1 //===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ overloading.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Template.h"
18 #include "clang/Sema/TemplateDeduction.h"
19 #include "clang/Basic/Diagnostic.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/CXXInheritance.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include <algorithm>
34
35 namespace clang {
36 using namespace sema;
37
38 /// A convenience routine for creating a decayed reference to a
39 /// function.
40 static ExprResult
CreateFunctionRefExpr(Sema & S,FunctionDecl * Fn,bool HadMultipleCandidates,SourceLocation Loc=SourceLocation (),const DeclarationNameLoc & LocInfo=DeclarationNameLoc ())41 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
42 SourceLocation Loc = SourceLocation(),
43 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
44 DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
45 VK_LValue, Loc, LocInfo);
46 if (HadMultipleCandidates)
47 DRE->setHadMultipleCandidates(true);
48 ExprResult E = S.Owned(DRE);
49 E = S.DefaultFunctionArrayConversion(E.take());
50 if (E.isInvalid())
51 return ExprError();
52 return E;
53 }
54
55 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
56 bool InOverloadResolution,
57 StandardConversionSequence &SCS,
58 bool CStyle,
59 bool AllowObjCWritebackConversion);
60
61 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
62 QualType &ToType,
63 bool InOverloadResolution,
64 StandardConversionSequence &SCS,
65 bool CStyle);
66 static OverloadingResult
67 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
68 UserDefinedConversionSequence& User,
69 OverloadCandidateSet& Conversions,
70 bool AllowExplicit);
71
72
73 static ImplicitConversionSequence::CompareKind
74 CompareStandardConversionSequences(Sema &S,
75 const StandardConversionSequence& SCS1,
76 const StandardConversionSequence& SCS2);
77
78 static ImplicitConversionSequence::CompareKind
79 CompareQualificationConversions(Sema &S,
80 const StandardConversionSequence& SCS1,
81 const StandardConversionSequence& SCS2);
82
83 static ImplicitConversionSequence::CompareKind
84 CompareDerivedToBaseConversions(Sema &S,
85 const StandardConversionSequence& SCS1,
86 const StandardConversionSequence& SCS2);
87
88
89
90 /// GetConversionCategory - Retrieve the implicit conversion
91 /// category corresponding to the given implicit conversion kind.
92 ImplicitConversionCategory
GetConversionCategory(ImplicitConversionKind Kind)93 GetConversionCategory(ImplicitConversionKind Kind) {
94 static const ImplicitConversionCategory
95 Category[(int)ICK_Num_Conversion_Kinds] = {
96 ICC_Identity,
97 ICC_Lvalue_Transformation,
98 ICC_Lvalue_Transformation,
99 ICC_Lvalue_Transformation,
100 ICC_Identity,
101 ICC_Qualification_Adjustment,
102 ICC_Promotion,
103 ICC_Promotion,
104 ICC_Promotion,
105 ICC_Conversion,
106 ICC_Conversion,
107 ICC_Conversion,
108 ICC_Conversion,
109 ICC_Conversion,
110 ICC_Conversion,
111 ICC_Conversion,
112 ICC_Conversion,
113 ICC_Conversion,
114 ICC_Conversion,
115 ICC_Conversion,
116 ICC_Conversion,
117 ICC_Conversion
118 };
119 return Category[(int)Kind];
120 }
121
122 /// GetConversionRank - Retrieve the implicit conversion rank
123 /// corresponding to the given implicit conversion kind.
GetConversionRank(ImplicitConversionKind Kind)124 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
125 static const ImplicitConversionRank
126 Rank[(int)ICK_Num_Conversion_Kinds] = {
127 ICR_Exact_Match,
128 ICR_Exact_Match,
129 ICR_Exact_Match,
130 ICR_Exact_Match,
131 ICR_Exact_Match,
132 ICR_Exact_Match,
133 ICR_Promotion,
134 ICR_Promotion,
135 ICR_Promotion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Conversion,
139 ICR_Conversion,
140 ICR_Conversion,
141 ICR_Conversion,
142 ICR_Conversion,
143 ICR_Conversion,
144 ICR_Conversion,
145 ICR_Conversion,
146 ICR_Conversion,
147 ICR_Complex_Real_Conversion,
148 ICR_Conversion,
149 ICR_Conversion,
150 ICR_Writeback_Conversion
151 };
152 return Rank[(int)Kind];
153 }
154
155 /// GetImplicitConversionName - Return the name of this kind of
156 /// implicit conversion.
