• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //
12 // Copyright (C) 2000, Intel Corporation, all rights reserved.
13 // Third party copyrights are property of their respective owners.
14 //
15 // Redistribution and use in source and binary forms, with or without modification,
16 // are permitted provided that the following conditions are met:
17 //
18 //   * Redistribution's of source code must retain the above copyright notice,
19 //     this list of conditions and the following disclaimer.
20 //
21 //   * Redistribution's in binary form must reproduce the above copyright notice,
22 //     this list of conditions and the following disclaimer in the documentation
23 //     and/or other materials provided with the distribution.
24 //
25 //   * The name of Intel Corporation may not be used to endorse or promote products
26 //     derived from this software without specific prior written permission.
27 //
28 // This software is provided by the copyright holders and contributors "as is" and
29 // any express or implied warranties, including, but not limited to, the implied
30 // warranties of merchantability and fitness for a particular purpose are disclaimed.
31 // In no event shall the Intel Corporation or contributors be liable for any direct,
32 // indirect, incidental, special, exemplary, or consequential damages
33 // (including, but not limited to, procurement of substitute goods or services;
34 // loss of use, data, or profits; or business interruption) however caused
35 // and on any theory of liability, whether in contract, strict liability,
36 // or tort (including negligence or otherwise) arising in any way out of
37 // the use of this software, even if advised of the possibility of such damage.
38 //
39 //M*/
40 
41 #include "_ml.h"
42 
CvForestTree()43 CvForestTree::CvForestTree()
44 {
45     forest = NULL;
46 }
47 
48 
~CvForestTree()49 CvForestTree::~CvForestTree()
50 {
51     clear();
52 }
53 
54 
train(CvDTreeTrainData * _data,const CvMat * _subsample_idx,CvRTrees * _forest)55 bool CvForestTree::train( CvDTreeTrainData* _data,
56                           const CvMat* _subsample_idx,
57                           CvRTrees* _forest )
58 {
59     bool result = false;
60 
61     CV_FUNCNAME( "CvForestTree::train" );
62 
63     __BEGIN__;
64 
65 
66     clear();
67     forest = _forest;
68 
69     data = _data;
70     data->shared = true;
71     CV_CALL(result = do_train(_subsample_idx));
72 
73     __END__;
74 
75     return result;
76 }
77 
78 
79 bool
train(const CvMat *,int,const CvMat *,const CvMat *,const CvMat *,const CvMat *,const CvMat *,CvDTreeParams)80 CvForestTree::train( const CvMat*, int, const CvMat*, const CvMat*,
81                     const CvMat*, const CvMat*, const CvMat*, CvDTreeParams )
82 {
83     assert(0);
84     return false;
85 }
86 
87 
88 bool
train(CvDTreeTrainData *,const CvMat *)89 CvForestTree::train( CvDTreeTrainData*, const CvMat* )
90 {
91     assert(0);
92     return false;
93 }
94 
95 
find_best_split(CvDTreeNode * node)96 CvDTreeSplit* CvForestTree::find_best_split( CvDTreeNode* node )
97 {
98     int vi;
99     CvDTreeSplit *best_split = 0, *split = 0, *t;
100 
101     CV_FUNCNAME("CvForestTree::find_best_split");
102     __BEGIN__;
103 
104     CvMat* active_var_mask = 0;
105     if( forest )
106     {
107         int var_count;
108         CvRNG* rng = forest->get_rng();
109 
110         active_var_mask = forest->get_active_var_mask();
111         var_count = active_var_mask->cols;
112 
113         CV_ASSERT( var_count == data->var_count );
114 
115         for( vi = 0; vi < var_count; vi++ )
116         {
117             uchar temp;
118             int i1 = cvRandInt(rng) % var_count;
119             int i2 = cvRandInt(rng) % var_count;
120             CV_SWAP( active_var_mask->data.ptr[i1],
121                 active_var_mask->data.ptr[i2], temp );
122         }
123     }
124     for( vi = 0; vi < data->var_count; vi++ )
125     {
126         int ci = data->var_type->data.i[vi];
127         if( node->num_valid[vi] <= 1
128             || (active_var_mask && !active_var_mask->data.ptr[vi]) )
