• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Support/ValueHandle.h - Value Smart Pointer classes -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the ValueHandle class and its sub-classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_VALUEHANDLE_H
15 #define LLVM_SUPPORT_VALUEHANDLE_H
16 
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/Value.h"
20 
21 namespace llvm {
22 class ValueHandleBase;
23 
24 // ValueHandleBase** is only 4-byte aligned.
25 template<>
26 class PointerLikeTypeTraits<ValueHandleBase**> {
27 public:
getAsVoidPointer(ValueHandleBase ** P)28   static inline void *getAsVoidPointer(ValueHandleBase** P) { return P; }
getFromVoidPointer(void * P)29   static inline ValueHandleBase **getFromVoidPointer(void *P) {
30     return static_cast<ValueHandleBase**>(P);
31   }
32   enum { NumLowBitsAvailable = 2 };
33 };
34 
35 /// ValueHandleBase - This is the common base class of value handles.
36 /// ValueHandle's are smart pointers to Value's that have special behavior when
37 /// the value is deleted or ReplaceAllUsesWith'd.  See the specific handles
38 /// below for details.
39 ///
40 class ValueHandleBase {
41   friend class Value;
42 protected:
43   /// HandleBaseKind - This indicates what sub class the handle actually is.
44   /// This is to avoid having a vtable for the light-weight handle pointers. The
45   /// fully general Callback version does have a vtable.
46   enum HandleBaseKind {
47     Assert,
48     Callback,
49     Tracking,
50     Weak
51   };
52 
53 private:
54   PointerIntPair<ValueHandleBase**, 2, HandleBaseKind> PrevPair;
55   ValueHandleBase *Next;
56 
57   // A subclass may want to store some information along with the value
58   // pointer. Allow them to do this by making the value pointer a pointer-int
59   // pair. The 'setValPtrInt' and 'getValPtrInt' methods below give them this
60   // access.
61   PointerIntPair<Value*, 2> VP;
62 
63   explicit ValueHandleBase(const ValueHandleBase&); // DO NOT IMPLEMENT.
64 public:
ValueHandleBase(HandleBaseKind Kind)65   explicit ValueHandleBase(HandleBaseKind Kind)
66     : PrevPair(0, Kind), Next(0), VP(0, 0) {}
ValueHandleBase(HandleBaseKind Kind,Value * V)67   ValueHandleBase(HandleBaseKind Kind, Value *V)
68     : PrevPair(0, Kind), Next(0), VP(V, 0) {
69     if (isValid(VP.getPointer()))
70       AddToUseList();
71   }
ValueHandleBase(HandleBaseKind Kind,const ValueHandleBase & RHS)72   ValueHandleBase(HandleBaseKind Kind, const ValueHandleBase &RHS)
73     : PrevPair(0, Kind), Next(0), VP(RHS.VP) {
74     if (isValid(VP.getPointer()))
75       AddToExistingUseList(RHS.getPrevPtr());
76   }
~ValueHandleBase()77   ~ValueHandleBase() {
78     if (isValid(VP.getPointer()))
79       RemoveFromUseList();
80   }
81 
82   Value *operator=(Value *RHS) {
83     if (VP.getPointer() == RHS) return RHS;
84     if (isValid(VP.getPointer())) RemoveFromUseList();
85     VP.setPointer(RHS);
86     if (isValid(VP.getPointer())) AddToUseList();
87     return RHS;
88   }
89 
90   Value *operator=(const ValueHandleBase &RHS) {
91     if (VP.getPointer() == RHS.VP.getPointer()) return RHS.VP.getPointer();
92     if (isValid(VP.getPointer())) RemoveFromUseList();
93     VP.setPointer(RHS.VP.getPointer());
94     if (isValid(VP.getPointer())) AddToExistingUseList(RHS.getPrevPtr());
95     return VP.getPointer();
96   }
97 
98   Value *operator->() const { return getValPtr(); }
99   Value &operator*() const { return *getValPtr(); }
100 
101 protected:
getValPtr()102   Value *getValPtr() const { return VP.getPointer(); }
103 
setValPtrInt(unsigned K)104   void setValPtrInt(unsigned K) { VP.setInt(K); }
getValPtrInt()105   unsigned getValPtrInt() const { return VP.getInt(); }
106 
isValid(Value * V)107   static bool isValid(Value *V) {
108     return V &&
109            V != DenseMapInfo<Value *>::getEmptyKey() &&
110            V != DenseMapInfo<Value *>::getTombstoneKey();
111   }
112 
113 public:
114   // Callbacks made from Value.
