• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=-- ExplodedGraph.h - Local, Path-Sens. "Exploded Graph" -*- C++ -*-------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the template classes ExplodedNode and ExplodedGraph,
11 //  which represent a path-sensitive, intra-procedural "exploded graph."
12 //  See "Precise interprocedural dataflow analysis via graph reachability"
13 //  by Reps, Horwitz, and Sagiv
14 //  (http://portal.acm.org/citation.cfm?id=199462) for the definition of an
15 //  exploded graph.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_CLANG_GR_EXPLODEDGRAPH
20 #define LLVM_CLANG_GR_EXPLODEDGRAPH
21 
22 #include "clang/Analysis/ProgramPoint.h"
23 #include "clang/Analysis/AnalysisContext.h"
24 #include "clang/AST/Decl.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/FoldingSet.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/Support/Allocator.h"
29 #include "llvm/ADT/OwningPtr.h"
30 #include "llvm/ADT/GraphTraits.h"
31 #include "llvm/ADT/DepthFirstIterator.h"
32 #include "llvm/Support/Casting.h"
33 #include "clang/Analysis/Support/BumpVector.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
35 #include <vector>
36 
37 namespace clang {
38 
39 class CFG;
40 
41 namespace ento {
42 
43 class ExplodedGraph;
44 
45 //===----------------------------------------------------------------------===//
46 // ExplodedGraph "implementation" classes.  These classes are not typed to
47 // contain a specific kind of state.  Typed-specialized versions are defined
48 // on top of these classes.
49 //===----------------------------------------------------------------------===//
50 
51 // ExplodedNode is not constified all over the engine because we need to add
52 // successors to it at any time after creating it.
53 
54 class ExplodedNode : public llvm::FoldingSetNode {
55   friend class ExplodedGraph;
56   friend class CoreEngine;
57   friend class NodeBuilder;
58   friend class BranchNodeBuilder;
59   friend class IndirectGotoNodeBuilder;
60   friend class SwitchNodeBuilder;
61   friend class EndOfFunctionNodeBuilder;
62 
63   /// Efficiently stores a list of ExplodedNodes, or an optional flag.
64   ///
65   /// NodeGroup provides opaque storage for a list of ExplodedNodes, optimizing
66   /// for the case when there is only one node in the group. This is a fairly
67   /// common case in an ExplodedGraph, where most nodes have only one
68   /// predecessor and many have only one successor. It can also be used to
69   /// store a flag rather than a node list, which ExplodedNode uses to mark
70   /// whether a node is a sink. If the flag is set, the group is implicitly
71   /// empty and no nodes may be added.
72   class NodeGroup {
73     // Conceptually a discriminated union. If the low bit is set, the node is
74     // a sink. If the low bit is not set, the pointer refers to the storage
75     // for the nodes in the group.
76     // This is not a PointerIntPair in order to keep the storage type opaque.
77     uintptr_t P;
78 
79   public:
P(Flag)80     NodeGroup(bool Flag = false) : P(Flag) {
81       assert(getFlag() == Flag);
82     }
83 
84     ExplodedNode * const *begin() const;
85 
86     ExplodedNode * const *end() const;
87 
88     unsigned size() const;
89 
empty()90     bool empty() const { return P == 0 || getFlag() != 0; }
91 
92     /// Adds a node to the list.
93     ///
94     /// The group must not have been created with its flag set.
95     void addNode(ExplodedNode *N, ExplodedGraph &G);
96 
97     /// Replaces the single node in this group with a new node.
98     ///
99     /// Note that this should only be used when you know the group was not
100     /// created with its flag set, and that the group is empty or contains
101     /// only a single node.
102     void replaceNode(ExplodedNode *node);
103 
104     /// Returns whether this group was created with its flag set.
getFlag()105     bool getFlag() const {
106       return (P & 1);
107     }
108   };
109 
110   /// Location - The program location (within a function body) associated
111   ///  with this node.
112   const ProgramPoint Location;
113 
114   /// State - The state associated with this node.
115   ProgramStateRef State;
116 
117   /// Preds - The predecessors of this node.
118   NodeGroup Preds;
119 
120   /// Succs - The successors of this node.
