,
737            param->hasUnparsedDefaultArg()
738              ? param->getType().getNonReferenceType()
739              : param->getDefaultArg()->getType(),
740            param->getDefaultArg()->getValueKind(),
741            param->getDefaultArg()->getObjectKind(), false, false, false, false),
742       Param(param, false), Loc(Loc) { }
743 
CXXDefaultArgExpr(StmtClass SC,SourceLocation Loc,ParmVarDecl * param,Expr * SubExpr)744   CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
745                     Expr *SubExpr)
746     : Expr(SC, SubExpr->getType(),
747            SubExpr->getValueKind(), SubExpr->getObjectKind(),
748            false, false, false, false),
749       Param(param, true), Loc(Loc) {
750     *reinterpret_cast<Expr **>(this + 1) = SubExpr;
751   }
752 
753 public:
CXXDefaultArgExpr(EmptyShell Empty)754   CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
755 
756 
757   // Param is the parameter whose default argument is used by this
758   // expression.
Create(ASTContext & C,SourceLocation Loc,ParmVarDecl * Param)759   static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
760                                    ParmVarDecl *Param) {
761     return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
762   }
763 
764   // Param is the parameter whose default argument is used by this
765   // expression, and SubExpr is the expression that will actually be used.
766   static CXXDefaultArgExpr *Create(ASTContext &C,
767                                    SourceLocation Loc,
768                                    ParmVarDecl *Param,
769                                    Expr *SubExpr);
770 
771   // Retrieve the parameter that the argument was created from.
getParam()772   const ParmVarDecl *getParam() const { return Param.getPointer(); }
getParam()773   ParmVarDecl *getParam() { return Param.getPointer(); }
774 
775   // Retrieve the actual argument to the function call.
getExpr()776   const Expr *getExpr() const {
777     if (Param.getInt())
778       return *reinterpret_cast<Expr const * const*> (this + 1);
779     return getParam()->getDefaultArg();
780   }
getExpr()781   Expr *getExpr() {
782     if (Param.getInt())
783       return *reinterpret_cast<Expr **> (this + 1);
784     return getParam()->getDefaultArg();
785   }
786 
787   /// \brief Retrieve the location where this default argument was actually
788   /// used.
getUsedLocation()789   SourceLocation getUsedLocation() const { return Loc; }
790 
getSourceRange()791   SourceRange getSourceRange() const LLVM_READONLY {
792     // Default argument expressions have no representation in the
793     // source, so they have an empty source range.
794     return SourceRange();
795   }
796 
classof(const Stmt * T)797   static bool classof(const Stmt *T) {
798     return T->getStmtClass() == CXXDefaultArgExprClass;
799   }
classof(const CXXDefaultArgExpr *)800   static bool classof(const CXXDefaultArgExpr *) { return true; }
801 
802   // Iterators
children()803   child_range children() { return child_range(); }
804 
805   friend class ASTStmtReader;
806   friend class ASTStmtWriter;
807 };
808 
809 /// CXXTemporary - Represents a C++ temporary.
810 class CXXTemporary {
811   /// Destructor - The destructor that needs to be called.
812   const CXXDestructorDecl *Destructor;
813 
CXXTemporary(const CXXDestructorDecl * destructor)814   CXXTemporary(const CXXDestructorDecl *destructor)
815     : Destructor(destructor) { }
816 
817 public:
818   static CXXTemporary *Create(ASTContext &C,
819                               const CXXDestructorDecl *Destructor);
820 
getDestructor()821   const CXXDestructorDecl *getDestructor() const { return Destructor; }
setDestructor(const CXXDestructorDecl * Dtor)822   void setDestructor(const CXXDestructorDecl *Dtor) {
823     Destructor = Dtor;
824   }
825 };
826 
827 /// \brief Represents binding an expression to a temporary.
828 ///
829 /// This ensures the destructor is called for the temporary. It should only be
830 /// needed for non-POD, non-trivially destructable class types. For example:
831 ///
832 /// \code
833 ///   struct S {
834 ///     S() { }  // User defined constructor makes S non-POD.
835 ///     ~S() { } // User defined destructor makes it non-trivial.
836 ///   };
837 ///   void test() {
838 ///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
839 ///   }
840 /// \endcode
841 class CXXBindTemporaryExpr : public Expr {
842   CXXTemporary *Temp;
843 
844   Stmt *SubExpr;
845 
CXXBindTemporaryExpr(CXXTemporary * temp,Expr * SubExpr)846   CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
847    : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
848           VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
849           SubExpr->isValueDependent(),
850           SubExpr->isInstantiationDependent(),
851           SubExpr->containsUnexpandedParameterPack()),
852      Temp(temp), SubExpr(SubExpr) { }
853 
854 public:
CXXBindTemporaryExpr(EmptyShell Empty)855   CXXBindTemporaryExpr(EmptyShell Empty)
856     : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
857 
858   static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
859                                       Expr* SubExpr);
860 
getTemporary()861   CXXTemporary *getTemporary() { return Temp; }
getTemporary()862   const CXXTemporary *getTemporary() const { return Temp; }
setTemporary(CXXTemporary * T)863   void setTemporary(CXXTemporary *T) { Temp = T; }
864 
getSubExpr()865   const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
getSubExpr()866   Expr *getSubExpr() { return cast<Expr>(SubExpr); }
setSubExpr(Expr * E)867   void setSubExpr(Expr *E) { SubExpr = E; }
868 
getSourceRange()869   SourceRange getSourceRange() const LLVM_READONLY {
870     return SubExpr->getSourceRange();
871   }
872 
873   // Implement isa/cast/dyncast/etc.
classof(const Stmt * T)874   static bool classof(const Stmt *T) {
875     return T->getStmtClass() == CXXBindTemporaryExprClass;
876   }
classof(const CXXBindTemporaryExpr *)877   static bool classof(const CXXBindTemporaryExpr *) { return true; }
878 
879   // Iterators
children()880   child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
881 };
882 
883 /// \brief Represents a call to a C++ constructor.
884 class CXXConstructExpr : public Expr {
885 public:
886   enum ConstructionKind {
887     CK_Complete,
888     CK_NonVirtualBase,
889     CK_VirtualBase,
890     CK_Delegating
891   };
892 
893 private:
894   CXXConstructorDecl *Constructor;
895 
896   SourceLocation Loc;
897   SourceRange ParenRange;
898   unsigned NumArgs : 16;
899   bool Elidable : 1;
900   bool HadMultipleCandidates : 1;
901   bool ListInitialization : 1;
902   bool ZeroInitialization : 1;
903   unsigned ConstructKind : 2;
904   Stmt **Args;
905 
906 protected:
907   CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
908                    SourceLocation Loc,
909                    CXXConstructorDecl *d, bool elidable,
910                    ArrayRef<Expr *> Args,
911                    bool HadMultipleCandidates,
912                    bool ListInitialization,
913                    bool ZeroInitialization,
914                    ConstructionKind ConstructKind,
915                    SourceRange ParenRange);
916 
917   /// \brief Construct an empty C++ construction expression.
CXXConstructExpr(StmtClass SC,EmptyShell Empty)918   CXXConstructExpr(StmtClass SC, EmptyShell Empty)
919     : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
920       HadMultipleCandidates(false), ListInitialization(false),
921       ZeroInitialization(false), ConstructKind(0), Args(0)
922   { }
923 
924 public:
925   /// \brief Construct an empty C++ construction expression.
CXXConstructExpr(EmptyShell Empty)926   explicit CXXConstructExpr(EmptyShell Empty)
927     : Expr(CXXConstructExprClass, Empty), Constructor(0),
928       NumArgs(0), Elidable(false), HadMultipleCandidates(false),
929       ListInitialization(false), ZeroInitialization(false),
930       ConstructKind(0), Args(0)
931   { }
932 
933   static CXXConstructExpr *Create(ASTContext &C, QualType T,
934                                   SourceLocation Loc,
935                                   CXXConstructorDecl *D, bool Elidable,
936                                   ArrayRef<Expr *> Args,
937                                   bool HadMultipleCandidates,
938                                   bool ListInitialization,
939                                   bool ZeroInitialization,
940                                   ConstructionKind ConstructKind,
941                                   SourceRange ParenRange);
942 
getConstructor()943   CXXConstructorDecl* getConstructor() const { return Constructor; }
setConstructor(CXXConstructorDecl * C)944   void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
945 
getLocation()946   SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation Loc)947   void setLocation(SourceLocation Loc) { this->Loc = Loc; }
948 
949   /// \brief Whether this construction is elidable.
isElidable()950   bool isElidable() const { return Elidable; }
setElidable(bool E)951   void setElidable(bool E) { Elidable = E; }
952 
953   /// \brief Whether the referred constructor was resolved from
954   /// an overloaded set having size greater than 1.
hadMultipleCandidates()955   bool hadMultipleCandidates() const { return HadMultipleCandidates; }
setHadMultipleCandidates(bool V)956   void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
957 
958   /// \brief Whether this constructor call was written as list-initialization.
isListInitialization()959   bool isListInitialization() const { return ListInitialization; }
setListInitialization(bool V)960   void setListInitialization(bool V) { ListInitialization = V; }
961 
962   /// \brief Whether this construction first requires
963   /// zero-initialization before the initializer is called.
requiresZeroInitialization()964   bool requiresZeroInitialization() const { return ZeroInitialization; }
setRequiresZeroInitialization(bool ZeroInit)965   void setRequiresZeroInitialization(bool ZeroInit) {
966     ZeroInitialization = ZeroInit;
967   }
968 
969   /// \brief Determines whether this constructor is actually constructing
970   /// a base class (rather than a complete object).
getConstructionKind()971   ConstructionKind getConstructionKind() const {
972     return (ConstructionKind)ConstructKind;
973   }
setConstructionKind(ConstructionKind CK)974   void setConstructionKind(ConstructionKind CK) {
975     ConstructKind = CK;
976   }
977 
978   typedef ExprIterator arg_iterator;
979   typedef ConstExprIterator const_arg_iterator;
980 
arg_begin()981   arg_iterator arg_begin() { return Args; }
arg_end()982   arg_iterator arg_end() { return Args + NumArgs; }
arg_begin()983   const_arg_iterator arg_begin() const { return Args; }
arg_end()984   const_arg_iterator arg_end() const { return Args + NumArgs; }
985 
getArgs()986   Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
getNumArgs()987   unsigned getNumArgs() const { return NumArgs; }
988 
989   /// getArg - Return the specified argument.
getArg(unsigned Arg)990   Expr *getArg(unsigned Arg) {
991     assert(Arg < NumArgs && "Arg access out of range!");
992     return cast<Expr>(Args[Arg]);
993   }
getArg(unsigned Arg)994   const Expr *getArg(unsigned Arg) const {
995     assert(Arg < NumArgs && "Arg access out of range!");
996     return cast<Expr>(Args[Arg]);
997   }
998 
999   /// setArg - Set the specified argument.
setArg(unsigned Arg,Expr * ArgExpr)1000   void setArg(unsigned Arg, Expr *ArgExpr) {
1001     assert(Arg < NumArgs && "Arg access out of range!");
1002     Args[Arg] = ArgExpr;
1003   }
1004 
1005   SourceRange getSourceRange() const LLVM_READONLY;
getParenRange()1006   SourceRange getParenRange() const { return ParenRange; }
setParenRange(SourceRange Range)1007   void setParenRange(SourceRange Range) { ParenRange = Range; }
1008 
classof(const Stmt * T)1009   static bool classof(const Stmt *T) {
1010     return T->getStmtClass() == CXXConstructExprClass ||
1011       T->getStmtClass() == CXXTemporaryObjectExprClass;
1012   }
classof(const CXXConstructExpr *)1013   static bool classof(const CXXConstructExpr *) { return true; }
1014 
1015   // Iterators
children()1016   child_range children() {
1017     return child_range(&Args[0], &Args[0]+NumArgs);
1018   }
1019 
1020   friend class ASTStmtReader;
1021 };
1022 
1023 /// \brief Represents an explicit C++ type conversion that uses "functional"
1024 /// notation (C++ [expr.type.conv]).
1025 ///
1026 /// Example:
1027 /// @code
1028 ///   x = int(0.5);
1029 /// @endcode
1030 class CXXFunctionalCastExpr : public ExplicitCastExpr {
1031   SourceLocation TyBeginLoc;
1032   SourceLocation RParenLoc;
1033 
CXXFunctionalCastExpr(QualType ty,ExprValueKind VK,TypeSourceInfo * writtenTy,SourceLocation tyBeginLoc,CastKind kind,Expr * castExpr,unsigned pathSize,SourceLocation rParenLoc)1034   CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1035                         TypeSourceInfo *writtenTy,
1036                         SourceLocation tyBeginLoc, CastKind kind,
1037                         Expr *castExpr, unsigned pathSize,
1038                         SourceLocation rParenLoc)
1039     : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1040                        castExpr, pathSize, writtenTy),
1041       TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
1042 
CXXFunctionalCastExpr(EmptyShell Shell,unsigned PathSize)1043   explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1044     : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1045 
1046 public:
1047   static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
1048                                        ExprValueKind VK,
1049                                        TypeSourceInfo *Written,
1050                                        SourceLocation TyBeginLoc,
1051                                        CastKind Kind, Expr *Op,
1052                                        const CXXCastPath *Path,
1053                                        SourceLocation RPLoc);
1054   static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
1055                                             unsigned PathSize);
1056 
getTypeBeginLoc()1057   SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
setTypeBeginLoc(SourceLocation L)1058   void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
getRParenLoc()1059   SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)1060   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1061 
getSourceRange()1062   SourceRange getSourceRange() const LLVM_READONLY {
1063     return SourceRange(TyBeginLoc, RParenLoc);
1064   }
classof(const Stmt * T)1065   static bool classof(const Stmt *T) {
1066     return T->getStmtClass() == CXXFunctionalCastExprClass;
1067   }
classof(const CXXFunctionalCastExpr *)1068   static bool classof(const CXXFunctionalCastExpr *) { return true; }
1069 };
1070 
1071 /// @brief Represents a C++ functional cast expression that builds a
1072 /// temporary object.
1073 ///
1074 /// This expression type represents a C++ "functional" cast
1075 /// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1076 /// constructor to build a temporary object. With N == 1 arguments the
1077 /// functional cast expression will be represented by CXXFunctionalCastExpr.