129             continue;
130 
131         if( data->is_classifier )
132         {
133             if( ci >= 0 )
134                 split = find_split_cat_class( node, vi );
135             else
136                 split = find_split_ord_class( node, vi );
137         }
138         else
139         {
140             if( ci >= 0 )
141                 split = find_split_cat_reg( node, vi );
142             else
143                 split = find_split_ord_reg( node, vi );
144         }
145 
146         if( split )
147         {
148             if( !best_split || best_split->quality < split->quality )
149                 CV_SWAP( best_split, split, t );
150             if( split )
151                 cvSetRemoveByPtr( data->split_heap, split );
152         }
153     }
154 
155     __END__;
156 
157     return best_split;
158 }
159 
160 
read(CvFileStorage * fs,CvFileNode * fnode,CvRTrees * _forest,CvDTreeTrainData * _data)161 void CvForestTree::read( CvFileStorage* fs, CvFileNode* fnode, CvRTrees* _forest, CvDTreeTrainData* _data )
162 {
163     CvDTree::read( fs, fnode, _data );
164     forest = _forest;
165 }
166 
167 
read(CvFileStorage *,CvFileNode *)168 void CvForestTree::read( CvFileStorage*, CvFileNode* )
169 {
170     assert(0);
171 }
172 
read(CvFileStorage * _fs,CvFileNode * _node,CvDTreeTrainData * _data)173 void CvForestTree::read( CvFileStorage* _fs, CvFileNode* _node,
174                          CvDTreeTrainData* _data )
175 {
176     CvDTree::read( _fs, _node, _data );
177 }
178 
179 
180 //////////////////////////////////////////////////////////////////////////////////////////
181 //                                  Random trees                                        //
182 //////////////////////////////////////////////////////////////////////////////////////////
183 
CvRTrees()184 CvRTrees::CvRTrees()
185 {
186     nclasses         = 0;
187     oob_error        = 0;
188     ntrees           = 0;
189     trees            = NULL;
190     data             = NULL;
191     active_var_mask  = NULL;
192     var_importance   = NULL;
193     rng = cvRNG(0xffffffff);
194     default_model_name = "my_random_trees";
195 }
196 
197 
clear()198 void CvRTrees::clear()
199 {
200     int k;
201     for( k = 0; k < ntrees; k++ )
202         delete trees[k];
203     cvFree( &trees );
204 
205     delete data;
206     data = 0;
207 
208     cvReleaseMat( &active_var_mask );
209     cvReleaseMat( &var_importance );
210     ntrees = 0;
211 }
212 
213 
~CvRTrees()214 CvRTrees::~CvRTrees()
215 {
216     clear();
217 }
218 
219 
get_active_var_mask()220 CvMat* CvRTrees::get_active_var_mask()
221 {
222     return active_var_mask;
223 }
224 
225 
get_rng()226 CvRNG* CvRTrees::get_rng()
227 {
228     return &rng;
229 }
230 
train(const CvMat * _train_data,int _tflag,const CvMat * _responses,const CvMat * _var_idx,const CvMat * _sample_idx,const CvMat * _var_type,const CvMat * _missing_mask,CvRTParams params)231 bool CvRTrees::train( const CvMat* _train_data, int _tflag,
232                         const CvMat* _responses, const CvMat* _var_idx,
233                         const CvMat* _sample_idx, const CvMat* _var_type,
234                         const CvMat* _missing_mask, CvRTParams params )
235 {
236     bool result = false;
237 
238     CV_FUNCNAME("CvRTrees::train");
239     __BEGIN__;
240 
241     int var_count = 0;
242 
243     clear();
244 
245     CvDTreeParams tree_params( params.max_depth, params.min_sample_count,
246         params.regression_accuracy, params.use_surrogates, params.max_categories,
247         params.cv_folds, params.use_1se_rule, false, params.priors );
248 
249     data = new CvDTreeTrainData();
250     CV_CALL(data->set_data( _train_data, _tflag, _responses, _var_idx,
251         _sample_idx, _var_type, _missing_mask, tree_params, true));
252 
253     var_count = data->var_count;
254     if( params.nactive_vars > var_count )
255         params.nactive_vars = var_count;
256     else if( params.nactive_vars == 0 )
257         params.nactive_vars = (int)sqrt((double)var_count);