121   NodeGroup Succs;
122 
123 public:
124 
ExplodedNode(const ProgramPoint & loc,ProgramStateRef state,bool IsSink)125   explicit ExplodedNode(const ProgramPoint &loc, ProgramStateRef state,
126                         bool IsSink)
127     : Location(loc), State(state), Succs(IsSink) {
128     assert(isSink() == IsSink);
129   }
130 
~ExplodedNode()131   ~ExplodedNode() {}
132 
133   /// getLocation - Returns the edge associated with the given node.
getLocation()134   ProgramPoint getLocation() const { return Location; }
135 
getLocationContext()136   const LocationContext *getLocationContext() const {
137     return getLocation().getLocationContext();
138   }
139 
getStackFrame()140   const StackFrameContext *getStackFrame() const {
141     return getLocationContext()->getCurrentStackFrame();
142   }
143 
getCodeDecl()144   const Decl &getCodeDecl() const { return *getLocationContext()->getDecl(); }
145 
getCFG()146   CFG &getCFG() const { return *getLocationContext()->getCFG(); }
147 
getParentMap()148   ParentMap &getParentMap() const {return getLocationContext()->getParentMap();}
149 
150   template <typename T>
getAnalysis()151   T &getAnalysis() const {
152     return *getLocationContext()->getAnalysis<T>();
153   }
154 
getState()155   ProgramStateRef getState() const { return State; }
156 
157   template <typename T>
getLocationAs()158   const T* getLocationAs() const { return llvm::dyn_cast<T>(&Location); }
159 
Profile(llvm::FoldingSetNodeID & ID,const ProgramPoint & Loc,const ProgramStateRef & state,bool IsSink)160   static void Profile(llvm::FoldingSetNodeID &ID,
161                       const ProgramPoint &Loc,
162                       const ProgramStateRef &state,
163                       bool IsSink) {
164     ID.Add(Loc);
165     ID.AddPointer(state.getPtr());
166     ID.AddBoolean(IsSink);
167   }
168 
Profile(llvm::FoldingSetNodeID & ID)169   void Profile(llvm::FoldingSetNodeID& ID) const {
170     Profile(ID, getLocation(), getState(), isSink());
171   }
172 
173   /// addPredeccessor - Adds a predecessor to the current node, and
174   ///  in tandem add this node as a successor of the other node.
175   void addPredecessor(ExplodedNode *V, ExplodedGraph &G);
176 
succ_size()177   unsigned succ_size() const { return Succs.size(); }
pred_size()178   unsigned pred_size() const { return Preds.size(); }
succ_empty()179   bool succ_empty() const { return Succs.empty(); }
pred_empty()180   bool pred_empty() const { return Preds.empty(); }
181 
isSink()182   bool isSink() const { return Succs.getFlag(); }
183 
hasSinglePred()184    bool hasSinglePred() const {
185     return (pred_size() == 1);
186   }
187 
getFirstPred()188   ExplodedNode *getFirstPred() {
189     return pred_empty() ? NULL : *(pred_begin());
190   }
191 
getFirstPred()192   const ExplodedNode *getFirstPred() const {
193     return const_cast<ExplodedNode*>(this)->getFirstPred();
194   }
195 
196   // Iterators over successor and predecessor vertices.
197   typedef ExplodedNode*       const *       succ_iterator;
198   typedef const ExplodedNode* const * const_succ_iterator;
199   typedef ExplodedNode*       const *       pred_iterator;
200   typedef const ExplodedNode* const * const_pred_iterator;
201 
pred_begin()202   pred_iterator pred_begin() { return Preds.begin(); }
pred_end()203   pred_iterator pred_end() { return Preds.end(); }
204 
pred_begin()205   const_pred_iterator pred_begin() const {
206     return const_cast<ExplodedNode*>(this)->pred_begin();
207   }
pred_end()208   const_pred_iterator pred_end() const {
209     return const_cast<ExplodedNode*>(this)->pred_end();
210   }
211 
succ_begin()212   succ_iterator succ_begin() { return Succs.begin(); }
succ_end()213   succ_iterator succ_end() { return Succs.end(); }
214 
succ_begin()215   const_succ_iterator succ_begin() const {
216     return const_cast<ExplodedNode*>(this)->succ_begin();
217   }
succ_end()218   const_succ_iterator succ_end() const {
219     return const_cast<ExplodedNode*>(this)->succ_end();
220   }
221 
222   // For debugging.
223 
224 public:
225 
226   class Auditor {
227   public:
228     virtual ~Auditor();
229     virtual void AddEdge(ExplodedNode *Src, ExplodedNode *Dst) = 0;
230   };
231 
232   static void SetAuditor(Auditor* A);
233 
234 private:
replaceSuccessor(ExplodedNode * node)235   void replaceSuccessor(ExplodedNode *node) { Succs.replaceNode(node); }
replacePredecessor(ExplodedNode * node)236   void replacePredecessor(ExplodedNode *node) { Preds.replaceNode(node); }
237 };
238 
239 // FIXME: Is this class necessary?