1078 /// Example:
1079 /// @code
1080 /// struct X { X(int, float); }
1081 ///
1082 /// X create_X() {
1083 ///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1084 /// };
1085 /// @endcode
1086 class CXXTemporaryObjectExpr : public CXXConstructExpr {
1087   TypeSourceInfo *Type;
1088 
1089 public:
1090   CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1091                          TypeSourceInfo *Type,
1092                          ArrayRef<Expr *> Args,
1093                          SourceRange parenRange,
1094                          bool HadMultipleCandidates,
1095                          bool ZeroInitialization = false);
CXXTemporaryObjectExpr(EmptyShell Empty)1096   explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1097     : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1098 
getTypeSourceInfo()1099   TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1100 
1101   SourceRange getSourceRange() const LLVM_READONLY;
1102 
classof(const Stmt * T)1103   static bool classof(const Stmt *T) {
1104     return T->getStmtClass() == CXXTemporaryObjectExprClass;
1105   }
classof(const CXXTemporaryObjectExpr *)1106   static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1107 
1108   friend class ASTStmtReader;
1109 };
1110 
1111 /// \brief A C++ lambda expression, which produces a function object
1112 /// (of unspecified type) that can be invoked later.
1113 ///
1114 /// Example:
1115 /// \code
1116 /// void low_pass_filter(std::vector<double> &values, double cutoff) {
1117 ///   values.erase(std::remove_if(values.begin(), values.end(),
1118 //                                [=](double value) { return value > cutoff; });
1119 /// }
1120 /// \endcode
1121 ///
1122 /// Lambda expressions can capture local variables, either by copying
1123 /// the values of those local variables at the time the function
1124 /// object is constructed (not when it is called!) or by holding a
1125 /// reference to the local variable. These captures can occur either
1126 /// implicitly or can be written explicitly between the square
1127 /// brackets ([...]) that start the lambda expression.
1128 class LambdaExpr : public Expr {
1129   enum {
1130     /// \brief Flag used by the Capture class to indicate that the given
1131     /// capture was implicit.
1132     Capture_Implicit = 0x01,
1133 
1134     /// \brief Flag used by the Capture class to indciate that the
1135     /// given capture was by-copy.
1136     Capture_ByCopy = 0x02
1137   };
1138 
1139   /// \brief The source range that covers the lambda introducer ([...]).
1140   SourceRange IntroducerRange;
1141 
1142   /// \brief The number of captures.
1143   unsigned NumCaptures : 16;
1144 
1145   /// \brief The default capture kind, which is a value of type
1146   /// LambdaCaptureDefault.
1147   unsigned CaptureDefault : 2;
1148 
1149   /// \brief Whether this lambda had an explicit parameter list vs. an
1150   /// implicit (and empty) parameter list.
1151   unsigned ExplicitParams : 1;
1152 
1153   /// \brief Whether this lambda had the result type explicitly specified.
1154   unsigned ExplicitResultType : 1;
1155 
1156   /// \brief Whether there are any array index variables stored at the end of
1157   /// this lambda expression.
1158   unsigned HasArrayIndexVars : 1;
1159 
1160   /// \brief The location of the closing brace ('}') that completes
1161   /// the lambda.
1162   ///
1163   /// The location of the brace is also available by looking up the
1164   /// function call operator in the lambda class. However, it is
1165   /// stored here to improve the performance of getSourceRange(), and
1166   /// to avoid having to deserialize the function call operator from a
1167   /// module file just to determine the source range.
1168   SourceLocation ClosingBrace;
1169 
1170   // Note: The capture initializers are stored directly after the lambda
1171   // expression, along with the index variables used to initialize by-copy
1172   // array captures.
1173 
1174 public:
1175   /// \brief Describes the capture of either a variable or 'this'.
1176   class Capture {
1177     llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1178     SourceLocation Loc;
1179     SourceLocation EllipsisLoc;
1180 
1181     friend class ASTStmtReader;
1182     friend class ASTStmtWriter;
1183 
1184   public:
1185     /// \brief Create a new capture.
1186     ///
1187     /// \param Loc The source location associated with this capture.
1188     ///
1189     /// \param Kind The kind of capture (this, byref, bycopy).
1190     ///
1191     /// \param Implicit Whether the capture was implicit or explicit.
1192     ///
1193     /// \param Var The local variable being captured, or null if capturing this.
1194     ///
1195     /// \param EllipsisLoc The location of the ellipsis (...) for a
1196     /// capture that is a pack expansion, or an invalid source
1197     /// location to indicate that this is not a pack expansion.
1198     Capture(SourceLocation Loc, bool Implicit,
1199             LambdaCaptureKind Kind, VarDecl *Var = 0,
1200             SourceLocation EllipsisLoc = SourceLocation());
1201 
1202     /// \brief Determine the kind of capture.
1203     LambdaCaptureKind getCaptureKind() const;
1204 
1205     /// \brief Determine whether this capture handles the C++ 'this'
1206     /// pointer.
capturesThis()1207     bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1208 
1209     /// \brief Determine whether this capture handles a variable.
capturesVariable()1210     bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1211 
1212     /// \brief Retrieve the declaration of the local variable being
1213     /// captured.
1214     ///
1215     /// This operation is only valid if this capture does not capture
1216     /// 'this'.
getCapturedVar()1217     VarDecl *getCapturedVar() const {
1218       assert(!capturesThis() && "No variable available for 'this' capture");
1219       return VarAndBits.getPointer();
1220     }
1221 
1222     /// \brief Determine whether this was an implicit capture (not
1223     /// written between the square brackets introducing the lambda).
isImplicit()1224     bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1225 
1226     /// \brief Determine whether this was an explicit capture, written
1227     /// between the square brackets introducing the lambda.
isExplicit()1228     bool isExplicit() const { return !isImplicit(); }
1229 
1230     /// \brief Retrieve the source location of the capture.
1231     ///
1232     /// For an explicit capture, this returns the location of the
1233     /// explicit capture in the source. For an implicit capture, this
1234     /// returns the location at which the variable or 'this' was first
1235     /// used.
getLocation()1236     SourceLocation getLocation() const { return Loc; }
1237 
1238     /// \brief Determine whether this capture is a pack expansion,
1239     /// which captures a function parameter pack.
isPackExpansion()1240     bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1241 
1242     /// \brief Retrieve the location of the ellipsis for a capture
1243     /// that is a pack expansion.
getEllipsisLoc()1244     SourceLocation getEllipsisLoc() const {
1245       assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1246       return EllipsisLoc;
1247     }
1248   };
1249 
1250 private:
1251   /// \brief Construct a lambda expression.
1252   LambdaExpr(QualType T, SourceRange IntroducerRange,
1253              LambdaCaptureDefault CaptureDefault,
1254              ArrayRef<Capture> Captures,
1255              bool ExplicitParams,
1256              bool ExplicitResultType,
1257              ArrayRef<Expr *> CaptureInits,
1258              ArrayRef<VarDecl *> ArrayIndexVars,
1259              ArrayRef<unsigned> ArrayIndexStarts,
1260              SourceLocation ClosingBrace,
1261              bool ContainsUnexpandedParameterPack);
1262 
1263   /// \brief Construct an empty lambda expression.
LambdaExpr(EmptyShell Empty,unsigned NumCaptures,bool HasArrayIndexVars)1264   LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1265     : Expr(LambdaExprClass, Empty),
1266       NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1267       ExplicitResultType(false), HasArrayIndexVars(true) {
1268     getStoredStmts()[NumCaptures] = 0;
1269   }
1270 
getStoredStmts()1271   Stmt **getStoredStmts() const {
1272     return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1273   }
1274 
1275   /// \brief Retrieve the mapping from captures to the first array index
1276   /// variable.
getArrayIndexStarts()1277   unsigned *getArrayIndexStarts() const {
1278     return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1279   }
1280 
1281   /// \brief Retrieve the complete set of array-index variables.
getArrayIndexVars()1282   VarDecl **getArrayIndexVars() const {
1283     unsigned ArrayIndexSize =
1284         llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1285                                  llvm::alignOf<VarDecl*>());
1286     return reinterpret_cast<VarDecl **>(
1287         reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1288   }
1289 
1290 public:
1291   /// \brief Construct a new lambda expression.
1292   static LambdaExpr *Create(ASTContext &C,
1293                             CXXRecordDecl *Class,
1294                             SourceRange IntroducerRange,
1295                             LambdaCaptureDefault CaptureDefault,
1296                             ArrayRef<Capture> Captures,
1297                             bool ExplicitParams,
1298                             bool ExplicitResultType,
1299                             ArrayRef<Expr *> CaptureInits,
1300                             ArrayRef<VarDecl *> ArrayIndexVars,
1301                             ArrayRef<unsigned> ArrayIndexStarts,
1302                             SourceLocation ClosingBrace,
1303                             bool ContainsUnexpandedParameterPack);
1304 
1305   /// \brief Construct a new lambda expression that will be deserialized from
1306   /// an external source.
1307   static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1308                                         unsigned NumArrayIndexVars);
1309 
1310   /// \brief Determine the default capture kind for this lambda.
getCaptureDefault()1311   LambdaCaptureDefault getCaptureDefault() const {
1312     return static_cast<LambdaCaptureDefault>(CaptureDefault);
1313   }
1314 
1315   /// \brief An iterator that walks over the captures of the lambda,
1316   /// both implicit and explicit.
1317   typedef const Capture *capture_iterator;
1318 
1319   /// \brief Retrieve an iterator pointing to the first lambda capture.
1320   capture_iterator capture_begin() const;
1321 
1322   /// \brief Retrieve an iterator pointing past the end of the
1323   /// sequence of lambda captures.
1324   capture_iterator capture_end() const;
1325 
1326   /// \brief Determine the number of captures in this lambda.
capture_size()1327   unsigned capture_size() const { return NumCaptures; }
1328 
1329   /// \brief Retrieve an iterator pointing to the first explicit
1330   /// lambda capture.
1331   capture_iterator explicit_capture_begin() const;
1332 
1333   /// \brief Retrieve an iterator pointing past the end of the sequence of
1334   /// explicit lambda captures.
1335   capture_iterator explicit_capture_end() const;
1336 
1337   /// \brief Retrieve an iterator pointing to the first implicit
1338   /// lambda capture.
1339   capture_iterator implicit_capture_begin() const;
1340 
1341   /// \brief Retrieve an iterator pointing past the end of the sequence of
1342   /// implicit lambda captures.
1343   capture_iterator implicit_capture_end() const;
1344 
1345   /// \brief Iterator that walks over the capture initialization
1346   /// arguments.
1347   typedef Expr **capture_init_iterator;
1348 
1349   /// \brief Retrieve the first initialization argument for this
1350   /// lambda expression (which initializes the first capture field).
capture_init_begin()1351   capture_init_iterator capture_init_begin() const {
1352     return reinterpret_cast<Expr **>(getStoredStmts());
1353   }
1354 
1355   /// \brief Retrieve the iterator pointing one past the last
1356   /// initialization argument for this lambda expression.
capture_init_end()1357   capture_init_iterator capture_init_end() const {
1358     return capture_init_begin() + NumCaptures;
1359   }
1360 
1361   /// \brief Retrieve the set of index variables used in the capture
1362   /// initializer of an array captured by copy.
1363   ///
1364   /// \param Iter The iterator that points at the capture initializer for
1365   /// which we are extracting the corresponding index variables.
1366   ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1367 
1368   /// \brief Retrieve the source range covering the lambda introducer,
1369   /// which contains the explicit capture list surrounded by square
1370   /// brackets ([...]).
getIntroducerRange()1371   SourceRange getIntroducerRange() const { return IntroducerRange; }
1372 
1373   /// \brief Retrieve the class that corresponds to the lambda, which
1374   /// stores the captures in its fields and provides the various
1375   /// operations permitted on a lambda (copying, calling).
1376   CXXRecordDecl *getLambdaClass() const;
1377 
1378   /// \brief Retrieve the function call operator associated with this
1379   /// lambda expression.
1380   CXXMethodDecl *getCallOperator() const;
1381 
1382   /// \brief Retrieve the body of the lambda.
1383   CompoundStmt *getBody() const;
1384 
1385   /// \brief Determine whether the lambda is mutable, meaning that any
1386   /// captures values can be modified.
1387   bool isMutable() const;
1388 
1389   /// \brief Determine whether this lambda has an explicit parameter
1390   /// list vs. an implicit (empty) parameter list.
hasExplicitParameters()1391   bool hasExplicitParameters() const { return ExplicitParams; }
1392 
1393   /// \brief Whether this lambda had its result type explicitly specified.
hasExplicitResultType()1394   bool hasExplicitResultType() const { return ExplicitResultType; }
1395 
classof(const Stmt * T)1396   static bool classof(const Stmt *T) {
1397     return T->getStmtClass() == LambdaExprClass;
1398   }
classof(const LambdaExpr *)1399   static bool classof(const LambdaExpr *) { return true; }
1400 
getSourceRange()1401   SourceRange getSourceRange() const LLVM_READONLY {
1402     return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1403   }
1404 
children()1405   child_range children() {
1406     return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1407   }
1408 
1409   friend class ASTStmtReader;
1410   friend class ASTStmtWriter;
1411 };
1412 
1413 /// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1414 /// Expression "T()" which creates a value-initialized rvalue of type
1415 /// T, which is a non-class type.
1416 ///
1417 class CXXScalarValueInitExpr : public Expr {
1418   SourceLocation RParenLoc;
1419   TypeSourceInfo *TypeInfo;
1420 
1421   friend class ASTStmtReader;
1422 
1423 public:
1424   /// \brief Create an explicitly-written scalar-value initialization
1425   /// expression.
CXXScalarValueInitExpr(QualType Type,TypeSourceInfo * TypeInfo,SourceLocation rParenLoc)1426   CXXScalarValueInitExpr(QualType Type,
1427                          TypeSourceInfo *TypeInfo,
1428                          SourceLocation rParenLoc ) :
1429     Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1430          false, false, Type->isInstantiationDependentType(), false),
1431     RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1432 
CXXScalarValueInitExpr(EmptyShell Shell)1433   explicit CXXScalarValueInitExpr(EmptyShell Shell)
1434     : Expr(CXXScalarValueInitExprClass, Shell) { }
1435 
getTypeSourceInfo()1436   TypeSourceInfo *getTypeSourceInfo() const {
1437     return TypeInfo;
1438   }
1439 
getRParenLoc()1440   SourceLocation getRParenLoc() const { return RParenLoc; }
1441 
1442   SourceRange getSourceRange() const LLVM_READONLY;
1443 
classof(const Stmt * T)1444   static bool classof(const Stmt *T) {
1445     return T->getStmtClass() == CXXScalarValueInitExprClass;
1446   }
classof(const CXXScalarValueInitExpr *)1447   static bool classof(const CXXScalarValueInitExpr *) { return true; }
1448 
1449   // Iterators
children()1450   child_range children() { return child_range(); }
1451 };
1452 
1453 /// @brief Represents a new-expression for memory allocation and constructor
1454 // calls, e.g: "new CXXNewExpr(foo)".
1455 class CXXNewExpr : public Expr {
1456   // Contains an optional array size expression, an optional initialization
1457   // expression, and any number of optional placement arguments, in that order.