GetImplicitConversionName(ImplicitConversionKind Kind)157 const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159 "No conversion",
160 "Lvalue-to-rvalue",
161 "Array-to-pointer",
162 "Function-to-pointer",
163 "Noreturn adjustment",
164 "Qualification",
165 "Integral promotion",
166 "Floating point promotion",
167 "Complex promotion",
168 "Integral conversion",
169 "Floating conversion",
170 "Complex conversion",
171 "Floating-integral conversion",
172 "Pointer conversion",
173 "Pointer-to-member conversion",
174 "Boolean conversion",
175 "Compatible-types conversion",
176 "Derived-to-base conversion",
177 "Vector conversion",
178 "Vector splat",
179 "Complex-real conversion",
180 "Block Pointer conversion",
181 "Transparent Union Conversion"
182 "Writeback conversion"
183 };
184 return Name[Kind];
185 }
186
187 /// StandardConversionSequence - Set the standard conversion
188 /// sequence to the identity conversion.
setAsIdentityConversion()189 void StandardConversionSequence::setAsIdentityConversion() {
190 First = ICK_Identity;
191 Second = ICK_Identity;
192 Third = ICK_Identity;
193 DeprecatedStringLiteralToCharPtr = false;
194 QualificationIncludesObjCLifetime = false;
195 ReferenceBinding = false;
196 DirectBinding = false;
197 IsLvalueReference = true;
198 BindsToFunctionLvalue = false;
199 BindsToRvalue = false;
200 BindsImplicitObjectArgumentWithoutRefQualifier = false;
201 ObjCLifetimeConversionBinding = false;
202 CopyConstructor = 0;
203 }
204
205 /// getRank - Retrieve the rank of this standard conversion sequence
206 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
207 /// implicit conversions.
getRank() const208 ImplicitConversionRank StandardConversionSequence::getRank() const {
209 ImplicitConversionRank Rank = ICR_Exact_Match;
210 if (GetConversionRank(First) > Rank)
211 Rank = GetConversionRank(First);
212 if (GetConversionRank(Second) > Rank)
213 Rank = GetConversionRank(Second);
214 if (GetConversionRank(Third) > Rank)
215 Rank = GetConversionRank(Third);
216 return Rank;
217 }
218
219 /// isPointerConversionToBool - Determines whether this conversion is
220 /// a conversion of a pointer or pointer-to-member to bool. This is
221 /// used as part of the ranking of standard conversion sequences
222 /// (C++ 13.3.3.2p4).
isPointerConversionToBool() const223 bool StandardConversionSequence::isPointerConversionToBool() const {
224 // Note that FromType has not necessarily been transformed by the
225 // array-to-pointer or function-to-pointer implicit conversions, so
226 // check for their presence as well as checking whether FromType is
227 // a pointer.
228 if (getToType(1)->isBooleanType() &&
229 (getFromType()->isPointerType() ||
230 getFromType()->isObjCObjectPointerType() ||
231 getFromType()->isBlockPointerType() ||
232 getFromType()->isNullPtrType() ||
233 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
234 return true;
235
236 return false;
237 }
238
239 /// isPointerConversionToVoidPointer - Determines whether this
240 /// conversion is a conversion of a pointer to a void pointer. This is
241 /// used as part of the ranking of standard conversion sequences (C++
242 /// 13.3.3.2p4).
243 bool
244 StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext & Context) const245 isPointerConversionToVoidPointer(ASTContext& Context) const {
246 QualType FromType = getFromType();
247 QualType ToType = getToType(1);
248
249 // Note that FromType has not necessarily been transformed by the
250 // array-to-pointer implicit conversion, so check for its presence
251 // and redo the conversion to get a pointer.
252 if (First == ICK_Array_To_Pointer)
253 FromType = Context.getArrayDecayedType(FromType);
254
255 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
256 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
257 return ToPtrType->getPointeeType()->isVoidType();
258
259 return false;
260 }
261
262 /// Skip any implicit casts which could be either part of a narrowing conversion
263 /// or after one in an implicit conversion.
IgnoreNarrowingConversion(const Expr * Converted)264 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
265 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
266 switch (ICE->getCastKind()) {
267 case CK_NoOp:
268 case CK_IntegralCast:
269 case CK_IntegralToBoolean:
270 case CK_IntegralToFloating:
271 case CK_FloatingToIntegral:
272 case CK_FloatingToBoolean:
273 case CK_FloatingCast:
274 Converted = ICE->getSubExpr();
275 continue;
276
277 default:
278 return Converted;
279 }
280 }
281
282 return Converted;
283 }
284
285 /// Check if this standard conversion sequence represents a narrowing
286 /// conversion, according to C++11 [dcl.init.list]p7.
287 ///
288 /// \param Ctx The AST context.
289 /// \param Converted The result of applying this standard conversion sequence.
290 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
291 /// value of the expression prior to the narrowing conversion.
292 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
293 /// type of the expression prior to the narrowing conversion.
294 NarrowingKind
getNarrowingKind(ASTContext & Ctx,const Expr * Converted,APValue & ConstantValue,QualType & ConstantType) const295 StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
296 const Expr *Converted,
297 APValue &ConstantValue,
298 QualType &ConstantType) const {
299 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
300
301 // C++11 [dcl.init.list]p7:
302 // A narrowing conversion is an implicit conversion ...
