1 //===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the Expr interface and subclasses for C++ expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_AST_EXPRCXX_H
15 #define LLVM_CLANG_AST_EXPRCXX_H
16
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/UnresolvedSet.h"
20 #include "clang/AST/TemplateBase.h"
21 #include "clang/Basic/ExpressionTraits.h"
22 #include "clang/Basic/Lambda.h"
23 #include "clang/Basic/TypeTraits.h"
24 #include "llvm/Support/Compiler.h"
25
26 namespace clang {
27
28 class CXXConstructorDecl;
29 class CXXDestructorDecl;
30 class CXXMethodDecl;
31 class CXXTemporary;
32 class TemplateArgumentListInfo;
33
34 //===--------------------------------------------------------------------===//
35 // C++ Expressions.
36 //===--------------------------------------------------------------------===//
37
38 /// \brief A call to an overloaded operator written using operator
39 /// syntax.
40 ///
41 /// Represents a call to an overloaded operator written using operator
42 /// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
43 /// normal call, this AST node provides better information about the
44 /// syntactic representation of the call.
45 ///
46 /// In a C++ template, this expression node kind will be used whenever
47 /// any of the arguments are type-dependent. In this case, the
48 /// function itself will be a (possibly empty) set of functions and
49 /// function templates that were found by name lookup at template
50 /// definition time.
51 class CXXOperatorCallExpr : public CallExpr {
52 /// \brief The overloaded operator.
53 OverloadedOperatorKind Operator;
54 SourceRange Range;
55
56 SourceRange getSourceRangeImpl() const LLVM_READONLY;
57 public:
CXXOperatorCallExpr(ASTContext & C,OverloadedOperatorKind Op,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation operatorloc)58 CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
59 ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
60 SourceLocation operatorloc)
61 : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
62 operatorloc),
63 Operator(Op) {
64 Range = getSourceRangeImpl();
65 }
CXXOperatorCallExpr(ASTContext & C,EmptyShell Empty)66 explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
67 CallExpr(C, CXXOperatorCallExprClass, Empty) { }
68
69
70 /// getOperator - Returns the kind of overloaded operator that this
71 /// expression refers to.
getOperator()72 OverloadedOperatorKind getOperator() const { return Operator; }
73
74 /// getOperatorLoc - Returns the location of the operator symbol in
75 /// the expression. When @c getOperator()==OO_Call, this is the
76 /// location of the right parentheses; when @c
77 /// getOperator()==OO_Subscript, this is the location of the right
78 /// bracket.
getOperatorLoc()79 SourceLocation getOperatorLoc() const { return getRParenLoc(); }
80
getSourceRange()81 SourceRange getSourceRange() const { return Range; }
82
classof(const Stmt * T)83 static bool classof(const Stmt *T) {
84 return T->getStmtClass() == CXXOperatorCallExprClass;
85 }
classof(const CXXOperatorCallExpr *)86 static bool classof(const CXXOperatorCallExpr *) { return true; }
87
88 friend class ASTStmtReader;
89 friend class ASTStmtWriter;
90 };
91
92 /// CXXMemberCallExpr - Represents a call to a member function that
93 /// may be written either with member call syntax (e.g., "obj.func()"
94 /// or "objptr->func()") or with normal function-call syntax
95 /// ("func()") within a member function that ends up calling a member
96 /// function. The callee in either case is a MemberExpr that contains
97 /// both the object argument and the member function, while the
98 /// arguments are the arguments within the parentheses (not including
99 /// the object argument).
100 class CXXMemberCallExpr : public CallExpr {
101 public:
CXXMemberCallExpr(ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation RP)102 CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
103 QualType t, ExprValueKind VK, SourceLocation RP)
104 : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
105
CXXMemberCallExpr(ASTContext & C,EmptyShell Empty)106 CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
107 : CallExpr(C, CXXMemberCallExprClass, Empty) { }
108
109 /// getImplicitObjectArgument - Retrieves the implicit object
110 /// argument for the member call. For example, in "x.f(5)", this
111 /// operation would return "x".
112 Expr *getImplicitObjectArgument() const;
113
114 /// Retrieves the declaration of the called method.
115 CXXMethodDecl *getMethodDecl() const;
116
117 /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
118 /// the implicit object argument. Note that this is may not be the same
119 /// declaration as that of the class context of the CXXMethodDecl which this
120 /// function is calling.
121 /// FIXME: Returns 0 for member pointer call exprs.
122 CXXRecordDecl *getRecordDecl() const;
123
classof(const Stmt * T)124 static bool classof(const Stmt *T) {
125 return T->getStmtClass() == CXXMemberCallExprClass;
126 }
classof(const CXXMemberCallExpr *)127 static bool classof(const CXXMemberCallExpr *) { return true; }
128 };
129
130 /// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
131 class CUDAKernelCallExpr : public CallExpr {
132 private:
133 enum { CONFIG, END_PREARG };
134
135 public:
CUDAKernelCallExpr(ASTContext & C,Expr * fn,CallExpr * Config,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation RP)136 CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
137 ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
138 SourceLocation RP)
139 : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
140 setConfig(Config);
141 }
142
CUDAKernelCallExpr(ASTContext & C,EmptyShell Empty)143 CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
144 : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
145
getConfig()146 const CallExpr *getConfig() const {
147 return cast_or_null<CallExpr>(getPreArg(CONFIG));
148 }
getConfig()149 CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
setConfig(CallExpr * E)150 void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
151
classof(const Stmt * T)152 static bool classof(const Stmt *T) {
153 return T->getStmtClass() == CUDAKernelCallExprClass;
154 }
classof(const CUDAKernelCallExpr *)155 static bool classof(const CUDAKernelCallExpr *) { return true; }
156 };
157
158 /// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
159 /// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
160 /// const_cast.
161 ///
162 /// This abstract class is inherited by all of the classes
163 /// representing "named" casts, e.g., CXXStaticCastExpr,
164 /// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
165 class CXXNamedCastExpr : public ExplicitCastExpr {
166 private:
167 SourceLocation Loc; // the location of the casting op
168 SourceLocation RParenLoc; // the location of the right parenthesis
169
170 protected:
CXXNamedCastExpr(StmtClass SC,QualType ty,ExprValueKind VK,CastKind kind,Expr * op,unsigned PathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc)171 CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
172 CastKind kind, Expr *op, unsigned PathSize,
173 TypeSourceInfo *writtenTy, SourceLocation l,
174 SourceLocation RParenLoc)
175 : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
176 RParenLoc(RParenLoc) {}
177
CXXNamedCastExpr(StmtClass SC,EmptyShell Shell,unsigned PathSize)178 explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
179 : ExplicitCastExpr(SC, Shell, PathSize) { }
180
181 friend class ASTStmtReader;
182
183 public:
184 const char *getCastName() const;
185
186 /// \brief Retrieve the location of the cast operator keyword, e.g.,
187 /// "static_cast".
getOperatorLoc()188 SourceLocation getOperatorLoc() const { return Loc; }
189
190 /// \brief Retrieve the location of the closing parenthesis.
getRParenLoc()191 SourceLocation getRParenLoc() const { return RParenLoc; }
192
getSourceRange()193 SourceRange getSourceRange() const LLVM_READONLY {
194 return SourceRange(Loc, RParenLoc);
195 }
classof(const Stmt * T)196 static bool classof(const Stmt *T) {
197 switch (T->getStmtClass()) {
198 case CXXStaticCastExprClass:
199 case CXXDynamicCastExprClass:
200 case CXXReinterpretCastExprClass:
201 case CXXConstCastExprClass:
202 return true;
203 default:
204 return false;
205 }
206 }
classof(const CXXNamedCastExpr *)207 static bool classof(const CXXNamedCastExpr *) { return true; }
208 };
209
210 /// CXXStaticCastExpr - A C++ @c static_cast expression
211 /// (C++ [expr.static.cast]).
212 ///
213 /// This expression node represents a C++ static cast, e.g.,
214 /// @c static_cast<int>(1.0).
215 class CXXStaticCastExpr : public CXXNamedCastExpr {
CXXStaticCastExpr(QualType ty,ExprValueKind vk,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc)216 CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
217 unsigned pathSize, TypeSourceInfo *writtenTy,
218 SourceLocation l, SourceLocation RParenLoc)
219 : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
220 writtenTy, l, RParenLoc) {}
221
CXXStaticCastExpr(EmptyShell Empty,unsigned PathSize)222 explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
223 : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
224
225 public:
226 static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
227 ExprValueKind VK, CastKind K, Expr *Op,
228 const CXXCastPath *Path,
229 TypeSourceInfo *Written, SourceLocation L,
230 SourceLocation RParenLoc);
231 static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
232 unsigned PathSize);
233
classof(const Stmt * T)234 static bool classof(const Stmt *T) {
235 return T->getStmtClass() == CXXStaticCastExprClass;
236 }
classof(const CXXStaticCastExpr *)237 static bool classof(const CXXStaticCastExpr *) { return true; }
238 };
239
240 /// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
241 /// (C++ [expr.dynamic.cast]), which may perform a run-time check to
242 /// determine how to perform the type cast.
243 ///
244 /// This expression node represents a dynamic cast, e.g.,
245 /// @c dynamic_cast<Derived*>(BasePtr).
246 class CXXDynamicCastExpr : public CXXNamedCastExpr {
CXXDynamicCastExpr(QualType ty,ExprValueKind VK,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc)247 CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
248 Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
249 SourceLocation l, SourceLocation RParenLoc)
250 : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
251 writtenTy, l, RParenLoc) {}
252
CXXDynamicCastExpr(EmptyShell Empty,unsigned pathSize)253 explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
254 : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
255
256 public:
257 static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
258 ExprValueKind VK, CastKind Kind, Expr *Op,
259 const CXXCastPath *Path,
260 TypeSourceInfo *Written, SourceLocation L,
261 SourceLocation RParenLoc);
262
263 static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
264 unsigned pathSize);
265
266 bool isAlwaysNull() const;
267
classof(const Stmt * T)268 static bool classof(const Stmt *T) {
269 return T->getStmtClass() == CXXDynamicCastExprClass;
270 }
classof(const CXXDynamicCastExpr *)271 static bool classof(const CXXDynamicCastExpr *) { return true; }
272 };
273
274 /// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
275 /// [expr.reinterpret.cast]), which provides a differently-typed view
276 /// of a value but performs no actual work at run time.
277 ///
278 /// This expression node represents a reinterpret cast, e.g.,
279 /// @c reinterpret_cast<int>(VoidPtr).
280 class CXXReinterpretCastExpr : public CXXNamedCastExpr {
CXXReinterpretCastExpr(QualType ty,ExprValueKind vk,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc)281 CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
282 Expr *op, unsigned pathSize,
283 TypeSourceInfo *writtenTy, SourceLocation l,
284 SourceLocation RParenLoc)
285 : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
286 pathSize, writtenTy, l, RParenLoc) {}
287
CXXReinterpretCastExpr(EmptyShell Empty,unsigned pathSize)288 CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
289 : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
290
291 public:
292 static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
293 ExprValueKind VK, CastKind Kind,
294 Expr *Op, const CXXCastPath *Path,
295 TypeSourceInfo *WrittenTy, SourceLocation L,
296 SourceLocation RParenLoc);
297 static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
298 unsigned pathSize);
299
classof(const Stmt * T)300 static bool classof(const Stmt *T) {
301 return T->getStmtClass() == CXXReinterpretCastExprClass;
302 }
classof(const CXXReinterpretCastExpr *)303 static bool classof(const CXXReinterpretCastExpr *) { return true; }
304 };
305
306 /// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
307 /// which can remove type qualifiers but does not change the underlying value.
308 ///
309 /// This expression node represents a const cast, e.g.,
310 /// @c const_cast<char*>(PtrToConstChar).
311 class CXXConstCastExpr : public CXXNamedCastExpr {
CXXConstCastExpr(QualType ty,ExprValueKind VK,Expr * op,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc)312 CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
313 TypeSourceInfo *writtenTy, SourceLocation l,
314 SourceLocation RParenLoc)
315 : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
316 0, writtenTy, l, RParenLoc) {}
317
CXXConstCastExpr(EmptyShell Empty)318 explicit CXXConstCastExpr(EmptyShell Empty)
319 : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
320
321 public:
322 static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
323 ExprValueKind VK, Expr *Op,
324 TypeSourceInfo *WrittenTy, SourceLocation L,
325 SourceLocation RParenLoc);
326 static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
327
classof(const Stmt * T)328 static bool classof(const Stmt *T) {
329 return T->getStmtClass() == CXXConstCastExprClass;
330 }
classof(const CXXConstCastExpr *)331 static bool classof(const CXXConstCastExpr *) { return true; }
332 };
333
334 /// UserDefinedLiteral - A call to a literal operator (C++11 [over.literal])
335 /// written as a user-defined literal (C++11 [lit.ext]).
336 ///
337 /// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
338 /// is semantically equivalent to a normal call, this AST node provides better
339 /// information about the syntactic representation of the literal.
340 ///
341 /// Since literal operators are never found by ADL and can only be declared at
342 /// namespace scope, a user-defined literal is never dependent.
343 class UserDefinedLiteral : public CallExpr {
344 /// \brief The location of a ud-suffix within the literal.
345 SourceLocation UDSuffixLoc;
346
347 public:
UserDefinedLiteral(ASTContext & C,Expr * Fn,ArrayRef<Expr * > Args,QualType T,ExprValueKind VK,SourceLocation LitEndLoc,SourceLocation SuffixLoc)348 UserDefinedLiteral(ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
349 QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
350 SourceLocation SuffixLoc)
351 : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
352 UDSuffixLoc(SuffixLoc) {}
UserDefinedLiteral(ASTContext & C,EmptyShell Empty)353 explicit UserDefinedLiteral(ASTContext &C, EmptyShell Empty)
354 : CallExpr(C, UserDefinedLiteralClass, Empty) {}
355
356 /// The kind of literal operator which is invoked.
357 enum LiteralOperatorKind {
358 LOK_Raw, ///< Raw form: operator "" X (const char *)
359 LOK_Template, ///< Raw form: operator "" X<cs...> ()
360 LOK_Integer, ///< operator "" X (unsigned long long)
361 LOK_Floating, ///< operator "" X (long double)
362 LOK_String, ///< operator "" X (const CharT *, size_t)
363 LOK_Character ///< operator "" X (CharT)
364 };
365
366 /// getLiteralOperatorKind - Returns the kind of literal operator invocation
367 /// which this expression represents.
368 LiteralOperatorKind getLiteralOperatorKind() const;
369
370 /// getCookedLiteral - If this is not a raw user-defined literal, get the
371 /// underlying cooked literal (representing the literal with the suffix
372 /// removed).
373 Expr *getCookedLiteral();
getCookedLiteral()374 const Expr *getCookedLiteral() const {
375 return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
376 }
377
getLocStart()378 SourceLocation getLocStart() const {
379 if (getLiteralOperatorKind() == LOK_Template)
380 return getRParenLoc();
381 return getArg(0)->getLocStart();
382 }
getLocEnd()383 SourceLocation getLocEnd() const { return getRParenLoc(); }
getSourceRange()384 SourceRange getSourceRange() const {
385 return SourceRange(getLocStart(), getLocEnd());
386 }
387
388
389 /// getUDSuffixLoc - Returns the location of a ud-suffix in the expression.
390 /// For a string literal, there may be multiple identical suffixes. This
391 /// returns the first.
getUDSuffixLoc()392 SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
393
394 /// getUDSuffix - Returns the ud-suffix specified for this literal.
395 const IdentifierInfo *getUDSuffix() const;
396
classof(const Stmt * S)397 static bool classof(const Stmt *S) {
398 return S->getStmtClass() == UserDefinedLiteralClass;
399 }
classof(const UserDefinedLiteral *)400 static bool classof(const UserDefinedLiteral *) { return true; }
401
402 friend class ASTStmtReader;
403 friend class ASTStmtWriter;
404 };
405
406 /// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
407 ///
408 class CXXBoolLiteralExpr : public Expr {
409 bool Value;
410 SourceLocation Loc;
411 public:
CXXBoolLiteralExpr(bool val,QualType Ty,SourceLocation l)412 CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
413 Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
414 false, false),
415 Value(val), Loc(l) {}
416
CXXBoolLiteralExpr(EmptyShell Empty)417 explicit CXXBoolLiteralExpr(EmptyShell Empty)
418 : Expr(CXXBoolLiteralExprClass, Empty) { }
419
getValue()420 bool getValue() const { return Value; }
setValue(bool V)421 void setValue(bool V) { Value = V; }
422
getSourceRange()423 SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
424
getLocation()425 SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation L)426 void setLocation(SourceLocation L) { Loc = L; }
427
classof(const Stmt * T)428 static bool classof(const Stmt *T) {
429 return T->getStmtClass() == CXXBoolLiteralExprClass;
430 }
classof(const CXXBoolLiteralExpr *)431 static bool classof(const CXXBoolLiteralExpr *) { return true; }
432
433 // Iterators
children()434 child_range children() { return child_range(); }
435 };
436
437 /// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
438 class CXXNullPtrLiteralExpr : public Expr {
439 SourceLocation Loc;
440 public:
CXXNullPtrLiteralExpr(QualType Ty,SourceLocation l)441 CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
442 Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
443 false, false),
444 Loc(l) {}
445
CXXNullPtrLiteralExpr(EmptyShell Empty)446 explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
447 : Expr(CXXNullPtrLiteralExprClass, Empty) { }
448
getSourceRange()449 SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
450
getLocation()451 SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation L)452 void setLocation(SourceLocation L) { Loc = L; }
453
classof(const Stmt * T)454 static bool classof(const Stmt *T) {
455 return T->getStmtClass() == CXXNullPtrLiteralExprClass;
456 }
classof(const CXXNullPtrLiteralExpr *)457 static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
458
children()459 child_range children() { return child_range(); }
460 };
461
462 /// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
463 /// the type_info that corresponds to the supplied type, or the (possibly
464 /// dynamic) type of the supplied expression.