1458   Stmt **SubExprs;
1459   /// \brief Points to the allocation function used.
1460   FunctionDecl *OperatorNew;
1461   /// \brief Points to the deallocation function used in case of error. May be
1462   /// null.
1463   FunctionDecl *OperatorDelete;
1464 
1465   /// \brief The allocated type-source information, as written in the source.
1466   TypeSourceInfo *AllocatedTypeInfo;
1467 
1468   /// \brief If the allocated type was expressed as a parenthesized type-id,
1469   /// the source range covering the parenthesized type-id.
1470   SourceRange TypeIdParens;
1471 
1472   /// \brief Location of the first token.
1473   SourceLocation StartLoc;
1474 
1475   /// \brief Source-range of a paren-delimited initializer.
1476   SourceRange DirectInitRange;
1477 
1478   // Was the usage ::new, i.e. is the global new to be used?
1479   bool GlobalNew : 1;
1480   // Do we allocate an array? If so, the first SubExpr is the size expression.
1481   bool Array : 1;
1482   // If this is an array allocation, does the usual deallocation
1483   // function for the allocated type want to know the allocated size?
1484   bool UsualArrayDeleteWantsSize : 1;
1485   // The number of placement new arguments.
1486   unsigned NumPlacementArgs : 13;
1487   // What kind of initializer do we have? Could be none, parens, or braces.
1488   // In storage, we distinguish between "none, and no initializer expr", and
1489   // "none, but an implicit initializer expr".
1490   unsigned StoredInitializationStyle : 2;
1491 
1492   friend class ASTStmtReader;
1493   friend class ASTStmtWriter;
1494 public:
1495   enum InitializationStyle {
1496     NoInit,   ///< New-expression has no initializer as written.
1497     CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1498     ListInit  ///< New-expression has a C++11 list-initializer.
1499   };
1500 
1501   CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1502              FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1503              ArrayRef<Expr*> placementArgs,
1504              SourceRange typeIdParens, Expr *arraySize,
1505              InitializationStyle initializationStyle, Expr *initializer,
1506              QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1507              SourceLocation startLoc, SourceRange directInitRange);
CXXNewExpr(EmptyShell Shell)1508   explicit CXXNewExpr(EmptyShell Shell)
1509     : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1510 
1511   void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1512                          bool hasInitializer);
1513 
getAllocatedType()1514   QualType getAllocatedType() const {
1515     assert(getType()->isPointerType());
1516     return getType()->getAs<PointerType>()->getPointeeType();
1517   }
1518 
getAllocatedTypeSourceInfo()1519   TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1520     return AllocatedTypeInfo;
1521   }
1522 
1523   /// \brief True if the allocation result needs to be null-checked.
1524   /// C++0x [expr.new]p13:
1525   ///   If the allocation function returns null, initialization shall
1526   ///   not be done, the deallocation function shall not be called,
1527   ///   and the value of the new-expression shall be null.
1528   /// An allocation function is not allowed to return null unless it
1529   /// has a non-throwing exception-specification.  The '03 rule is
1530   /// identical except that the definition of a non-throwing
1531   /// exception specification is just "is it throw()?".
1532   bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1533 
getOperatorNew()1534   FunctionDecl *getOperatorNew() const { return OperatorNew; }
setOperatorNew(FunctionDecl * D)1535   void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
getOperatorDelete()1536   FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
setOperatorDelete(FunctionDecl * D)1537   void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1538 
isArray()1539   bool isArray() const { return Array; }
getArraySize()1540   Expr *getArraySize() {
1541     return Array ? cast<Expr>(SubExprs[0]) : 0;
1542   }
getArraySize()1543   const Expr *getArraySize() const {
1544     return Array ? cast<Expr>(SubExprs[0]) : 0;
1545   }
1546 
getNumPlacementArgs()1547   unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
getPlacementArgs()1548   Expr **getPlacementArgs() {
1549     return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1550   }
1551 
getPlacementArg(unsigned i)1552   Expr *getPlacementArg(unsigned i) {
1553     assert(i < NumPlacementArgs && "Index out of range");
1554     return getPlacementArgs()[i];
1555   }
getPlacementArg(unsigned i)1556   const Expr *getPlacementArg(unsigned i) const {
1557     assert(i < NumPlacementArgs && "Index out of range");
1558     return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1559   }
1560 
isParenTypeId()1561   bool isParenTypeId() const { return TypeIdParens.isValid(); }
getTypeIdParens()1562   SourceRange getTypeIdParens() const { return TypeIdParens; }
1563 
isGlobalNew()1564   bool isGlobalNew() const { return GlobalNew; }
1565 
1566   /// \brief Whether this new-expression has any initializer at all.
hasInitializer()1567   bool hasInitializer() const { return StoredInitializationStyle > 0; }
1568 
1569   /// \brief The kind of initializer this new-expression has.
getInitializationStyle()1570   InitializationStyle getInitializationStyle() const {
1571     if (StoredInitializationStyle == 0)
1572       return NoInit;
1573     return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1574   }
1575 
1576   /// \brief The initializer of this new-expression.
getInitializer()1577   Expr *getInitializer() {
1578     return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1579   }
getInitializer()1580   const Expr *getInitializer() const {
1581     return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1582   }
1583 
1584   /// \brief Returns the CXXConstructExpr from this new-expression, or NULL.
getConstructExpr()1585   const CXXConstructExpr* getConstructExpr() const {
1586     return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1587   }
1588 
1589   /// Answers whether the usual array deallocation function for the
1590   /// allocated type expects the size of the allocation as a
1591   /// parameter.
doesUsualArrayDeleteWantSize()1592   bool doesUsualArrayDeleteWantSize() const {
1593     return UsualArrayDeleteWantsSize;
1594   }
1595 
1596   typedef ExprIterator arg_iterator;
1597   typedef ConstExprIterator const_arg_iterator;
1598 
placement_arg_begin()1599   arg_iterator placement_arg_begin() {
1600     return SubExprs + Array + hasInitializer();
1601   }
placement_arg_end()1602   arg_iterator placement_arg_end() {
1603     return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1604   }
placement_arg_begin()1605   const_arg_iterator placement_arg_begin() const {
1606     return SubExprs + Array + hasInitializer();
1607   }
placement_arg_end()1608   const_arg_iterator placement_arg_end() const {
1609     return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1610   }
1611 
1612   typedef Stmt **raw_arg_iterator;
raw_arg_begin()1613   raw_arg_iterator raw_arg_begin() { return SubExprs; }
raw_arg_end()1614   raw_arg_iterator raw_arg_end() {
1615     return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1616   }
raw_arg_begin()1617   const_arg_iterator raw_arg_begin() const { return SubExprs; }
raw_arg_end()1618   const_arg_iterator raw_arg_end() const {
1619     return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1620   }
1621 
getStartLoc()1622   SourceLocation getStartLoc() const { return StartLoc; }
1623   SourceLocation getEndLoc() const;
1624 
getDirectInitRange()1625   SourceRange getDirectInitRange() const { return DirectInitRange; }
1626 
getSourceRange()1627   SourceRange getSourceRange() const LLVM_READONLY {
1628     return SourceRange(getStartLoc(), getEndLoc());
1629   }
1630 
classof(const Stmt * T)1631   static bool classof(const Stmt *T) {
1632     return T->getStmtClass() == CXXNewExprClass;
1633   }
classof(const CXXNewExpr *)1634   static bool classof(const CXXNewExpr *) { return true; }
1635 
1636   // Iterators
children()1637   child_range children() {
1638     return child_range(raw_arg_begin(), raw_arg_end());
1639   }
1640 };
1641 
1642 /// \brief Represents a \c delete expression for memory deallocation and
1643 /// destructor calls, e.g. "delete[] pArray".
1644 class CXXDeleteExpr : public Expr {
1645   // Points to the operator delete overload that is used. Could be a member.
1646   FunctionDecl *OperatorDelete;
1647   // The pointer expression to be deleted.
1648   Stmt *Argument;
1649   // Location of the expression.
1650   SourceLocation Loc;
1651   // Is this a forced global delete, i.e. "::delete"?
1652   bool GlobalDelete : 1;
1653   // Is this the array form of delete, i.e. "delete[]"?
1654   bool ArrayForm : 1;
1655   // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1656   // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1657   // will be true).
1658   bool ArrayFormAsWritten : 1;
1659   // Does the usual deallocation function for the element type require
1660   // a size_t argument?
1661   bool UsualArrayDeleteWantsSize : 1;
1662 public:
CXXDeleteExpr(QualType ty,bool globalDelete,bool arrayForm,bool arrayFormAsWritten,bool usualArrayDeleteWantsSize,FunctionDecl * operatorDelete,Expr * arg,SourceLocation loc)1663   CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1664                 bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1665                 FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1666     : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1667            arg->isInstantiationDependent(),
1668            arg->containsUnexpandedParameterPack()),
1669       OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1670       GlobalDelete(globalDelete),
1671       ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1672       UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
CXXDeleteExpr(EmptyShell Shell)1673   explicit CXXDeleteExpr(EmptyShell Shell)
1674     : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1675 
isGlobalDelete()1676   bool isGlobalDelete() const { return GlobalDelete; }
isArrayForm()1677   bool isArrayForm() const { return ArrayForm; }
isArrayFormAsWritten()1678   bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1679 
1680   /// Answers whether the usual array deallocation function for the
1681   /// allocated type expects the size of the allocation as a
1682   /// parameter.  This can be true even if the actual deallocation
1683   /// function that we're using doesn't want a size.
doesUsualArrayDeleteWantSize()1684   bool doesUsualArrayDeleteWantSize() const {
1685     return UsualArrayDeleteWantsSize;
1686   }
1687 
getOperatorDelete()1688   FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1689 
getArgument()1690   Expr *getArgument() { return cast<Expr>(Argument); }
getArgument()1691   const Expr *getArgument() const { return cast<Expr>(Argument); }
1692 
1693   /// \brief Retrieve the type being destroyed.  If the type being
1694   /// destroyed is a dependent type which may or may not be a pointer,
1695   /// return an invalid type.
1696   QualType getDestroyedType() const;
1697 
getSourceRange()1698   SourceRange getSourceRange() const LLVM_READONLY {
1699     return SourceRange(Loc, Argument->getLocEnd());
1700   }
1701 
classof(const Stmt * T)1702   static bool classof(const Stmt *T) {
1703     return T->getStmtClass() == CXXDeleteExprClass;
1704   }
classof(const CXXDeleteExpr *)1705   static bool classof(const CXXDeleteExpr *) { return true; }
1706 
1707   // Iterators
children()1708   child_range children() { return child_range(&Argument, &Argument+1); }
1709 
1710   friend class ASTStmtReader;
1711 };
1712 
1713 /// \brief Stores the type being destroyed by a pseudo-destructor expression.
1714 class PseudoDestructorTypeStorage {
1715   /// \brief Either the type source information or the name of the type, if
1716   /// it couldn't be resolved due to type-dependence.
1717   llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1718 
1719   /// \brief The starting source location of the pseudo-destructor type.
1720   SourceLocation Location;
1721 
1722 public:
PseudoDestructorTypeStorage()1723   PseudoDestructorTypeStorage() { }
1724 
PseudoDestructorTypeStorage(IdentifierInfo * II,SourceLocation Loc)1725   PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1726     : Type(II), Location(Loc) { }
1727 
1728   PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1729 
getTypeSourceInfo()1730   TypeSourceInfo *getTypeSourceInfo() const {
1731     return Type.dyn_cast<TypeSourceInfo *>();
1732   }
1733 
getIdentifier()1734   IdentifierInfo *getIdentifier() const {
1735     return Type.dyn_cast<IdentifierInfo *>();
1736   }
1737 
getLocation()1738   SourceLocation getLocation() const { return Location; }
1739 };
1740 
1741 /// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1742 ///
1743 /// A pseudo-destructor is an expression that looks like a member access to a
1744 /// destructor of a scalar type, except that scalar types don't have
1745 /// destructors. For example:
1746 ///
1747 /// \code
1748 /// typedef int T;
1749 /// void f(int *p) {
1750 ///   p->T::~T();
1751 /// }
1752 /// \endcode
1753 ///
1754 /// Pseudo-destructors typically occur when instantiating templates such as:
1755 ///
1756 /// \code
1757 /// template<typename T>
1758 /// void destroy(T* ptr) {
1759 ///   ptr->T::~T();
1760 /// }
1761 /// \endcode
1762 ///
1763 /// for scalar types. A pseudo-destructor expression has no run-time semantics
1764 /// beyond evaluating the base expression.
1765 class CXXPseudoDestructorExpr : public Expr {
1766   /// \brief The base expression (that is being destroyed).
1767   Stmt *Base;
1768 
1769   /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1770   /// period ('.').
1771   bool IsArrow : 1;
1772 
1773   /// \brief The location of the '.' or '->' operator.
1774   SourceLocation OperatorLoc;
1775 
1776   /// \brief The nested-name-specifier that follows the operator, if present.
1777   NestedNameSpecifierLoc QualifierLoc;
1778 
1779   /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1780   /// expression.
1781   TypeSourceInfo *ScopeType;
1782 
1783   /// \brief The location of the '::' in a qualified pseudo-destructor
1784   /// expression.
1785   SourceLocation ColonColonLoc;
1786 
1787   /// \brief The location of the '~'.
1788   SourceLocation TildeLoc;
1789 
1790   /// \brief The type being destroyed, or its name if we were unable to
1791   /// resolve the name.
1792   PseudoDestructorTypeStorage DestroyedType;
1793 
1794   friend class ASTStmtReader;
1795 
1796 public:
1797   CXXPseudoDestructorExpr(ASTContext &Context,
1798                           Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1799                           NestedNameSpecifierLoc QualifierLoc,
1800                           TypeSourceInfo *ScopeType,
1801                           SourceLocation ColonColonLoc,
1802                           SourceLocation TildeLoc,
1803                           PseudoDestructorTypeStorage DestroyedType);
1804 
CXXPseudoDestructorExpr(EmptyShell Shell)1805   explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1806     : Expr(CXXPseudoDestructorExprClass, Shell),
1807       Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1808 
getBase()1809   Expr *getBase() const { return cast<Expr>(Base); }
1810 
1811   /// \brief Determines whether this member expression actually had
1812   /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1813   /// x->Base::foo.
hasQualifier()1814   bool hasQualifier() const { return QualifierLoc; }
1815 
1816   /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1817   /// with source-location information.
getQualifierLoc()1818   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1819 
1820   /// \brief If the member name was qualified, retrieves the
1821   /// nested-name-specifier that precedes the member name. Otherwise, returns
1822   /// NULL.
getQualifier()1823   NestedNameSpecifier *getQualifier() const {
1824     return QualifierLoc.getNestedNameSpecifier();
1825   }
1826 
1827   /// \brief Determine whether this pseudo-destructor expression was written
1828   /// using an '->' (otherwise, it used a '.').
isArrow()1829   bool isArrow() const { return IsArrow; }
1830 
1831   /// \brief Retrieve the location of the '.' or '->' operator.
getOperatorLoc()1832   SourceLocation getOperatorLoc() const { return OperatorLoc; }
1833 
1834   /// \brief Retrieve the scope type in a qualified pseudo-destructor
1835   /// expression.