115   static void ValueIsDeleted(Value *V);
116   static void ValueIsRAUWd(Value *Old, Value *New);
117 
118 private:
119   // Internal implementation details.
getPrevPtr()120   ValueHandleBase **getPrevPtr() const { return PrevPair.getPointer(); }
getKind()121   HandleBaseKind getKind() const { return PrevPair.getInt(); }
setPrevPtr(ValueHandleBase ** Ptr)122   void setPrevPtr(ValueHandleBase **Ptr) { PrevPair.setPointer(Ptr); }
123 
124   /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
125   /// List is the address of either the head of the list or a Next node within
126   /// the existing use list.
127   void AddToExistingUseList(ValueHandleBase **List);
128 
129   /// AddToExistingUseListAfter - Add this ValueHandle to the use list after
130   /// Node.
131   void AddToExistingUseListAfter(ValueHandleBase *Node);
132 
133   /// AddToUseList - Add this ValueHandle to the use list for VP.
134   void AddToUseList();
135   /// RemoveFromUseList - Remove this ValueHandle from its current use list.
136   void RemoveFromUseList();
137 };
138 
139 /// WeakVH - This is a value handle that tries hard to point to a Value, even
140 /// across RAUW operations, but will null itself out if the value is destroyed.
141 /// this is useful for advisory sorts of information, but should not be used as
142 /// the key of a map (since the map would have to rearrange itself when the
143 /// pointer changes).
144 class WeakVH : public ValueHandleBase {
145 public:
WeakVH()146   WeakVH() : ValueHandleBase(Weak) {}
WeakVH(Value * P)147   WeakVH(Value *P) : ValueHandleBase(Weak, P) {}
WeakVH(const WeakVH & RHS)148   WeakVH(const WeakVH &RHS)
149     : ValueHandleBase(Weak, RHS) {}
150 
151   Value *operator=(Value *RHS) {
152     return ValueHandleBase::operator=(RHS);
153   }
154   Value *operator=(const ValueHandleBase &RHS) {
155     return ValueHandleBase::operator=(RHS);
156   }
157 
158   operator Value*() const {
159     return getValPtr();
160   }
161 };
162 
163 // Specialize simplify_type to allow WeakVH to participate in
164 // dyn_cast, isa, etc.
165 template<typename From> struct simplify_type;
166 template<> struct simplify_type<const WeakVH> {
167   typedef Value* SimpleType;
168   static SimpleType getSimplifiedValue(const WeakVH &WVH) {
169     return static_cast<Value *>(WVH);
170   }
171 };
172 template<> struct simplify_type<WeakVH> : public simplify_type<const WeakVH> {};
173 
174 /// AssertingVH - This is a Value Handle that points to a value and asserts out
175 /// if the value is destroyed while the handle is still live.  This is very
176 /// useful for catching dangling pointer bugs and other things which can be
177 /// non-obvious.  One particularly useful place to use this is as the Key of a
178 /// map.  Dangling pointer bugs often lead to really subtle bugs that only occur
179 /// if another object happens to get allocated to the same address as the old
180 /// one.  Using an AssertingVH ensures that an assert is triggered as soon as
181 /// the bad delete occurs.
182 ///
183 /// Note that an AssertingVH handle does *not* follow values across RAUW
184 /// operations.  This means that RAUW's need to explicitly update the
185 /// AssertingVH's as it moves.  This is required because in non-assert mode this
186 /// class turns into a trivial wrapper around a pointer.
187 template <typename ValueTy>
188 class AssertingVH
189 #ifndef NDEBUG
190   : public ValueHandleBase
191 #endif
192   {
193 
194 #ifndef NDEBUG
195   ValueTy *getValPtr() const {
196     return static_cast<ValueTy*>(ValueHandleBase::getValPtr());
197   }
198   void setValPtr(ValueTy *P) {
199     ValueHandleBase::operator=(GetAsValue(P));
200   }
201 #else
202   ValueTy *ThePtr;
203   ValueTy *getValPtr() const { return ThePtr; }
204   void setValPtr(ValueTy *P) { ThePtr = P; }
205 #endif
206 
207   // Convert a ValueTy*, which may be const, to the type the base
208   // class expects.