258     else if( params.nactive_vars < 0 )
259         CV_ERROR( CV_StsBadArg, "<nactive_vars> must be non-negative" );
260     params.term_crit = cvCheckTermCriteria( params.term_crit, 0.1, 1000 );
261 
262     // Create mask of active variables at the tree nodes
263     CV_CALL(active_var_mask = cvCreateMat( 1, var_count, CV_8UC1 ));
264     if( params.calc_var_importance )
265     {
266         CV_CALL(var_importance  = cvCreateMat( 1, var_count, CV_32FC1 ));
267         cvZero(var_importance);
268     }
269     { // initialize active variables mask
270         CvMat submask1, submask2;
271         cvGetCols( active_var_mask, &submask1, 0, params.nactive_vars );
272         cvGetCols( active_var_mask, &submask2, params.nactive_vars, var_count );
273         cvSet( &submask1, cvScalar(1) );
274         cvZero( &submask2 );
275     }
276 
277     CV_CALL(result = grow_forest( params.term_crit ));
278 
279     result = true;
280 
281     __END__;
282 
283     return result;
284 }
285 
286 
grow_forest(const CvTermCriteria term_crit)287 bool CvRTrees::grow_forest( const CvTermCriteria term_crit )
288 {
289     bool result = false;
290 
291     CvMat* sample_idx_mask_for_tree = 0;
292     CvMat* sample_idx_for_tree      = 0;
293 
294     CvMat* oob_sample_votes	   = 0;
295     CvMat* oob_responses       = 0;
296 
297     float* oob_samples_perm_ptr= 0;
298 
299     float* samples_ptr     = 0;
300     uchar* missing_ptr     = 0;
301     float* true_resp_ptr   = 0;
302 
303     CV_FUNCNAME("CvRTrees::grow_forest");
304     __BEGIN__;
305 
306     const int max_ntrees = term_crit.max_iter;
307     const double max_oob_err = term_crit.epsilon;
308 
309     const int dims = data->var_count;
310     float maximal_response = 0;
311 
312     // oob_predictions_sum[i] = sum of predicted values for the i-th sample
313     // oob_num_of_predictions[i] = number of summands
314     //                            (number of predictions for the i-th sample)
315     // initialize these variable to avoid warning C4701
316     CvMat oob_predictions_sum = cvMat( 1, 1, CV_32FC1 );
317     CvMat oob_num_of_predictions = cvMat( 1, 1, CV_32FC1 );
318 
319     nsamples = data->sample_count;
320     nclasses = data->get_num_classes();
321 
322     trees = (CvForestTree**)cvAlloc( sizeof(trees[0])*max_ntrees );
323     memset( trees, 0, sizeof(trees[0])*max_ntrees );
324 
325     if( data->is_classifier )
326     {
327         CV_CALL(oob_sample_votes = cvCreateMat( nsamples, nclasses, CV_32SC1 ));
328         cvZero(oob_sample_votes);
329     }
330     else
331     {
332         // oob_responses[0,i] = oob_predictions_sum[i]
333         //    = sum of predicted values for the i-th sample
334         // oob_responses[1,i] = oob_num_of_predictions[i]
335         //    = number of summands (number of predictions for the i-th sample)
336         CV_CALL(oob_responses = cvCreateMat( 2, nsamples, CV_32FC1 ));
337         cvZero(oob_responses);
338         cvGetRow( oob_responses, &oob_predictions_sum, 0 );
339         cvGetRow( oob_responses, &oob_num_of_predictions, 1 );
340     }
341     CV_CALL(sample_idx_mask_for_tree = cvCreateMat( 1, nsamples, CV_8UC1 ));
342     CV_CALL(sample_idx_for_tree      = cvCreateMat( 1, nsamples, CV_32SC1 ));
343     CV_CALL(oob_samples_perm_ptr     = (float*)cvAlloc( sizeof(float)*nsamples*dims ));
344     CV_CALL(samples_ptr              = (float*)cvAlloc( sizeof(float)*nsamples*dims ));
345     CV_CALL(missing_ptr              = (uchar*)cvAlloc( sizeof(uchar)*nsamples*dims ));
346     CV_CALL(true_resp_ptr            = (float*)cvAlloc( sizeof(float)*nsamples ));
347 
348     CV_CALL(data->get_vectors( 0, samples_ptr, missing_ptr, true_resp_ptr ));
349     {
350         double minval, maxval;
351         CvMat responses = cvMat(1, nsamples, CV_32FC1, true_resp_ptr);
352         cvMinMaxLoc( &responses, &minval, &maxval );
353         maximal_response = (float)MAX( MAX( fabs(minval), fabs(maxval) ), 0 );
354     }
355 
356     ntrees = 0;
357     while( ntrees < max_ntrees )
358     {
359         int i, oob_samples_count = 0;