1836   ///
1837   /// Pseudo-destructor expressions can have extra qualification within them
1838   /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1839   /// Here, if the object type of the expression is (or may be) a scalar type,
1840   /// \p T may also be a scalar type and, therefore, cannot be part of a
1841   /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1842   /// destructor expression.
getScopeTypeInfo()1843   TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1844 
1845   /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1846   /// expression.
getColonColonLoc()1847   SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1848 
1849   /// \brief Retrieve the location of the '~'.
getTildeLoc()1850   SourceLocation getTildeLoc() const { return TildeLoc; }
1851 
1852   /// \brief Retrieve the source location information for the type
1853   /// being destroyed.
1854   ///
1855   /// This type-source information is available for non-dependent
1856   /// pseudo-destructor expressions and some dependent pseudo-destructor
1857   /// expressions. Returns NULL if we only have the identifier for a
1858   /// dependent pseudo-destructor expression.
getDestroyedTypeInfo()1859   TypeSourceInfo *getDestroyedTypeInfo() const {
1860     return DestroyedType.getTypeSourceInfo();
1861   }
1862 
1863   /// \brief In a dependent pseudo-destructor expression for which we do not
1864   /// have full type information on the destroyed type, provides the name
1865   /// of the destroyed type.
getDestroyedTypeIdentifier()1866   IdentifierInfo *getDestroyedTypeIdentifier() const {
1867     return DestroyedType.getIdentifier();
1868   }
1869 
1870   /// \brief Retrieve the type being destroyed.
1871   QualType getDestroyedType() const;
1872 
1873   /// \brief Retrieve the starting location of the type being destroyed.
getDestroyedTypeLoc()1874   SourceLocation getDestroyedTypeLoc() const {
1875     return DestroyedType.getLocation();
1876   }
1877 
1878   /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1879   /// expression.
setDestroyedType(IdentifierInfo * II,SourceLocation Loc)1880   void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1881     DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1882   }
1883 
1884   /// \brief Set the destroyed type.
setDestroyedType(TypeSourceInfo * Info)1885   void setDestroyedType(TypeSourceInfo *Info) {
1886     DestroyedType = PseudoDestructorTypeStorage(Info);
1887   }
1888 
1889   SourceRange getSourceRange() const LLVM_READONLY;
1890 
classof(const Stmt * T)1891   static bool classof(const Stmt *T) {
1892     return T->getStmtClass() == CXXPseudoDestructorExprClass;
1893   }
classof(const CXXPseudoDestructorExpr *)1894   static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1895 
1896   // Iterators
children()1897   child_range children() { return child_range(&Base, &Base + 1); }
1898 };
1899 
1900 /// \brief Represents a GCC or MS unary type trait, as used in the
1901 /// implementation of TR1/C++11 type trait templates.
1902 ///
1903 /// Example:
1904 /// @code
1905 ///   __is_pod(int) == true
1906 ///   __is_enum(std::string) == false
1907 /// @endcode
1908 class UnaryTypeTraitExpr : public Expr {
1909   /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1910   unsigned UTT : 31;
1911   /// The value of the type trait. Unspecified if dependent.
1912   bool Value : 1;
1913 
1914   /// Loc - The location of the type trait keyword.
1915   SourceLocation Loc;
1916 
1917   /// RParen - The location of the closing paren.
1918   SourceLocation RParen;
1919 
1920   /// The type being queried.
1921   TypeSourceInfo *QueriedType;
1922 
1923 public:
UnaryTypeTraitExpr(SourceLocation loc,UnaryTypeTrait utt,TypeSourceInfo * queried,bool value,SourceLocation rparen,QualType ty)1924   UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1925                      TypeSourceInfo *queried, bool value,
1926                      SourceLocation rparen, QualType ty)
1927     : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1928            false,  queried->getType()->isDependentType(),
1929            queried->getType()->isInstantiationDependentType(),
1930            queried->getType()->containsUnexpandedParameterPack()),
1931       UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1932 
UnaryTypeTraitExpr(EmptyShell Empty)1933   explicit UnaryTypeTraitExpr(EmptyShell Empty)
1934     : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1935       QueriedType() { }
1936 
getSourceRange()1937   SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParen);}
1938 
getTrait()1939   UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1940 
getQueriedType()1941   QualType getQueriedType() const { return QueriedType->getType(); }
1942 
getQueriedTypeSourceInfo()1943   TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1944 
getValue()1945   bool getValue() const { return Value; }
1946 
classof(const Stmt * T)1947   static bool classof(const Stmt *T) {
1948     return T->getStmtClass() == UnaryTypeTraitExprClass;
1949   }
classof(const UnaryTypeTraitExpr *)1950   static bool classof(const UnaryTypeTraitExpr *) { return true; }
1951 
1952   // Iterators
children()1953   child_range children() { return child_range(); }
1954 
1955   friend class ASTStmtReader;
1956 };
1957 
1958 /// \brief Represents a GCC or MS binary type trait, as used in the
1959 /// implementation of TR1/C++11 type trait templates.
1960 ///
1961 /// Example:
1962 /// @code
1963 ///   __is_base_of(Base, Derived) == true
1964 /// @endcode
1965 class BinaryTypeTraitExpr : public Expr {
1966   /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1967   unsigned BTT : 8;
1968 
1969   /// The value of the type trait. Unspecified if dependent.
1970   bool Value : 1;
1971 
1972   /// Loc - The location of the type trait keyword.
1973   SourceLocation Loc;
1974 
1975   /// RParen - The location of the closing paren.
1976   SourceLocation RParen;
1977 
1978   /// The lhs type being queried.
1979   TypeSourceInfo *LhsType;
1980 
1981   /// The rhs type being queried.
1982   TypeSourceInfo *RhsType;
1983 
1984 public:
BinaryTypeTraitExpr(SourceLocation loc,BinaryTypeTrait btt,TypeSourceInfo * lhsType,TypeSourceInfo * rhsType,bool value,SourceLocation rparen,QualType ty)1985   BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1986                      TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1987                      bool value, SourceLocation rparen, QualType ty)
1988     : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1989            lhsType->getType()->isDependentType() ||
1990            rhsType->getType()->isDependentType(),
1991            (lhsType->getType()->isInstantiationDependentType() ||
1992             rhsType->getType()->isInstantiationDependentType()),
1993            (lhsType->getType()->containsUnexpandedParameterPack() ||
1994             rhsType->getType()->containsUnexpandedParameterPack())),
1995       BTT(btt), Value(value), Loc(loc), RParen(rparen),
1996       LhsType(lhsType), RhsType(rhsType) { }
1997 
1998 
BinaryTypeTraitExpr(EmptyShell Empty)1999   explicit BinaryTypeTraitExpr(EmptyShell Empty)
2000     : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
2001       LhsType(), RhsType() { }
2002 
getSourceRange()2003   SourceRange getSourceRange() const LLVM_READONLY {
2004     return SourceRange(Loc, RParen);
2005   }
2006 
getTrait()2007   BinaryTypeTrait getTrait() const {
2008     return static_cast<BinaryTypeTrait>(BTT);
2009   }
2010 
getLhsType()2011   QualType getLhsType() const { return LhsType->getType(); }
getRhsType()2012   QualType getRhsType() const { return RhsType->getType(); }
2013 
getLhsTypeSourceInfo()2014   TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
getRhsTypeSourceInfo()2015   TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2016 
getValue()2017   bool getValue() const { assert(!isTypeDependent()); return Value; }
2018 
classof(const Stmt * T)2019   static bool classof(const Stmt *T) {
2020     return T->getStmtClass() == BinaryTypeTraitExprClass;
2021   }
classof(const BinaryTypeTraitExpr *)2022   static bool classof(const BinaryTypeTraitExpr *) { return true; }
2023 
2024   // Iterators
children()2025   child_range children() { return child_range(); }
2026 
2027   friend class ASTStmtReader;
2028 };
2029 
2030 /// \brief A type trait used in the implementation of various C++11 and
2031 /// Library TR1 trait templates.
2032 ///
2033 /// \code
2034 ///   __is_trivially_constructible(vector<int>, int*, int*)
2035 /// \endcode
2036 class TypeTraitExpr : public Expr {
2037   /// \brief The location of the type trait keyword.
2038   SourceLocation Loc;
2039 
2040   /// \brief  The location of the closing parenthesis.
2041   SourceLocation RParenLoc;
2042 
2043   // Note: The TypeSourceInfos for the arguments are allocated after the
2044   // TypeTraitExpr.
2045 
2046   TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2047                 ArrayRef<TypeSourceInfo *> Args,
2048                 SourceLocation RParenLoc,
2049                 bool Value);
2050 
TypeTraitExpr(EmptyShell Empty)2051   TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2052 
2053   /// \brief Retrieve the argument types.
getTypeSourceInfos()2054   TypeSourceInfo **getTypeSourceInfos() {
2055     return reinterpret_cast<TypeSourceInfo **>(this+1);
2056   }
2057 
2058   /// \brief Retrieve the argument types.
getTypeSourceInfos()2059   TypeSourceInfo * const *getTypeSourceInfos() const {
2060     return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2061   }
2062 
2063 public:
2064   /// \brief Create a new type trait expression.
2065   static TypeTraitExpr *Create(ASTContext &C, QualType T, SourceLocation Loc,
2066                                TypeTrait Kind,
2067                                ArrayRef<TypeSourceInfo *> Args,
2068                                SourceLocation RParenLoc,
2069                                bool Value);
2070 
2071   static TypeTraitExpr *CreateDeserialized(ASTContext &C, unsigned NumArgs);
2072 
2073   /// \brief Determine which type trait this expression uses.
getTrait()2074   TypeTrait getTrait() const {
2075     return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2076   }
2077 
getValue()2078   bool getValue() const {
2079     assert(!isValueDependent());
2080     return TypeTraitExprBits.Value;
2081   }
2082 
2083   /// \brief Determine the number of arguments to this type trait.
getNumArgs()2084   unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2085 
2086   /// \brief Retrieve the Ith argument.
getArg(unsigned I)2087   TypeSourceInfo *getArg(unsigned I) const {
2088     assert(I < getNumArgs() && "Argument out-of-range");
2089     return getArgs()[I];
2090   }
2091 
2092   /// \brief Retrieve the argument types.
getArgs()2093   ArrayRef<TypeSourceInfo *> getArgs() const {
2094     return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2095   }
2096 
2097   typedef TypeSourceInfo **arg_iterator;
arg_begin()2098   arg_iterator arg_begin() {
2099     return getTypeSourceInfos();
2100   }
arg_end()2101   arg_iterator arg_end() {
2102     return getTypeSourceInfos() + getNumArgs();
2103   }
2104 
2105   typedef TypeSourceInfo const * const *arg_const_iterator;
arg_begin()2106   arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
arg_end()2107   arg_const_iterator arg_end() const {
2108     return getTypeSourceInfos() + getNumArgs();
2109   }
2110 
getSourceRange()2111   SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParenLoc); }
2112 
classof(const Stmt * T)2113   static bool classof(const Stmt *T) {
2114     return T->getStmtClass() == TypeTraitExprClass;
2115   }
classof(const TypeTraitExpr *)2116   static bool classof(const TypeTraitExpr *) { return true; }
2117 
2118   // Iterators
children()2119   child_range children() { return child_range(); }
2120 
2121   friend class ASTStmtReader;
2122   friend class ASTStmtWriter;
2123 
2124 };
2125 
2126 /// \brief An Embarcadero array type trait, as used in the implementation of
2127 /// __array_rank and __array_extent.
2128 ///
2129 /// Example:
2130 /// @code
2131 ///   __array_rank(int[10][20]) == 2
2132 ///   __array_extent(int, 1)    == 20
2133 /// @endcode
2134 class ArrayTypeTraitExpr : public Expr {
2135   virtual void anchor();
2136 
2137   /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2138   unsigned ATT : 2;
2139 
2140   /// \brief The value of the type trait. Unspecified if dependent.
2141   uint64_t Value;
2142 
2143   /// \brief The array dimension being queried, or -1 if not used.
2144   Expr *Dimension;
2145 
2146   /// \brief The location of the type trait keyword.
2147   SourceLocation Loc;
2148 
2149   /// \brief The location of the closing paren.
2150   SourceLocation RParen;
2151 
2152   /// \brief The type being queried.
2153   TypeSourceInfo *QueriedType;
2154 
2155 public:
ArrayTypeTraitExpr(SourceLocation loc,ArrayTypeTrait att,TypeSourceInfo * queried,uint64_t value,Expr * dimension,SourceLocation rparen,QualType ty)2156   ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2157                      TypeSourceInfo *queried, uint64_t value,
2158                      Expr *dimension, SourceLocation rparen, QualType ty)
2159     : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2160            false, queried->getType()->isDependentType(),
2161            (queried->getType()->isInstantiationDependentType() ||
2162             (dimension && dimension->isInstantiationDependent())),
2163            queried->getType()->containsUnexpandedParameterPack()),
2164       ATT(att), Value(value), Dimension(dimension),
2165       Loc(loc), RParen(rparen), QueriedType(queried) { }
2166 
2167 
ArrayTypeTraitExpr(EmptyShell Empty)2168   explicit ArrayTypeTraitExpr(EmptyShell Empty)
2169     : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2170       QueriedType() { }
2171 
~ArrayTypeTraitExpr()2172   virtual ~ArrayTypeTraitExpr() { }
2173 
getSourceRange()2174   virtual SourceRange getSourceRange() const LLVM_READONLY {
2175     return SourceRange(Loc, RParen);
2176   }
2177 
getTrait()2178   ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2179 
getQueriedType()2180   QualType getQueriedType() const { return QueriedType->getType(); }
2181 
getQueriedTypeSourceInfo()2182   TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2183 
getValue()2184   uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2185 
getDimensionExpression()2186   Expr *getDimensionExpression() const { return Dimension; }
2187 
classof(const Stmt * T)2188   static bool classof(const Stmt *T) {
2189     return T->getStmtClass() == ArrayTypeTraitExprClass;
2190   }
classof(const ArrayTypeTraitExpr *)2191   static bool classof(const ArrayTypeTraitExpr *) { return true; }
2192 
2193   // Iterators
children()2194   child_range children() { return child_range(); }
2195 
2196   friend class ASTStmtReader;
2197 };
2198 
2199 /// \brief An expression trait intrinsic.