303 QualType FromType = getToType(0);
304 QualType ToType = getToType(1);
305 switch (Second) {
306 // -- from a floating-point type to an integer type, or
307 //
308 // -- from an integer type or unscoped enumeration type to a floating-point
309 // type, except where the source is a constant expression and the actual
310 // value after conversion will fit into the target type and will produce
311 // the original value when converted back to the original type, or
312 case ICK_Floating_Integral:
313 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
314 return NK_Type_Narrowing;
315 } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
316 llvm::APSInt IntConstantValue;
317 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
318 if (Initializer &&
319 Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
320 // Convert the integer to the floating type.
321 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
322 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
323 llvm::APFloat::rmNearestTiesToEven);
324 // And back.
325 llvm::APSInt ConvertedValue = IntConstantValue;
326 bool ignored;
327 Result.convertToInteger(ConvertedValue,
328 llvm::APFloat::rmTowardZero, &ignored);
329 // If the resulting value is different, this was a narrowing conversion.
330 if (IntConstantValue != ConvertedValue) {
331 ConstantValue = APValue(IntConstantValue);
332 ConstantType = Initializer->getType();
333 return NK_Constant_Narrowing;
334 }
335 } else {
336 // Variables are always narrowings.
337 return NK_Variable_Narrowing;
338 }
339 }
340 return NK_Not_Narrowing;
341
342 // -- from long double to double or float, or from double to float, except
343 // where the source is a constant expression and the actual value after
344 // conversion is within the range of values that can be represented (even
345 // if it cannot be represented exactly), or
346 case ICK_Floating_Conversion:
347 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
348 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
349 // FromType is larger than ToType.
350 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
351 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
352 // Constant!
353 assert(ConstantValue.isFloat());
354 llvm::APFloat FloatVal = ConstantValue.getFloat();
355 // Convert the source value into the target type.
356 bool ignored;
357 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
358 Ctx.getFloatTypeSemantics(ToType),
359 llvm::APFloat::rmNearestTiesToEven, &ignored);
360 // If there was no overflow, the source value is within the range of
361 // values that can be represented.
362 if (ConvertStatus & llvm::APFloat::opOverflow) {
363 ConstantType = Initializer->getType();
364 return NK_Constant_Narrowing;
365 }
366 } else {
367 return NK_Variable_Narrowing;
368 }
369 }
370 return NK_Not_Narrowing;
371
372 // -- from an integer type or unscoped enumeration type to an integer type
373 // that cannot represent all the values of the original type, except where
374 // the source is a constant expression and the actual value after
375 // conversion will fit into the target type and will produce the original
376 // value when converted back to the original type.
377 case ICK_Boolean_Conversion: // Bools are integers too.
378 if (!FromType->isIntegralOrUnscopedEnumerationType()) {
379 // Boolean conversions can be from pointers and pointers to members
380 // [conv.bool], and those aren't considered narrowing conversions.
381 return NK_Not_Narrowing;
382 } // Otherwise, fall through to the integral case.
383 case ICK_Integral_Conversion: {
384 assert(FromType->isIntegralOrUnscopedEnumerationType());
385 assert(ToType->isIntegralOrUnscopedEnumerationType());
386 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
387 const unsigned FromWidth = Ctx.getIntWidth(FromType);
388 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
389 const unsigned ToWidth = Ctx.getIntWidth(ToType);
390
391 if (FromWidth > ToWidth ||
392 (FromWidth == ToWidth && FromSigned != ToSigned) ||
393 (FromSigned && !ToSigned)) {
394 // Not all values of FromType can be represented in ToType.
395 llvm::APSInt InitializerValue;
396 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
397 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
398 // Such conversions on variables are always narrowing.
399 return NK_Variable_Narrowing;
400 }
401 bool Narrowing = false;
402 if (FromWidth < ToWidth) {
403 // Negative -> unsigned is narrowing. Otherwise, more bits is never
404 // narrowing.
405 if (InitializerValue.isSigned() && InitializerValue.isNegative())
406 Narrowing = true;
407 } else {
408 // Add a bit to the InitializerValue so we don't have to worry about
409 // signed vs. unsigned comparisons.
410 InitializerValue = InitializerValue.extend(
411 InitializerValue.getBitWidth() + 1);
412 // Convert the initializer to and from the target width and signed-ness.
413 llvm::APSInt ConvertedValue = InitializerValue;
414 ConvertedValue = ConvertedValue.trunc(ToWidth);
415 ConvertedValue.setIsSigned(ToSigned);
416 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
417 ConvertedValue.setIsSigned(InitializerValue.isSigned());
418 // If the result is different, this was a narrowing conversion.
419 if (ConvertedValue != InitializerValue)
420 Narrowing = true;
421 }
422 if (Narrowing) {
423 ConstantType = Initializer->getType();
424 ConstantValue = APValue(InitializerValue);
425 return NK_Constant_Narrowing;
426 }
427 }
428 return NK_Not_Narrowing;
429 }
430
431 default:
432 // Other kinds of conversions are not narrowings.