360         double ncorrect_responses = 0; // used for estimation of variable importance
361         CvMat sample, missing;
362         CvForestTree* tree = 0;
363 
364         cvZero( sample_idx_mask_for_tree );
365         for( i = 0; i < nsamples; i++ ) //form sample for creation one tree
366         {
367             int idx = cvRandInt( &rng ) % nsamples;
368             sample_idx_for_tree->data.i[i] = idx;
369             sample_idx_mask_for_tree->data.ptr[idx] = 0xFF;
370         }
371 
372         trees[ntrees] = new CvForestTree();
373         tree = trees[ntrees];
374         CV_CALL(tree->train( data, sample_idx_for_tree, this ));
375 
376         // form array of OOB samples indices and get these samples
377         sample   = cvMat( 1, dims, CV_32FC1, samples_ptr );
378         missing  = cvMat( 1, dims, CV_8UC1,  missing_ptr );
379 
380         oob_error = 0;
381         for( i = 0; i < nsamples; i++,
382             sample.data.fl += dims, missing.data.ptr += dims )
383         {
384             CvDTreeNode* predicted_node = 0;
385             // check if the sample is OOB
386             if( sample_idx_mask_for_tree->data.ptr[i] )
387                 continue;
388 
389             // predict oob samples
390             if( !predicted_node )
391                 CV_CALL(predicted_node = tree->predict(&sample, &missing, true));
392 
393             if( !data->is_classifier ) //regression
394             {
395                 double avg_resp, resp = predicted_node->value;
396                 oob_predictions_sum.data.fl[i] += (float)resp;
397                 oob_num_of_predictions.data.fl[i] += 1;
398 
399                 // compute oob error
400                 avg_resp = oob_predictions_sum.data.fl[i]/oob_num_of_predictions.data.fl[i];
401                 avg_resp -= true_resp_ptr[i];
402                 oob_error += avg_resp*avg_resp;
403                 resp = (resp - true_resp_ptr[i])/maximal_response;
404                 ncorrect_responses += exp( -resp*resp );
405             }
406             else //classification
407             {
408                 double prdct_resp;
409                 CvPoint max_loc;
410                 CvMat votes;
411 
412                 cvGetRow(oob_sample_votes, &votes, i);
413                 votes.data.i[predicted_node->class_idx]++;
414 
415                 // compute oob error
416                 cvMinMaxLoc( &votes, 0, 0, 0, &max_loc );
417 
418                 prdct_resp = data->cat_map->data.i[max_loc.x];
419                 oob_error += (fabs(prdct_resp - true_resp_ptr[i]) < FLT_EPSILON) ? 0 : 1;
420 
421                 ncorrect_responses += cvRound(predicted_node->value - true_resp_ptr[i]) == 0;
422             }
423             oob_samples_count++;
424         }
425         if( oob_samples_count > 0 )
426             oob_error /= (double)oob_samples_count;
427 
428         // estimate variable importance
429         if( var_importance && oob_samples_count > 0 )
430         {
431             int m;
432 
433             memcpy( oob_samples_perm_ptr, samples_ptr, dims*nsamples*sizeof(float));
434             for( m = 0; m < dims; m++ )
435             {
436                 double ncorrect_responses_permuted = 0;
437                 // randomly permute values of the m-th variable in the oob samples
438                 float* mth_var_ptr = oob_samples_perm_ptr + m;
439 
440                 for( i = 0; i < nsamples; i++ )
441                 {
442                     int i1, i2;
443                     float temp;
444 
445                     if( sample_idx_mask_for_tree->data.ptr[i] ) //the sample is not OOB
446                         continue;
447                     i1 = cvRandInt( &rng ) % nsamples;
448                     i2 = cvRandInt( &rng ) % nsamples;
449                     CV_SWAP( mth_var_ptr[i1*dims], mth_var_ptr[i2*dims], temp );
450 
451                     // turn values of (m-1)-th variable, that were permuted
452                     // at the previous iteration, untouched
453                     if( m > 1 )