465 ///
466 /// This represents code like @c typeid(int) or @c typeid(*objPtr)
467 class CXXTypeidExpr : public Expr {
468 private:
469 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
470 SourceRange Range;
471
472 public:
CXXTypeidExpr(QualType Ty,TypeSourceInfo * Operand,SourceRange R)473 CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
474 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
475 // typeid is never type-dependent (C++ [temp.dep.expr]p4)
476 false,
477 // typeid is value-dependent if the type or expression are dependent
478 Operand->getType()->isDependentType(),
479 Operand->getType()->isInstantiationDependentType(),
480 Operand->getType()->containsUnexpandedParameterPack()),
481 Operand(Operand), Range(R) { }
482
CXXTypeidExpr(QualType Ty,Expr * Operand,SourceRange R)483 CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
484 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
485 // typeid is never type-dependent (C++ [temp.dep.expr]p4)
486 false,
487 // typeid is value-dependent if the type or expression are dependent
488 Operand->isTypeDependent() || Operand->isValueDependent(),
489 Operand->isInstantiationDependent(),
490 Operand->containsUnexpandedParameterPack()),
491 Operand(Operand), Range(R) { }
492
CXXTypeidExpr(EmptyShell Empty,bool isExpr)493 CXXTypeidExpr(EmptyShell Empty, bool isExpr)
494 : Expr(CXXTypeidExprClass, Empty) {
495 if (isExpr)
496 Operand = (Expr*)0;
497 else
498 Operand = (TypeSourceInfo*)0;
499 }
500
501 /// Determine whether this typeid has a type operand which is potentially
502 /// evaluated, per C++11 [expr.typeid]p3.
503 bool isPotentiallyEvaluated() const;
504
isTypeOperand()505 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
506
507 /// \brief Retrieves the type operand of this typeid() expression after
508 /// various required adjustments (removing reference types, cv-qualifiers).
509 QualType getTypeOperand() const;
510
511 /// \brief Retrieve source information for the type operand.
getTypeOperandSourceInfo()512 TypeSourceInfo *getTypeOperandSourceInfo() const {
513 assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
514 return Operand.get<TypeSourceInfo *>();
515 }
516
setTypeOperandSourceInfo(TypeSourceInfo * TSI)517 void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
518 assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
519 Operand = TSI;
520 }
521
getExprOperand()522 Expr *getExprOperand() const {
523 assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
524 return static_cast<Expr*>(Operand.get<Stmt *>());
525 }
526
setExprOperand(Expr * E)527 void setExprOperand(Expr *E) {
528 assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
529 Operand = E;
530 }
531
getSourceRange()532 SourceRange getSourceRange() const LLVM_READONLY { return Range; }
setSourceRange(SourceRange R)533 void setSourceRange(SourceRange R) { Range = R; }
534
classof(const Stmt * T)535 static bool classof(const Stmt *T) {
536 return T->getStmtClass() == CXXTypeidExprClass;
537 }
classof(const CXXTypeidExpr *)538 static bool classof(const CXXTypeidExpr *) { return true; }
539
540 // Iterators
children()541 child_range children() {
542 if (isTypeOperand()) return child_range();
543 Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
544 return child_range(begin, begin + 1);
545 }
546 };
547
548 /// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
549 /// the _GUID that corresponds to the supplied type or expression.
550 ///
551 /// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
552 class CXXUuidofExpr : public Expr {
553 private:
554 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
555 SourceRange Range;
556
557 public:
CXXUuidofExpr(QualType Ty,TypeSourceInfo * Operand,SourceRange R)558 CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
559 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
560 false, Operand->getType()->isDependentType(),
561 Operand->getType()->isInstantiationDependentType(),
562 Operand->getType()->containsUnexpandedParameterPack()),
563 Operand(Operand), Range(R) { }
564
CXXUuidofExpr(QualType Ty,Expr * Operand,SourceRange R)565 CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
566 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
567 false, Operand->isTypeDependent(),
568 Operand->isInstantiationDependent(),
569 Operand->containsUnexpandedParameterPack()),
570 Operand(Operand), Range(R) { }
571
CXXUuidofExpr(EmptyShell Empty,bool isExpr)572 CXXUuidofExpr(EmptyShell Empty, bool isExpr)
573 : Expr(CXXUuidofExprClass, Empty) {
574 if (isExpr)
575 Operand = (Expr*)0;
576 else
577 Operand = (TypeSourceInfo*)0;
578 }
579
isTypeOperand()580 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
581
582 /// \brief Retrieves the type operand of this __uuidof() expression after
583 /// various required adjustments (removing reference types, cv-qualifiers).
584 QualType getTypeOperand() const;
585
586 /// \brief Retrieve source information for the type operand.
getTypeOperandSourceInfo()587 TypeSourceInfo *getTypeOperandSourceInfo() const {
588 assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
589 return Operand.get<TypeSourceInfo *>();
590 }
591
setTypeOperandSourceInfo(TypeSourceInfo * TSI)592 void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
593 assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
594 Operand = TSI;
595 }
596
getExprOperand()597 Expr *getExprOperand() const {
598 assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
599 return static_cast<Expr*>(Operand.get<Stmt *>());
600 }
601
setExprOperand(Expr * E)602 void setExprOperand(Expr *E) {
603 assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
604 Operand = E;
605 }
606
getSourceRange()607 SourceRange getSourceRange() const LLVM_READONLY { return Range; }
setSourceRange(SourceRange R)608 void setSourceRange(SourceRange R) { Range = R; }
609
classof(const Stmt * T)610 static bool classof(const Stmt *T) {
611 return T->getStmtClass() == CXXUuidofExprClass;
612 }
classof(const CXXUuidofExpr *)613 static bool classof(const CXXUuidofExpr *) { return true; }
614
615 // Iterators
children()616 child_range children() {
617 if (isTypeOperand()) return child_range();
618 Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
619 return child_range(begin, begin + 1);
620 }
621 };
622
623 /// CXXThisExpr - Represents the "this" expression in C++, which is a
624 /// pointer to the object on which the current member function is
625 /// executing (C++ [expr.prim]p3). Example:
626 ///
627 /// @code
628 /// class Foo {
629 /// public:
630 /// void bar();
631 /// void test() { this->bar(); }
632 /// };
633 /// @endcode
634 class CXXThisExpr : public Expr {
635 SourceLocation Loc;
636 bool Implicit : 1;
637
638 public:
CXXThisExpr(SourceLocation L,QualType Type,bool isImplicit)639 CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
640 : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
641 // 'this' is type-dependent if the class type of the enclosing
642 // member function is dependent (C++ [temp.dep.expr]p2)
643 Type->isDependentType(), Type->isDependentType(),
644 Type->isInstantiationDependentType(),
645 /*ContainsUnexpandedParameterPack=*/false),
646 Loc(L), Implicit(isImplicit) { }
647
CXXThisExpr(EmptyShell Empty)648 CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
649
getLocation()650 SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation L)651 void setLocation(SourceLocation L) { Loc = L; }
652
getSourceRange()653 SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
654
isImplicit()655 bool isImplicit() const { return Implicit; }
setImplicit(bool I)656 void setImplicit(bool I) { Implicit = I; }
657
classof(const Stmt * T)658 static bool classof(const Stmt *T) {
659 return T->getStmtClass() == CXXThisExprClass;
660 }
classof(const CXXThisExpr *)661 static bool classof(const CXXThisExpr *) { return true; }
662
663 // Iterators
children()664 child_range children() { return child_range(); }
665 };
666
667 /// CXXThrowExpr - [C++ 15] C++ Throw Expression. This handles
668 /// 'throw' and 'throw' assignment-expression. When
669 /// assignment-expression isn't present, Op will be null.
670 ///
671 class CXXThrowExpr : public Expr {
672 Stmt *Op;
673 SourceLocation ThrowLoc;
674 /// \brief Whether the thrown variable (if any) is in scope.
675 unsigned IsThrownVariableInScope : 1;
676
677 friend class ASTStmtReader;
678
679 public:
680 // Ty is the void type which is used as the result type of the
681 // exepression. The l is the location of the throw keyword. expr
682 // can by null, if the optional expression to throw isn't present.
CXXThrowExpr(Expr * expr,QualType Ty,SourceLocation l,bool IsThrownVariableInScope)683 CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
684 bool IsThrownVariableInScope) :
685 Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
686 expr && expr->isInstantiationDependent(),
687 expr && expr->containsUnexpandedParameterPack()),
688 Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
CXXThrowExpr(EmptyShell Empty)689 CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
690
getSubExpr()691 const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
getSubExpr()692 Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
693
getThrowLoc()694 SourceLocation getThrowLoc() const { return ThrowLoc; }
695
696 /// \brief Determines whether the variable thrown by this expression (if any!)
697 /// is within the innermost try block.
698 ///
699 /// This information is required to determine whether the NRVO can apply to
700 /// this variable.
isThrownVariableInScope()701 bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
702
getSourceRange()703 SourceRange getSourceRange() const LLVM_READONLY {
704 if (getSubExpr() == 0)
705 return SourceRange(ThrowLoc, ThrowLoc);
706 return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
707 }
708
classof(const Stmt * T)709 static bool classof(const Stmt *T) {
710 return T->getStmtClass() == CXXThrowExprClass;
711 }
classof(const CXXThrowExpr *)712 static bool classof(const CXXThrowExpr *) { return true; }
713
714 // Iterators
children()715 child_range children() {
716 return child_range(&Op, Op ? &Op+1 : &Op);
717 }
718 };
719
720 /// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
721 /// function call argument that was created from the corresponding
722 /// parameter's default argument, when the call did not explicitly
723 /// supply arguments for all of the parameters.
724 class CXXDefaultArgExpr : public Expr {
725 /// \brief The parameter whose default is being used.
726 ///
727 /// When the bit is set, the subexpression is stored after the
728 /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
729 /// actual default expression is the subexpression.
730 llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
731
732 /// \brief The location where the default argument expression was used.
733 SourceLocation Loc;
734
CXXDefaultArgExpr(StmtClass SC,SourceLocation Loc,ParmVarDecl * param)735 CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
736 : Expr(SC,
737 param->hasUnparsedDefaultArg()
738 ? param->getType().getNonReferenceType()
739 : param->getDefaultArg()->getType(),
740 param->getDefaultArg()->getValueKind(),
741 param->getDefaultArg()->getObjectKind(), false, false, false, false),
742 Param(param, false), Loc(Loc) { }
743
CXXDefaultArgExpr(StmtClass SC,SourceLocation Loc,ParmVarDecl * param,Expr * SubExpr)744 CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
745 Expr *SubExpr)
746 : Expr(SC, SubExpr->getType(),
747 SubExpr->getValueKind(), SubExpr->getObjectKind(),
748 false, false, false, false),
749 Param(param, true), Loc(Loc) {
750 *reinterpret_cast<Expr **>(this + 1) = SubExpr;
751 }
752
753 public:
CXXDefaultArgExpr(EmptyShell Empty)754 CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
755
756
757 // Param is the parameter whose default argument is used by this
758 // expression.
Create(ASTContext & C,SourceLocation Loc,ParmVarDecl * Param)759 static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
760 ParmVarDecl *Param) {
761 return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
762 }
763
764 // Param is the parameter whose default argument is used by this
765 // expression, and SubExpr is the expression that will actually be used.
766 static CXXDefaultArgExpr *Create(ASTContext &C,
767 SourceLocation Loc,
768 ParmVarDecl *Param,
769 Expr *SubExpr);
770
771 // Retrieve the parameter that the argument was created from.
getParam()772 const ParmVarDecl *getParam() const { return Param.getPointer(); }
getParam()773 ParmVarDecl *getParam() { return Param.getPointer(); }
774
775 // Retrieve the actual argument to the function call.
getExpr()776 const Expr *getExpr() const {
777 if (Param.getInt())
778 return *reinterpret_cast<Expr const * const*> (this + 1);
779 return getParam()->getDefaultArg();
780 }
getExpr()781 Expr *getExpr() {
782 if (Param.getInt())
783 return *reinterpret_cast<Expr **> (this + 1);
784 return getParam()->getDefaultArg();
785 }
786
787 /// \brief Retrieve the location where this default argument was actually
788 /// used.
getUsedLocation()789 SourceLocation getUsedLocation() const { return Loc; }
790
getSourceRange()791 SourceRange getSourceRange() const LLVM_READONLY {
792 // Default argument expressions have no representation in the
793 // source, so they have an empty source range.
794 return SourceRange();
795 }
796
classof(const Stmt * T)797 static bool classof(const Stmt *T) {
798 return T->getStmtClass() == CXXDefaultArgExprClass;
799 }
classof(const CXXDefaultArgExpr *)800 static bool classof(const CXXDefaultArgExpr *) { return true; }
801
802 // Iterators
children()803 child_range children() { return child_range(); }
804
805 friend class ASTStmtReader;
806 friend class ASTStmtWriter;
807 };
808
809 /// CXXTemporary - Represents a C++ temporary.
810 class CXXTemporary {
811 /// Destructor - The destructor that needs to be called.
812 const CXXDestructorDecl *Destructor;
813
CXXTemporary(const CXXDestructorDecl * destructor)814 CXXTemporary(const CXXDestructorDecl *destructor)
815 : Destructor(destructor) { }
816
817 public:
818 static CXXTemporary *Create(ASTContext &C,
819 const CXXDestructorDecl *Destructor);
820
getDestructor()821 const CXXDestructorDecl *getDestructor() const { return Destructor; }
setDestructor(const CXXDestructorDecl * Dtor)822 void setDestructor(const CXXDestructorDecl *Dtor) {
823 Destructor = Dtor;
824 }
825 };
826
827 /// \brief Represents binding an expression to a temporary.
828 ///
829 /// This ensures the destructor is called for the temporary. It should only be
830 /// needed for non-POD, non-trivially destructable class types. For example:
831 ///
832 /// \code
833 /// struct S {
834 /// S() { } // User defined constructor makes S non-POD.
835 /// ~S() { } // User defined destructor makes it non-trivial.
836 /// };
837 /// void test() {
838 /// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
839 /// }
840 /// \endcode
841 class CXXBindTemporaryExpr : public Expr {
842 CXXTemporary *Temp;
843
844 Stmt *SubExpr;
845
CXXBindTemporaryExpr(CXXTemporary * temp,Expr * SubExpr)846 CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
847 : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
848 VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
849 SubExpr->isValueDependent(),
850 SubExpr->isInstantiationDependent(),
851 SubExpr->containsUnexpandedParameterPack()),
852 Temp(temp), SubExpr(SubExpr) { }
853
854 public:
CXXBindTemporaryExpr(EmptyShell Empty)855 CXXBindTemporaryExpr(EmptyShell Empty)
856 : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
857
858 static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
859 Expr* SubExpr);
860
getTemporary()861 CXXTemporary *getTemporary() { return Temp; }
getTemporary()862 const CXXTemporary *getTemporary() const { return Temp; }
setTemporary(CXXTemporary * T)863 void setTemporary(CXXTemporary *T) { Temp = T; }
864
getSubExpr()865 const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
getSubExpr()866 Expr *getSubExpr() { return cast<Expr>(SubExpr); }
setSubExpr(Expr * E)867 void setSubExpr(Expr *E) { SubExpr = E; }
868
getSourceRange()869 SourceRange getSourceRange() const LLVM_READONLY {
870 return SubExpr->getSourceRange();
871 }
872
873 // Implement isa/cast/dyncast/etc.
classof(const Stmt * T)874 static bool classof(const Stmt *T) {
875 return T->getStmtClass() == CXXBindTemporaryExprClass;
876 }
classof(const CXXBindTemporaryExpr *)877 static bool classof(const CXXBindTemporaryExpr *) { return true; }
878
879 // Iterators
children()880 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
881 };
882
883 /// \brief Represents a call to a C++ constructor.
884 class CXXConstructExpr : public Expr {
885 public:
886 enum ConstructionKind {
887 CK_Complete,
888 CK_NonVirtualBase,
889 CK_VirtualBase,
890 CK_Delegating
891 };
892
893 private:
894 CXXConstructorDecl *Constructor;
895
896 SourceLocation Loc;
897 SourceRange ParenRange;
898 unsigned NumArgs : 16;
899 bool Elidable : 1;
900 bool HadMultipleCandidates : 1;
901 bool ListInitialization : 1;
902 bool ZeroInitialization : 1;
903 unsigned ConstructKind : 2;
904 Stmt **Args;
905
906 protected:
907 CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
908 SourceLocation Loc,
909 CXXConstructorDecl *d, bool elidable,
910 ArrayRef<Expr *> Args,
911 bool HadMultipleCandidates,
912 bool ListInitialization,
913 bool ZeroInitialization,
914 ConstructionKind ConstructKind,
915 SourceRange ParenRange);
916
917 /// \brief Construct an empty C++ construction expression.
CXXConstructExpr(StmtClass SC,EmptyShell Empty)918 CXXConstructExpr(StmtClass SC, EmptyShell Empty)
919 : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
920 HadMultipleCandidates(false), ListInitialization(false),
921 ZeroInitialization(false), ConstructKind(0), Args(0)
922 { }
923
924 public:
925 /// \brief Construct an empty C++ construction expression.