2200 ///
2201 /// Example:
2202 /// @code
2203 ///   __is_lvalue_expr(std::cout) == true
2204 ///   __is_lvalue_expr(1) == false
2205 /// @endcode
2206 class ExpressionTraitExpr : public Expr {
2207   /// \brief The trait. A ExpressionTrait enum in MSVC compat unsigned.
2208   unsigned ET : 31;
2209   /// \brief The value of the type trait. Unspecified if dependent.
2210   bool Value : 1;
2211 
2212   /// \brief The location of the type trait keyword.
2213   SourceLocation Loc;
2214 
2215   /// \brief The location of the closing paren.
2216   SourceLocation RParen;
2217 
2218   /// \brief The expression being queried.
2219   Expr* QueriedExpression;
2220 public:
ExpressionTraitExpr(SourceLocation loc,ExpressionTrait et,Expr * queried,bool value,SourceLocation rparen,QualType resultType)2221   ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2222                      Expr *queried, bool value,
2223                      SourceLocation rparen, QualType resultType)
2224     : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2225            false, // Not type-dependent
2226            // Value-dependent if the argument is type-dependent.
2227            queried->isTypeDependent(),
2228            queried->isInstantiationDependent(),
2229            queried->containsUnexpandedParameterPack()),
2230       ET(et), Value(value), Loc(loc), RParen(rparen),
2231       QueriedExpression(queried) { }
2232 
ExpressionTraitExpr(EmptyShell Empty)2233   explicit ExpressionTraitExpr(EmptyShell Empty)
2234     : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2235       QueriedExpression() { }
2236 
getSourceRange()2237   SourceRange getSourceRange() const LLVM_READONLY {
2238     return SourceRange(Loc, RParen);
2239   }
2240 
getTrait()2241   ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2242 
getQueriedExpression()2243   Expr *getQueriedExpression() const { return QueriedExpression; }
2244 
getValue()2245   bool getValue() const { return Value; }
2246 
classof(const Stmt * T)2247   static bool classof(const Stmt *T) {
2248     return T->getStmtClass() == ExpressionTraitExprClass;
2249   }
classof(const ExpressionTraitExpr *)2250   static bool classof(const ExpressionTraitExpr *) { return true; }
2251 
2252   // Iterators
children()2253   child_range children() { return child_range(); }
2254 
2255   friend class ASTStmtReader;
2256 };
2257 
2258 
2259 /// \brief A reference to an overloaded function set, either an
2260 /// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2261 class OverloadExpr : public Expr {
2262   /// \brief The common name of these declarations.
2263   DeclarationNameInfo NameInfo;
2264 
2265   /// \brief The nested-name-specifier that qualifies the name, if any.
2266   NestedNameSpecifierLoc QualifierLoc;
2267 
2268   /// The results.  These are undesugared, which is to say, they may
2269   /// include UsingShadowDecls.  Access is relative to the naming
2270   /// class.
2271   // FIXME: Allocate this data after the OverloadExpr subclass.
2272   DeclAccessPair *Results;
2273   unsigned NumResults;
2274 
2275 protected:
2276   /// \brief Whether the name includes info for explicit template
2277   /// keyword and arguments.
2278   bool HasTemplateKWAndArgsInfo;
2279 
2280   /// \brief Return the optional template keyword and arguments info.
2281   ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2282 
2283   /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2284   const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2285     return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2286   }
2287 
2288   OverloadExpr(StmtClass K, ASTContext &C,
2289                NestedNameSpecifierLoc QualifierLoc,
2290                SourceLocation TemplateKWLoc,
2291                const DeclarationNameInfo &NameInfo,
2292                const TemplateArgumentListInfo *TemplateArgs,
2293                UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2294                bool KnownDependent,
2295                bool KnownInstantiationDependent,
2296                bool KnownContainsUnexpandedParameterPack);
2297 
OverloadExpr(StmtClass K,EmptyShell Empty)2298   OverloadExpr(StmtClass K, EmptyShell Empty)
2299     : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2300       HasTemplateKWAndArgsInfo(false) { }
2301 
2302   void initializeResults(ASTContext &C,
2303                          UnresolvedSetIterator Begin,
2304                          UnresolvedSetIterator End);
2305 
2306 public:
2307   struct FindResult {
2308     OverloadExpr *Expression;
2309     bool IsAddressOfOperand;
2310     bool HasFormOfMemberPointer;
2311   };
2312 
2313   /// Finds the overloaded expression in the given expression of
2314   /// OverloadTy.
2315   ///
2316   /// \return the expression (which must be there) and true if it has
2317   /// the particular form of a member pointer expression
find(Expr * E)2318   static FindResult find(Expr *E) {
2319     assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2320 
2321     FindResult Result;
2322 
2323     E = E->IgnoreParens();
2324     if (isa<UnaryOperator>(E)) {
2325       assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2326       E = cast<UnaryOperator>(E)->getSubExpr();
2327       OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2328 
2329       Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2330       Result.IsAddressOfOperand = true;
2331       Result.Expression = Ovl;
2332     } else {
2333       Result.HasFormOfMemberPointer = false;
2334       Result.IsAddressOfOperand = false;
2335       Result.Expression = cast<OverloadExpr>(E);
2336     }
2337 
2338     return Result;
2339   }
2340 
2341   /// \brief Gets the naming class of this lookup, if any.
2342   CXXRecordDecl *getNamingClass() const;
2343 
2344   typedef UnresolvedSetImpl::iterator decls_iterator;
decls_begin()2345   decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
decls_end()2346   decls_iterator decls_end() const {
2347     return UnresolvedSetIterator(Results + NumResults);
2348   }
2349 
2350   /// \brief Gets the number of declarations in the unresolved set.
getNumDecls()2351   unsigned getNumDecls() const { return NumResults; }
2352 
2353   /// \brief Gets the full name info.
getNameInfo()2354   const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2355 
2356   /// \brief Gets the name looked up.
getName()2357   DeclarationName getName() const { return NameInfo.getName(); }
2358 
2359   /// \brief Gets the location of the name.
getNameLoc()2360   SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2361 
2362   /// \brief Fetches the nested-name qualifier, if one was given.
getQualifier()2363   NestedNameSpecifier *getQualifier() const {
2364     return QualifierLoc.getNestedNameSpecifier();
2365   }
2366 
2367   /// \brief Fetches the nested-name qualifier with source-location
2368   /// information, if one was given.
getQualifierLoc()2369   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2370 
2371   /// \brief Retrieve the location of the template keyword preceding
2372   /// this name, if any.
getTemplateKeywordLoc()2373   SourceLocation getTemplateKeywordLoc() const {
2374     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2375     return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2376   }
2377 
2378   /// \brief Retrieve the location of the left angle bracket starting the
2379   /// explicit template argument list following the name, if any.
getLAngleLoc()2380   SourceLocation getLAngleLoc() const {
2381     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2382     return getTemplateKWAndArgsInfo()->LAngleLoc;
2383   }
2384 
2385   /// \brief Retrieve the location of the right angle bracket ending the
2386   /// explicit template argument list following the name, if any.
getRAngleLoc()2387   SourceLocation getRAngleLoc() const {
2388     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2389     return getTemplateKWAndArgsInfo()->RAngleLoc;
2390   }
2391 
2392   /// \brief Determines whether the name was preceded by the template keyword.
hasTemplateKeyword()2393   bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2394 
2395   /// \brief Determines whether this expression had explicit template arguments.
hasExplicitTemplateArgs()2396   bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2397 
2398   // Note that, inconsistently with the explicit-template-argument AST
2399   // nodes, users are *forbidden* from calling these methods on objects
2400   // without explicit template arguments.
2401 
getExplicitTemplateArgs()2402   ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2403     assert(hasExplicitTemplateArgs());
2404     return *getTemplateKWAndArgsInfo();
2405   }
2406 
getExplicitTemplateArgs()2407   const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2408     return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2409   }
2410 
getTemplateArgs()2411   TemplateArgumentLoc const *getTemplateArgs() const {
2412     return getExplicitTemplateArgs().getTemplateArgs();
2413   }
2414 
getNumTemplateArgs()2415   unsigned getNumTemplateArgs() const {
2416     return getExplicitTemplateArgs().NumTemplateArgs;
2417   }
2418 
2419   /// \brief Copies the template arguments into the given structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)2420   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2421     getExplicitTemplateArgs().copyInto(List);
2422   }
2423 
2424   /// \brief Retrieves the optional explicit template arguments.
2425   ///
2426   /// This points to the same data as getExplicitTemplateArgs(), but
2427   /// returns null if there are no explicit template arguments.
getOptionalExplicitTemplateArgs()2428   const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2429     if (!hasExplicitTemplateArgs()) return 0;
2430     return &getExplicitTemplateArgs();
2431   }
2432 
classof(const Stmt * T)2433   static bool classof(const Stmt *T) {
2434     return T->getStmtClass() == UnresolvedLookupExprClass ||
2435            T->getStmtClass() == UnresolvedMemberExprClass;
2436   }
classof(const OverloadExpr *)2437   static bool classof(const OverloadExpr *) { return true; }
2438 
2439   friend class ASTStmtReader;
2440   friend class ASTStmtWriter;
2441 };
2442 
2443 /// \brief A reference to a name which we were able to look up during
2444 /// parsing but could not resolve to a specific declaration.
2445 ///
2446 /// This arises in several ways:
2447 ///   * we might be waiting for argument-dependent lookup
2448 ///   * the name might resolve to an overloaded function
2449 /// and eventually:
2450 ///   * the lookup might have included a function template
2451 /// These never include UnresolvedUsingValueDecls, which are always class
2452 /// members and therefore appear only in UnresolvedMemberLookupExprs.
2453 class UnresolvedLookupExpr : public OverloadExpr {
2454   /// True if these lookup results should be extended by
2455   /// argument-dependent lookup if this is the operand of a function
2456   /// call.
2457   bool RequiresADL;
2458 
2459   /// True if namespace ::std should be considered an associated namespace
2460   /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2461   bool StdIsAssociatedNamespace;
2462 
2463   /// True if these lookup results are overloaded.  This is pretty
2464   /// trivially rederivable if we urgently need to kill this field.
2465   bool Overloaded;
2466 
2467   /// The naming class (C++ [class.access.base]p5) of the lookup, if
2468   /// any.  This can generally be recalculated from the context chain,
2469   /// but that can be fairly expensive for unqualified lookups.  If we
2470   /// want to improve memory use here, this could go in a union
2471   /// against the qualified-lookup bits.
2472   CXXRecordDecl *NamingClass;
2473 
UnresolvedLookupExpr(ASTContext & C,CXXRecordDecl * NamingClass,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool RequiresADL,bool Overloaded,const TemplateArgumentListInfo * TemplateArgs,UnresolvedSetIterator Begin,UnresolvedSetIterator End,bool StdIsAssociatedNamespace)2474   UnresolvedLookupExpr(ASTContext &C,
2475                        CXXRecordDecl *NamingClass,
2476                        NestedNameSpecifierLoc QualifierLoc,
2477                        SourceLocation TemplateKWLoc,
2478                        const DeclarationNameInfo &NameInfo,
2479                        bool RequiresADL, bool Overloaded,
2480                        const TemplateArgumentListInfo *TemplateArgs,
2481                        UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2482                        bool StdIsAssociatedNamespace)
2483     : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2484                    NameInfo, TemplateArgs, Begin, End, false, false, false),
2485       RequiresADL(RequiresADL),
2486       StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2487       Overloaded(Overloaded), NamingClass(NamingClass)
2488   {}
2489 
UnresolvedLookupExpr(EmptyShell Empty)2490   UnresolvedLookupExpr(EmptyShell Empty)
2491     : OverloadExpr(UnresolvedLookupExprClass, Empty),
2492       RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2493       NamingClass(0)
2494   {}
2495 
2496   friend class ASTStmtReader;
2497 
2498 public:
2499   static UnresolvedLookupExpr *Create(ASTContext &C,
2500                                       CXXRecordDecl *NamingClass,
2501                                       NestedNameSpecifierLoc QualifierLoc,
2502                                       const DeclarationNameInfo &NameInfo,
2503                                       bool ADL, bool Overloaded,
2504                                       UnresolvedSetIterator Begin,
2505                                       UnresolvedSetIterator End,
2506                                       bool StdIsAssociatedNamespace = false) {
2507     assert((ADL || !StdIsAssociatedNamespace) &&
2508            "std considered associated namespace when not performing ADL");
2509     return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2510                                        SourceLocation(), NameInfo,
2511                                        ADL, Overloaded, 0, Begin, End,
2512                                        StdIsAssociatedNamespace);
2513   }
2514 
2515   static UnresolvedLookupExpr *Create(ASTContext &C,
2516                                       CXXRecordDecl *NamingClass,
2517                                       NestedNameSpecifierLoc QualifierLoc,
2518                                       SourceLocation TemplateKWLoc,
2519                                       const DeclarationNameInfo &NameInfo,
2520                                       bool ADL,
2521                                       const TemplateArgumentListInfo *Args,
2522                                       UnresolvedSetIterator Begin,
2523                                       UnresolvedSetIterator End);
2524 
2525   static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2526                                            bool HasTemplateKWAndArgsInfo,
2527                                            unsigned NumTemplateArgs);
2528 
2529   /// True if this declaration should be extended by
2530   /// argument-dependent lookup.
requiresADL()2531   bool requiresADL() const { return RequiresADL; }
2532 
2533   /// True if namespace \::std should be artificially added to the set of
2534   /// associated namespaces for argument-dependent lookup purposes.
isStdAssociatedNamespace()2535   bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2536 
2537   /// True if this lookup is overloaded.
isOverloaded()2538   bool isOverloaded() const { return Overloaded; }
2539 
2540   /// Gets the 'naming class' (in the sense of C++0x
2541   /// [class.access.base]p5) of the lookup.  This is the scope
2542   /// that was looked in to find these results.
getNamingClass()2543   CXXRecordDecl *getNamingClass() const { return NamingClass; }
2544 
getSourceRange()2545   SourceRange getSourceRange() const LLVM_READONLY {
2546     SourceRange Range(getNameInfo().getSourceRange());
2547     if (getQualifierLoc())
2548       Range.setBegin(getQualifierLoc().getBeginLoc());
2549     if (hasExplicitTemplateArgs())
2550       Range.setEnd(getRAngleLoc());
2551     return Range;
2552   }
2553 
children()2554   child_range children() { return child_range(); }
2555 
classof(const Stmt * T)2556   static bool classof(const Stmt *T) {
2557     return T->getStmtClass() == UnresolvedLookupExprClass;
2558   }
classof(const UnresolvedLookupExpr *)2559   static bool classof(const UnresolvedLookupExpr *) { return true; }
2560 };
2561 
2562 /// \brief A qualified reference to a name whose declaration cannot
2563 /// yet be resolved.