454                         oob_samples_perm_ptr[i*dims+m-1] = samples_ptr[i*dims+m-1];
455                 }
456 
457                 // predict "permuted" cases and calculate the number of votes for the
458                 // correct class in the variable-m-permuted oob data
459                 sample  = cvMat( 1, dims, CV_32FC1, oob_samples_perm_ptr );
460                 missing = cvMat( 1, dims, CV_8UC1, missing_ptr );
461                 for( i = 0; i < nsamples; i++,
462                     sample.data.fl += dims, missing.data.ptr += dims )
463                 {
464                     double predct_resp, true_resp;
465 
466                     if( sample_idx_mask_for_tree->data.ptr[i] ) //the sample is not OOB
467                         continue;
468 
469                     predct_resp = tree->predict(&sample, &missing, true)->value;
470                     true_resp   = true_resp_ptr[i];
471                     if( data->is_classifier )
472                         ncorrect_responses_permuted += cvRound(true_resp - predct_resp) == 0;
473                     else
474                     {
475                         true_resp = (true_resp - predct_resp)/maximal_response;
476                         ncorrect_responses_permuted += exp( -true_resp*true_resp );
477                     }
478                 }
479                 var_importance->data.fl[m] += (float)(ncorrect_responses
480                     - ncorrect_responses_permuted);
481             }
482         }
483         ntrees++;
484         if( term_crit.type != CV_TERMCRIT_ITER && oob_error < max_oob_err )
485             break;
486     }
487     if( var_importance )
488         CV_CALL(cvConvertScale( var_importance, var_importance, 1./ntrees/nsamples ));
489 
490     result = true;
491 
492     __END__;
493 
494     cvReleaseMat( &sample_idx_mask_for_tree );
495     cvReleaseMat( &sample_idx_for_tree );
496     cvReleaseMat( &oob_sample_votes );
497     cvReleaseMat( &oob_responses );
498 
499     cvFree( &oob_samples_perm_ptr );
500     cvFree( &samples_ptr );
501     cvFree( &missing_ptr );
502     cvFree( &true_resp_ptr );
503 
504     return result;
505 }
506 
507 
get_var_importance()508 const CvMat* CvRTrees::get_var_importance()
509 {
510     return var_importance;
511 }
512 
513 
get_proximity(const CvMat * sample1,const CvMat * sample2,const CvMat * missing1,const CvMat * missing2) const514 float CvRTrees::get_proximity( const CvMat* sample1, const CvMat* sample2,
515                               const CvMat* missing1, const CvMat* missing2 ) const
516 {
517     float result = 0;
518 
519     CV_FUNCNAME( "CvRTrees::get_proximity" );
520 
521     __BEGIN__;
522 
523     int i;
524     for( i = 0; i < ntrees; i++ )
525         result += trees[i]->predict( sample1, missing1 ) ==
526         trees[i]->predict( sample2, missing2 ) ?  1 : 0;
527     result = result/(float)ntrees;
528 
529     __END__;
530 
531     return result;
532 }
533 
534 
predict(const CvMat * sample,const CvMat * missing) const535 float CvRTrees::predict( const CvMat* sample, const CvMat* missing ) const
536 {
537     double result = -1;
538 
539     CV_FUNCNAME("CvRTrees::predict");
540     __BEGIN__;
541 
542     int k;
543 
544     if( nclasses > 0 ) //classification
545     {
546         int max_nvotes = 0;
547         int* votes = (int*)alloca( sizeof(int)*nclasses );
548         memset( votes, 0, sizeof(*votes)*nclasses );
549         for( k = 0; k < ntrees; k++ )
550         {
551             CvDTreeNode* predicted_node = trees[k]->predict( sample, missing );
552             int nvotes;
553             int class_idx = predicted_node->class_idx;
554             CV_ASSERT( 0 <= class_idx && class_idx < nclasses );
555 
556             nvotes = ++votes[class_idx];
557             if( nvotes > max_nvotes )
558             {
559                 max_nvotes = nvotes;
560                 result = predicted_node->value;
561             }
562         }
563     }
564     else // regression
565     {
566         result = 0;
567         for( k = 0; k < ntrees; k++ )