209   static Value *GetAsValue(Value *V) { return V; }
210   static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); }
211 
212 public:
213 #ifndef NDEBUG
214   AssertingVH() : ValueHandleBase(Assert) {}
215   AssertingVH(ValueTy *P) : ValueHandleBase(Assert, GetAsValue(P)) {}
216   AssertingVH(const AssertingVH &RHS) : ValueHandleBase(Assert, RHS) {}
217 #else
218   AssertingVH() : ThePtr(0) {}
219   AssertingVH(ValueTy *P) : ThePtr(P) {}
220 #endif
221 
222   operator ValueTy*() const {
223     return getValPtr();
224   }
225 
226   ValueTy *operator=(ValueTy *RHS) {
227     setValPtr(RHS);
228     return getValPtr();
229   }
230   ValueTy *operator=(const AssertingVH<ValueTy> &RHS) {
231     setValPtr(RHS.getValPtr());
232     return getValPtr();
233   }
234 
235   ValueTy *operator->() const { return getValPtr(); }
236   ValueTy &operator*() const { return *getValPtr(); }
237 };
238 
239 // Specialize simplify_type to allow AssertingVH to participate in
240 // dyn_cast, isa, etc.
241 template<typename From> struct simplify_type;
242 template<> struct simplify_type<const AssertingVH<Value> > {
243   typedef Value* SimpleType;
244   static SimpleType getSimplifiedValue(const AssertingVH<Value> &AVH) {
245     return static_cast<Value *>(AVH);
246   }
247 };
248 template<> struct simplify_type<AssertingVH<Value> >
249   : public simplify_type<const AssertingVH<Value> > {};
250 
251 // Specialize DenseMapInfo to allow AssertingVH to participate in DenseMap.
252 template<typename T>
253 struct DenseMapInfo<AssertingVH<T> > {
254   typedef DenseMapInfo<T*> PointerInfo;
255   static inline AssertingVH<T> getEmptyKey() {
256     return AssertingVH<T>(PointerInfo::getEmptyKey());
257   }
258   static inline T* getTombstoneKey() {
259     return AssertingVH<T>(PointerInfo::getTombstoneKey());
260   }
261   static unsigned getHashValue(const AssertingVH<T> &Val) {
262     return PointerInfo::getHashValue(Val);
263   }
264   static bool isEqual(const AssertingVH<T> &LHS, const AssertingVH<T> &RHS) {
265     return LHS == RHS;
266   }
267 };
268 
269 template <typename T>
270 struct isPodLike<AssertingVH<T> > {
271 #ifdef NDEBUG
272   static const bool value = true;
273 #else
274   static const bool value = false;
275 #endif
276 };
277 
278 
279 /// TrackingVH - This is a value handle that tracks a Value (or Value subclass),
280 /// even across RAUW operations.
281 ///
282 /// TrackingVH is designed for situations where a client needs to hold a handle
283 /// to a Value (or subclass) across some operations which may move that value,
284 /// but should never destroy it or replace it with some unacceptable type.
285 ///
286 /// It is an error to do anything with a TrackingVH whose value has been
287 /// destroyed, except to destruct it.
288 ///
289 /// It is an error to attempt to replace a value with one of a type which is
290 /// incompatible with any of its outstanding TrackingVHs.
291 template<typename ValueTy>
292 class TrackingVH : public ValueHandleBase {
293   void CheckValidity() const {
294     Value *VP = ValueHandleBase::getValPtr();
295 
296     // Null is always ok.
297     if (!VP) return;
298 
299     // Check that this value is valid (i.e., it hasn't been deleted). We
300     // explicitly delay this check until access to avoid requiring clients to be
301     // unnecessarily careful w.r.t. destruction.
302     assert(ValueHandleBase::isValid(VP) && "Tracked Value was deleted!");
303 
304     // Check that the value is a member of the correct subclass. We would like
305     // to check this property on assignment for better debugging, but we don't
306     // want to require a virtual interface on this VH. Instead we allow RAUW to
307     // replace this value with a value of an invalid type, and check it here.