240 class InterExplodedGraphMap {
241   virtual void anchor();
242   llvm::DenseMap<const ExplodedNode*, ExplodedNode*> M;
243   friend class ExplodedGraph;
244 
245 public:
246   ExplodedNode *getMappedNode(const ExplodedNode *N) const;
247 
InterExplodedGraphMap()248   InterExplodedGraphMap() {}
~InterExplodedGraphMap()249   virtual ~InterExplodedGraphMap() {}
250 };
251 
252 class ExplodedGraph {
253 protected:
254   friend class CoreEngine;
255 
256   // Type definitions.
257   typedef std::vector<ExplodedNode *> NodeVector;
258 
259   /// The roots of the simulation graph. Usually there will be only
260   /// one, but clients are free to establish multiple subgraphs within a single
261   /// SimulGraph. Moreover, these subgraphs can often merge when paths from
262   /// different roots reach the same state at the same program location.
263   NodeVector Roots;
264 
265   /// The nodes in the simulation graph which have been
266   /// specially marked as the endpoint of an abstract simulation path.
267   NodeVector EndNodes;
268 
269   /// Nodes - The nodes in the graph.
270   llvm::FoldingSet<ExplodedNode> Nodes;
271 
272   /// BVC - Allocator and context for allocating nodes and their predecessor
273   /// and successor groups.
274   BumpVectorContext BVC;
275 
276   /// NumNodes - The number of nodes in the graph.
277   unsigned NumNodes;
278 
279   /// A list of recently allocated nodes that can potentially be recycled.
280   NodeVector ChangedNodes;
281 
282   /// A list of nodes that can be reused.
283   NodeVector FreeNodes;
284 
285   /// A flag that indicates whether nodes should be recycled.
286   bool reclaimNodes;
287 
288   /// Counter to determine when to reclaim nodes.
289   unsigned reclaimCounter;
290 
291 public:
292 
293   /// \brief Retrieve the node associated with a (Location,State) pair,
294   ///  where the 'Location' is a ProgramPoint in the CFG.  If no node for
295   ///  this pair exists, it is created. IsNew is set to true if
296   ///  the node was freshly created.
297   ExplodedNode *getNode(const ProgramPoint &L, ProgramStateRef State,
298                         bool IsSink = false,
299                         bool* IsNew = 0);
300 
MakeEmptyGraph()301   ExplodedGraph* MakeEmptyGraph() const {
302     return new ExplodedGraph();
303   }
304 
305   /// addRoot - Add an untyped node to the set of roots.
addRoot(ExplodedNode * V)306   ExplodedNode *addRoot(ExplodedNode *V) {
307     Roots.push_back(V);
308     return V;
309   }
310 
311   /// addEndOfPath - Add an untyped node to the set of EOP nodes.
addEndOfPath(ExplodedNode * V)312   ExplodedNode *addEndOfPath(ExplodedNode *V) {
313     EndNodes.push_back(V);
314     return V;
315   }
316 
317   ExplodedGraph();
318 
319   ~ExplodedGraph();
320 
num_roots()321   unsigned num_roots() const { return Roots.size(); }
num_eops()322   unsigned num_eops() const { return EndNodes.size(); }
323 
empty()324   bool empty() const { return NumNodes == 0; }
size()325   unsigned size() const { return NumNodes; }
326 
327   // Iterators.
328   typedef ExplodedNode                        NodeTy;
329   typedef llvm::FoldingSet<ExplodedNode>      AllNodesTy;
330   typedef NodeVector::iterator                roots_iterator;
331   typedef NodeVector::const_iterator          const_roots_iterator;
332   typedef NodeVector::iterator                eop_iterator;
333   typedef NodeVector::const_iterator          const_eop_iterator;
334   typedef AllNodesTy::iterator                node_iterator;
335   typedef AllNodesTy::const_iterator          const_node_iterator;
336 
nodes_begin()337   node_iterator nodes_begin() { return Nodes.begin(); }
338 
nodes_end()339   node_iterator nodes_end() { return Nodes.end(); }
340 
nodes_begin()341   const_node_iterator nodes_begin() const { return Nodes.begin(); }
342 
nodes_end()343   const_node_iterator nodes_end() const { return Nodes.end(); }
344 
roots_begin()345   roots_iterator roots_begin() { return Roots.begin(); }
346 
roots_end()347   roots_iterator roots_end() { return Roots.end(); }
348 
roots_begin()349   const_roots_iterator roots_begin() const { return Roots.begin(); }
350 
roots_end()351   const_roots_iterator roots_end() const { return Roots.end(); }
352 
eop_begin()353   eop_iterator eop_begin() { return EndNodes.begin(); }
354 
eop_end()355   eop_iterator eop_end() { return EndNodes.end(); }
356 
eop_begin()357   const_eop_iterator eop_begin() const { return EndNodes.begin(); }
358 
eop_end()359   const_eop_iterator eop_end() const { return EndNodes.end(); }
360 
getAllocator()361   llvm::BumpPtrAllocator & getAllocator() { return BVC.getAllocator(); }
getNodeAllocator()362   BumpVectorContext &getNodeAllocator() { return BVC; }
363 
364   typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> NodeMap;
365 
366   std::pair<ExplodedGraph*, InterExplodedGraphMap*>
367   Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
368        llvm::DenseMap<const void*, const void*> *InverseMap = 0) const;
369 
370   ExplodedGraph* TrimInternal(const ExplodedNode* const * NBeg,
371                               const ExplodedNode* const * NEnd,
372                               InterExplodedGraphMap *M,
373                     llvm::DenseMap<const void*, const void*> *InverseMap) const;
374 
375   /// Enable tracking of recently allocated nodes for potential reclamation
376   /// when calling reclaimRecentlyAllocatedNodes().