433 return NK_Not_Narrowing;
434 }
435 }
436
437 /// DebugPrint - Print this standard conversion sequence to standard
438 /// error. Useful for debugging overloading issues.
DebugPrint() const439 void StandardConversionSequence::DebugPrint() const {
440 raw_ostream &OS = llvm::errs();
441 bool PrintedSomething = false;
442 if (First != ICK_Identity) {
443 OS << GetImplicitConversionName(First);
444 PrintedSomething = true;
445 }
446
447 if (Second != ICK_Identity) {
448 if (PrintedSomething) {
449 OS << " -> ";
450 }
451 OS << GetImplicitConversionName(Second);
452
453 if (CopyConstructor) {
454 OS << " (by copy constructor)";
455 } else if (DirectBinding) {
456 OS << " (direct reference binding)";
457 } else if (ReferenceBinding) {
458 OS << " (reference binding)";
459 }
460 PrintedSomething = true;
461 }
462
463 if (Third != ICK_Identity) {
464 if (PrintedSomething) {
465 OS << " -> ";
466 }
467 OS << GetImplicitConversionName(Third);
468 PrintedSomething = true;
469 }
470
471 if (!PrintedSomething) {
472 OS << "No conversions required";
473 }
474 }
475
476 /// DebugPrint - Print this user-defined conversion sequence to standard
477 /// error. Useful for debugging overloading issues.
DebugPrint() const478 void UserDefinedConversionSequence::DebugPrint() const {
479 raw_ostream &OS = llvm::errs();
480 if (Before.First || Before.Second || Before.Third) {
481 Before.DebugPrint();
482 OS << " -> ";
483 }
484 if (ConversionFunction)
485 OS << '\'' << *ConversionFunction << '\'';
486 else
487 OS << "aggregate initialization";
488 if (After.First || After.Second || After.Third) {
489 OS << " -> ";
490 After.DebugPrint();
491 }
492 }
493
494 /// DebugPrint - Print this implicit conversion sequence to standard
495 /// error. Useful for debugging overloading issues.
DebugPrint() const496 void ImplicitConversionSequence::DebugPrint() const {
497 raw_ostream &OS = llvm::errs();
498 switch (ConversionKind) {
499 case StandardConversion:
500 OS << "Standard conversion: ";
501 Standard.DebugPrint();
502 break;
503 case UserDefinedConversion:
504 OS << "User-defined conversion: ";
505 UserDefined.DebugPrint();
506 break;
507 case EllipsisConversion:
508 OS << "Ellipsis conversion";
509 break;
510 case AmbiguousConversion:
511 OS << "Ambiguous conversion";
512 break;
513 case BadConversion:
514 OS << "Bad conversion";
515 break;
516 }
517
518 OS << "\n";
519 }
520
construct()521 void AmbiguousConversionSequence::construct() {
522 new (&conversions()) ConversionSet();
523 }
524
destruct()525 void AmbiguousConversionSequence::destruct() {
526 conversions().~ConversionSet();
527 }
528
529 void
copyFrom(const AmbiguousConversionSequence & O)530 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
531 FromTypePtr = O.FromTypePtr;
532 ToTypePtr = O.ToTypePtr;
533 new (&conversions()) ConversionSet(O.conversions());
534 }
535
536 namespace {
537 // Structure used by OverloadCandidate::DeductionFailureInfo to store
538 // template parameter and template argument information.
539 struct DFIParamWithArguments {
540 TemplateParameter Param;
541 TemplateArgument FirstArg;
542 TemplateArgument SecondArg;
543 };
544 }
545
546 /// \brief Convert from Sema's representation of template deduction information
547 /// to the form used in overload-candidate information.
548 OverloadCandidate::DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext & Context,Sema::TemplateDeductionResult TDK,TemplateDeductionInfo & Info)549 static MakeDeductionFailureInfo(ASTContext &Context,
550 Sema::TemplateDeductionResult TDK,
551 TemplateDeductionInfo &Info) {
552 OverloadCandidate::DeductionFailureInfo Result;
553 Result.Result = static_cast<unsigned>(TDK);
554 Result.HasDiagnostic = false;
555 Result.Data = 0;
556 switch (TDK) {
557 case Sema::TDK_Success:
558 case Sema::TDK_InstantiationDepth:
559 case Sema::TDK_TooManyArguments:
560 case Sema::TDK_TooFewArguments:
561 break;
562
563 case Sema::TDK_Incomplete:
564 case Sema::TDK_InvalidExplicitArguments:
565 Result.Data = Info.Param.getOpaqueValue();
566 break;
567
568 case Sema::TDK_Inconsistent:
569 case Sema::TDK_Underqualified: {
570 // FIXME: Should allocate from normal heap so that we can free this later.