CXXConstructExpr(EmptyShell Empty)926 explicit CXXConstructExpr(EmptyShell Empty)
927 : Expr(CXXConstructExprClass, Empty), Constructor(0),
928 NumArgs(0), Elidable(false), HadMultipleCandidates(false),
929 ListInitialization(false), ZeroInitialization(false),
930 ConstructKind(0), Args(0)
931 { }
932
933 static CXXConstructExpr *Create(ASTContext &C, QualType T,
934 SourceLocation Loc,
935 CXXConstructorDecl *D, bool Elidable,
936 ArrayRef<Expr *> Args,
937 bool HadMultipleCandidates,
938 bool ListInitialization,
939 bool ZeroInitialization,
940 ConstructionKind ConstructKind,
941 SourceRange ParenRange);
942
getConstructor()943 CXXConstructorDecl* getConstructor() const { return Constructor; }
setConstructor(CXXConstructorDecl * C)944 void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
945
getLocation()946 SourceLocation getLocation() const { return Loc; }
setLocation(SourceLocation Loc)947 void setLocation(SourceLocation Loc) { this->Loc = Loc; }
948
949 /// \brief Whether this construction is elidable.
isElidable()950 bool isElidable() const { return Elidable; }
setElidable(bool E)951 void setElidable(bool E) { Elidable = E; }
952
953 /// \brief Whether the referred constructor was resolved from
954 /// an overloaded set having size greater than 1.
hadMultipleCandidates()955 bool hadMultipleCandidates() const { return HadMultipleCandidates; }
setHadMultipleCandidates(bool V)956 void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
957
958 /// \brief Whether this constructor call was written as list-initialization.
isListInitialization()959 bool isListInitialization() const { return ListInitialization; }
setListInitialization(bool V)960 void setListInitialization(bool V) { ListInitialization = V; }
961
962 /// \brief Whether this construction first requires
963 /// zero-initialization before the initializer is called.
requiresZeroInitialization()964 bool requiresZeroInitialization() const { return ZeroInitialization; }
setRequiresZeroInitialization(bool ZeroInit)965 void setRequiresZeroInitialization(bool ZeroInit) {
966 ZeroInitialization = ZeroInit;
967 }
968
969 /// \brief Determines whether this constructor is actually constructing
970 /// a base class (rather than a complete object).
getConstructionKind()971 ConstructionKind getConstructionKind() const {
972 return (ConstructionKind)ConstructKind;
973 }
setConstructionKind(ConstructionKind CK)974 void setConstructionKind(ConstructionKind CK) {
975 ConstructKind = CK;
976 }
977
978 typedef ExprIterator arg_iterator;
979 typedef ConstExprIterator const_arg_iterator;
980
arg_begin()981 arg_iterator arg_begin() { return Args; }
arg_end()982 arg_iterator arg_end() { return Args + NumArgs; }
arg_begin()983 const_arg_iterator arg_begin() const { return Args; }
arg_end()984 const_arg_iterator arg_end() const { return Args + NumArgs; }
985
getArgs()986 Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
getNumArgs()987 unsigned getNumArgs() const { return NumArgs; }
988
989 /// getArg - Return the specified argument.
getArg(unsigned Arg)990 Expr *getArg(unsigned Arg) {
991 assert(Arg < NumArgs && "Arg access out of range!");
992 return cast<Expr>(Args[Arg]);
993 }
getArg(unsigned Arg)994 const Expr *getArg(unsigned Arg) const {
995 assert(Arg < NumArgs && "Arg access out of range!");
996 return cast<Expr>(Args[Arg]);
997 }
998
999 /// setArg - Set the specified argument.
setArg(unsigned Arg,Expr * ArgExpr)1000 void setArg(unsigned Arg, Expr *ArgExpr) {
1001 assert(Arg < NumArgs && "Arg access out of range!");
1002 Args[Arg] = ArgExpr;
1003 }
1004
1005 SourceRange getSourceRange() const LLVM_READONLY;
getParenRange()1006 SourceRange getParenRange() const { return ParenRange; }
setParenRange(SourceRange Range)1007 void setParenRange(SourceRange Range) { ParenRange = Range; }
1008
classof(const Stmt * T)1009 static bool classof(const Stmt *T) {
1010 return T->getStmtClass() == CXXConstructExprClass ||
1011 T->getStmtClass() == CXXTemporaryObjectExprClass;
1012 }
classof(const CXXConstructExpr *)1013 static bool classof(const CXXConstructExpr *) { return true; }
1014
1015 // Iterators
children()1016 child_range children() {
1017 return child_range(&Args[0], &Args[0]+NumArgs);
1018 }
1019
1020 friend class ASTStmtReader;
1021 };
1022
1023 /// \brief Represents an explicit C++ type conversion that uses "functional"
1024 /// notation (C++ [expr.type.conv]).
1025 ///
1026 /// Example:
1027 /// @code
1028 /// x = int(0.5);
1029 /// @endcode
1030 class CXXFunctionalCastExpr : public ExplicitCastExpr {
1031 SourceLocation TyBeginLoc;
1032 SourceLocation RParenLoc;
1033
CXXFunctionalCastExpr(QualType ty,ExprValueKind VK,TypeSourceInfo * writtenTy,SourceLocation tyBeginLoc,CastKind kind,Expr * castExpr,unsigned pathSize,SourceLocation rParenLoc)1034 CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1035 TypeSourceInfo *writtenTy,
1036 SourceLocation tyBeginLoc, CastKind kind,
1037 Expr *castExpr, unsigned pathSize,
1038 SourceLocation rParenLoc)
1039 : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1040 castExpr, pathSize, writtenTy),
1041 TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
1042
CXXFunctionalCastExpr(EmptyShell Shell,unsigned PathSize)1043 explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1044 : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1045
1046 public:
1047 static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
1048 ExprValueKind VK,
1049 TypeSourceInfo *Written,
1050 SourceLocation TyBeginLoc,
1051 CastKind Kind, Expr *Op,
1052 const CXXCastPath *Path,
1053 SourceLocation RPLoc);
1054 static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
1055 unsigned PathSize);
1056
getTypeBeginLoc()1057 SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
setTypeBeginLoc(SourceLocation L)1058 void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
getRParenLoc()1059 SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)1060 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1061
getSourceRange()1062 SourceRange getSourceRange() const LLVM_READONLY {
1063 return SourceRange(TyBeginLoc, RParenLoc);
1064 }
classof(const Stmt * T)1065 static bool classof(const Stmt *T) {
1066 return T->getStmtClass() == CXXFunctionalCastExprClass;
1067 }
classof(const CXXFunctionalCastExpr *)1068 static bool classof(const CXXFunctionalCastExpr *) { return true; }
1069 };
1070
1071 /// @brief Represents a C++ functional cast expression that builds a
1072 /// temporary object.
1073 ///
1074 /// This expression type represents a C++ "functional" cast
1075 /// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1076 /// constructor to build a temporary object. With N == 1 arguments the
1077 /// functional cast expression will be represented by CXXFunctionalCastExpr.
1078 /// Example:
1079 /// @code
1080 /// struct X { X(int, float); }
1081 ///
1082 /// X create_X() {
1083 /// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1084 /// };
1085 /// @endcode
1086 class CXXTemporaryObjectExpr : public CXXConstructExpr {
1087 TypeSourceInfo *Type;
1088
1089 public:
1090 CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1091 TypeSourceInfo *Type,
1092 ArrayRef<Expr *> Args,
1093 SourceRange parenRange,
1094 bool HadMultipleCandidates,
1095 bool ZeroInitialization = false);
CXXTemporaryObjectExpr(EmptyShell Empty)1096 explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1097 : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1098
getTypeSourceInfo()1099 TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1100
1101 SourceRange getSourceRange() const LLVM_READONLY;
1102
classof(const Stmt * T)1103 static bool classof(const Stmt *T) {
1104 return T->getStmtClass() == CXXTemporaryObjectExprClass;
1105 }
classof(const CXXTemporaryObjectExpr *)1106 static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1107
1108 friend class ASTStmtReader;
1109 };
1110
1111 /// \brief A C++ lambda expression, which produces a function object
1112 /// (of unspecified type) that can be invoked later.
1113 ///
1114 /// Example:
1115 /// \code
1116 /// void low_pass_filter(std::vector<double> &values, double cutoff) {
1117 /// values.erase(std::remove_if(values.begin(), values.end(),
1118 // [=](double value) { return value > cutoff; });
1119 /// }
1120 /// \endcode
1121 ///
1122 /// Lambda expressions can capture local variables, either by copying
1123 /// the values of those local variables at the time the function
1124 /// object is constructed (not when it is called!) or by holding a
1125 /// reference to the local variable. These captures can occur either
1126 /// implicitly or can be written explicitly between the square
1127 /// brackets ([...]) that start the lambda expression.
1128 class LambdaExpr : public Expr {
1129 enum {
1130 /// \brief Flag used by the Capture class to indicate that the given
1131 /// capture was implicit.
1132 Capture_Implicit = 0x01,
1133
1134 /// \brief Flag used by the Capture class to indciate that the
1135 /// given capture was by-copy.
1136 Capture_ByCopy = 0x02
1137 };
1138
1139 /// \brief The source range that covers the lambda introducer ([...]).
1140 SourceRange IntroducerRange;
1141
1142 /// \brief The number of captures.
1143 unsigned NumCaptures : 16;
1144
1145 /// \brief The default capture kind, which is a value of type
1146 /// LambdaCaptureDefault.
1147 unsigned CaptureDefault : 2;
1148
1149 /// \brief Whether this lambda had an explicit parameter list vs. an
1150 /// implicit (and empty) parameter list.
1151 unsigned ExplicitParams : 1;
1152
1153 /// \brief Whether this lambda had the result type explicitly specified.
1154 unsigned ExplicitResultType : 1;
1155
1156 /// \brief Whether there are any array index variables stored at the end of
1157 /// this lambda expression.
1158 unsigned HasArrayIndexVars : 1;
1159
1160 /// \brief The location of the closing brace ('}') that completes
1161 /// the lambda.
1162 ///
1163 /// The location of the brace is also available by looking up the
1164 /// function call operator in the lambda class. However, it is
1165 /// stored here to improve the performance of getSourceRange(), and
1166 /// to avoid having to deserialize the function call operator from a
1167 /// module file just to determine the source range.
1168 SourceLocation ClosingBrace;
1169
1170 // Note: The capture initializers are stored directly after the lambda
1171 // expression, along with the index variables used to initialize by-copy
1172 // array captures.
1173
1174 public:
1175 /// \brief Describes the capture of either a variable or 'this'.
1176 class Capture {
1177 llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1178 SourceLocation Loc;
1179 SourceLocation EllipsisLoc;
1180
1181 friend class ASTStmtReader;
1182 friend class ASTStmtWriter;
1183
1184 public:
1185 /// \brief Create a new capture.
1186 ///
1187 /// \param Loc The source location associated with this capture.
1188 ///
1189 /// \param Kind The kind of capture (this, byref, bycopy).
1190 ///
1191 /// \param Implicit Whether the capture was implicit or explicit.
1192 ///
1193 /// \param Var The local variable being captured, or null if capturing this.
1194 ///
1195 /// \param EllipsisLoc The location of the ellipsis (...) for a
1196 /// capture that is a pack expansion, or an invalid source
1197 /// location to indicate that this is not a pack expansion.
1198 Capture(SourceLocation Loc, bool Implicit,
1199 LambdaCaptureKind Kind, VarDecl *Var = 0,
1200 SourceLocation EllipsisLoc = SourceLocation());
1201
1202 /// \brief Determine the kind of capture.
1203 LambdaCaptureKind getCaptureKind() const;
1204
1205 /// \brief Determine whether this capture handles the C++ 'this'
1206 /// pointer.
capturesThis()1207 bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1208
1209 /// \brief Determine whether this capture handles a variable.
capturesVariable()1210 bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1211
1212 /// \brief Retrieve the declaration of the local variable being
1213 /// captured.
1214 ///
1215 /// This operation is only valid if this capture does not capture
1216 /// 'this'.
getCapturedVar()1217 VarDecl *getCapturedVar() const {
1218 assert(!capturesThis() && "No variable available for 'this' capture");
1219 return VarAndBits.getPointer();
1220 }
1221
1222 /// \brief Determine whether this was an implicit capture (not
1223 /// written between the square brackets introducing the lambda).
isImplicit()1224 bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1225
1226 /// \brief Determine whether this was an explicit capture, written
1227 /// between the square brackets introducing the lambda.
isExplicit()1228 bool isExplicit() const { return !isImplicit(); }
1229
1230 /// \brief Retrieve the source location of the capture.
1231 ///
1232 /// For an explicit capture, this returns the location of the
1233 /// explicit capture in the source. For an implicit capture, this
1234 /// returns the location at which the variable or 'this' was first
1235 /// used.
getLocation()1236 SourceLocation getLocation() const { return Loc; }
1237
1238 /// \brief Determine whether this capture is a pack expansion,
1239 /// which captures a function parameter pack.
isPackExpansion()1240 bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1241
1242 /// \brief Retrieve the location of the ellipsis for a capture
1243 /// that is a pack expansion.
getEllipsisLoc()1244 SourceLocation getEllipsisLoc() const {
1245 assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1246 return EllipsisLoc;
1247 }
1248 };
1249
1250 private:
1251 /// \brief Construct a lambda expression.
1252 LambdaExpr(QualType T, SourceRange IntroducerRange,
1253 LambdaCaptureDefault CaptureDefault,
1254 ArrayRef<Capture> Captures,
1255 bool ExplicitParams,
1256 bool ExplicitResultType,
1257 ArrayRef<Expr *> CaptureInits,
1258 ArrayRef<VarDecl *> ArrayIndexVars,
1259 ArrayRef<unsigned> ArrayIndexStarts,
1260 SourceLocation ClosingBrace,
1261 bool ContainsUnexpandedParameterPack);
1262
1263 /// \brief Construct an empty lambda expression.
LambdaExpr(EmptyShell Empty,unsigned NumCaptures,bool HasArrayIndexVars)1264 LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1265 : Expr(LambdaExprClass, Empty),
1266 NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1267 ExplicitResultType(false), HasArrayIndexVars(true) {
1268 getStoredStmts()[NumCaptures] = 0;
1269 }
1270
getStoredStmts()1271 Stmt **getStoredStmts() const {
1272 return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1273 }
1274
1275 /// \brief Retrieve the mapping from captures to the first array index
1276 /// variable.
getArrayIndexStarts()1277 unsigned *getArrayIndexStarts() const {
1278 return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1279 }
1280
1281 /// \brief Retrieve the complete set of array-index variables.
getArrayIndexVars()1282 VarDecl **getArrayIndexVars() const {
1283 unsigned ArrayIndexSize =
1284 llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1285 llvm::alignOf<VarDecl*>());
1286 return reinterpret_cast<VarDecl **>(
1287 reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1288 }
1289
1290 public:
1291 /// \brief Construct a new lambda expression.
1292 static LambdaExpr *Create(ASTContext &C,
1293 CXXRecordDecl *Class,
1294 SourceRange IntroducerRange,
1295 LambdaCaptureDefault CaptureDefault,
1296 ArrayRef<Capture> Captures,
1297 bool ExplicitParams,
1298 bool ExplicitResultType,
1299 ArrayRef<Expr *> CaptureInits,
1300 ArrayRef<VarDecl *> ArrayIndexVars,
1301 ArrayRef<unsigned> ArrayIndexStarts,
1302 SourceLocation ClosingBrace,
1303 bool ContainsUnexpandedParameterPack);
1304
1305 /// \brief Construct a new lambda expression that will be deserialized from
1306 /// an external source.
1307 static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1308 unsigned NumArrayIndexVars);
1309
1310 /// \brief Determine the default capture kind for this lambda.
getCaptureDefault()1311 LambdaCaptureDefault getCaptureDefault() const {
1312 return static_cast<LambdaCaptureDefault>(CaptureDefault);
1313 }
1314
1315 /// \brief An iterator that walks over the captures of the lambda,
1316 /// both implicit and explicit.
1317 typedef const Capture *capture_iterator;
1318
1319 /// \brief Retrieve an iterator pointing to the first lambda capture.
1320 capture_iterator capture_begin() const;
1321
1322 /// \brief Retrieve an iterator pointing past the end of the
1323 /// sequence of lambda captures.
1324 capture_iterator capture_end() const;
1325
1326 /// \brief Determine the number of captures in this lambda.
capture_size()1327 unsigned capture_size() const { return NumCaptures; }
1328
1329 /// \brief Retrieve an iterator pointing to the first explicit
1330 /// lambda capture.
1331 capture_iterator explicit_capture_begin() const;
1332
1333 /// \brief Retrieve an iterator pointing past the end of the sequence of
1334 /// explicit lambda captures.
1335 capture_iterator explicit_capture_end() const;
1336
1337 /// \brief Retrieve an iterator pointing to the first implicit
1338 /// lambda capture.
1339 capture_iterator implicit_capture_begin() const;
1340
1341 /// \brief Retrieve an iterator pointing past the end of the sequence of
1342 /// implicit lambda captures.
1343 capture_iterator implicit_capture_end() const;
1344
1345 /// \brief Iterator that walks over the capture initialization
1346 /// arguments.
1347 typedef Expr **capture_init_iterator;
1348
1349 /// \brief Retrieve the first initialization argument for this
1350 /// lambda expression (which initializes the first capture field).
capture_init_begin()1351 capture_init_iterator capture_init_begin() const {
1352 return reinterpret_cast<Expr **>(getStoredStmts());
1353 }
1354
1355 /// \brief Retrieve the iterator pointing one past the last
1356 /// initialization argument for this lambda expression.
capture_init_end()1357 capture_init_iterator capture_init_end() const {
1358 return capture_init_begin() + NumCaptures;
1359 }
1360
1361 /// \brief Retrieve the set of index variables used in the capture
1362 /// initializer of an array captured by copy.
1363 ///
1364 /// \param Iter The iterator that points at the capture initializer for
1365 /// which we are extracting the corresponding index variables.
1366 ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1367
1368 /// \brief Retrieve the source range covering the lambda introducer,
1369 /// which contains the explicit capture list surrounded by square
1370 /// brackets ([...]).
getIntroducerRange()1371 SourceRange getIntroducerRange() const { return IntroducerRange; }
1372
1373 /// \brief Retrieve the class that corresponds to the lambda, which
1374 /// stores the captures in its fields and provides the various
1375 /// operations permitted on a lambda (copying, calling).
1376 CXXRecordDecl *getLambdaClass() const;
1377
1378 /// \brief Retrieve the function call operator associated with this
1379 /// lambda expression.
1380 CXXMethodDecl *getCallOperator() const;
1381
1382 /// \brief Retrieve the body of the lambda.
1383 CompoundStmt *getBody() const;
1384
1385 /// \brief Determine whether the lambda is mutable, meaning that any
1386 /// captures values can be modified.