enableNodeReclamation()377   void enableNodeReclamation() { reclaimNodes = true; }
378 
379   /// Reclaim "uninteresting" nodes created since the last time this method
380   /// was called.
381   void reclaimRecentlyAllocatedNodes();
382 
383 private:
384   bool shouldCollect(const ExplodedNode *node);
385   void collectNode(ExplodedNode *node);
386 };
387 
388 class ExplodedNodeSet {
389   typedef llvm::SmallPtrSet<ExplodedNode*,5> ImplTy;
390   ImplTy Impl;
391 
392 public:
ExplodedNodeSet(ExplodedNode * N)393   ExplodedNodeSet(ExplodedNode *N) {
394     assert (N && !static_cast<ExplodedNode*>(N)->isSink());
395     Impl.insert(N);
396   }
397 
ExplodedNodeSet()398   ExplodedNodeSet() {}
399 
Add(ExplodedNode * N)400   inline void Add(ExplodedNode *N) {
401     if (N && !static_cast<ExplodedNode*>(N)->isSink()) Impl.insert(N);
402   }
403 
404   typedef ImplTy::iterator       iterator;
405   typedef ImplTy::const_iterator const_iterator;
406 
size()407   unsigned size() const { return Impl.size();  }
empty()408   bool empty()    const { return Impl.empty(); }
erase(ExplodedNode * N)409   bool erase(ExplodedNode *N) { return Impl.erase(N); }
410 
clear()411   void clear() { Impl.clear(); }
insert(const ExplodedNodeSet & S)412   void insert(const ExplodedNodeSet &S) {
413     assert(&S != this);
414     if (empty())
415       Impl = S.Impl;
416     else
417       Impl.insert(S.begin(), S.end());
418   }
419 
begin()420   inline iterator begin() { return Impl.begin(); }
end()421   inline iterator end()   { return Impl.end();   }
422 
begin()423   inline const_iterator begin() const { return Impl.begin(); }
end()424   inline const_iterator end()   const { return Impl.end();   }
425 };
426 
427 } // end GR namespace
428 
429 } // end clang namespace
430 
431 // GraphTraits
432 
433 namespace llvm {
434   template<> struct GraphTraits<clang::ento::ExplodedNode*> {
435     typedef clang::ento::ExplodedNode NodeType;
436     typedef NodeType::succ_iterator  ChildIteratorType;
437     typedef llvm::df_iterator<NodeType*>      nodes_iterator;
438 
439     static inline NodeType* getEntryNode(NodeType* N) {
440       return N;
441     }
442 
443     static inline ChildIteratorType child_begin(NodeType* N) {
444       return N->succ_begin();
445     }
446 
447     static inline ChildIteratorType child_end(NodeType* N) {
448       return N->succ_end();
449     }
450 
451     static inline nodes_iterator nodes_begin(NodeType* N) {
452       return df_begin(N);
453     }
454 
455     static inline nodes_iterator nodes_end(NodeType* N) {
456       return df_end(N);
457     }
458   };
459 
460   template<> struct GraphTraits<const clang::ento::ExplodedNode*> {
461     typedef const clang::ento::ExplodedNode NodeType;
462     typedef NodeType::const_succ_iterator   ChildIteratorType;
463     typedef llvm::df_iterator<NodeType*>       nodes_iterator;
464 
465     static inline NodeType* getEntryNode(NodeType* N) {
466       return N;
467     }
468 
469     static inline ChildIteratorType child_begin(NodeType* N) {
470       return N->succ_begin();
471     }
472 
473     static inline ChildIteratorType child_end(NodeType* N) {
474       return N->succ_end();
475     }
476 
477     static inline nodes_iterator nodes_begin(NodeType* N) {
478       return df_begin(N);
479     }
480 
481     static inline nodes_iterator nodes_end(NodeType* N) {
482       return df_end(N);
483     }
484   };
485 
486 } // end llvm namespace
487 
488 #endif
489