571 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
572 Saved->Param = Info.Param;
573 Saved->FirstArg = Info.FirstArg;
574 Saved->SecondArg = Info.SecondArg;
575 Result.Data = Saved;
576 break;
577 }
578
579 case Sema::TDK_SubstitutionFailure:
580 Result.Data = Info.take();
581 if (Info.hasSFINAEDiagnostic()) {
582 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
583 SourceLocation(), PartialDiagnostic::NullDiagnostic());
584 Info.takeSFINAEDiagnostic(*Diag);
585 Result.HasDiagnostic = true;
586 }
587 break;
588
589 case Sema::TDK_NonDeducedMismatch:
590 case Sema::TDK_FailedOverloadResolution:
591 break;
592 }
593
594 return Result;
595 }
596
Destroy()597 void OverloadCandidate::DeductionFailureInfo::Destroy() {
598 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
599 case Sema::TDK_Success:
600 case Sema::TDK_InstantiationDepth:
601 case Sema::TDK_Incomplete:
602 case Sema::TDK_TooManyArguments:
603 case Sema::TDK_TooFewArguments:
604 case Sema::TDK_InvalidExplicitArguments:
605 break;
606
607 case Sema::TDK_Inconsistent:
608 case Sema::TDK_Underqualified:
609 // FIXME: Destroy the data?
610 Data = 0;
611 break;
612
613 case Sema::TDK_SubstitutionFailure:
614 // FIXME: Destroy the template argument list?
615 Data = 0;
616 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
617 Diag->~PartialDiagnosticAt();
618 HasDiagnostic = false;
619 }
620 break;
621
622 // Unhandled
623 case Sema::TDK_NonDeducedMismatch:
624 case Sema::TDK_FailedOverloadResolution:
625 break;
626 }
627 }
628
629 PartialDiagnosticAt *
getSFINAEDiagnostic()630 OverloadCandidate::DeductionFailureInfo::getSFINAEDiagnostic() {
631 if (HasDiagnostic)
632 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
633 return 0;
634 }
635
636 TemplateParameter
getTemplateParameter()637 OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
638 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
639 case Sema::TDK_Success:
640 case Sema::TDK_InstantiationDepth:
641 case Sema::TDK_TooManyArguments:
642 case Sema::TDK_TooFewArguments:
643 case Sema::TDK_SubstitutionFailure:
644 return TemplateParameter();
645
646 case Sema::TDK_Incomplete:
647 case Sema::TDK_InvalidExplicitArguments:
648 return TemplateParameter::getFromOpaqueValue(Data);
649
650 case Sema::TDK_Inconsistent:
651 case Sema::TDK_Underqualified:
652 return static_cast<DFIParamWithArguments*>(Data)->Param;
653
654 // Unhandled
655 case Sema::TDK_NonDeducedMismatch:
656 case Sema::TDK_FailedOverloadResolution:
657 break;
658 }
659
660 return TemplateParameter();
661 }
662
663 TemplateArgumentList *
getTemplateArgumentList()664 OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
665 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
666 case Sema::TDK_Success:
667 case Sema::TDK_InstantiationDepth:
668 case Sema::TDK_TooManyArguments:
669 case Sema::TDK_TooFewArguments:
670 case Sema::TDK_Incomplete:
671 case Sema::TDK_InvalidExplicitArguments:
672 case Sema::TDK_Inconsistent:
673 case Sema::TDK_Underqualified:
674 return 0;
675
676 case Sema::TDK_SubstitutionFailure:
677 return static_cast<TemplateArgumentList*>(Data);
678
679 // Unhandled
680 case Sema::TDK_NonDeducedMismatch:
681 case Sema::TDK_FailedOverloadResolution:
682 break;
683 }
684
685 return 0;
686 }
687
getFirstArg()688 const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
689 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
690 case Sema::TDK_Success:
691 case Sema::TDK_InstantiationDepth:
692 case Sema::TDK_Incomplete:
693 case Sema::TDK_TooManyArguments:
694 case Sema::TDK_TooFewArguments:
695 case Sema::TDK_InvalidExplicitArguments:
696 case Sema::TDK_SubstitutionFailure:
697 return 0;
698
699 case Sema::TDK_Inconsistent:
700 case Sema::TDK_Underqualified:
701 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
702
703 // Unhandled
704 case Sema::TDK_NonDeducedMismatch:
705 case Sema::TDK_FailedOverloadResolution:
706 break;
707 }
708
709 return 0;
710 }
711
712 const TemplateArgument *
getSecondArg()713 OverloadCandidate::DeductionFailureInfo::getSecondArg() {
714 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
715 case Sema::TDK_Success:
716 case Sema::TDK_InstantiationDepth:
717 case Sema::TDK_Incomplete:
718 case Sema::TDK_TooManyArguments:
719 case Sema::TDK_TooFewArguments:
720 case Sema::TDK_InvalidExplicitArguments:
721 case Sema::TDK_SubstitutionFailure:
722 return 0;
723
724 case Sema::TDK_Inconsistent:
725 case Sema::TDK_Underqualified:
726 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
727
728 // Unhandled
729 case Sema::TDK_NonDeducedMismatch:
730 case Sema::TDK_FailedOverloadResolution:
731 break;
732 }
733
734 return 0;
735 }
736
clear()737 void OverloadCandidateSet::clear() {
738 for (iterator i = begin(), e = end(); i != e; ++i) {
739 for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
740 i->Conversions[ii].~ImplicitConversionSequence();
741 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
742 i->DeductionFailure.Destroy();
743 }
744 NumInlineSequences = 0;
745 Candidates.clear();
746 Functions.clear();
747 }
748
749 namespace {
750 class UnbridgedCastsSet {
751 struct Entry {
752 Expr **Addr;
753 Expr *Saved;
754 };
755 SmallVector<Entry, 2> Entries;
756
757 public:
save(Sema & S,Expr * & E)758 void save(Sema &S, Expr *&E) {
759 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
760 Entry entry = { &E, E };
761 Entries.push_back(entry);
762 E = S.stripARCUnbridgedCast(E);
763 }
764
restore()765 void restore() {
766 for (SmallVectorImpl<Entry>::iterator
767 i = Entries.begin(), e = Entries.end(); i != e; ++i)
768 *i->Addr = i->Saved;
769 }
770 };
771 }
772
773 /// checkPlaceholderForOverload - Do any interesting placeholder-like
774 /// preprocessing on the given expression.