1387 bool isMutable() const;
1388
1389 /// \brief Determine whether this lambda has an explicit parameter
1390 /// list vs. an implicit (empty) parameter list.
hasExplicitParameters()1391 bool hasExplicitParameters() const { return ExplicitParams; }
1392
1393 /// \brief Whether this lambda had its result type explicitly specified.
hasExplicitResultType()1394 bool hasExplicitResultType() const { return ExplicitResultType; }
1395
classof(const Stmt * T)1396 static bool classof(const Stmt *T) {
1397 return T->getStmtClass() == LambdaExprClass;
1398 }
classof(const LambdaExpr *)1399 static bool classof(const LambdaExpr *) { return true; }
1400
getSourceRange()1401 SourceRange getSourceRange() const LLVM_READONLY {
1402 return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1403 }
1404
children()1405 child_range children() {
1406 return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1407 }
1408
1409 friend class ASTStmtReader;
1410 friend class ASTStmtWriter;
1411 };
1412
1413 /// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1414 /// Expression "T()" which creates a value-initialized rvalue of type
1415 /// T, which is a non-class type.
1416 ///
1417 class CXXScalarValueInitExpr : public Expr {
1418 SourceLocation RParenLoc;
1419 TypeSourceInfo *TypeInfo;
1420
1421 friend class ASTStmtReader;
1422
1423 public:
1424 /// \brief Create an explicitly-written scalar-value initialization
1425 /// expression.
CXXScalarValueInitExpr(QualType Type,TypeSourceInfo * TypeInfo,SourceLocation rParenLoc)1426 CXXScalarValueInitExpr(QualType Type,
1427 TypeSourceInfo *TypeInfo,
1428 SourceLocation rParenLoc ) :
1429 Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1430 false, false, Type->isInstantiationDependentType(), false),
1431 RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1432
CXXScalarValueInitExpr(EmptyShell Shell)1433 explicit CXXScalarValueInitExpr(EmptyShell Shell)
1434 : Expr(CXXScalarValueInitExprClass, Shell) { }
1435
getTypeSourceInfo()1436 TypeSourceInfo *getTypeSourceInfo() const {
1437 return TypeInfo;
1438 }
1439
getRParenLoc()1440 SourceLocation getRParenLoc() const { return RParenLoc; }
1441
1442 SourceRange getSourceRange() const LLVM_READONLY;
1443
classof(const Stmt * T)1444 static bool classof(const Stmt *T) {
1445 return T->getStmtClass() == CXXScalarValueInitExprClass;
1446 }
classof(const CXXScalarValueInitExpr *)1447 static bool classof(const CXXScalarValueInitExpr *) { return true; }
1448
1449 // Iterators
children()1450 child_range children() { return child_range(); }
1451 };
1452
1453 /// @brief Represents a new-expression for memory allocation and constructor
1454 // calls, e.g: "new CXXNewExpr(foo)".
1455 class CXXNewExpr : public Expr {
1456 // Contains an optional array size expression, an optional initialization
1457 // expression, and any number of optional placement arguments, in that order.
1458 Stmt **SubExprs;
1459 /// \brief Points to the allocation function used.
1460 FunctionDecl *OperatorNew;
1461 /// \brief Points to the deallocation function used in case of error. May be
1462 /// null.
1463 FunctionDecl *OperatorDelete;
1464
1465 /// \brief The allocated type-source information, as written in the source.
1466 TypeSourceInfo *AllocatedTypeInfo;
1467
1468 /// \brief If the allocated type was expressed as a parenthesized type-id,
1469 /// the source range covering the parenthesized type-id.
1470 SourceRange TypeIdParens;
1471
1472 /// \brief Location of the first token.
1473 SourceLocation StartLoc;
1474
1475 /// \brief Source-range of a paren-delimited initializer.
1476 SourceRange DirectInitRange;
1477
1478 // Was the usage ::new, i.e. is the global new to be used?
1479 bool GlobalNew : 1;
1480 // Do we allocate an array? If so, the first SubExpr is the size expression.
1481 bool Array : 1;
1482 // If this is an array allocation, does the usual deallocation
1483 // function for the allocated type want to know the allocated size?
1484 bool UsualArrayDeleteWantsSize : 1;
1485 // The number of placement new arguments.
1486 unsigned NumPlacementArgs : 13;
1487 // What kind of initializer do we have? Could be none, parens, or braces.
1488 // In storage, we distinguish between "none, and no initializer expr", and
1489 // "none, but an implicit initializer expr".
1490 unsigned StoredInitializationStyle : 2;
1491
1492 friend class ASTStmtReader;
1493 friend class ASTStmtWriter;
1494 public:
1495 enum InitializationStyle {
1496 NoInit, ///< New-expression has no initializer as written.
1497 CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1498 ListInit ///< New-expression has a C++11 list-initializer.
1499 };
1500
1501 CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1502 FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1503 ArrayRef<Expr*> placementArgs,
1504 SourceRange typeIdParens, Expr *arraySize,
1505 InitializationStyle initializationStyle, Expr *initializer,
1506 QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1507 SourceLocation startLoc, SourceRange directInitRange);
CXXNewExpr(EmptyShell Shell)1508 explicit CXXNewExpr(EmptyShell Shell)
1509 : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1510
1511 void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1512 bool hasInitializer);
1513
getAllocatedType()1514 QualType getAllocatedType() const {
1515 assert(getType()->isPointerType());
1516 return getType()->getAs<PointerType>()->getPointeeType();
1517 }
1518
getAllocatedTypeSourceInfo()1519 TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1520 return AllocatedTypeInfo;
1521 }
1522
1523 /// \brief True if the allocation result needs to be null-checked.
1524 /// C++0x [expr.new]p13:
1525 /// If the allocation function returns null, initialization shall
1526 /// not be done, the deallocation function shall not be called,
1527 /// and the value of the new-expression shall be null.
1528 /// An allocation function is not allowed to return null unless it
1529 /// has a non-throwing exception-specification. The '03 rule is
1530 /// identical except that the definition of a non-throwing
1531 /// exception specification is just "is it throw()?".
1532 bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1533
getOperatorNew()1534 FunctionDecl *getOperatorNew() const { return OperatorNew; }
setOperatorNew(FunctionDecl * D)1535 void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
getOperatorDelete()1536 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
setOperatorDelete(FunctionDecl * D)1537 void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1538
isArray()1539 bool isArray() const { return Array; }
getArraySize()1540 Expr *getArraySize() {
1541 return Array ? cast<Expr>(SubExprs[0]) : 0;
1542 }
getArraySize()1543 const Expr *getArraySize() const {
1544 return Array ? cast<Expr>(SubExprs[0]) : 0;
1545 }
1546
getNumPlacementArgs()1547 unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
getPlacementArgs()1548 Expr **getPlacementArgs() {
1549 return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1550 }
1551
getPlacementArg(unsigned i)1552 Expr *getPlacementArg(unsigned i) {
1553 assert(i < NumPlacementArgs && "Index out of range");
1554 return getPlacementArgs()[i];
1555 }
getPlacementArg(unsigned i)1556 const Expr *getPlacementArg(unsigned i) const {
1557 assert(i < NumPlacementArgs && "Index out of range");
1558 return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1559 }
1560
isParenTypeId()1561 bool isParenTypeId() const { return TypeIdParens.isValid(); }
getTypeIdParens()1562 SourceRange getTypeIdParens() const { return TypeIdParens; }
1563
isGlobalNew()1564 bool isGlobalNew() const { return GlobalNew; }
1565
1566 /// \brief Whether this new-expression has any initializer at all.
hasInitializer()1567 bool hasInitializer() const { return StoredInitializationStyle > 0; }
1568
1569 /// \brief The kind of initializer this new-expression has.
getInitializationStyle()1570 InitializationStyle getInitializationStyle() const {
1571 if (StoredInitializationStyle == 0)
1572 return NoInit;
1573 return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1574 }
1575
1576 /// \brief The initializer of this new-expression.
getInitializer()1577 Expr *getInitializer() {
1578 return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1579 }
getInitializer()1580 const Expr *getInitializer() const {
1581 return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1582 }
1583
1584 /// \brief Returns the CXXConstructExpr from this new-expression, or NULL.
getConstructExpr()1585 const CXXConstructExpr* getConstructExpr() const {
1586 return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1587 }
1588
1589 /// Answers whether the usual array deallocation function for the
1590 /// allocated type expects the size of the allocation as a
1591 /// parameter.
doesUsualArrayDeleteWantSize()1592 bool doesUsualArrayDeleteWantSize() const {
1593 return UsualArrayDeleteWantsSize;
1594 }
1595
1596 typedef ExprIterator arg_iterator;
1597 typedef ConstExprIterator const_arg_iterator;
1598
placement_arg_begin()1599 arg_iterator placement_arg_begin() {
1600 return SubExprs + Array + hasInitializer();
1601 }
placement_arg_end()1602 arg_iterator placement_arg_end() {
1603 return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1604 }
placement_arg_begin()1605 const_arg_iterator placement_arg_begin() const {
1606 return SubExprs + Array + hasInitializer();
1607 }
placement_arg_end()1608 const_arg_iterator placement_arg_end() const {
1609 return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1610 }
1611
1612 typedef Stmt **raw_arg_iterator;
raw_arg_begin()1613 raw_arg_iterator raw_arg_begin() { return SubExprs; }
raw_arg_end()1614 raw_arg_iterator raw_arg_end() {
1615 return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1616 }
raw_arg_begin()1617 const_arg_iterator raw_arg_begin() const { return SubExprs; }
raw_arg_end()1618 const_arg_iterator raw_arg_end() const {
1619 return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1620 }
1621
getStartLoc()1622 SourceLocation getStartLoc() const { return StartLoc; }
1623 SourceLocation getEndLoc() const;
1624
getDirectInitRange()1625 SourceRange getDirectInitRange() const { return DirectInitRange; }
1626
getSourceRange()1627 SourceRange getSourceRange() const LLVM_READONLY {
1628 return SourceRange(getStartLoc(), getEndLoc());
1629 }
1630
classof(const Stmt * T)1631 static bool classof(const Stmt *T) {
1632 return T->getStmtClass() == CXXNewExprClass;
1633 }
classof(const CXXNewExpr *)1634 static bool classof(const CXXNewExpr *) { return true; }
1635
1636 // Iterators
children()1637 child_range children() {
1638 return child_range(raw_arg_begin(), raw_arg_end());
1639 }
1640 };
1641
1642 /// \brief Represents a \c delete expression for memory deallocation and
1643 /// destructor calls, e.g. "delete[] pArray".
1644 class CXXDeleteExpr : public Expr {
1645 // Points to the operator delete overload that is used. Could be a member.
1646 FunctionDecl *OperatorDelete;
1647 // The pointer expression to be deleted.
1648 Stmt *Argument;
1649 // Location of the expression.
1650 SourceLocation Loc;
1651 // Is this a forced global delete, i.e. "::delete"?
1652 bool GlobalDelete : 1;
1653 // Is this the array form of delete, i.e. "delete[]"?
1654 bool ArrayForm : 1;
1655 // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1656 // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1657 // will be true).
1658 bool ArrayFormAsWritten : 1;
1659 // Does the usual deallocation function for the element type require
1660 // a size_t argument?
1661 bool UsualArrayDeleteWantsSize : 1;
1662 public:
CXXDeleteExpr(QualType ty,bool globalDelete,bool arrayForm,bool arrayFormAsWritten,bool usualArrayDeleteWantsSize,FunctionDecl * operatorDelete,Expr * arg,SourceLocation loc)1663 CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1664 bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1665 FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1666 : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1667 arg->isInstantiationDependent(),
1668 arg->containsUnexpandedParameterPack()),
1669 OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1670 GlobalDelete(globalDelete),
1671 ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1672 UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
CXXDeleteExpr(EmptyShell Shell)1673 explicit CXXDeleteExpr(EmptyShell Shell)
1674 : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1675
isGlobalDelete()1676 bool isGlobalDelete() const { return GlobalDelete; }
isArrayForm()1677 bool isArrayForm() const { return ArrayForm; }
isArrayFormAsWritten()1678 bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1679
1680 /// Answers whether the usual array deallocation function for the
1681 /// allocated type expects the size of the allocation as a
1682 /// parameter. This can be true even if the actual deallocation
1683 /// function that we're using doesn't want a size.
doesUsualArrayDeleteWantSize()1684 bool doesUsualArrayDeleteWantSize() const {
1685 return UsualArrayDeleteWantsSize;
1686 }
1687
getOperatorDelete()1688 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1689
getArgument()1690 Expr *getArgument() { return cast<Expr>(Argument); }
getArgument()1691 const Expr *getArgument() const { return cast<Expr>(Argument); }
1692
1693 /// \brief Retrieve the type being destroyed. If the type being
1694 /// destroyed is a dependent type which may or may not be a pointer,
1695 /// return an invalid type.
1696 QualType getDestroyedType() const;
1697
getSourceRange()1698 SourceRange getSourceRange() const LLVM_READONLY {
1699 return SourceRange(Loc, Argument->getLocEnd());
1700 }
1701
classof(const Stmt * T)1702 static bool classof(const Stmt *T) {
1703 return T->getStmtClass() == CXXDeleteExprClass;
1704 }
classof(const CXXDeleteExpr *)1705 static bool classof(const CXXDeleteExpr *) { return true; }
1706
1707 // Iterators
children()1708 child_range children() { return child_range(&Argument, &Argument+1); }
1709
1710 friend class ASTStmtReader;
1711 };
1712
1713 /// \brief Stores the type being destroyed by a pseudo-destructor expression.
1714 class PseudoDestructorTypeStorage {
1715 /// \brief Either the type source information or the name of the type, if
1716 /// it couldn't be resolved due to type-dependence.
1717 llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1718
1719 /// \brief The starting source location of the pseudo-destructor type.
1720 SourceLocation Location;
1721
1722 public:
PseudoDestructorTypeStorage()1723 PseudoDestructorTypeStorage() { }
1724
PseudoDestructorTypeStorage(IdentifierInfo * II,SourceLocation Loc)1725 PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1726 : Type(II), Location(Loc) { }
1727
1728 PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1729
getTypeSourceInfo()1730 TypeSourceInfo *getTypeSourceInfo() const {
1731 return Type.dyn_cast<TypeSourceInfo *>();
1732 }
1733
getIdentifier()1734 IdentifierInfo *getIdentifier() const {
1735 return Type.dyn_cast<IdentifierInfo *>();
1736 }
1737
getLocation()1738 SourceLocation getLocation() const { return Location; }
1739 };
1740
1741 /// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1742 ///
1743 /// A pseudo-destructor is an expression that looks like a member access to a
1744 /// destructor of a scalar type, except that scalar types don't have
1745 /// destructors. For example:
1746 ///
1747 /// \code
1748 /// typedef int T;
1749 /// void f(int *p) {
1750 /// p->T::~T();
1751 /// }
1752 /// \endcode
1753 ///
1754 /// Pseudo-destructors typically occur when instantiating templates such as:
1755 ///
1756 /// \code
1757 /// template<typename T>
1758 /// void destroy(T* ptr) {
1759 /// ptr->T::~T();
1760 /// }
1761 /// \endcode
1762 ///
1763 /// for scalar types. A pseudo-destructor expression has no run-time semantics
1764 /// beyond evaluating the base expression.
1765 class CXXPseudoDestructorExpr : public Expr {
1766 /// \brief The base expression (that is being destroyed).
1767 Stmt *Base;
1768
1769 /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1770 /// period ('.').
1771 bool IsArrow : 1;
1772
1773 /// \brief The location of the '.' or '->' operator.
1774 SourceLocation OperatorLoc;
1775
1776 /// \brief The nested-name-specifier that follows the operator, if present.
1777 NestedNameSpecifierLoc QualifierLoc;
1778
1779 /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1780 /// expression.
1781 TypeSourceInfo *ScopeType;
1782
1783 /// \brief The location of the '::' in a qualified pseudo-destructor
1784 /// expression.
1785 SourceLocation ColonColonLoc;
1786
1787 /// \brief The location of the '~'.
1788 SourceLocation TildeLoc;
1789
1790 /// \brief The type being destroyed, or its name if we were unable to
1791 /// resolve the name.
1792 PseudoDestructorTypeStorage DestroyedType;
1793
1794 friend class ASTStmtReader;
1795
1796 public:
1797 CXXPseudoDestructorExpr(ASTContext &Context,
1798 Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1799 NestedNameSpecifierLoc QualifierLoc,
1800 TypeSourceInfo *ScopeType,
1801 SourceLocation ColonColonLoc,
1802 SourceLocation TildeLoc,
1803 PseudoDestructorTypeStorage DestroyedType);
1804
CXXPseudoDestructorExpr(EmptyShell Shell)1805 explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1806 : Expr(CXXPseudoDestructorExprClass, Shell),
1807 Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1808
getBase()1809 Expr *getBase() const { return cast<Expr>(Base); }
1810
1811 /// \brief Determines whether this member expression actually had
1812 /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1813 /// x->Base::foo.
hasQualifier()1814 bool hasQualifier() const { return QualifierLoc; }
1815
1816 /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1817 /// with source-location information.
getQualifierLoc()1818 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1819
1820 /// \brief If the member name was qualified, retrieves the
1821 /// nested-name-specifier that precedes the member name. Otherwise, returns
1822 /// NULL.
getQualifier()1823 NestedNameSpecifier *getQualifier() const {
1824 return QualifierLoc.getNestedNameSpecifier();
1825 }
1826
1827 /// \brief Determine whether this pseudo-destructor expression was written
1828 /// using an '->' (otherwise, it used a '.').
isArrow()1829 bool isArrow() const { return IsArrow; }
1830
1831 /// \brief Retrieve the location of the '.' or '->' operator.
getOperatorLoc()1832 SourceLocation getOperatorLoc() const { return OperatorLoc; }
1833
1834 /// \brief Retrieve the scope type in a qualified pseudo-destructor
1835 /// expression.