2564 ///
2565 /// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2566 /// it expresses a reference to a declaration such as
2567 /// X<T>::value. The difference, however, is that an
2568 /// DependentScopeDeclRefExpr node is used only within C++ templates when
2569 /// the qualification (e.g., X<T>::) refers to a dependent type. In
2570 /// this case, X<T>::value cannot resolve to a declaration because the
2571 /// declaration will differ from on instantiation of X<T> to the
2572 /// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2573 /// qualifier (X<T>::) and the name of the entity being referenced
2574 /// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2575 /// declaration can be found.
2576 class DependentScopeDeclRefExpr : public Expr {
2577   /// \brief The nested-name-specifier that qualifies this unresolved
2578   /// declaration name.
2579   NestedNameSpecifierLoc QualifierLoc;
2580 
2581   /// The name of the entity we will be referencing.
2582   DeclarationNameInfo NameInfo;
2583 
2584   /// \brief Whether the name includes info for explicit template
2585   /// keyword and arguments.
2586   bool HasTemplateKWAndArgsInfo;
2587 
2588   /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2589   ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2590     if (!HasTemplateKWAndArgsInfo) return 0;
2591     return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2592   }
2593   /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2594   const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2595     return const_cast<DependentScopeDeclRefExpr*>(this)
2596       ->getTemplateKWAndArgsInfo();
2597   }
2598 
2599   DependentScopeDeclRefExpr(QualType T,
2600                             NestedNameSpecifierLoc QualifierLoc,
2601                             SourceLocation TemplateKWLoc,
2602                             const DeclarationNameInfo &NameInfo,
2603                             const TemplateArgumentListInfo *Args);
2604 
2605 public:
2606   static DependentScopeDeclRefExpr *Create(ASTContext &C,
2607                                            NestedNameSpecifierLoc QualifierLoc,
2608                                            SourceLocation TemplateKWLoc,
2609                                            const DeclarationNameInfo &NameInfo,
2610                               const TemplateArgumentListInfo *TemplateArgs);
2611 
2612   static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2613                                                 bool HasTemplateKWAndArgsInfo,
2614                                                 unsigned NumTemplateArgs);
2615 
2616   /// \brief Retrieve the name that this expression refers to.
getNameInfo()2617   const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2618 
2619   /// \brief Retrieve the name that this expression refers to.
getDeclName()2620   DeclarationName getDeclName() const { return NameInfo.getName(); }
2621 
2622   /// \brief Retrieve the location of the name within the expression.
getLocation()2623   SourceLocation getLocation() const { return NameInfo.getLoc(); }
2624 
2625   /// \brief Retrieve the nested-name-specifier that qualifies the
2626   /// name, with source location information.
getQualifierLoc()2627   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2628 
2629 
2630   /// \brief Retrieve the nested-name-specifier that qualifies this
2631   /// declaration.
getQualifier()2632   NestedNameSpecifier *getQualifier() const {
2633     return QualifierLoc.getNestedNameSpecifier();
2634   }
2635 
2636   /// \brief Retrieve the location of the template keyword preceding
2637   /// this name, if any.
getTemplateKeywordLoc()2638   SourceLocation getTemplateKeywordLoc() const {
2639     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2640     return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2641   }
2642 
2643   /// \brief Retrieve the location of the left angle bracket starting the
2644   /// explicit template argument list following the name, if any.
getLAngleLoc()2645   SourceLocation getLAngleLoc() const {
2646     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2647     return getTemplateKWAndArgsInfo()->LAngleLoc;
2648   }
2649 
2650   /// \brief Retrieve the location of the right angle bracket ending the
2651   /// explicit template argument list following the name, if any.
getRAngleLoc()2652   SourceLocation getRAngleLoc() const {
2653     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2654     return getTemplateKWAndArgsInfo()->RAngleLoc;
2655   }
2656 
2657   /// Determines whether the name was preceded by the template keyword.
hasTemplateKeyword()2658   bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2659 
2660   /// Determines whether this lookup had explicit template arguments.
hasExplicitTemplateArgs()2661   bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2662 
2663   // Note that, inconsistently with the explicit-template-argument AST
2664   // nodes, users are *forbidden* from calling these methods on objects
2665   // without explicit template arguments.
2666 
getExplicitTemplateArgs()2667   ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2668     assert(hasExplicitTemplateArgs());
2669     return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2670   }
2671 
2672   /// Gets a reference to the explicit template argument list.
getExplicitTemplateArgs()2673   const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2674     assert(hasExplicitTemplateArgs());
2675     return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2676   }
2677 
2678   /// \brief Retrieves the optional explicit template arguments.
2679   /// This points to the same data as getExplicitTemplateArgs(), but
2680   /// returns null if there are no explicit template arguments.
getOptionalExplicitTemplateArgs()2681   const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2682     if (!hasExplicitTemplateArgs()) return 0;
2683     return &getExplicitTemplateArgs();
2684   }
2685 
2686   /// \brief Copies the template arguments (if present) into the given
2687   /// structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)2688   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2689     getExplicitTemplateArgs().copyInto(List);
2690   }
2691 
getTemplateArgs()2692   TemplateArgumentLoc const *getTemplateArgs() const {
2693     return getExplicitTemplateArgs().getTemplateArgs();
2694   }
2695 
getNumTemplateArgs()2696   unsigned getNumTemplateArgs() const {
2697     return getExplicitTemplateArgs().NumTemplateArgs;
2698   }
2699 
getSourceRange()2700   SourceRange getSourceRange() const LLVM_READONLY {
2701     SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2702     if (hasExplicitTemplateArgs())
2703       Range.setEnd(getRAngleLoc());
2704     return Range;
2705   }
2706 
classof(const Stmt * T)2707   static bool classof(const Stmt *T) {
2708     return T->getStmtClass() == DependentScopeDeclRefExprClass;
2709   }
classof(const DependentScopeDeclRefExpr *)2710   static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2711 
children()2712   child_range children() { return child_range(); }
2713 
2714   friend class ASTStmtReader;
2715   friend class ASTStmtWriter;
2716 };
2717 
2718 /// Represents an expression --- generally a full-expression --- which
2719 /// introduces cleanups to be run at the end of the sub-expression's
2720 /// evaluation.  The most common source of expression-introduced
2721 /// cleanups is temporary objects in C++, but several other kinds of
2722 /// expressions can create cleanups, including basically every
2723 /// call in ARC that returns an Objective-C pointer.
2724 ///
2725 /// This expression also tracks whether the sub-expression contains a
2726 /// potentially-evaluated block literal.  The lifetime of a block
2727 /// literal is the extent of the enclosing scope.
2728 class ExprWithCleanups : public Expr {
2729 public:
2730   /// The type of objects that are kept in the cleanup.
2731   /// It's useful to remember the set of blocks;  we could also
2732   /// remember the set of temporaries, but there's currently
2733   /// no need.
2734   typedef BlockDecl *CleanupObject;
2735 
2736 private:
2737   Stmt *SubExpr;
2738 
2739   ExprWithCleanups(EmptyShell, unsigned NumObjects);
2740   ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2741 
getObjectsBuffer()2742   CleanupObject *getObjectsBuffer() {
2743     return reinterpret_cast<CleanupObject*>(this + 1);
2744   }
getObjectsBuffer()2745   const CleanupObject *getObjectsBuffer() const {
2746     return reinterpret_cast<const CleanupObject*>(this + 1);
2747   }
2748   friend class ASTStmtReader;
2749 
2750 public:
2751   static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2752                                   unsigned numObjects);
2753 
2754   static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2755                                   ArrayRef<CleanupObject> objects);
2756 
getObjects()2757   ArrayRef<CleanupObject> getObjects() const {
2758     return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2759   }
2760 
getNumObjects()2761   unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2762 
getObject(unsigned i)2763   CleanupObject getObject(unsigned i) const {
2764     assert(i < getNumObjects() && "Index out of range");
2765     return getObjects()[i];
2766   }
2767 
getSubExpr()2768   Expr *getSubExpr() { return cast<Expr>(SubExpr); }
getSubExpr()2769   const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2770 
2771   /// setSubExpr - As with any mutator of the AST, be very careful
2772   /// when modifying an existing AST to preserve its invariants.
setSubExpr(Expr * E)2773   void setSubExpr(Expr *E) { SubExpr = E; }
2774 
getSourceRange()2775   SourceRange getSourceRange() const LLVM_READONLY {
2776     return SubExpr->getSourceRange();
2777   }
2778 
2779   // Implement isa/cast/dyncast/etc.
classof(const Stmt * T)2780   static bool classof(const Stmt *T) {
2781     return T->getStmtClass() == ExprWithCleanupsClass;
2782   }
classof(const ExprWithCleanups *)2783   static bool classof(const ExprWithCleanups *) { return true; }
2784 
2785   // Iterators
children()2786   child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2787 };
2788 
2789 /// \brief Describes an explicit type conversion that uses functional
2790 /// notion but could not be resolved because one or more arguments are
2791 /// type-dependent.
2792 ///
2793 /// The explicit type conversions expressed by
2794 /// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
2795 /// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
2796 /// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
2797 /// type-dependent. For example, this would occur in a template such
2798 /// as:
2799 ///
2800 /// \code
2801 ///   template<typename T, typename A1>
2802 ///   inline T make_a(const A1& a1) {
2803 ///     return T(a1);
2804 ///   }
2805 /// \endcode
2806 ///
2807 /// When the returned expression is instantiated, it may resolve to a
2808 /// constructor call, conversion function call, or some kind of type
2809 /// conversion.
2810 class CXXUnresolvedConstructExpr : public Expr {
2811   /// \brief The type being constructed.
2812   TypeSourceInfo *Type;
2813 
2814   /// \brief The location of the left parentheses ('(').
2815   SourceLocation LParenLoc;
2816 
2817   /// \brief The location of the right parentheses (')').
2818   SourceLocation RParenLoc;
2819 
2820   /// \brief The number of arguments used to construct the type.
2821   unsigned NumArgs;
2822 
2823   CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2824                              SourceLocation LParenLoc,
2825                              ArrayRef<Expr*> Args,
2826                              SourceLocation RParenLoc);
2827 
CXXUnresolvedConstructExpr(EmptyShell Empty,unsigned NumArgs)2828   CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2829     : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2830 
2831   friend class ASTStmtReader;
2832 
2833 public:
2834   static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2835                                             TypeSourceInfo *Type,
2836                                             SourceLocation LParenLoc,
2837                                             ArrayRef<Expr*> Args,
2838                                             SourceLocation RParenLoc);
2839 
2840   static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2841                                                  unsigned NumArgs);
2842 
2843   /// \brief Retrieve the type that is being constructed, as specified
2844   /// in the source code.
getTypeAsWritten()2845   QualType getTypeAsWritten() const { return Type->getType(); }
2846 
2847   /// \brief Retrieve the type source information for the type being
2848   /// constructed.
getTypeSourceInfo()2849   TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2850 
2851   /// \brief Retrieve the location of the left parentheses ('(') that
2852   /// precedes the argument list.
getLParenLoc()2853   SourceLocation getLParenLoc() const { return LParenLoc; }
setLParenLoc(SourceLocation L)2854   void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2855 
2856   /// \brief Retrieve the location of the right parentheses (')') that
2857   /// follows the argument list.
getRParenLoc()2858   SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)2859   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2860 
2861   /// \brief Retrieve the number of arguments.
arg_size()2862   unsigned arg_size() const { return NumArgs; }
2863 
2864   typedef Expr** arg_iterator;
arg_begin()2865   arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
arg_end()2866   arg_iterator arg_end() { return arg_begin() + NumArgs; }
2867 
2868   typedef const Expr* const * const_arg_iterator;
arg_begin()2869   const_arg_iterator arg_begin() const {
2870     return reinterpret_cast<const Expr* const *>(this + 1);
2871   }
arg_end()2872   const_arg_iterator arg_end() const {
2873     return arg_begin() + NumArgs;
2874   }
2875 
getArg(unsigned I)2876   Expr *getArg(unsigned I) {
2877     assert(I < NumArgs && "Argument index out-of-range");
2878     return *(arg_begin() + I);
2879   }
2880 
getArg(unsigned I)2881   const Expr *getArg(unsigned I) const {
2882     assert(I < NumArgs && "Argument index out-of-range");
2883     return *(arg_begin() + I);
2884   }
2885 
setArg(unsigned I,Expr * E)2886   void setArg(unsigned I, Expr *E) {
2887     assert(I < NumArgs && "Argument index out-of-range");
2888     *(arg_begin() + I) = E;
2889   }
2890 
2891   SourceRange getSourceRange() const LLVM_READONLY;
2892 
classof(const Stmt * T)2893   static bool classof(const Stmt *T) {
2894     return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2895   }
classof(const CXXUnresolvedConstructExpr *)2896   static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2897 
2898   // Iterators
children()2899   child_range children() {
2900     Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2901     return child_range(begin, begin + NumArgs);
2902   }
2903 };
2904 
2905 /// \brief Represents a C++ member access expression where the actual
2906 /// member referenced could not be resolved because the base
2907 /// expression or the member name was dependent.
2908 ///
2909 /// Like UnresolvedMemberExprs, these can be either implicit or
2910 /// explicit accesses.  It is only possible to get one of these with
2911 /// an implicit access if a qualifier is provided.
2912 class CXXDependentScopeMemberExpr : public Expr {
2913   /// \brief The expression for the base pointer or class reference,
2914   /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2915   Stmt *Base;
2916 
2917   /// \brief The type of the base expression.  Never null, even for
2918   /// implicit accesses.
2919   QualType BaseType;
2920 
2921   /// \brief Whether this member expression used the '->' operator or
2922   /// the '.' operator.
2923   bool IsArrow : 1;
2924 
2925   /// \brief Whether this member expression has info for explicit template
2926   /// keyword and arguments.
2927   bool HasTemplateKWAndArgsInfo : 1;
2928 
2929   /// \brief The location of the '->' or '.' operator.
2930   SourceLocation OperatorLoc;
2931 
2932   /// \brief The nested-name-specifier that precedes the member name, if any.
2933   NestedNameSpecifierLoc QualifierLoc;
2934 
2935   /// \brief In a qualified member access expression such as t->Base::f, this
2936   /// member stores the resolves of name lookup in the context of the member
2937   /// access expression, to be used at instantiation time.
2938   ///
2939   /// FIXME: This member, along with the QualifierLoc, could
2940   /// be stuck into a structure that is optionally allocated at the end of
2941   /// the CXXDependentScopeMemberExpr, to save space in the common case.
2942   NamedDecl *FirstQualifierFoundInScope;
2943 
2944   /// \brief The member to which this member expression refers, which
2945   /// can be name, overloaded operator, or destructor.