775 ///
776 /// \param unbridgedCasts a collection to which to add unbridged casts;
777 /// without this, they will be immediately diagnosed as errors
778 ///
779 /// Return true on unrecoverable error.
checkPlaceholderForOverload(Sema & S,Expr * & E,UnbridgedCastsSet * unbridgedCasts=0)780 static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
781 UnbridgedCastsSet *unbridgedCasts = 0) {
782 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
783 // We can't handle overloaded expressions here because overload
784 // resolution might reasonably tweak them.
785 if (placeholder->getKind() == BuiltinType::Overload) return false;
786
787 // If the context potentially accepts unbridged ARC casts, strip
788 // the unbridged cast and add it to the collection for later restoration.
789 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
790 unbridgedCasts) {
791 unbridgedCasts->save(S, E);
792 return false;
793 }
794
795 // Go ahead and check everything else.
796 ExprResult result = S.CheckPlaceholderExpr(E);
797 if (result.isInvalid())
798 return true;
799
800 E = result.take();
801 return false;
802 }
803
804 // Nothing to do.
805 return false;
806 }
807
808 /// checkArgPlaceholdersForOverload - Check a set of call operands for
809 /// placeholders.
checkArgPlaceholdersForOverload(Sema & S,Expr ** args,unsigned numArgs,UnbridgedCastsSet & unbridged)810 static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
811 unsigned numArgs,
812 UnbridgedCastsSet &unbridged) {
813 for (unsigned i = 0; i != numArgs; ++i)
814 if (checkPlaceholderForOverload(S, args[i], &unbridged))
815 return true;
816
817 return false;
818 }
819
820 // IsOverload - Determine whether the given New declaration is an
821 // overload of the declarations in Old. This routine returns false if
822 // New and Old cannot be overloaded, e.g., if New has the same
823 // signature as some function in Old (C++ 1.3.10) or if the Old
824 // declarations aren't functions (or function templates) at all. When
825 // it does return false, MatchedDecl will point to the decl that New
826 // cannot be overloaded with. This decl may be a UsingShadowDecl on
827 // top of the underlying declaration.
828 //
829 // Example: Given the following input:
830 //
831 // void f(int, float); // #1
832 // void f(int, int); // #2
833 // int f(int, int); // #3
834 //
835 // When we process #1, there is no previous declaration of "f",
836 // so IsOverload will not be used.
837 //
838 // When we process #2, Old contains only the FunctionDecl for #1. By
839 // comparing the parameter types, we see that #1 and #2 are overloaded
840 // (since they have different signatures), so this routine returns
841 // false; MatchedDecl is unchanged.
842 //
843 // When we process #3, Old is an overload set containing #1 and #2. We
844 // compare the signatures of #3 to #1 (they're overloaded, so we do
845 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
846 // identical (return types of functions are not part of the
847 // signature), IsOverload returns false and MatchedDecl will be set to
848 // point to the FunctionDecl for #2.
849 //
850 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
851 // into a class by a using declaration. The rules for whether to hide
852 // shadow declarations ignore some properties which otherwise figure
853 // into a function template's signature.
854 Sema::OverloadKind
CheckOverload(Scope * S,FunctionDecl * New,const LookupResult & Old,NamedDecl * & Match,bool NewIsUsingDecl)855 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
856 NamedDecl *&Match, bool NewIsUsingDecl) {
857 for (LookupResult::iterator I = Old.begin(), E = Old.end();
858 I != E; ++I) {
859 NamedDecl *OldD = *I;
860
861 bool OldIsUsingDecl = false;
862 if (isa<UsingShadowDecl>(OldD)) {
863 OldIsUsingDecl = true;
864
865 // We can always introduce two using declarations into the same
866 // context, even if they have identical signatures.