1836 ///
1837 /// Pseudo-destructor expressions can have extra qualification within them
1838 /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1839 /// Here, if the object type of the expression is (or may be) a scalar type,
1840 /// \p T may also be a scalar type and, therefore, cannot be part of a
1841 /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1842 /// destructor expression.
getScopeTypeInfo()1843 TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1844
1845 /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1846 /// expression.
getColonColonLoc()1847 SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1848
1849 /// \brief Retrieve the location of the '~'.
getTildeLoc()1850 SourceLocation getTildeLoc() const { return TildeLoc; }
1851
1852 /// \brief Retrieve the source location information for the type
1853 /// being destroyed.
1854 ///
1855 /// This type-source information is available for non-dependent
1856 /// pseudo-destructor expressions and some dependent pseudo-destructor
1857 /// expressions. Returns NULL if we only have the identifier for a
1858 /// dependent pseudo-destructor expression.
getDestroyedTypeInfo()1859 TypeSourceInfo *getDestroyedTypeInfo() const {
1860 return DestroyedType.getTypeSourceInfo();
1861 }
1862
1863 /// \brief In a dependent pseudo-destructor expression for which we do not
1864 /// have full type information on the destroyed type, provides the name
1865 /// of the destroyed type.
getDestroyedTypeIdentifier()1866 IdentifierInfo *getDestroyedTypeIdentifier() const {
1867 return DestroyedType.getIdentifier();
1868 }
1869
1870 /// \brief Retrieve the type being destroyed.
1871 QualType getDestroyedType() const;
1872
1873 /// \brief Retrieve the starting location of the type being destroyed.
getDestroyedTypeLoc()1874 SourceLocation getDestroyedTypeLoc() const {
1875 return DestroyedType.getLocation();
1876 }
1877
1878 /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1879 /// expression.
setDestroyedType(IdentifierInfo * II,SourceLocation Loc)1880 void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1881 DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1882 }
1883
1884 /// \brief Set the destroyed type.
setDestroyedType(TypeSourceInfo * Info)1885 void setDestroyedType(TypeSourceInfo *Info) {
1886 DestroyedType = PseudoDestructorTypeStorage(Info);
1887 }
1888
1889 SourceRange getSourceRange() const LLVM_READONLY;
1890
classof(const Stmt * T)1891 static bool classof(const Stmt *T) {
1892 return T->getStmtClass() == CXXPseudoDestructorExprClass;
1893 }
classof(const CXXPseudoDestructorExpr *)1894 static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1895
1896 // Iterators
children()1897 child_range children() { return child_range(&Base, &Base + 1); }
1898 };
1899
1900 /// \brief Represents a GCC or MS unary type trait, as used in the
1901 /// implementation of TR1/C++11 type trait templates.
1902 ///
1903 /// Example:
1904 /// @code
1905 /// __is_pod(int) == true
1906 /// __is_enum(std::string) == false
1907 /// @endcode
1908 class UnaryTypeTraitExpr : public Expr {
1909 /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1910 unsigned UTT : 31;
1911 /// The value of the type trait. Unspecified if dependent.
1912 bool Value : 1;
1913
1914 /// Loc - The location of the type trait keyword.
1915 SourceLocation Loc;
1916
1917 /// RParen - The location of the closing paren.
1918 SourceLocation RParen;
1919
1920 /// The type being queried.
1921 TypeSourceInfo *QueriedType;
1922
1923 public:
UnaryTypeTraitExpr(SourceLocation loc,UnaryTypeTrait utt,TypeSourceInfo * queried,bool value,SourceLocation rparen,QualType ty)1924 UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1925 TypeSourceInfo *queried, bool value,
1926 SourceLocation rparen, QualType ty)
1927 : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1928 false, queried->getType()->isDependentType(),
1929 queried->getType()->isInstantiationDependentType(),
1930 queried->getType()->containsUnexpandedParameterPack()),
1931 UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1932
UnaryTypeTraitExpr(EmptyShell Empty)1933 explicit UnaryTypeTraitExpr(EmptyShell Empty)
1934 : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1935 QueriedType() { }
1936
getSourceRange()1937 SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParen);}
1938
getTrait()1939 UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1940
getQueriedType()1941 QualType getQueriedType() const { return QueriedType->getType(); }
1942
getQueriedTypeSourceInfo()1943 TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1944
getValue()1945 bool getValue() const { return Value; }
1946
classof(const Stmt * T)1947 static bool classof(const Stmt *T) {
1948 return T->getStmtClass() == UnaryTypeTraitExprClass;
1949 }
classof(const UnaryTypeTraitExpr *)1950 static bool classof(const UnaryTypeTraitExpr *) { return true; }
1951
1952 // Iterators
children()1953 child_range children() { return child_range(); }
1954
1955 friend class ASTStmtReader;
1956 };
1957
1958 /// \brief Represents a GCC or MS binary type trait, as used in the
1959 /// implementation of TR1/C++11 type trait templates.
1960 ///
1961 /// Example:
1962 /// @code
1963 /// __is_base_of(Base, Derived) == true
1964 /// @endcode
1965 class BinaryTypeTraitExpr : public Expr {
1966 /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1967 unsigned BTT : 8;
1968
1969 /// The value of the type trait. Unspecified if dependent.
1970 bool Value : 1;
1971
1972 /// Loc - The location of the type trait keyword.
1973 SourceLocation Loc;
1974
1975 /// RParen - The location of the closing paren.
1976 SourceLocation RParen;
1977
1978 /// The lhs type being queried.
1979 TypeSourceInfo *LhsType;
1980
1981 /// The rhs type being queried.
1982 TypeSourceInfo *RhsType;
1983
1984 public:
BinaryTypeTraitExpr(SourceLocation loc,BinaryTypeTrait btt,TypeSourceInfo * lhsType,TypeSourceInfo * rhsType,bool value,SourceLocation rparen,QualType ty)1985 BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1986 TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1987 bool value, SourceLocation rparen, QualType ty)
1988 : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1989 lhsType->getType()->isDependentType() ||
1990 rhsType->getType()->isDependentType(),
1991 (lhsType->getType()->isInstantiationDependentType() ||
1992 rhsType->getType()->isInstantiationDependentType()),
1993 (lhsType->getType()->containsUnexpandedParameterPack() ||
1994 rhsType->getType()->containsUnexpandedParameterPack())),
1995 BTT(btt), Value(value), Loc(loc), RParen(rparen),
1996 LhsType(lhsType), RhsType(rhsType) { }
1997
1998
BinaryTypeTraitExpr(EmptyShell Empty)1999 explicit BinaryTypeTraitExpr(EmptyShell Empty)
2000 : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
2001 LhsType(), RhsType() { }
2002
getSourceRange()2003 SourceRange getSourceRange() const LLVM_READONLY {
2004 return SourceRange(Loc, RParen);
2005 }
2006
getTrait()2007 BinaryTypeTrait getTrait() const {
2008 return static_cast<BinaryTypeTrait>(BTT);
2009 }
2010
getLhsType()2011 QualType getLhsType() const { return LhsType->getType(); }
getRhsType()2012 QualType getRhsType() const { return RhsType->getType(); }
2013
getLhsTypeSourceInfo()2014 TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
getRhsTypeSourceInfo()2015 TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2016
getValue()2017 bool getValue() const { assert(!isTypeDependent()); return Value; }
2018
classof(const Stmt * T)2019 static bool classof(const Stmt *T) {
2020 return T->getStmtClass() == BinaryTypeTraitExprClass;
2021 }
classof(const BinaryTypeTraitExpr *)2022 static bool classof(const BinaryTypeTraitExpr *) { return true; }
2023
2024 // Iterators
children()2025 child_range children() { return child_range(); }
2026
2027 friend class ASTStmtReader;
2028 };
2029
2030 /// \brief A type trait used in the implementation of various C++11 and
2031 /// Library TR1 trait templates.
2032 ///
2033 /// \code
2034 /// __is_trivially_constructible(vector<int>, int*, int*)
2035 /// \endcode
2036 class TypeTraitExpr : public Expr {
2037 /// \brief The location of the type trait keyword.
2038 SourceLocation Loc;
2039
2040 /// \brief The location of the closing parenthesis.
2041 SourceLocation RParenLoc;
2042
2043 // Note: The TypeSourceInfos for the arguments are allocated after the
2044 // TypeTraitExpr.
2045
2046 TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2047 ArrayRef<TypeSourceInfo *> Args,
2048 SourceLocation RParenLoc,
2049 bool Value);
2050
TypeTraitExpr(EmptyShell Empty)2051 TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2052
2053 /// \brief Retrieve the argument types.
getTypeSourceInfos()2054 TypeSourceInfo **getTypeSourceInfos() {
2055 return reinterpret_cast<TypeSourceInfo **>(this+1);
2056 }
2057
2058 /// \brief Retrieve the argument types.
getTypeSourceInfos()2059 TypeSourceInfo * const *getTypeSourceInfos() const {
2060 return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2061 }
2062
2063 public:
2064 /// \brief Create a new type trait expression.
2065 static TypeTraitExpr *Create(ASTContext &C, QualType T, SourceLocation Loc,
2066 TypeTrait Kind,
2067 ArrayRef<TypeSourceInfo *> Args,
2068 SourceLocation RParenLoc,
2069 bool Value);
2070
2071 static TypeTraitExpr *CreateDeserialized(ASTContext &C, unsigned NumArgs);
2072
2073 /// \brief Determine which type trait this expression uses.
getTrait()2074 TypeTrait getTrait() const {
2075 return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2076 }
2077
getValue()2078 bool getValue() const {
2079 assert(!isValueDependent());
2080 return TypeTraitExprBits.Value;
2081 }
2082
2083 /// \brief Determine the number of arguments to this type trait.
getNumArgs()2084 unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2085
2086 /// \brief Retrieve the Ith argument.
getArg(unsigned I)2087 TypeSourceInfo *getArg(unsigned I) const {
2088 assert(I < getNumArgs() && "Argument out-of-range");
2089 return getArgs()[I];
2090 }
2091
2092 /// \brief Retrieve the argument types.
getArgs()2093 ArrayRef<TypeSourceInfo *> getArgs() const {
2094 return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2095 }
2096
2097 typedef TypeSourceInfo **arg_iterator;
arg_begin()2098 arg_iterator arg_begin() {
2099 return getTypeSourceInfos();
2100 }
arg_end()2101 arg_iterator arg_end() {
2102 return getTypeSourceInfos() + getNumArgs();
2103 }
2104
2105 typedef TypeSourceInfo const * const *arg_const_iterator;
arg_begin()2106 arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
arg_end()2107 arg_const_iterator arg_end() const {
2108 return getTypeSourceInfos() + getNumArgs();
2109 }
2110
getSourceRange()2111 SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParenLoc); }
2112
classof(const Stmt * T)2113 static bool classof(const Stmt *T) {
2114 return T->getStmtClass() == TypeTraitExprClass;
2115 }
classof(const TypeTraitExpr *)2116 static bool classof(const TypeTraitExpr *) { return true; }
2117
2118 // Iterators
children()2119 child_range children() { return child_range(); }
2120
2121 friend class ASTStmtReader;
2122 friend class ASTStmtWriter;
2123
2124 };
2125
2126 /// \brief An Embarcadero array type trait, as used in the implementation of
2127 /// __array_rank and __array_extent.
2128 ///
2129 /// Example:
2130 /// @code
2131 /// __array_rank(int[10][20]) == 2
2132 /// __array_extent(int, 1) == 20
2133 /// @endcode
2134 class ArrayTypeTraitExpr : public Expr {
2135 virtual void anchor();
2136
2137 /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2138 unsigned ATT : 2;
2139
2140 /// \brief The value of the type trait. Unspecified if dependent.
2141 uint64_t Value;
2142
2143 /// \brief The array dimension being queried, or -1 if not used.
2144 Expr *Dimension;
2145
2146 /// \brief The location of the type trait keyword.
2147 SourceLocation Loc;
2148
2149 /// \brief The location of the closing paren.
2150 SourceLocation RParen;
2151
2152 /// \brief The type being queried.
2153 TypeSourceInfo *QueriedType;
2154
2155 public:
ArrayTypeTraitExpr(SourceLocation loc,ArrayTypeTrait att,TypeSourceInfo * queried,uint64_t value,Expr * dimension,SourceLocation rparen,QualType ty)2156 ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2157 TypeSourceInfo *queried, uint64_t value,
2158 Expr *dimension, SourceLocation rparen, QualType ty)
2159 : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2160 false, queried->getType()->isDependentType(),
2161 (queried->getType()->isInstantiationDependentType() ||
2162 (dimension && dimension->isInstantiationDependent())),
2163 queried->getType()->containsUnexpandedParameterPack()),
2164 ATT(att), Value(value), Dimension(dimension),
2165 Loc(loc), RParen(rparen), QueriedType(queried) { }
2166
2167
ArrayTypeTraitExpr(EmptyShell Empty)2168 explicit ArrayTypeTraitExpr(EmptyShell Empty)
2169 : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2170 QueriedType() { }
2171
~ArrayTypeTraitExpr()2172 virtual ~ArrayTypeTraitExpr() { }
2173
getSourceRange()2174 virtual SourceRange getSourceRange() const LLVM_READONLY {
2175 return SourceRange(Loc, RParen);
2176 }
2177
getTrait()2178 ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2179
getQueriedType()2180 QualType getQueriedType() const { return QueriedType->getType(); }
2181
getQueriedTypeSourceInfo()2182 TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2183
getValue()2184 uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2185
getDimensionExpression()2186 Expr *getDimensionExpression() const { return Dimension; }
2187
classof(const Stmt * T)2188 static bool classof(const Stmt *T) {
2189 return T->getStmtClass() == ArrayTypeTraitExprClass;
2190 }
classof(const ArrayTypeTraitExpr *)2191 static bool classof(const ArrayTypeTraitExpr *) { return true; }
2192
2193 // Iterators
children()2194 child_range children() { return child_range(); }
2195
2196 friend class ASTStmtReader;
2197 };
2198
2199 /// \brief An expression trait intrinsic.
2200 ///
2201 /// Example:
2202 /// @code
2203 /// __is_lvalue_expr(std::cout) == true
2204 /// __is_lvalue_expr(1) == false
2205 /// @endcode
2206 class ExpressionTraitExpr : public Expr {
2207 /// \brief The trait. A ExpressionTrait enum in MSVC compat unsigned.
2208 unsigned ET : 31;
2209 /// \brief The value of the type trait. Unspecified if dependent.
2210 bool Value : 1;
2211
2212 /// \brief The location of the type trait keyword.
2213 SourceLocation Loc;
2214
2215 /// \brief The location of the closing paren.
2216 SourceLocation RParen;
2217
2218 /// \brief The expression being queried.
2219 Expr* QueriedExpression;
2220 public:
ExpressionTraitExpr(SourceLocation loc,ExpressionTrait et,Expr * queried,bool value,SourceLocation rparen,QualType resultType)2221 ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2222 Expr *queried, bool value,
2223 SourceLocation rparen, QualType resultType)
2224 : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2225 false, // Not type-dependent
2226 // Value-dependent if the argument is type-dependent.
2227 queried->isTypeDependent(),
2228 queried->isInstantiationDependent(),
2229 queried->containsUnexpandedParameterPack()),
2230 ET(et), Value(value), Loc(loc), RParen(rparen),
2231 QueriedExpression(queried) { }
2232
ExpressionTraitExpr(EmptyShell Empty)2233 explicit ExpressionTraitExpr(EmptyShell Empty)
2234 : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2235 QueriedExpression() { }
2236
getSourceRange()2237 SourceRange getSourceRange() const LLVM_READONLY {
2238 return SourceRange(Loc, RParen);
2239 }
2240
getTrait()2241 ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2242
getQueriedExpression()2243 Expr *getQueriedExpression() const { return QueriedExpression; }
2244
getValue()2245 bool getValue() const { return Value; }
2246
classof(const Stmt * T)2247 static bool classof(const Stmt *T) {
2248 return T->getStmtClass() == ExpressionTraitExprClass;
2249 }
classof(const ExpressionTraitExpr *)2250 static bool classof(const ExpressionTraitExpr *) { return true; }
2251
2252 // Iterators
children()2253 child_range children() { return child_range(); }
2254
2255 friend class ASTStmtReader;
2256 };
2257
2258
2259 /// \brief A reference to an overloaded function set, either an
2260 /// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2261 class OverloadExpr : public Expr {
2262 /// \brief The common name of these declarations.
2263 DeclarationNameInfo NameInfo;
2264
2265 /// \brief The nested-name-specifier that qualifies the name, if any.
2266 NestedNameSpecifierLoc QualifierLoc;
2267
2268 /// The results. These are undesugared, which is to say, they may
2269 /// include UsingShadowDecls. Access is relative to the naming
2270 /// class.
2271 // FIXME: Allocate this data after the OverloadExpr subclass.
2272 DeclAccessPair *Results;
2273 unsigned NumResults;
2274
2275 protected:
2276 /// \brief Whether the name includes info for explicit template
2277 /// keyword and arguments.
2278 bool HasTemplateKWAndArgsInfo;
2279
2280 /// \brief Return the optional template keyword and arguments info.
2281 ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2282
2283 /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2284 const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2285 return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2286 }
2287
2288 OverloadExpr(StmtClass K, ASTContext &C,
2289 NestedNameSpecifierLoc QualifierLoc,
2290 SourceLocation TemplateKWLoc,
2291 const DeclarationNameInfo &NameInfo,
2292 const TemplateArgumentListInfo *TemplateArgs,
2293 UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2294 bool KnownDependent,
2295 bool KnownInstantiationDependent,
2296 bool KnownContainsUnexpandedParameterPack);
2297
OverloadExpr(StmtClass K,EmptyShell Empty)2298 OverloadExpr(StmtClass K, EmptyShell Empty)
2299 : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2300 HasTemplateKWAndArgsInfo(false) { }
2301
2302 void initializeResults(ASTContext &C,
2303 UnresolvedSetIterator Begin,
2304 UnresolvedSetIterator End);
2305
2306 public:
2307 struct FindResult {
2308 OverloadExpr *Expression;
2309 bool IsAddressOfOperand;
2310 bool HasFormOfMemberPointer;
2311 };
2312
2313 /// Finds the overloaded expression in the given expression of
2314 /// OverloadTy.