308     assert(isa<ValueTy>(VP) &&
309            "Tracked Value was replaced by one with an invalid type!");
310   }
311 
312   ValueTy *getValPtr() const {
313     CheckValidity();
314     return (ValueTy*)ValueHandleBase::getValPtr();
315   }
316   void setValPtr(ValueTy *P) {
317     CheckValidity();
318     ValueHandleBase::operator=(GetAsValue(P));
319   }
320 
321   // Convert a ValueTy*, which may be const, to the type the base
322   // class expects.
323   static Value *GetAsValue(Value *V) { return V; }
324   static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); }
325 
326 public:
327   TrackingVH() : ValueHandleBase(Tracking) {}
328   TrackingVH(ValueTy *P) : ValueHandleBase(Tracking, GetAsValue(P)) {}
329   TrackingVH(const TrackingVH &RHS) : ValueHandleBase(Tracking, RHS) {}
330 
331   operator ValueTy*() const {
332     return getValPtr();
333   }
334 
335   ValueTy *operator=(ValueTy *RHS) {
336     setValPtr(RHS);
337     return getValPtr();
338   }
339   ValueTy *operator=(const TrackingVH<ValueTy> &RHS) {
340     setValPtr(RHS.getValPtr());
341     return getValPtr();
342   }
343 
344   ValueTy *operator->() const { return getValPtr(); }
345   ValueTy &operator*() const { return *getValPtr(); }
346 };
347 
348 // Specialize simplify_type to allow TrackingVH to participate in
349 // dyn_cast, isa, etc.
350 template<typename From> struct simplify_type;
351 template<> struct simplify_type<const TrackingVH<Value> > {
352   typedef Value* SimpleType;
353   static SimpleType getSimplifiedValue(const TrackingVH<Value> &AVH) {
354     return static_cast<Value *>(AVH);
355   }
356 };
357 template<> struct simplify_type<TrackingVH<Value> >
358   : public simplify_type<const TrackingVH<Value> > {};
359 
360 /// CallbackVH - This is a value handle that allows subclasses to define
361 /// callbacks that run when the underlying Value has RAUW called on it or is
362 /// destroyed.  This class can be used as the key of a map, as long as the user
363 /// takes it out of the map before calling setValPtr() (since the map has to
364 /// rearrange itself when the pointer changes).  Unlike ValueHandleBase, this
365 /// class has a vtable and a virtual destructor.
366 class CallbackVH : public ValueHandleBase {
367 protected:
368   CallbackVH(const CallbackVH &RHS)
369     : ValueHandleBase(Callback, RHS) {}
370 
371   virtual ~CallbackVH() {}
372 
373   void setValPtr(Value *P) {
374     ValueHandleBase::operator=(P);
375   }
376 
377 public:
378   CallbackVH() : ValueHandleBase(Callback) {}
379   CallbackVH(Value *P) : ValueHandleBase(Callback, P) {}
380 
381   operator Value*() const {
382     return getValPtr();
383   }
384 
385   /// Called when this->getValPtr() is destroyed, inside ~Value(), so you may
386   /// call any non-virtual Value method on getValPtr(), but no subclass methods.
387   /// If WeakVH were implemented as a CallbackVH, it would use this method to
388   /// call setValPtr(NULL).  AssertingVH would use this method to cause an
389   /// assertion failure.
390   ///
391   /// All implementations must remove the reference from this object to the
392   /// Value that's being destroyed.
393   virtual void deleted();
394 
395   /// Called when this->getValPtr()->replaceAllUsesWith(new_value) is called,
396   /// _before_ any of the uses have actually been replaced.  If WeakVH were
397   /// implemented as a CallbackVH, it would use this method to call
398   /// setValPtr(new_value).  AssertingVH would do nothing in this method.
399   virtual void allUsesReplacedWith(Value *);
400 };
401 
402 // Specialize simplify_type to allow CallbackVH to participate in
403 // dyn_cast, isa, etc.
404 template<typename From> struct simplify_type;
405 template<> struct simplify_type<const CallbackVH> {
406   typedef Value* SimpleType;
407   static SimpleType getSimplifiedValue(const CallbackVH &CVH) {
408     return static_cast<Value *>(CVH);
409   }
410 };
411 template<> struct simplify_type<CallbackVH>
412   : public simplify_type<const CallbackVH> {};
413 
414 } // End llvm namespace
415 
416 #endif
417