867 if (NewIsUsingDecl) continue;
868
869 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
870 }
871
872 // If either declaration was introduced by a using declaration,
873 // we'll need to use slightly different rules for matching.
874 // Essentially, these rules are the normal rules, except that
875 // function templates hide function templates with different
876 // return types or template parameter lists.
877 bool UseMemberUsingDeclRules =
878 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
879
880 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
881 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
882 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
883 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
884 continue;
885 }
886
887 Match = *I;
888 return Ovl_Match;
889 }
890 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
891 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
892 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
893 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
894 continue;
895 }
896
897 Match = *I;
898 return Ovl_Match;
899 }
900 } else if (isa<UsingDecl>(OldD)) {
901 // We can overload with these, which can show up when doing
902 // redeclaration checks for UsingDecls.
903 assert(Old.getLookupKind() == LookupUsingDeclName);
904 } else if (isa<TagDecl>(OldD)) {
905 // We can always overload with tags by hiding them.
906 } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
907 // Optimistically assume that an unresolved using decl will
908 // overload; if it doesn't, we'll have to diagnose during
909 // template instantiation.
910 } else {
911 // (C++ 13p1):
912 // Only function declarations can be overloaded; object and type
913 // declarations cannot be overloaded.
914 Match = *I;
915 return Ovl_NonFunction;
916 }
917 }
918
919 return Ovl_Overload;
920 }
921
IsOverload(FunctionDecl * New,FunctionDecl * Old,bool UseUsingDeclRules)922 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
923 bool UseUsingDeclRules) {
924 // If both of the functions are extern "C", then they are not
925 // overloads.
926 if (Old->isExternC() && New->isExternC())
927 return false;
928
929 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
930 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
931
932 // C++ [temp.fct]p2:
933 // A function template can be overloaded with other function templates
934 // and with normal (non-template) functions.
935 if ((OldTemplate == 0) != (NewTemplate == 0))
936 return true;
937
938 // Is the function New an overload of the function Old?
939 QualType OldQType = Context.getCanonicalType(Old->getType());
940 QualType NewQType = Context.getCanonicalType(New->getType());
941
942 // Compare the signatures (C++ 1.3.10) of the two functions to
943 // determine whether they are overloads. If we find any mismatch
944 // in the signature, they are overloads.
945
946 // If either of these functions is a K&R-style function (no
947 // prototype), then we consider them to have matching signatures.
948 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
949 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
950 return false;
951
952 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
953 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
954
955 // The signature of a function includes the types of its
956 // parameters (C++ 1.3.10), which includes the presence or absence
957 // of the ellipsis; see C++ DR 357).
958 if (OldQType != NewQType &&
959 (OldType->getNumArgs() != NewType->getNumArgs() ||
960 OldType->isVariadic() != NewType->isVariadic() ||
961 !FunctionArgTypesAreEqual(OldType, NewType)))
962 return true;
963
964 // C++ [temp.over.link]p4:
965 // The signature of a function template consists of its function
966 // signature, its return type and its template parameter list. The names
967 // of the template parameters are significant only for establishing the
968 // relationship between the template parameters and the rest of the
969 // signature.
970 //
971 // We check the return type and template parameter lists for function
972 // templates first; the remaining checks follow.
973 //
974 // However, we don't consider either of these when deciding whether
975 // a member introduced by a shadow declaration is hidden.
976 if (!UseUsingDeclRules && NewTemplate &&
977 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
978 OldTemplate->getTemplateParameters(),
979 false, TPL_TemplateMatch) ||
980 OldType->getResultType() != NewType->getResultType()))
981 return true;
982
983 // If the function is a class member, its signature includes the
984 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
985 //
986 // As part of this, also check whether one of the member functions
987 // is static, in which case they are not overloads (C++
988 // 13.1p2). While not part of the definition of the signature,
989 // this check is important to determine whether these functions
990 // can be overloaded.
991 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
992 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
993 if (OldMethod && NewMethod &&
994 !OldMethod->isStatic() && !NewMethod->isStatic() &&
995 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
996 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
997 if (!UseUsingDeclRules &&
998 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
999 (OldMethod->getRefQualifier() == RQ_None ||
1000 NewMethod->getRefQualifier() == RQ_None)) {
1001 // C++0x [over.load]p2:
1002 // - Member function declarations with the same name and the same
1003 // parameter-type-list as well as member function template
1004 // declarations with the same name, the same parameter-type-list, and
1005 // the same template parameter lists cannot be overloaded if any of
1006 // them, but not all, have a ref-qualifier (8.3.5).
1007 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1008 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1009 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1010 }
1011
1012 return true;
1013 }
1014
1015 // The signatures match; this is not an overload.
1016 return false;
1017 }
1018
1019 /// \brief Checks availability of the function depending on the current
1020 /// function context. Inside an unavailable function, unavailability is ignored.