2315 ///
2316 /// \return the expression (which must be there) and true if it has
2317 /// the particular form of a member pointer expression
find(Expr * E)2318 static FindResult find(Expr *E) {
2319 assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2320
2321 FindResult Result;
2322
2323 E = E->IgnoreParens();
2324 if (isa<UnaryOperator>(E)) {
2325 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2326 E = cast<UnaryOperator>(E)->getSubExpr();
2327 OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2328
2329 Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2330 Result.IsAddressOfOperand = true;
2331 Result.Expression = Ovl;
2332 } else {
2333 Result.HasFormOfMemberPointer = false;
2334 Result.IsAddressOfOperand = false;
2335 Result.Expression = cast<OverloadExpr>(E);
2336 }
2337
2338 return Result;
2339 }
2340
2341 /// \brief Gets the naming class of this lookup, if any.
2342 CXXRecordDecl *getNamingClass() const;
2343
2344 typedef UnresolvedSetImpl::iterator decls_iterator;
decls_begin()2345 decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
decls_end()2346 decls_iterator decls_end() const {
2347 return UnresolvedSetIterator(Results + NumResults);
2348 }
2349
2350 /// \brief Gets the number of declarations in the unresolved set.
getNumDecls()2351 unsigned getNumDecls() const { return NumResults; }
2352
2353 /// \brief Gets the full name info.
getNameInfo()2354 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2355
2356 /// \brief Gets the name looked up.
getName()2357 DeclarationName getName() const { return NameInfo.getName(); }
2358
2359 /// \brief Gets the location of the name.
getNameLoc()2360 SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2361
2362 /// \brief Fetches the nested-name qualifier, if one was given.
getQualifier()2363 NestedNameSpecifier *getQualifier() const {
2364 return QualifierLoc.getNestedNameSpecifier();
2365 }
2366
2367 /// \brief Fetches the nested-name qualifier with source-location
2368 /// information, if one was given.
getQualifierLoc()2369 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2370
2371 /// \brief Retrieve the location of the template keyword preceding
2372 /// this name, if any.
getTemplateKeywordLoc()2373 SourceLocation getTemplateKeywordLoc() const {
2374 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2375 return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2376 }
2377
2378 /// \brief Retrieve the location of the left angle bracket starting the
2379 /// explicit template argument list following the name, if any.
getLAngleLoc()2380 SourceLocation getLAngleLoc() const {
2381 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2382 return getTemplateKWAndArgsInfo()->LAngleLoc;
2383 }
2384
2385 /// \brief Retrieve the location of the right angle bracket ending the
2386 /// explicit template argument list following the name, if any.
getRAngleLoc()2387 SourceLocation getRAngleLoc() const {
2388 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2389 return getTemplateKWAndArgsInfo()->RAngleLoc;
2390 }
2391
2392 /// \brief Determines whether the name was preceded by the template keyword.
hasTemplateKeyword()2393 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2394
2395 /// \brief Determines whether this expression had explicit template arguments.
hasExplicitTemplateArgs()2396 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2397
2398 // Note that, inconsistently with the explicit-template-argument AST
2399 // nodes, users are *forbidden* from calling these methods on objects
2400 // without explicit template arguments.
2401
getExplicitTemplateArgs()2402 ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2403 assert(hasExplicitTemplateArgs());
2404 return *getTemplateKWAndArgsInfo();
2405 }
2406
getExplicitTemplateArgs()2407 const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2408 return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2409 }
2410
getTemplateArgs()2411 TemplateArgumentLoc const *getTemplateArgs() const {
2412 return getExplicitTemplateArgs().getTemplateArgs();
2413 }
2414
getNumTemplateArgs()2415 unsigned getNumTemplateArgs() const {
2416 return getExplicitTemplateArgs().NumTemplateArgs;
2417 }
2418
2419 /// \brief Copies the template arguments into the given structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)2420 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2421 getExplicitTemplateArgs().copyInto(List);
2422 }
2423
2424 /// \brief Retrieves the optional explicit template arguments.
2425 ///
2426 /// This points to the same data as getExplicitTemplateArgs(), but
2427 /// returns null if there are no explicit template arguments.
getOptionalExplicitTemplateArgs()2428 const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2429 if (!hasExplicitTemplateArgs()) return 0;
2430 return &getExplicitTemplateArgs();
2431 }
2432
classof(const Stmt * T)2433 static bool classof(const Stmt *T) {
2434 return T->getStmtClass() == UnresolvedLookupExprClass ||
2435 T->getStmtClass() == UnresolvedMemberExprClass;
2436 }
classof(const OverloadExpr *)2437 static bool classof(const OverloadExpr *) { return true; }
2438
2439 friend class ASTStmtReader;
2440 friend class ASTStmtWriter;
2441 };
2442
2443 /// \brief A reference to a name which we were able to look up during
2444 /// parsing but could not resolve to a specific declaration.
2445 ///
2446 /// This arises in several ways:
2447 /// * we might be waiting for argument-dependent lookup
2448 /// * the name might resolve to an overloaded function
2449 /// and eventually:
2450 /// * the lookup might have included a function template
2451 /// These never include UnresolvedUsingValueDecls, which are always class
2452 /// members and therefore appear only in UnresolvedMemberLookupExprs.
2453 class UnresolvedLookupExpr : public OverloadExpr {
2454 /// True if these lookup results should be extended by
2455 /// argument-dependent lookup if this is the operand of a function
2456 /// call.
2457 bool RequiresADL;
2458
2459 /// True if namespace ::std should be considered an associated namespace
2460 /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2461 bool StdIsAssociatedNamespace;
2462
2463 /// True if these lookup results are overloaded. This is pretty
2464 /// trivially rederivable if we urgently need to kill this field.
2465 bool Overloaded;
2466
2467 /// The naming class (C++ [class.access.base]p5) of the lookup, if
2468 /// any. This can generally be recalculated from the context chain,
2469 /// but that can be fairly expensive for unqualified lookups. If we
2470 /// want to improve memory use here, this could go in a union
2471 /// against the qualified-lookup bits.
2472 CXXRecordDecl *NamingClass;
2473
UnresolvedLookupExpr(ASTContext & C,CXXRecordDecl * NamingClass,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool RequiresADL,bool Overloaded,const TemplateArgumentListInfo * TemplateArgs,UnresolvedSetIterator Begin,UnresolvedSetIterator End,bool StdIsAssociatedNamespace)2474 UnresolvedLookupExpr(ASTContext &C,
2475 CXXRecordDecl *NamingClass,
2476 NestedNameSpecifierLoc QualifierLoc,
2477 SourceLocation TemplateKWLoc,
2478 const DeclarationNameInfo &NameInfo,
2479 bool RequiresADL, bool Overloaded,
2480 const TemplateArgumentListInfo *TemplateArgs,
2481 UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2482 bool StdIsAssociatedNamespace)
2483 : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2484 NameInfo, TemplateArgs, Begin, End, false, false, false),
2485 RequiresADL(RequiresADL),
2486 StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2487 Overloaded(Overloaded), NamingClass(NamingClass)
2488 {}
2489
UnresolvedLookupExpr(EmptyShell Empty)2490 UnresolvedLookupExpr(EmptyShell Empty)
2491 : OverloadExpr(UnresolvedLookupExprClass, Empty),
2492 RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2493 NamingClass(0)
2494 {}
2495
2496 friend class ASTStmtReader;
2497
2498 public:
2499 static UnresolvedLookupExpr *Create(ASTContext &C,
2500 CXXRecordDecl *NamingClass,
2501 NestedNameSpecifierLoc QualifierLoc,
2502 const DeclarationNameInfo &NameInfo,
2503 bool ADL, bool Overloaded,
2504 UnresolvedSetIterator Begin,
2505 UnresolvedSetIterator End,
2506 bool StdIsAssociatedNamespace = false) {
2507 assert((ADL || !StdIsAssociatedNamespace) &&
2508 "std considered associated namespace when not performing ADL");
2509 return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2510 SourceLocation(), NameInfo,
2511 ADL, Overloaded, 0, Begin, End,
2512 StdIsAssociatedNamespace);
2513 }
2514
2515 static UnresolvedLookupExpr *Create(ASTContext &C,
2516 CXXRecordDecl *NamingClass,
2517 NestedNameSpecifierLoc QualifierLoc,
2518 SourceLocation TemplateKWLoc,
2519 const DeclarationNameInfo &NameInfo,
2520 bool ADL,
2521 const TemplateArgumentListInfo *Args,
2522 UnresolvedSetIterator Begin,
2523 UnresolvedSetIterator End);
2524
2525 static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2526 bool HasTemplateKWAndArgsInfo,
2527 unsigned NumTemplateArgs);
2528
2529 /// True if this declaration should be extended by
2530 /// argument-dependent lookup.
requiresADL()2531 bool requiresADL() const { return RequiresADL; }
2532
2533 /// True if namespace \::std should be artificially added to the set of
2534 /// associated namespaces for argument-dependent lookup purposes.
isStdAssociatedNamespace()2535 bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2536
2537 /// True if this lookup is overloaded.
isOverloaded()2538 bool isOverloaded() const { return Overloaded; }
2539
2540 /// Gets the 'naming class' (in the sense of C++0x
2541 /// [class.access.base]p5) of the lookup. This is the scope
2542 /// that was looked in to find these results.
getNamingClass()2543 CXXRecordDecl *getNamingClass() const { return NamingClass; }
2544
getSourceRange()2545 SourceRange getSourceRange() const LLVM_READONLY {
2546 SourceRange Range(getNameInfo().getSourceRange());
2547 if (getQualifierLoc())
2548 Range.setBegin(getQualifierLoc().getBeginLoc());
2549 if (hasExplicitTemplateArgs())
2550 Range.setEnd(getRAngleLoc());
2551 return Range;
2552 }
2553
children()2554 child_range children() { return child_range(); }
2555
classof(const Stmt * T)2556 static bool classof(const Stmt *T) {
2557 return T->getStmtClass() == UnresolvedLookupExprClass;
2558 }
classof(const UnresolvedLookupExpr *)2559 static bool classof(const UnresolvedLookupExpr *) { return true; }
2560 };
2561
2562 /// \brief A qualified reference to a name whose declaration cannot
2563 /// yet be resolved.
2564 ///
2565 /// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2566 /// it expresses a reference to a declaration such as
2567 /// X<T>::value. The difference, however, is that an
2568 /// DependentScopeDeclRefExpr node is used only within C++ templates when
2569 /// the qualification (e.g., X<T>::) refers to a dependent type. In
2570 /// this case, X<T>::value cannot resolve to a declaration because the
2571 /// declaration will differ from on instantiation of X<T> to the
2572 /// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2573 /// qualifier (X<T>::) and the name of the entity being referenced
2574 /// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2575 /// declaration can be found.
2576 class DependentScopeDeclRefExpr : public Expr {
2577 /// \brief The nested-name-specifier that qualifies this unresolved
2578 /// declaration name.
2579 NestedNameSpecifierLoc QualifierLoc;
2580
2581 /// The name of the entity we will be referencing.
2582 DeclarationNameInfo NameInfo;
2583
2584 /// \brief Whether the name includes info for explicit template
2585 /// keyword and arguments.
2586 bool HasTemplateKWAndArgsInfo;
2587
2588 /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2589 ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2590 if (!HasTemplateKWAndArgsInfo) return 0;
2591 return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2592 }
2593 /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2594 const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2595 return const_cast<DependentScopeDeclRefExpr*>(this)
2596 ->getTemplateKWAndArgsInfo();
2597 }
2598
2599 DependentScopeDeclRefExpr(QualType T,
2600 NestedNameSpecifierLoc QualifierLoc,
2601 SourceLocation TemplateKWLoc,
2602 const DeclarationNameInfo &NameInfo,
2603 const TemplateArgumentListInfo *Args);
2604
2605 public:
2606 static DependentScopeDeclRefExpr *Create(ASTContext &C,
2607 NestedNameSpecifierLoc QualifierLoc,
2608 SourceLocation TemplateKWLoc,
2609 const DeclarationNameInfo &NameInfo,
2610 const TemplateArgumentListInfo *TemplateArgs);
2611
2612 static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2613 bool HasTemplateKWAndArgsInfo,
2614 unsigned NumTemplateArgs);
2615
2616 /// \brief Retrieve the name that this expression refers to.
getNameInfo()2617 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2618
2619 /// \brief Retrieve the name that this expression refers to.
getDeclName()2620 DeclarationName getDeclName() const { return NameInfo.getName(); }
2621
2622 /// \brief Retrieve the location of the name within the expression.
getLocation()2623 SourceLocation getLocation() const { return NameInfo.getLoc(); }
2624
2625 /// \brief Retrieve the nested-name-specifier that qualifies the
2626 /// name, with source location information.
getQualifierLoc()2627 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2628
2629
2630 /// \brief Retrieve the nested-name-specifier that qualifies this
2631 /// declaration.
getQualifier()2632 NestedNameSpecifier *getQualifier() const {
2633 return QualifierLoc.getNestedNameSpecifier();
2634 }
2635
2636 /// \brief Retrieve the location of the template keyword preceding
2637 /// this name, if any.
getTemplateKeywordLoc()2638 SourceLocation getTemplateKeywordLoc() const {
2639 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2640 return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2641 }
2642
2643 /// \brief Retrieve the location of the left angle bracket starting the
2644 /// explicit template argument list following the name, if any.
getLAngleLoc()2645 SourceLocation getLAngleLoc() const {
2646 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2647 return getTemplateKWAndArgsInfo()->LAngleLoc;
2648 }
2649
2650 /// \brief Retrieve the location of the right angle bracket ending the
2651 /// explicit template argument list following the name, if any.
getRAngleLoc()2652 SourceLocation getRAngleLoc() const {
2653 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2654 return getTemplateKWAndArgsInfo()->RAngleLoc;
2655 }
2656
2657 /// Determines whether the name was preceded by the template keyword.
hasTemplateKeyword()2658 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2659
2660 /// Determines whether this lookup had explicit template arguments.
hasExplicitTemplateArgs()2661 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2662
2663 // Note that, inconsistently with the explicit-template-argument AST
2664 // nodes, users are *forbidden* from calling these methods on objects
2665 // without explicit template arguments.
2666
getExplicitTemplateArgs()2667 ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2668 assert(hasExplicitTemplateArgs());
2669 return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2670 }
2671
2672 /// Gets a reference to the explicit template argument list.
getExplicitTemplateArgs()2673 const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2674 assert(hasExplicitTemplateArgs());
2675 return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2676 }
2677
2678 /// \brief Retrieves the optional explicit template arguments.
2679 /// This points to the same data as getExplicitTemplateArgs(), but
2680 /// returns null if there are no explicit template arguments.
getOptionalExplicitTemplateArgs()2681 const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2682 if (!hasExplicitTemplateArgs()) return 0;
2683 return &getExplicitTemplateArgs();
2684 }
2685
2686 /// \brief Copies the template arguments (if present) into the given
2687 /// structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)2688 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2689 getExplicitTemplateArgs().copyInto(List);
2690 }
2691
getTemplateArgs()2692 TemplateArgumentLoc const *getTemplateArgs() const {
2693 return getExplicitTemplateArgs().getTemplateArgs();
2694 }
2695
getNumTemplateArgs()2696 unsigned getNumTemplateArgs() const {
2697 return getExplicitTemplateArgs().NumTemplateArgs;
2698 }
2699
getSourceRange()2700 SourceRange getSourceRange() const LLVM_READONLY {
2701 SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2702 if (hasExplicitTemplateArgs())
2703 Range.setEnd(getRAngleLoc());
2704 return Range;
2705 }
2706
classof(const Stmt * T)2707 static bool classof(const Stmt *T) {
2708 return T->getStmtClass() == DependentScopeDeclRefExprClass;
2709 }
classof(const DependentScopeDeclRefExpr *)2710 static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2711
children()2712 child_range children() { return child_range(); }
2713
2714 friend class ASTStmtReader;
2715 friend class ASTStmtWriter;
2716 };
2717
2718 /// Represents an expression --- generally a full-expression --- which
2719 /// introduces cleanups to be run at the end of the sub-expression's
2720 /// evaluation. The most common source of expression-introduced
2721 /// cleanups is temporary objects in C++, but several other kinds of
2722 /// expressions can create cleanups, including basically every
2723 /// call in ARC that returns an Objective-C pointer.
2724 ///
2725 /// This expression also tracks whether the sub-expression contains a
2726 /// potentially-evaluated block literal. The lifetime of a block
2727 /// literal is the extent of the enclosing scope.
2728 class ExprWithCleanups : public Expr {
2729 public:
2730 /// The type of objects that are kept in the cleanup.
2731 /// It's useful to remember the set of blocks; we could also
2732 /// remember the set of temporaries, but there's currently
2733 /// no need.
2734 typedef BlockDecl *CleanupObject;
2735
2736 private:
2737 Stmt *SubExpr;
2738
2739 ExprWithCleanups(EmptyShell, unsigned NumObjects);
2740 ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2741
getObjectsBuffer()2742 CleanupObject *getObjectsBuffer() {
2743 return reinterpret_cast<CleanupObject*>(this + 1);
2744 }
getObjectsBuffer()2745 const CleanupObject *getObjectsBuffer() const {
2746 return reinterpret_cast<const CleanupObject*>(this + 1);
2747 }
2748 friend class ASTStmtReader;
2749
2750 public:
2751 static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2752 unsigned numObjects);
2753
2754 static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2755 ArrayRef<CleanupObject> objects);
2756
getObjects()2757 ArrayRef<CleanupObject> getObjects() const {
2758 return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2759 }
2760
getNumObjects()2761 unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2762
getObject(unsigned i)2763 CleanupObject getObject(unsigned i) const {
2764 assert(i < getNumObjects() && "Index out of range");
2765 return getObjects()[i];
2766 }
2767
getSubExpr()2768 Expr *getSubExpr() { return cast<Expr>(SubExpr); }
getSubExpr()2769 const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2770
2771 /// setSubExpr - As with any mutator of the AST, be very careful
2772 /// when modifying an existing AST to preserve its invariants.
setSubExpr(Expr * E)2773 void setSubExpr(Expr *E) { SubExpr = E; }
2774
getSourceRange()2775 SourceRange getSourceRange() const LLVM_READONLY {
2776 return SubExpr->getSourceRange();
2777 }
2778
2779 // Implement isa/cast/dyncast/etc.
classof(const Stmt * T)2780 static bool classof(const Stmt *T) {
2781 return T->getStmtClass() == ExprWithCleanupsClass;
2782 }
classof(const ExprWithCleanups *)2783 static bool classof(const ExprWithCleanups *) { return true; }
2784
2785 // Iterators
children()2786 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2787 };
2788
2789 /// \brief Describes an explicit type conversion that uses functional
2790 /// notion but could not be resolved because one or more arguments are
2791 /// type-dependent.