2946   /// FIXME: could also be a template-id
2947   DeclarationNameInfo MemberNameInfo;
2948 
2949   /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2950   ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2951     if (!HasTemplateKWAndArgsInfo) return 0;
2952     return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2953   }
2954   /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2955   const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2956     return const_cast<CXXDependentScopeMemberExpr*>(this)
2957       ->getTemplateKWAndArgsInfo();
2958   }
2959 
2960   CXXDependentScopeMemberExpr(ASTContext &C,
2961                           Expr *Base, QualType BaseType, bool IsArrow,
2962                           SourceLocation OperatorLoc,
2963                           NestedNameSpecifierLoc QualifierLoc,
2964                           SourceLocation TemplateKWLoc,
2965                           NamedDecl *FirstQualifierFoundInScope,
2966                           DeclarationNameInfo MemberNameInfo,
2967                           const TemplateArgumentListInfo *TemplateArgs);
2968 
2969 public:
2970   CXXDependentScopeMemberExpr(ASTContext &C,
2971                               Expr *Base, QualType BaseType,
2972                               bool IsArrow,
2973                               SourceLocation OperatorLoc,
2974                               NestedNameSpecifierLoc QualifierLoc,
2975                               NamedDecl *FirstQualifierFoundInScope,
2976                               DeclarationNameInfo MemberNameInfo);
2977 
2978   static CXXDependentScopeMemberExpr *
2979   Create(ASTContext &C,
2980          Expr *Base, QualType BaseType, bool IsArrow,
2981          SourceLocation OperatorLoc,
2982          NestedNameSpecifierLoc QualifierLoc,
2983          SourceLocation TemplateKWLoc,
2984          NamedDecl *FirstQualifierFoundInScope,
2985          DeclarationNameInfo MemberNameInfo,
2986          const TemplateArgumentListInfo *TemplateArgs);
2987 
2988   static CXXDependentScopeMemberExpr *
2989   CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2990               unsigned NumTemplateArgs);
2991 
2992   /// \brief True if this is an implicit access, i.e. one in which the
2993   /// member being accessed was not written in the source.  The source
2994   /// location of the operator is invalid in this case.
2995   bool isImplicitAccess() const;
2996 
2997   /// \brief Retrieve the base object of this member expressions,
2998   /// e.g., the \c x in \c x.m.
getBase()2999   Expr *getBase() const {
3000     assert(!isImplicitAccess());
3001     return cast<Expr>(Base);
3002   }
3003 
getBaseType()3004   QualType getBaseType() const { return BaseType; }
3005 
3006   /// \brief Determine whether this member expression used the '->'
3007   /// operator; otherwise, it used the '.' operator.
isArrow()3008   bool isArrow() const { return IsArrow; }
3009 
3010   /// \brief Retrieve the location of the '->' or '.' operator.
getOperatorLoc()3011   SourceLocation getOperatorLoc() const { return OperatorLoc; }
3012 
3013   /// \brief Retrieve the nested-name-specifier that qualifies the member
3014   /// name.
getQualifier()3015   NestedNameSpecifier *getQualifier() const {
3016     return QualifierLoc.getNestedNameSpecifier();
3017   }
3018 
3019   /// \brief Retrieve the nested-name-specifier that qualifies the member
3020   /// name, with source location information.
getQualifierLoc()3021   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3022 
3023 
3024   /// \brief Retrieve the first part of the nested-name-specifier that was
3025   /// found in the scope of the member access expression when the member access
3026   /// was initially parsed.
3027   ///
3028   /// This function only returns a useful result when member access expression
3029   /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3030   /// returned by this function describes what was found by unqualified name
3031   /// lookup for the identifier "Base" within the scope of the member access
3032   /// expression itself. At template instantiation time, this information is
3033   /// combined with the results of name lookup into the type of the object
3034   /// expression itself (the class type of x).
getFirstQualifierFoundInScope()3035   NamedDecl *getFirstQualifierFoundInScope() const {
3036     return FirstQualifierFoundInScope;
3037   }
3038 
3039   /// \brief Retrieve the name of the member that this expression
3040   /// refers to.
getMemberNameInfo()3041   const DeclarationNameInfo &getMemberNameInfo() const {
3042     return MemberNameInfo;
3043   }
3044 
3045   /// \brief Retrieve the name of the member that this expression
3046   /// refers to.
getMember()3047   DeclarationName getMember() const { return MemberNameInfo.getName(); }
3048 
3049   // \brief Retrieve the location of the name of the member that this
3050   // expression refers to.
getMemberLoc()3051   SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3052 
3053   /// \brief Retrieve the location of the template keyword preceding the
3054   /// member name, if any.
getTemplateKeywordLoc()3055   SourceLocation getTemplateKeywordLoc() const {
3056     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3057     return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3058   }
3059 
3060   /// \brief Retrieve the location of the left angle bracket starting the
3061   /// explicit template argument list following the member name, if any.
getLAngleLoc()3062   SourceLocation getLAngleLoc() const {
3063     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3064     return getTemplateKWAndArgsInfo()->LAngleLoc;
3065   }
3066 
3067   /// \brief Retrieve the location of the right angle bracket ending the
3068   /// explicit template argument list following the member name, if any.
getRAngleLoc()3069   SourceLocation getRAngleLoc() const {
3070     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3071     return getTemplateKWAndArgsInfo()->RAngleLoc;
3072   }
3073 
3074   /// Determines whether the member name was preceded by the template keyword.
hasTemplateKeyword()3075   bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3076 
3077   /// \brief Determines whether this member expression actually had a C++
3078   /// template argument list explicitly specified, e.g., x.f<int>.
hasExplicitTemplateArgs()3079   bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3080 
3081   /// \brief Retrieve the explicit template argument list that followed the
3082   /// member template name, if any.
getExplicitTemplateArgs()3083   ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3084     assert(hasExplicitTemplateArgs());
3085     return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3086   }
3087 
3088   /// \brief Retrieve the explicit template argument list that followed the
3089   /// member template name, if any.
getExplicitTemplateArgs()3090   const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3091     return const_cast<CXXDependentScopeMemberExpr *>(this)
3092              ->getExplicitTemplateArgs();
3093   }
3094 
3095   /// \brief Retrieves the optional explicit template arguments.
3096   /// This points to the same data as getExplicitTemplateArgs(), but
3097   /// returns null if there are no explicit template arguments.
getOptionalExplicitTemplateArgs()3098   const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
3099     if (!hasExplicitTemplateArgs()) return 0;
3100     return &getExplicitTemplateArgs();
3101   }
3102 
3103   /// \brief Copies the template arguments (if present) into the given
3104   /// structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)3105   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3106     getExplicitTemplateArgs().copyInto(List);
3107   }
3108 
3109   /// \brief Initializes the template arguments using the given structure.
initializeTemplateArgumentsFrom(const TemplateArgumentListInfo & List)3110   void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3111     getExplicitTemplateArgs().initializeFrom(List);
3112   }
3113 
3114   /// \brief Retrieve the template arguments provided as part of this
3115   /// template-id.
getTemplateArgs()3116   const TemplateArgumentLoc *getTemplateArgs() const {
3117     return getExplicitTemplateArgs().getTemplateArgs();
3118   }
3119 
3120   /// \brief Retrieve the number of template arguments provided as part of this
3121   /// template-id.
getNumTemplateArgs()3122   unsigned getNumTemplateArgs() const {
3123     return getExplicitTemplateArgs().NumTemplateArgs;
3124   }
3125 
getSourceRange()3126   SourceRange getSourceRange() const LLVM_READONLY {
3127     SourceRange Range;
3128     if (!isImplicitAccess())
3129       Range.setBegin(Base->getSourceRange().getBegin());
3130     else if (getQualifier())
3131       Range.setBegin(getQualifierLoc().getBeginLoc());
3132     else
3133       Range.setBegin(MemberNameInfo.getBeginLoc());
3134 
3135     if (hasExplicitTemplateArgs())
3136       Range.setEnd(getRAngleLoc());
3137     else
3138       Range.setEnd(MemberNameInfo.getEndLoc());
3139     return Range;
3140   }
3141 
classof(const Stmt * T)3142   static bool classof(const Stmt *T) {
3143     return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3144   }
classof(const CXXDependentScopeMemberExpr *)3145   static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
3146 
3147   // Iterators
children()3148   child_range children() {
3149     if (isImplicitAccess()) return child_range();
3150     return child_range(&Base, &Base + 1);
3151   }
3152 
3153   friend class ASTStmtReader;
3154   friend class ASTStmtWriter;
3155 };
3156 
3157 /// \brief Represents a C++ member access expression for which lookup
3158 /// produced a set of overloaded functions.
3159 ///
3160 /// The member access may be explicit or implicit:
3161 ///    struct A {
3162 ///      int a, b;
3163 ///      int explicitAccess() { return this->a + this->A::b; }
3164 ///      int implicitAccess() { return a + A::b; }
3165 ///    };
3166 ///
3167 /// In the final AST, an explicit access always becomes a MemberExpr.
3168 /// An implicit access may become either a MemberExpr or a
3169 /// DeclRefExpr, depending on whether the member is static.
3170 class UnresolvedMemberExpr : public OverloadExpr {
3171   /// \brief Whether this member expression used the '->' operator or
3172   /// the '.' operator.
3173   bool IsArrow : 1;
3174 
3175   /// \brief Whether the lookup results contain an unresolved using
3176   /// declaration.
3177   bool HasUnresolvedUsing : 1;
3178 
3179   /// \brief The expression for the base pointer or class reference,
3180   /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
3181   /// member expression
3182   Stmt *Base;
3183 
3184   /// \brief The type of the base expression;  never null.
3185   QualType BaseType;
3186 
3187   /// \brief The location of the '->' or '.' operator.
3188   SourceLocation OperatorLoc;
3189 
3190   UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3191                        Expr *Base, QualType BaseType, bool IsArrow,
3192                        SourceLocation OperatorLoc,
3193                        NestedNameSpecifierLoc QualifierLoc,
3194                        SourceLocation TemplateKWLoc,
3195                        const DeclarationNameInfo &MemberNameInfo,
3196                        const TemplateArgumentListInfo *TemplateArgs,
3197                        UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3198 
UnresolvedMemberExpr(EmptyShell Empty)3199   UnresolvedMemberExpr(EmptyShell Empty)
3200     : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3201       HasUnresolvedUsing(false), Base(0) { }
3202 
3203   friend class ASTStmtReader;
3204 
3205 public:
3206   static UnresolvedMemberExpr *
3207   Create(ASTContext &C, bool HasUnresolvedUsing,
3208          Expr *Base, QualType BaseType, bool IsArrow,
3209          SourceLocation OperatorLoc,
3210          NestedNameSpecifierLoc QualifierLoc,
3211          SourceLocation TemplateKWLoc,
3212          const DeclarationNameInfo &MemberNameInfo,
3213          const TemplateArgumentListInfo *TemplateArgs,
3214          UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3215 
3216   static UnresolvedMemberExpr *
3217   CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3218               unsigned NumTemplateArgs);
3219 
3220   /// \brief True if this is an implicit access, i.e. one in which the
3221   /// member being accessed was not written in the source.  The source
3222   /// location of the operator is invalid in this case.
3223   bool isImplicitAccess() const;
3224 
3225   /// \brief Retrieve the base object of this member expressions,
3226   /// e.g., the \c x in \c x.m.
getBase()3227   Expr *getBase() {
3228     assert(!isImplicitAccess());
3229     return cast<Expr>(Base);
3230   }
getBase()3231   const Expr *getBase() const {
3232     assert(!isImplicitAccess());
3233     return cast<Expr>(Base);
3234   }
3235 
getBaseType()3236   QualType getBaseType() const { return BaseType; }
3237 
3238   /// \brief Determine whether the lookup results contain an unresolved using
3239   /// declaration.
hasUnresolvedUsing()3240   bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3241 
3242   /// \brief Determine whether this member expression used the '->'
3243   /// operator; otherwise, it used the '.' operator.
isArrow()3244   bool isArrow() const { return IsArrow; }
3245 
3246   /// \brief Retrieve the location of the '->' or '.' operator.
getOperatorLoc()3247   SourceLocation getOperatorLoc() const { return OperatorLoc; }
3248 
3249   /// \brief Retrieves the naming class of this lookup.
3250   CXXRecordDecl *getNamingClass() const;
3251 
3252   /// \brief Retrieve the full name info for the member that this expression
3253   /// refers to.
getMemberNameInfo()3254   const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3255 
3256   /// \brief Retrieve the name of the member that this expression
3257   /// refers to.
getMemberName()3258   DeclarationName getMemberName() const { return getName(); }
3259 
3260   // \brief Retrieve the location of the name of the member that this
3261   // expression refers to.
getMemberLoc()3262   SourceLocation getMemberLoc() const { return getNameLoc(); }
3263 
getSourceRange()3264   SourceRange getSourceRange() const LLVM_READONLY {
3265     SourceRange Range = getMemberNameInfo().getSourceRange();
3266     if (!isImplicitAccess())
3267       Range.setBegin(Base->getSourceRange().getBegin());
3268     else if (getQualifierLoc())
3269       Range.setBegin(getQualifierLoc().getBeginLoc());
3270 
3271     if (hasExplicitTemplateArgs())
3272       Range.setEnd(getRAngleLoc());
3273     return Range;
3274   }
3275 
classof(const Stmt * T)3276   static bool classof(const Stmt *T) {
3277     return T->getStmtClass() == UnresolvedMemberExprClass;
3278   }
classof(const UnresolvedMemberExpr *)3279   static bool classof(const UnresolvedMemberExpr *) { return true; }
3280 
3281   // Iterators
children()3282   child_range children() {
3283     if (isImplicitAccess()) return child_range();
3284     return child_range(&Base, &Base + 1);
3285   }
3286 };
3287 
3288 /// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3289 ///
3290 /// The noexcept expression tests whether a given expression might throw. Its
3291 /// result is a boolean constant.
3292 class CXXNoexceptExpr : public Expr {
3293   bool Value : 1;
3294   Stmt *Operand;
3295   SourceRange Range;
3296 
3297   friend class ASTStmtReader;
3298 
3299 public:
CXXNoexceptExpr(QualType Ty,Expr * Operand,CanThrowResult Val,SourceLocation Keyword,SourceLocation RParen)3300   CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3301                   SourceLocation Keyword, SourceLocation RParen)
3302     : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3303            /*TypeDependent*/false,
3304            /*ValueDependent*/Val == CT_Dependent,
3305            Val == CT_Dependent || Operand->isInstantiationDependent(),
3306            Operand->containsUnexpandedParameterPack()),
3307       Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3308   { }
3309 
CXXNoexceptExpr(EmptyShell Empty)3310   CXXNoexceptExpr(EmptyShell Empty)
3311     : Expr(CXXNoexceptExprClass, Empty)
3312   { }
3313 
getOperand()3314   Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3315 
getSourceRange()3316   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3317 
getValue()3318   bool getValue() const { return Value; }
3319 
classof(const Stmt * T)3320   static bool classof(const Stmt *T) {
3321     return T->getStmtClass() == CXXNoexceptExprClass;
3322   }
classof(const CXXNoexceptExpr *)3323   static bool classof(const CXXNoexceptExpr *) { return true; }
3324 
3325   // Iterators
children()3326   child_range children() { return child_range(&Operand, &Operand + 1); }
3327 };
3328 
3329 /// \brief Represents a C++0x pack expansion that produces a sequence of
3330 /// expressions.