568             result += trees[k]->predict( sample, missing )->value;
569         result /= (double)ntrees;
570     }
571 
572     __END__;
573 
574     return (float)result;
575 }
576 
577 
write(CvFileStorage * fs,const char * name)578 void CvRTrees::write( CvFileStorage* fs, const char* name )
579 {
580     CV_FUNCNAME( "CvRTrees::write" );
581 
582     __BEGIN__;
583 
584     int k;
585 
586     if( ntrees < 1 || !trees || nsamples < 1 )
587         CV_ERROR( CV_StsBadArg, "Invalid CvRTrees object" );
588 
589     cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_RTREES );
590 
591     cvWriteInt( fs, "nclasses", nclasses );
592     cvWriteInt( fs, "nsamples", nsamples );
593     cvWriteInt( fs, "nactive_vars", (int)cvSum(active_var_mask).val[0] );
594     cvWriteReal( fs, "oob_error", oob_error );
595 
596     if( var_importance )
597         cvWrite( fs, "var_importance", var_importance );
598 
599     cvWriteInt( fs, "ntrees", ntrees );
600 
601     CV_CALL(data->write_params( fs ));
602 
603     cvStartWriteStruct( fs, "trees", CV_NODE_SEQ );
604 
605     for( k = 0; k < ntrees; k++ )
606     {
607         cvStartWriteStruct( fs, 0, CV_NODE_MAP );
608         CV_CALL( trees[k]->write( fs ));
609         cvEndWriteStruct( fs );
610     }
611 
612     cvEndWriteStruct( fs ); //trees
613     cvEndWriteStruct( fs ); //CV_TYPE_NAME_ML_RTREES
614 
615     __END__;
616 }
617 
618 
read(CvFileStorage * fs,CvFileNode * fnode)619 void CvRTrees::read( CvFileStorage* fs, CvFileNode* fnode )
620 {
621     CV_FUNCNAME( "CvRTrees::read" );
622 
623     __BEGIN__;
624 
625     int nactive_vars, var_count, k;
626     CvSeqReader reader;
627     CvFileNode* trees_fnode = 0;
628 
629     clear();
630 
631     nclasses     = cvReadIntByName( fs, fnode, "nclasses", -1 );
632     nsamples     = cvReadIntByName( fs, fnode, "nsamples" );
633     nactive_vars = cvReadIntByName( fs, fnode, "nactive_vars", -1 );
634     oob_error    = cvReadRealByName(fs, fnode, "oob_error", -1 );
635     ntrees       = cvReadIntByName( fs, fnode, "ntrees", -1 );
636 
637     var_importance = (CvMat*)cvReadByName( fs, fnode, "var_importance" );
638 
639     if( nclasses < 0 || nsamples <= 0 || nactive_vars < 0 || oob_error < 0 || ntrees <= 0)
640         CV_ERROR( CV_StsParseError, "Some <nclasses>, <nsamples>, <var_count>, "
641         "<nactive_vars>, <oob_error>, <ntrees> of tags are missing" );
642 
643     rng = CvRNG( -1 );
644 
645     trees = (CvForestTree**)cvAlloc( sizeof(trees[0])*ntrees );
646     memset( trees, 0, sizeof(trees[0])*ntrees );
647 
648     data = new CvDTreeTrainData();
649     data->read_params( fs, fnode );
650     data->shared = true;
651 
652     trees_fnode = cvGetFileNodeByName( fs, fnode, "trees" );
653     if( !trees_fnode || !CV_NODE_IS_SEQ(trees_fnode->tag) )
654         CV_ERROR( CV_StsParseError, "<trees> tag is missing" );
655 
656     cvStartReadSeq( trees_fnode->data.seq, &reader );
657     if( reader.seq->total != ntrees )
658         CV_ERROR( CV_StsParseError,
659         "<ntrees> is not equal to the number of trees saved in file" );
660 
661     for( k = 0; k < ntrees; k++ )
662     {
663         trees[k] = new CvForestTree();
664         CV_CALL(trees[k]->read( fs, (CvFileNode*)reader.ptr, this, data ));
665         CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader );
666     }
667 
668     var_count = data->var_count;
669     CV_CALL(active_var_mask = cvCreateMat( 1, var_count, CV_8UC1 ));
670     {
671         // initialize active variables mask
672         CvMat submask1, submask2;
673         cvGetCols( active_var_mask, &submask1, 0, nactive_vars );
674         cvGetCols( active_var_mask, &submask2, nactive_vars, var_count );
675         cvSet( &submask1, cvScalar(1) );
676         cvZero( &submask2 );
677     }
678 
679     __END__;
680 }
681 
682 
get_tree_count() const683 int CvRTrees::get_tree_count() const
684 {
685     return ntrees;
686 }
687 
get_tree(int i) const688 CvForestTree* CvRTrees::get_tree(int i) const
689 {
690     return (unsigned)i < (unsigned)ntrees ? trees[i] : 0;
691 }
692 
693 // End of file.
694