2792 ///
2793 /// The explicit type conversions expressed by
2794 /// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
2795 /// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
2796 /// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
2797 /// type-dependent. For example, this would occur in a template such
2798 /// as:
2799 ///
2800 /// \code
2801 /// template<typename T, typename A1>
2802 /// inline T make_a(const A1& a1) {
2803 /// return T(a1);
2804 /// }
2805 /// \endcode
2806 ///
2807 /// When the returned expression is instantiated, it may resolve to a
2808 /// constructor call, conversion function call, or some kind of type
2809 /// conversion.
2810 class CXXUnresolvedConstructExpr : public Expr {
2811 /// \brief The type being constructed.
2812 TypeSourceInfo *Type;
2813
2814 /// \brief The location of the left parentheses ('(').
2815 SourceLocation LParenLoc;
2816
2817 /// \brief The location of the right parentheses (')').
2818 SourceLocation RParenLoc;
2819
2820 /// \brief The number of arguments used to construct the type.
2821 unsigned NumArgs;
2822
2823 CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2824 SourceLocation LParenLoc,
2825 ArrayRef<Expr*> Args,
2826 SourceLocation RParenLoc);
2827
CXXUnresolvedConstructExpr(EmptyShell Empty,unsigned NumArgs)2828 CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2829 : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2830
2831 friend class ASTStmtReader;
2832
2833 public:
2834 static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2835 TypeSourceInfo *Type,
2836 SourceLocation LParenLoc,
2837 ArrayRef<Expr*> Args,
2838 SourceLocation RParenLoc);
2839
2840 static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2841 unsigned NumArgs);
2842
2843 /// \brief Retrieve the type that is being constructed, as specified
2844 /// in the source code.
getTypeAsWritten()2845 QualType getTypeAsWritten() const { return Type->getType(); }
2846
2847 /// \brief Retrieve the type source information for the type being
2848 /// constructed.
getTypeSourceInfo()2849 TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2850
2851 /// \brief Retrieve the location of the left parentheses ('(') that
2852 /// precedes the argument list.
getLParenLoc()2853 SourceLocation getLParenLoc() const { return LParenLoc; }
setLParenLoc(SourceLocation L)2854 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2855
2856 /// \brief Retrieve the location of the right parentheses (')') that
2857 /// follows the argument list.
getRParenLoc()2858 SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)2859 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2860
2861 /// \brief Retrieve the number of arguments.
arg_size()2862 unsigned arg_size() const { return NumArgs; }
2863
2864 typedef Expr** arg_iterator;
arg_begin()2865 arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
arg_end()2866 arg_iterator arg_end() { return arg_begin() + NumArgs; }
2867
2868 typedef const Expr* const * const_arg_iterator;
arg_begin()2869 const_arg_iterator arg_begin() const {
2870 return reinterpret_cast<const Expr* const *>(this + 1);
2871 }
arg_end()2872 const_arg_iterator arg_end() const {
2873 return arg_begin() + NumArgs;
2874 }
2875
getArg(unsigned I)2876 Expr *getArg(unsigned I) {
2877 assert(I < NumArgs && "Argument index out-of-range");
2878 return *(arg_begin() + I);
2879 }
2880
getArg(unsigned I)2881 const Expr *getArg(unsigned I) const {
2882 assert(I < NumArgs && "Argument index out-of-range");
2883 return *(arg_begin() + I);
2884 }
2885
setArg(unsigned I,Expr * E)2886 void setArg(unsigned I, Expr *E) {
2887 assert(I < NumArgs && "Argument index out-of-range");
2888 *(arg_begin() + I) = E;
2889 }
2890
2891 SourceRange getSourceRange() const LLVM_READONLY;
2892
classof(const Stmt * T)2893 static bool classof(const Stmt *T) {
2894 return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2895 }
classof(const CXXUnresolvedConstructExpr *)2896 static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2897
2898 // Iterators
children()2899 child_range children() {
2900 Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2901 return child_range(begin, begin + NumArgs);
2902 }
2903 };
2904
2905 /// \brief Represents a C++ member access expression where the actual
2906 /// member referenced could not be resolved because the base
2907 /// expression or the member name was dependent.
2908 ///
2909 /// Like UnresolvedMemberExprs, these can be either implicit or
2910 /// explicit accesses. It is only possible to get one of these with
2911 /// an implicit access if a qualifier is provided.
2912 class CXXDependentScopeMemberExpr : public Expr {
2913 /// \brief The expression for the base pointer or class reference,
2914 /// e.g., the \c x in x.f. Can be null in implicit accesses.
2915 Stmt *Base;
2916
2917 /// \brief The type of the base expression. Never null, even for
2918 /// implicit accesses.
2919 QualType BaseType;
2920
2921 /// \brief Whether this member expression used the '->' operator or
2922 /// the '.' operator.
2923 bool IsArrow : 1;
2924
2925 /// \brief Whether this member expression has info for explicit template
2926 /// keyword and arguments.
2927 bool HasTemplateKWAndArgsInfo : 1;
2928
2929 /// \brief The location of the '->' or '.' operator.
2930 SourceLocation OperatorLoc;
2931
2932 /// \brief The nested-name-specifier that precedes the member name, if any.
2933 NestedNameSpecifierLoc QualifierLoc;
2934
2935 /// \brief In a qualified member access expression such as t->Base::f, this
2936 /// member stores the resolves of name lookup in the context of the member
2937 /// access expression, to be used at instantiation time.
2938 ///
2939 /// FIXME: This member, along with the QualifierLoc, could
2940 /// be stuck into a structure that is optionally allocated at the end of
2941 /// the CXXDependentScopeMemberExpr, to save space in the common case.
2942 NamedDecl *FirstQualifierFoundInScope;
2943
2944 /// \brief The member to which this member expression refers, which
2945 /// can be name, overloaded operator, or destructor.
2946 /// FIXME: could also be a template-id
2947 DeclarationNameInfo MemberNameInfo;
2948
2949 /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2950 ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2951 if (!HasTemplateKWAndArgsInfo) return 0;
2952 return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2953 }
2954 /// \brief Return the optional template keyword and arguments info.
getTemplateKWAndArgsInfo()2955 const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2956 return const_cast<CXXDependentScopeMemberExpr*>(this)
2957 ->getTemplateKWAndArgsInfo();
2958 }
2959
2960 CXXDependentScopeMemberExpr(ASTContext &C,
2961 Expr *Base, QualType BaseType, bool IsArrow,
2962 SourceLocation OperatorLoc,
2963 NestedNameSpecifierLoc QualifierLoc,
2964 SourceLocation TemplateKWLoc,
2965 NamedDecl *FirstQualifierFoundInScope,
2966 DeclarationNameInfo MemberNameInfo,
2967 const TemplateArgumentListInfo *TemplateArgs);
2968
2969 public:
2970 CXXDependentScopeMemberExpr(ASTContext &C,
2971 Expr *Base, QualType BaseType,
2972 bool IsArrow,
2973 SourceLocation OperatorLoc,
2974 NestedNameSpecifierLoc QualifierLoc,
2975 NamedDecl *FirstQualifierFoundInScope,
2976 DeclarationNameInfo MemberNameInfo);
2977
2978 static CXXDependentScopeMemberExpr *
2979 Create(ASTContext &C,
2980 Expr *Base, QualType BaseType, bool IsArrow,
2981 SourceLocation OperatorLoc,
2982 NestedNameSpecifierLoc QualifierLoc,
2983 SourceLocation TemplateKWLoc,
2984 NamedDecl *FirstQualifierFoundInScope,
2985 DeclarationNameInfo MemberNameInfo,
2986 const TemplateArgumentListInfo *TemplateArgs);
2987
2988 static CXXDependentScopeMemberExpr *
2989 CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2990 unsigned NumTemplateArgs);
2991
2992 /// \brief True if this is an implicit access, i.e. one in which the
2993 /// member being accessed was not written in the source. The source
2994 /// location of the operator is invalid in this case.
2995 bool isImplicitAccess() const;
2996
2997 /// \brief Retrieve the base object of this member expressions,
2998 /// e.g., the \c x in \c x.m.
getBase()2999 Expr *getBase() const {
3000 assert(!isImplicitAccess());
3001 return cast<Expr>(Base);
3002 }
3003
getBaseType()3004 QualType getBaseType() const { return BaseType; }
3005
3006 /// \brief Determine whether this member expression used the '->'
3007 /// operator; otherwise, it used the '.' operator.
isArrow()3008 bool isArrow() const { return IsArrow; }
3009
3010 /// \brief Retrieve the location of the '->' or '.' operator.
getOperatorLoc()3011 SourceLocation getOperatorLoc() const { return OperatorLoc; }
3012
3013 /// \brief Retrieve the nested-name-specifier that qualifies the member
3014 /// name.
getQualifier()3015 NestedNameSpecifier *getQualifier() const {
3016 return QualifierLoc.getNestedNameSpecifier();
3017 }
3018
3019 /// \brief Retrieve the nested-name-specifier that qualifies the member
3020 /// name, with source location information.
getQualifierLoc()3021 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3022
3023
3024 /// \brief Retrieve the first part of the nested-name-specifier that was
3025 /// found in the scope of the member access expression when the member access
3026 /// was initially parsed.
3027 ///
3028 /// This function only returns a useful result when member access expression
3029 /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3030 /// returned by this function describes what was found by unqualified name
3031 /// lookup for the identifier "Base" within the scope of the member access
3032 /// expression itself. At template instantiation time, this information is
3033 /// combined with the results of name lookup into the type of the object
3034 /// expression itself (the class type of x).
getFirstQualifierFoundInScope()3035 NamedDecl *getFirstQualifierFoundInScope() const {
3036 return FirstQualifierFoundInScope;
3037 }
3038
3039 /// \brief Retrieve the name of the member that this expression
3040 /// refers to.
getMemberNameInfo()3041 const DeclarationNameInfo &getMemberNameInfo() const {
3042 return MemberNameInfo;
3043 }
3044
3045 /// \brief Retrieve the name of the member that this expression
3046 /// refers to.
getMember()3047 DeclarationName getMember() const { return MemberNameInfo.getName(); }
3048
3049 // \brief Retrieve the location of the name of the member that this
3050 // expression refers to.
getMemberLoc()3051 SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3052
3053 /// \brief Retrieve the location of the template keyword preceding the
3054 /// member name, if any.
getTemplateKeywordLoc()3055 SourceLocation getTemplateKeywordLoc() const {
3056 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3057 return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3058 }
3059
3060 /// \brief Retrieve the location of the left angle bracket starting the
3061 /// explicit template argument list following the member name, if any.
getLAngleLoc()3062 SourceLocation getLAngleLoc() const {
3063 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3064 return getTemplateKWAndArgsInfo()->LAngleLoc;
3065 }
3066
3067 /// \brief Retrieve the location of the right angle bracket ending the
3068 /// explicit template argument list following the member name, if any.
getRAngleLoc()3069 SourceLocation getRAngleLoc() const {
3070 if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3071 return getTemplateKWAndArgsInfo()->RAngleLoc;
3072 }
3073
3074 /// Determines whether the member name was preceded by the template keyword.
hasTemplateKeyword()3075 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3076
3077 /// \brief Determines whether this member expression actually had a C++
3078 /// template argument list explicitly specified, e.g., x.f<int>.
hasExplicitTemplateArgs()3079 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3080
3081 /// \brief Retrieve the explicit template argument list that followed the
3082 /// member template name, if any.
getExplicitTemplateArgs()3083 ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3084 assert(hasExplicitTemplateArgs());
3085 return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3086 }
3087
3088 /// \brief Retrieve the explicit template argument list that followed the
3089 /// member template name, if any.
getExplicitTemplateArgs()3090 const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3091 return const_cast<CXXDependentScopeMemberExpr *>(this)
3092 ->getExplicitTemplateArgs();
3093 }
3094
3095 /// \brief Retrieves the optional explicit template arguments.
3096 /// This points to the same data as getExplicitTemplateArgs(), but
3097 /// returns null if there are no explicit template arguments.
getOptionalExplicitTemplateArgs()3098 const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
3099 if (!hasExplicitTemplateArgs()) return 0;
3100 return &getExplicitTemplateArgs();
3101 }
3102
3103 /// \brief Copies the template arguments (if present) into the given
3104 /// structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)3105 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3106 getExplicitTemplateArgs().copyInto(List);
3107 }
3108
3109 /// \brief Initializes the template arguments using the given structure.
initializeTemplateArgumentsFrom(const TemplateArgumentListInfo & List)3110 void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3111 getExplicitTemplateArgs().initializeFrom(List);
3112 }
3113
3114 /// \brief Retrieve the template arguments provided as part of this
3115 /// template-id.
getTemplateArgs()3116 const TemplateArgumentLoc *getTemplateArgs() const {
3117 return getExplicitTemplateArgs().getTemplateArgs();
3118 }
3119
3120 /// \brief Retrieve the number of template arguments provided as part of this
3121 /// template-id.
getNumTemplateArgs()3122 unsigned getNumTemplateArgs() const {
3123 return getExplicitTemplateArgs().NumTemplateArgs;
3124 }
3125
getSourceRange()3126 SourceRange getSourceRange() const LLVM_READONLY {
3127 SourceRange Range;
3128 if (!isImplicitAccess())
3129 Range.setBegin(Base->getSourceRange().getBegin());
3130 else if (getQualifier())
3131 Range.setBegin(getQualifierLoc().getBeginLoc());
3132 else
3133 Range.setBegin(MemberNameInfo.getBeginLoc());
3134
3135 if (hasExplicitTemplateArgs())
3136 Range.setEnd(getRAngleLoc());
3137 else
3138 Range.setEnd(MemberNameInfo.getEndLoc());
3139 return Range;
3140 }
3141
classof(const Stmt * T)3142 static bool classof(const Stmt *T) {
3143 return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3144 }
classof(const CXXDependentScopeMemberExpr *)3145 static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
3146
3147 // Iterators
children()3148 child_range children() {
3149 if (isImplicitAccess()) return child_range();
3150 return child_range(&Base, &Base + 1);
3151 }
3152
3153 friend class ASTStmtReader;
3154 friend class ASTStmtWriter;
3155 };
3156
3157 /// \brief Represents a C++ member access expression for which lookup
3158 /// produced a set of overloaded functions.
3159 ///
3160 /// The member access may be explicit or implicit:
3161 /// struct A {
3162 /// int a, b;
3163 /// int explicitAccess() { return this->a + this->A::b; }
3164 /// int implicitAccess() { return a + A::b; }
3165 /// };
3166 ///
3167 /// In the final AST, an explicit access always becomes a MemberExpr.
3168 /// An implicit access may become either a MemberExpr or a
3169 /// DeclRefExpr, depending on whether the member is static.
3170 class UnresolvedMemberExpr : public OverloadExpr {
3171 /// \brief Whether this member expression used the '->' operator or
3172 /// the '.' operator.
3173 bool IsArrow : 1;
3174
3175 /// \brief Whether the lookup results contain an unresolved using
3176 /// declaration.
3177 bool HasUnresolvedUsing : 1;
3178
3179 /// \brief The expression for the base pointer or class reference,
3180 /// e.g., the \c x in x.f. This can be null if this is an 'unbased'
3181 /// member expression
3182 Stmt *Base;
3183
3184 /// \brief The type of the base expression; never null.
3185 QualType BaseType;
3186
3187 /// \brief The location of the '->' or '.' operator.
3188 SourceLocation OperatorLoc;
3189
3190 UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3191 Expr *Base, QualType BaseType, bool IsArrow,
3192 SourceLocation OperatorLoc,
3193 NestedNameSpecifierLoc QualifierLoc,
3194 SourceLocation TemplateKWLoc,
3195 const DeclarationNameInfo &MemberNameInfo,
3196 const TemplateArgumentListInfo *TemplateArgs,
3197 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3198
UnresolvedMemberExpr(EmptyShell Empty)3199 UnresolvedMemberExpr(EmptyShell Empty)
3200 : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3201 HasUnresolvedUsing(false), Base(0) { }
3202
3203 friend class ASTStmtReader;
3204
3205 public:
3206 static UnresolvedMemberExpr *
3207 Create(ASTContext &C, bool HasUnresolvedUsing,
3208 Expr *Base, QualType BaseType, bool IsArrow,
3209 SourceLocation OperatorLoc,
3210 NestedNameSpecifierLoc QualifierLoc,
3211 SourceLocation TemplateKWLoc,
3212 const DeclarationNameInfo &MemberNameInfo,
3213 const TemplateArgumentListInfo *TemplateArgs,
3214 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3215
3216 static UnresolvedMemberExpr *
3217 CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3218 unsigned NumTemplateArgs);
3219
3220 /// \brief True if this is an implicit access, i.e. one in which the
3221 /// member being accessed was not written in the source. The source
3222 /// location of the operator is invalid in this case.