3331 ///
3332 /// A pack expansion expression contains a pattern (which itself is an
3333 /// expression) followed by an ellipsis. For example:
3334 ///
3335 /// \code
3336 /// template<typename F, typename ...Types>
3337 /// void forward(F f, Types &&...args) {
3338 ///   f(static_cast<Types&&>(args)...);
3339 /// }
3340 /// \endcode
3341 ///
3342 /// Here, the argument to the function object \c f is a pack expansion whose
3343 /// pattern is \c static_cast<Types&&>(args). When the \c forward function
3344 /// template is instantiated, the pack expansion will instantiate to zero or
3345 /// or more function arguments to the function object \c f.
3346 class PackExpansionExpr : public Expr {
3347   SourceLocation EllipsisLoc;
3348 
3349   /// \brief The number of expansions that will be produced by this pack
3350   /// expansion expression, if known.
3351   ///
3352   /// When zero, the number of expansions is not known. Otherwise, this value
3353   /// is the number of expansions + 1.
3354   unsigned NumExpansions;
3355 
3356   Stmt *Pattern;
3357 
3358   friend class ASTStmtReader;
3359   friend class ASTStmtWriter;
3360 
3361 public:
PackExpansionExpr(QualType T,Expr * Pattern,SourceLocation EllipsisLoc,llvm::Optional<unsigned> NumExpansions)3362   PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3363                     llvm::Optional<unsigned> NumExpansions)
3364     : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3365            Pattern->getObjectKind(), /*TypeDependent=*/true,
3366            /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3367            /*ContainsUnexpandedParameterPack=*/false),
3368       EllipsisLoc(EllipsisLoc),
3369       NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3370       Pattern(Pattern) { }
3371 
PackExpansionExpr(EmptyShell Empty)3372   PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3373 
3374   /// \brief Retrieve the pattern of the pack expansion.
getPattern()3375   Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3376 
3377   /// \brief Retrieve the pattern of the pack expansion.
getPattern()3378   const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3379 
3380   /// \brief Retrieve the location of the ellipsis that describes this pack
3381   /// expansion.
getEllipsisLoc()3382   SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3383 
3384   /// \brief Determine the number of expansions that will be produced when
3385   /// this pack expansion is instantiated, if already known.
getNumExpansions()3386   llvm::Optional<unsigned> getNumExpansions() const {
3387     if (NumExpansions)
3388       return NumExpansions - 1;
3389 
3390     return llvm::Optional<unsigned>();
3391   }
3392 
getSourceRange()3393   SourceRange getSourceRange() const LLVM_READONLY {
3394     return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3395   }
3396 
classof(const Stmt * T)3397   static bool classof(const Stmt *T) {
3398     return T->getStmtClass() == PackExpansionExprClass;
3399   }
classof(const PackExpansionExpr *)3400   static bool classof(const PackExpansionExpr *) { return true; }
3401 
3402   // Iterators
children()3403   child_range children() {
3404     return child_range(&Pattern, &Pattern + 1);
3405   }
3406 };
3407 
getTemplateKWAndArgsInfo()3408 inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3409   if (!HasTemplateKWAndArgsInfo) return 0;
3410   if (isa<UnresolvedLookupExpr>(this))
3411     return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3412       (cast<UnresolvedLookupExpr>(this) + 1);
3413   else
3414     return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3415       (cast<UnresolvedMemberExpr>(this) + 1);
3416 }
3417 
3418 /// \brief Represents an expression that computes the length of a parameter
3419 /// pack.
3420 ///
3421 /// \code
3422 /// template<typename ...Types>
3423 /// struct count {
3424 ///   static const unsigned value = sizeof...(Types);
3425 /// };
3426 /// \endcode
3427 class SizeOfPackExpr : public Expr {
3428   /// \brief The location of the 'sizeof' keyword.
3429   SourceLocation OperatorLoc;
3430 
3431   /// \brief The location of the name of the parameter pack.
3432   SourceLocation PackLoc;
3433 
3434   /// \brief The location of the closing parenthesis.
3435   SourceLocation RParenLoc;
3436 
3437   /// \brief The length of the parameter pack, if known.
3438   ///
3439   /// When this expression is value-dependent, the length of the parameter pack
3440   /// is unknown. When this expression is not value-dependent, the length is
3441   /// known.
3442   unsigned Length;
3443 
3444   /// \brief The parameter pack itself.
3445   NamedDecl *Pack;
3446 
3447   friend class ASTStmtReader;
3448   friend class ASTStmtWriter;
3449 
3450 public:
3451   /// \brief Creates a value-dependent expression that computes the length of
3452   /// the given parameter pack.
SizeOfPackExpr(QualType SizeType,SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc)3453   SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3454                  SourceLocation PackLoc, SourceLocation RParenLoc)
3455     : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3456            /*TypeDependent=*/false, /*ValueDependent=*/true,
3457            /*InstantiationDependent=*/true,
3458            /*ContainsUnexpandedParameterPack=*/false),
3459       OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3460       Length(0), Pack(Pack) { }
3461 
3462   /// \brief Creates an expression that computes the length of
3463   /// the given parameter pack, which is already known.
SizeOfPackExpr(QualType SizeType,SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc,unsigned Length)3464   SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3465                  SourceLocation PackLoc, SourceLocation RParenLoc,
3466                  unsigned Length)
3467   : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3468          /*TypeDependent=*/false, /*ValueDependent=*/false,
3469          /*InstantiationDependent=*/false,
3470          /*ContainsUnexpandedParameterPack=*/false),
3471     OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3472     Length(Length), Pack(Pack) { }
3473 
3474   /// \brief Create an empty expression.
SizeOfPackExpr(EmptyShell Empty)3475   SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3476 
3477   /// \brief Determine the location of the 'sizeof' keyword.
getOperatorLoc()3478   SourceLocation getOperatorLoc() const { return OperatorLoc; }
3479 
3480   /// \brief Determine the location of the parameter pack.
getPackLoc()3481   SourceLocation getPackLoc() const { return PackLoc; }
3482 
3483   /// \brief Determine the location of the right parenthesis.
getRParenLoc()3484   SourceLocation getRParenLoc() const { return RParenLoc; }
3485 
3486   /// \brief Retrieve the parameter pack.
getPack()3487   NamedDecl *getPack() const { return Pack; }
3488 
3489   /// \brief Retrieve the length of the parameter pack.
3490   ///
3491   /// This routine may only be invoked when the expression is not
3492   /// value-dependent.
getPackLength()3493   unsigned getPackLength() const {
3494     assert(!isValueDependent() &&
3495            "Cannot get the length of a value-dependent pack size expression");
3496     return Length;
3497   }
3498 
getSourceRange()3499   SourceRange getSourceRange() const LLVM_READONLY {
3500     return SourceRange(OperatorLoc, RParenLoc);
3501   }
3502 
classof(const Stmt * T)3503   static bool classof(const Stmt *T) {
3504     return T->getStmtClass() == SizeOfPackExprClass;
3505   }
classof(const SizeOfPackExpr *)3506   static bool classof(const SizeOfPackExpr *) { return true; }
3507 
3508   // Iterators
children()3509   child_range children() { return child_range(); }
3510 };
3511 
3512 /// \brief Represents a reference to a non-type template parameter
3513 /// that has been substituted with a template argument.
3514 class SubstNonTypeTemplateParmExpr : public Expr {
3515   /// \brief The replaced parameter.
3516   NonTypeTemplateParmDecl *Param;
3517 
3518   /// \brief The replacement expression.
3519   Stmt *Replacement;
3520 
3521   /// \brief The location of the non-type template parameter reference.
3522   SourceLocation NameLoc;
3523 
3524   friend class ASTReader;
3525   friend class ASTStmtReader;
SubstNonTypeTemplateParmExpr(EmptyShell Empty)3526   explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3527     : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3528 
3529 public:
SubstNonTypeTemplateParmExpr(QualType type,ExprValueKind valueKind,SourceLocation loc,NonTypeTemplateParmDecl * param,Expr * replacement)3530   SubstNonTypeTemplateParmExpr(QualType type,
3531                                ExprValueKind valueKind,
3532                                SourceLocation loc,
3533                                NonTypeTemplateParmDecl *param,
3534                                Expr *replacement)
3535     : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3536            replacement->isTypeDependent(), replacement->isValueDependent(),
3537            replacement->isInstantiationDependent(),
3538            replacement->containsUnexpandedParameterPack()),
3539       Param(param), Replacement(replacement), NameLoc(loc) {}
3540 
getNameLoc()3541   SourceLocation getNameLoc() const { return NameLoc; }
getSourceRange()3542   SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3543 
getReplacement()3544   Expr *getReplacement() const { return cast<Expr>(Replacement); }
3545 
getParameter()3546   NonTypeTemplateParmDecl *getParameter() const { return Param; }
3547 
classof(const Stmt * s)3548   static bool classof(const Stmt *s) {
3549     return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3550   }
classof(const SubstNonTypeTemplateParmExpr *)3551   static bool classof(const SubstNonTypeTemplateParmExpr *) {
3552     return true;
3553   }
3554 
3555   // Iterators
children()3556   child_range children() { return child_range(&Replacement, &Replacement+1); }
3557 };
3558 
3559 /// \brief Represents a reference to a non-type template parameter pack that
3560 /// has been substituted with a non-template argument pack.
3561 ///
3562 /// When a pack expansion in the source code contains multiple parameter packs
3563 /// and those parameter packs correspond to different levels of template
3564 /// parameter lists, this node node is used to represent a non-type template
3565 /// parameter pack from an outer level, which has already had its argument pack
3566 /// substituted but that still lives within a pack expansion that itself
3567 /// could not be instantiated. When actually performing a substitution into
3568 /// that pack expansion (e.g., when all template parameters have corresponding
3569 /// arguments), this type will be replaced with the appropriate underlying
3570 /// expression at the current pack substitution index.
3571 class SubstNonTypeTemplateParmPackExpr : public Expr {
3572   /// \brief The non-type template parameter pack itself.
3573   NonTypeTemplateParmDecl *Param;
3574 
3575   /// \brief A pointer to the set of template arguments that this
3576   /// parameter pack is instantiated with.
3577   const TemplateArgument *Arguments;
3578 
3579   /// \brief The number of template arguments in \c Arguments.
3580   unsigned NumArguments;
3581 
3582   /// \brief The location of the non-type template parameter pack reference.
3583   SourceLocation NameLoc;
3584 
3585   friend class ASTReader;
3586   friend class ASTStmtReader;
SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)3587   explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3588     : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3589 
3590 public:
3591   SubstNonTypeTemplateParmPackExpr(QualType T,
3592                                    NonTypeTemplateParmDecl *Param,
3593                                    SourceLocation NameLoc,
3594                                    const TemplateArgument &ArgPack);
3595 
3596   /// \brief Retrieve the non-type template parameter pack being substituted.
getParameterPack()3597   NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3598 
3599   /// \brief Retrieve the location of the parameter pack name.
getParameterPackLocation()3600   SourceLocation getParameterPackLocation() const { return NameLoc; }
3601 
3602   /// \brief Retrieve the template argument pack containing the substituted
3603   /// template arguments.
3604   TemplateArgument getArgumentPack() const;
3605 
getSourceRange()3606   SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3607 
classof(const Stmt * T)3608   static bool classof(const Stmt *T) {
3609     return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3610   }
classof(const SubstNonTypeTemplateParmPackExpr *)3611   static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3612     return true;
3613   }
3614 
3615   // Iterators
children()3616   child_range children() { return child_range(); }
3617 };
3618 
3619 /// \brief Represents a prvalue temporary that written into memory so that
3620 /// a reference can bind to it.
3621 ///
3622 /// Prvalue expressions are materialized when they need to have an address
3623 /// in memory for a reference to bind to. This happens when binding a
3624 /// reference to the result of a conversion, e.g.,
3625 ///
3626 /// \code
3627 /// const int &r = 1.0;
3628 /// \endcode
3629 ///
3630 /// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3631 /// then materialized via a \c MaterializeTemporaryExpr, and the reference
3632 /// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3633 /// (either an lvalue or an xvalue, depending on the kind of reference binding
3634 /// to it), maintaining the invariant that references always bind to glvalues.
3635 class MaterializeTemporaryExpr : public Expr {
3636   /// \brief The temporary-generating expression whose value will be
3637   /// materialized.
3638   Stmt *Temporary;
3639 
3640   friend class ASTStmtReader;
3641   friend class ASTStmtWriter;
3642 
3643 public:
MaterializeTemporaryExpr(QualType T,Expr * Temporary,bool BoundToLvalueReference)3644   MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3645                            bool BoundToLvalueReference)
3646     : Expr(MaterializeTemporaryExprClass, T,
3647            BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3648            Temporary->isTypeDependent(), Temporary->isValueDependent(),
3649            Temporary->isInstantiationDependent(),
3650            Temporary->containsUnexpandedParameterPack()),
3651       Temporary(Temporary) { }
3652 
MaterializeTemporaryExpr(EmptyShell Empty)3653   MaterializeTemporaryExpr(EmptyShell Empty)
3654     : Expr(MaterializeTemporaryExprClass, Empty) { }
3655 
3656   /// \brief Retrieve the temporary-generating subexpression whose value will
3657   /// be materialized into a glvalue.
GetTemporaryExpr()3658   Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3659 
3660   /// \brief Determine whether this materialized temporary is bound to an
3661   /// lvalue reference; otherwise, it's bound to an rvalue reference.
isBoundToLvalueReference()3662   bool isBoundToLvalueReference() const {
3663     return getValueKind() == VK_LValue;
3664   }
3665 
getSourceRange()3666   SourceRange getSourceRange() const LLVM_READONLY {
3667     return Temporary->getSourceRange();
3668   }
3669 
classof(const Stmt * T)3670   static bool classof(const Stmt *T) {
3671     return T->getStmtClass() == MaterializeTemporaryExprClass;
3672   }
classof(const MaterializeTemporaryExpr *)3673   static bool classof(const MaterializeTemporaryExpr *) {
3674     return true;
3675   }
3676 
3677   // Iterators
children()3678   child_range children() { return child_range(&Temporary, &Temporary + 1); }
3679 };
3680 
3681 }  // end namespace clang
3682 
3683 #endif
3684