3223 bool isImplicitAccess() const;
3224
3225 /// \brief Retrieve the base object of this member expressions,
3226 /// e.g., the \c x in \c x.m.
getBase()3227 Expr *getBase() {
3228 assert(!isImplicitAccess());
3229 return cast<Expr>(Base);
3230 }
getBase()3231 const Expr *getBase() const {
3232 assert(!isImplicitAccess());
3233 return cast<Expr>(Base);
3234 }
3235
getBaseType()3236 QualType getBaseType() const { return BaseType; }
3237
3238 /// \brief Determine whether the lookup results contain an unresolved using
3239 /// declaration.
hasUnresolvedUsing()3240 bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3241
3242 /// \brief Determine whether this member expression used the '->'
3243 /// operator; otherwise, it used the '.' operator.
isArrow()3244 bool isArrow() const { return IsArrow; }
3245
3246 /// \brief Retrieve the location of the '->' or '.' operator.
getOperatorLoc()3247 SourceLocation getOperatorLoc() const { return OperatorLoc; }
3248
3249 /// \brief Retrieves the naming class of this lookup.
3250 CXXRecordDecl *getNamingClass() const;
3251
3252 /// \brief Retrieve the full name info for the member that this expression
3253 /// refers to.
getMemberNameInfo()3254 const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3255
3256 /// \brief Retrieve the name of the member that this expression
3257 /// refers to.
getMemberName()3258 DeclarationName getMemberName() const { return getName(); }
3259
3260 // \brief Retrieve the location of the name of the member that this
3261 // expression refers to.
getMemberLoc()3262 SourceLocation getMemberLoc() const { return getNameLoc(); }
3263
getSourceRange()3264 SourceRange getSourceRange() const LLVM_READONLY {
3265 SourceRange Range = getMemberNameInfo().getSourceRange();
3266 if (!isImplicitAccess())
3267 Range.setBegin(Base->getSourceRange().getBegin());
3268 else if (getQualifierLoc())
3269 Range.setBegin(getQualifierLoc().getBeginLoc());
3270
3271 if (hasExplicitTemplateArgs())
3272 Range.setEnd(getRAngleLoc());
3273 return Range;
3274 }
3275
classof(const Stmt * T)3276 static bool classof(const Stmt *T) {
3277 return T->getStmtClass() == UnresolvedMemberExprClass;
3278 }
classof(const UnresolvedMemberExpr *)3279 static bool classof(const UnresolvedMemberExpr *) { return true; }
3280
3281 // Iterators
children()3282 child_range children() {
3283 if (isImplicitAccess()) return child_range();
3284 return child_range(&Base, &Base + 1);
3285 }
3286 };
3287
3288 /// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3289 ///
3290 /// The noexcept expression tests whether a given expression might throw. Its
3291 /// result is a boolean constant.
3292 class CXXNoexceptExpr : public Expr {
3293 bool Value : 1;
3294 Stmt *Operand;
3295 SourceRange Range;
3296
3297 friend class ASTStmtReader;
3298
3299 public:
CXXNoexceptExpr(QualType Ty,Expr * Operand,CanThrowResult Val,SourceLocation Keyword,SourceLocation RParen)3300 CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3301 SourceLocation Keyword, SourceLocation RParen)
3302 : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3303 /*TypeDependent*/false,
3304 /*ValueDependent*/Val == CT_Dependent,
3305 Val == CT_Dependent || Operand->isInstantiationDependent(),
3306 Operand->containsUnexpandedParameterPack()),
3307 Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3308 { }
3309
CXXNoexceptExpr(EmptyShell Empty)3310 CXXNoexceptExpr(EmptyShell Empty)
3311 : Expr(CXXNoexceptExprClass, Empty)
3312 { }
3313
getOperand()3314 Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3315
getSourceRange()3316 SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3317
getValue()3318 bool getValue() const { return Value; }
3319
classof(const Stmt * T)3320 static bool classof(const Stmt *T) {
3321 return T->getStmtClass() == CXXNoexceptExprClass;
3322 }
classof(const CXXNoexceptExpr *)3323 static bool classof(const CXXNoexceptExpr *) { return true; }
3324
3325 // Iterators
children()3326 child_range children() { return child_range(&Operand, &Operand + 1); }
3327 };
3328
3329 /// \brief Represents a C++0x pack expansion that produces a sequence of
3330 /// expressions.
3331 ///
3332 /// A pack expansion expression contains a pattern (which itself is an
3333 /// expression) followed by an ellipsis. For example:
3334 ///
3335 /// \code
3336 /// template<typename F, typename ...Types>
3337 /// void forward(F f, Types &&...args) {
3338 /// f(static_cast<Types&&>(args)...);
3339 /// }
3340 /// \endcode
3341 ///
3342 /// Here, the argument to the function object \c f is a pack expansion whose
3343 /// pattern is \c static_cast<Types&&>(args). When the \c forward function
3344 /// template is instantiated, the pack expansion will instantiate to zero or
3345 /// or more function arguments to the function object \c f.
3346 class PackExpansionExpr : public Expr {
3347 SourceLocation EllipsisLoc;
3348
3349 /// \brief The number of expansions that will be produced by this pack
3350 /// expansion expression, if known.
3351 ///
3352 /// When zero, the number of expansions is not known. Otherwise, this value
3353 /// is the number of expansions + 1.
3354 unsigned NumExpansions;
3355
3356 Stmt *Pattern;
3357
3358 friend class ASTStmtReader;
3359 friend class ASTStmtWriter;
3360
3361 public:
PackExpansionExpr(QualType T,Expr * Pattern,SourceLocation EllipsisLoc,llvm::Optional<unsigned> NumExpansions)3362 PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3363 llvm::Optional<unsigned> NumExpansions)
3364 : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3365 Pattern->getObjectKind(), /*TypeDependent=*/true,
3366 /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3367 /*ContainsUnexpandedParameterPack=*/false),
3368 EllipsisLoc(EllipsisLoc),
3369 NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3370 Pattern(Pattern) { }
3371
PackExpansionExpr(EmptyShell Empty)3372 PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3373
3374 /// \brief Retrieve the pattern of the pack expansion.
getPattern()3375 Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3376
3377 /// \brief Retrieve the pattern of the pack expansion.
getPattern()3378 const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3379
3380 /// \brief Retrieve the location of the ellipsis that describes this pack
3381 /// expansion.
getEllipsisLoc()3382 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3383
3384 /// \brief Determine the number of expansions that will be produced when
3385 /// this pack expansion is instantiated, if already known.
getNumExpansions()3386 llvm::Optional<unsigned> getNumExpansions() const {
3387 if (NumExpansions)
3388 return NumExpansions - 1;
3389
3390 return llvm::Optional<unsigned>();
3391 }
3392
getSourceRange()3393 SourceRange getSourceRange() const LLVM_READONLY {
3394 return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3395 }
3396
classof(const Stmt * T)3397 static bool classof(const Stmt *T) {
3398 return T->getStmtClass() == PackExpansionExprClass;
3399 }
classof(const PackExpansionExpr *)3400 static bool classof(const PackExpansionExpr *) { return true; }
3401
3402 // Iterators
children()3403 child_range children() {
3404 return child_range(&Pattern, &Pattern + 1);
3405 }
3406 };
3407
getTemplateKWAndArgsInfo()3408 inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3409 if (!HasTemplateKWAndArgsInfo) return 0;
3410 if (isa<UnresolvedLookupExpr>(this))
3411 return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3412 (cast<UnresolvedLookupExpr>(this) + 1);
3413 else
3414 return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3415 (cast<UnresolvedMemberExpr>(this) + 1);
3416 }
3417
3418 /// \brief Represents an expression that computes the length of a parameter
3419 /// pack.
3420 ///
3421 /// \code
3422 /// template<typename ...Types>
3423 /// struct count {
3424 /// static const unsigned value = sizeof...(Types);
3425 /// };
3426 /// \endcode
3427 class SizeOfPackExpr : public Expr {
3428 /// \brief The location of the 'sizeof' keyword.
3429 SourceLocation OperatorLoc;
3430
3431 /// \brief The location of the name of the parameter pack.
3432 SourceLocation PackLoc;
3433
3434 /// \brief The location of the closing parenthesis.
3435 SourceLocation RParenLoc;
3436
3437 /// \brief The length of the parameter pack, if known.
3438 ///
3439 /// When this expression is value-dependent, the length of the parameter pack
3440 /// is unknown. When this expression is not value-dependent, the length is
3441 /// known.
3442 unsigned Length;
3443
3444 /// \brief The parameter pack itself.
3445 NamedDecl *Pack;
3446
3447 friend class ASTStmtReader;
3448 friend class ASTStmtWriter;
3449
3450 public:
3451 /// \brief Creates a value-dependent expression that computes the length of
3452 /// the given parameter pack.
SizeOfPackExpr(QualType SizeType,SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc)3453 SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3454 SourceLocation PackLoc, SourceLocation RParenLoc)
3455 : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3456 /*TypeDependent=*/false, /*ValueDependent=*/true,
3457 /*InstantiationDependent=*/true,
3458 /*ContainsUnexpandedParameterPack=*/false),
3459 OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3460 Length(0), Pack(Pack) { }
3461
3462 /// \brief Creates an expression that computes the length of
3463 /// the given parameter pack, which is already known.
SizeOfPackExpr(QualType SizeType,SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc,unsigned Length)3464 SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3465 SourceLocation PackLoc, SourceLocation RParenLoc,
3466 unsigned Length)
3467 : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3468 /*TypeDependent=*/false, /*ValueDependent=*/false,
3469 /*InstantiationDependent=*/false,
3470 /*ContainsUnexpandedParameterPack=*/false),
3471 OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3472 Length(Length), Pack(Pack) { }
3473
3474 /// \brief Create an empty expression.
SizeOfPackExpr(EmptyShell Empty)3475 SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3476
3477 /// \brief Determine the location of the 'sizeof' keyword.
getOperatorLoc()3478 SourceLocation getOperatorLoc() const { return OperatorLoc; }
3479
3480 /// \brief Determine the location of the parameter pack.
getPackLoc()3481 SourceLocation getPackLoc() const { return PackLoc; }
3482
3483 /// \brief Determine the location of the right parenthesis.
getRParenLoc()3484 SourceLocation getRParenLoc() const { return RParenLoc; }
3485
3486 /// \brief Retrieve the parameter pack.
getPack()3487 NamedDecl *getPack() const { return Pack; }
3488
3489 /// \brief Retrieve the length of the parameter pack.
3490 ///
3491 /// This routine may only be invoked when the expression is not
3492 /// value-dependent.
getPackLength()3493 unsigned getPackLength() const {
3494 assert(!isValueDependent() &&
3495 "Cannot get the length of a value-dependent pack size expression");
3496 return Length;
3497 }
3498
getSourceRange()3499 SourceRange getSourceRange() const LLVM_READONLY {
3500 return SourceRange(OperatorLoc, RParenLoc);
3501 }
3502
classof(const Stmt * T)3503 static bool classof(const Stmt *T) {
3504 return T->getStmtClass() == SizeOfPackExprClass;
3505 }
classof(const SizeOfPackExpr *)3506 static bool classof(const SizeOfPackExpr *) { return true; }
3507
3508 // Iterators
children()3509 child_range children() { return child_range(); }
3510 };
3511
3512 /// \brief Represents a reference to a non-type template parameter
3513 /// that has been substituted with a template argument.
3514 class SubstNonTypeTemplateParmExpr : public Expr {
3515 /// \brief The replaced parameter.
3516 NonTypeTemplateParmDecl *Param;
3517
3518 /// \brief The replacement expression.
3519 Stmt *Replacement;
3520
3521 /// \brief The location of the non-type template parameter reference.
3522 SourceLocation NameLoc;
3523
3524 friend class ASTReader;
3525 friend class ASTStmtReader;
SubstNonTypeTemplateParmExpr(EmptyShell Empty)3526 explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3527 : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3528
3529 public:
SubstNonTypeTemplateParmExpr(QualType type,ExprValueKind valueKind,SourceLocation loc,NonTypeTemplateParmDecl * param,Expr * replacement)3530 SubstNonTypeTemplateParmExpr(QualType type,
3531 ExprValueKind valueKind,
3532 SourceLocation loc,
3533 NonTypeTemplateParmDecl *param,
3534 Expr *replacement)
3535 : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3536 replacement->isTypeDependent(), replacement->isValueDependent(),
3537 replacement->isInstantiationDependent(),
3538 replacement->containsUnexpandedParameterPack()),
3539 Param(param), Replacement(replacement), NameLoc(loc) {}
3540
getNameLoc()3541 SourceLocation getNameLoc() const { return NameLoc; }
getSourceRange()3542 SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3543
getReplacement()3544 Expr *getReplacement() const { return cast<Expr>(Replacement); }
3545
getParameter()3546 NonTypeTemplateParmDecl *getParameter() const { return Param; }
3547
classof(const Stmt * s)3548 static bool classof(const Stmt *s) {
3549 return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3550 }
classof(const SubstNonTypeTemplateParmExpr *)3551 static bool classof(const SubstNonTypeTemplateParmExpr *) {
3552 return true;
3553 }
3554
3555 // Iterators
children()3556 child_range children() { return child_range(&Replacement, &Replacement+1); }
3557 };
3558
3559 /// \brief Represents a reference to a non-type template parameter pack that
3560 /// has been substituted with a non-template argument pack.
3561 ///
3562 /// When a pack expansion in the source code contains multiple parameter packs
3563 /// and those parameter packs correspond to different levels of template
3564 /// parameter lists, this node node is used to represent a non-type template
3565 /// parameter pack from an outer level, which has already had its argument pack
3566 /// substituted but that still lives within a pack expansion that itself
3567 /// could not be instantiated. When actually performing a substitution into
3568 /// that pack expansion (e.g., when all template parameters have corresponding
3569 /// arguments), this type will be replaced with the appropriate underlying
3570 /// expression at the current pack substitution index.
3571 class SubstNonTypeTemplateParmPackExpr : public Expr {
3572 /// \brief The non-type template parameter pack itself.
3573 NonTypeTemplateParmDecl *Param;
3574
3575 /// \brief A pointer to the set of template arguments that this
3576 /// parameter pack is instantiated with.
3577 const TemplateArgument *Arguments;
3578
3579 /// \brief The number of template arguments in \c Arguments.
3580 unsigned NumArguments;
3581
3582 /// \brief The location of the non-type template parameter pack reference.
3583 SourceLocation NameLoc;
3584
3585 friend class ASTReader;
3586 friend class ASTStmtReader;
SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)3587 explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3588 : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3589
3590 public:
3591 SubstNonTypeTemplateParmPackExpr(QualType T,
3592 NonTypeTemplateParmDecl *Param,
3593 SourceLocation NameLoc,
3594 const TemplateArgument &ArgPack);
3595
3596 /// \brief Retrieve the non-type template parameter pack being substituted.
getParameterPack()3597 NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3598
3599 /// \brief Retrieve the location of the parameter pack name.
getParameterPackLocation()3600 SourceLocation getParameterPackLocation() const { return NameLoc; }
3601
3602 /// \brief Retrieve the template argument pack containing the substituted
3603 /// template arguments.
3604 TemplateArgument getArgumentPack() const;
3605
getSourceRange()3606 SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3607
classof(const Stmt * T)3608 static bool classof(const Stmt *T) {
3609 return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3610 }
classof(const SubstNonTypeTemplateParmPackExpr *)3611 static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3612 return true;
3613 }
3614
3615 // Iterators
children()3616 child_range children() { return child_range(); }
3617 };
3618
3619 /// \brief Represents a prvalue temporary that written into memory so that
3620 /// a reference can bind to it.
3621 ///
3622 /// Prvalue expressions are materialized when they need to have an address
3623 /// in memory for a reference to bind to. This happens when binding a
3624 /// reference to the result of a conversion, e.g.,
3625 ///
3626 /// \code
3627 /// const int &r = 1.0;
3628 /// \endcode
3629 ///
3630 /// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3631 /// then materialized via a \c MaterializeTemporaryExpr, and the reference
3632 /// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3633 /// (either an lvalue or an xvalue, depending on the kind of reference binding
3634 /// to it), maintaining the invariant that references always bind to glvalues.
3635 class MaterializeTemporaryExpr : public Expr {
3636 /// \brief The temporary-generating expression whose value will be
3637 /// materialized.
3638 Stmt *Temporary;
3639
3640 friend class ASTStmtReader;
3641 friend class ASTStmtWriter;
3642
3643 public:
MaterializeTemporaryExpr(QualType T,Expr * Temporary,bool BoundToLvalueReference)3644 MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3645 bool BoundToLvalueReference)
3646 : Expr(MaterializeTemporaryExprClass, T,
3647 BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3648 Temporary->isTypeDependent(), Temporary->isValueDependent(),
3649 Temporary->isInstantiationDependent(),
3650 Temporary->containsUnexpandedParameterPack()),
3651 Temporary(Temporary) { }
3652
MaterializeTemporaryExpr(EmptyShell Empty)3653 MaterializeTemporaryExpr(EmptyShell Empty)
3654 : Expr(MaterializeTemporaryExprClass, Empty) { }
3655
3656 /// \brief Retrieve the temporary-generating subexpression whose value will
3657 /// be materialized into a glvalue.
GetTemporaryExpr()3658 Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3659
3660 /// \brief Determine whether this materialized temporary is bound to an
3661 /// lvalue reference; otherwise, it's bound to an rvalue reference.
isBoundToLvalueReference()3662 bool isBoundToLvalueReference() const {
3663 return getValueKind() == VK_LValue;
3664 }
3665
getSourceRange()3666 SourceRange getSourceRange() const LLVM_READONLY {
3667 return Temporary->getSourceRange();
3668 }
3669
classof(const Stmt * T)3670 static bool classof(const Stmt *T) {
3671 return T->getStmtClass() == MaterializeTemporaryExprClass;
3672 }
classof(const MaterializeTemporaryExpr *)3673 static bool classof(const MaterializeTemporaryExpr *) {
3674 return true;
3675 }
3676
3677 // Iterators
children()3678 child_range children() { return child_range(&Temporary, &Temporary + 1); }
3679 };
3680
3681 } // end namespace clang
3682
3683 #endif
3684