1021 ///
1022 /// \returns true if \arg FD is unavailable and current context is inside
1023 /// an available function, false otherwise.
isFunctionConsideredUnavailable(FunctionDecl * FD)1024 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1025 return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1026 }
1027
1028 /// \brief Tries a user-defined conversion from From to ToType.
1029 ///
1030 /// Produces an implicit conversion sequence for when a standard conversion
1031 /// is not an option. See TryImplicitConversion for more information.
1032 static ImplicitConversionSequence
TryUserDefinedConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1033 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1034 bool SuppressUserConversions,
1035 bool AllowExplicit,
1036 bool InOverloadResolution,
1037 bool CStyle,
1038 bool AllowObjCWritebackConversion) {
1039 ImplicitConversionSequence ICS;
1040
1041 if (SuppressUserConversions) {
1042 // We're not in the case above, so there is no conversion that
1043 // we can perform.
1044 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1045 return ICS;
1046 }
1047
1048 // Attempt user-defined conversion.
1049 OverloadCandidateSet Conversions(From->getExprLoc());
1050 OverloadingResult UserDefResult
1051 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1052 AllowExplicit);
1053
1054 if (UserDefResult == OR_Success) {
1055 ICS.setUserDefined();
1056 // C++ [over.ics.user]p4:
1057 // A conversion of an expression of class type to the same class
1058 // type is given Exact Match rank, and a conversion of an
1059 // expression of class type to a base class of that type is
1060 // given Conversion rank, in spite of the fact that a copy
1061 // constructor (i.e., a user-defined conversion function) is
1062 // called for those cases.
1063 if (CXXConstructorDecl *Constructor
1064 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1065 QualType FromCanon
1066 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1067 QualType ToCanon
1068 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1069 if (Constructor->isCopyConstructor() &&
1070 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1071 // Turn this into a "standard" conversion sequence, so that it
1072 // gets ranked with standard conversion sequences.
1073 ICS.setStandard();
1074 ICS.Standard.setAsIdentityConversion();
1075 ICS.Standard.setFromType(From->getType());
1076 ICS.Standard.setAllToTypes(ToType);
1077 ICS.Standard.CopyConstructor = Constructor;
1078 if (ToCanon != FromCanon)
1079 ICS.Standard.Second = ICK_Derived_To_Base;
1080 }
1081 }
1082
1083 // C++ [over.best.ics]p4:
1084 // However, when considering the argument of a user-defined
1085 // conversion function that is a candidate by 13.3.1.3 when
1086 // invoked for the copying of the temporary in the second step
1087 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1088 // 13.3.1.6 in all cases, only standard conversion sequences and
1089 // ellipsis conversion sequences are allowed.
1090 if (SuppressUserConversions && ICS.isUserDefined()) {
1091 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1092 }
1093 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1094 ICS.setAmbiguous();
1095 ICS.Ambiguous.setFromType(From->getType());
1096 ICS.Ambiguous.setToType(ToType);
1097 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1098 Cand != Conversions.end(); ++Cand)
1099 if (Cand->Viable)
1100 ICS.Ambiguous.addConversion(Cand->Function);
1101 } else {
1102 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1103 }
1104
1105 return ICS;
1106 }
1107
1108 /// TryImplicitConversion - Attempt to perform an implicit conversion
1109 /// from the given expression (Expr) to the given type (ToType). This
1110 /// function returns an implicit conversion sequence that can be used
1111 /// to perform the initialization. Given
1112 ///
1113 /// void f(float f);
1114 /// void g(int i) { f(i); }
1115 ///
1116 /// this routine would produce an implicit conversion sequence to
1117 /// describe the initialization of f from i, which will be a standard
1118 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1119 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1120 //
1121 /// Note that this routine only determines how the conversion can be
1122 /// performed; it does not actually perform the conversion. As such,
1123 /// it will not produce any diagnostics if no conversion is available,
1124 /// but will instead return an implicit conversion sequence of kind
1125 /// "BadConversion".
1126 ///
1127 /// If @p SuppressUserConversions, then user-defined conversions are
1128 /// not permitted.
1129 /// If @p AllowExplicit, then explicit user-defined conversions are
1130 /// permitted.
1131 ///
1132 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1133 /// writeback conversion, which allows __autoreleasing id* parameters to
1134 /// be initialized with __strong id* or __weak id* arguments.
1135 static ImplicitConversionSequence
TryImplicitConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1136 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1137 bool SuppressUserConversions,
1138 bool AllowExplicit,
1139 bool InOverloadResolution,
1140 bool CStyle,
1141 bool AllowObjCWritebackConversion) {
1142 ImplicitConversionSequence ICS;
1143 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1144 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1145 ICS.setStandard();
1146 return ICS;
1147 }
1148
1149 if (!S.getLangOpts().CPlusPlus) {
1150 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1151 return ICS;
1152 }
1153
1154 // C++ [over.ics.user]p4:
1155 // A conversion of an expression of class type to the same class
1156 // type is given Exact Match rank, and a conversion of an
1157 // expression of class type to a base class of that type is
1158 // given Conversion rank, in spite of the fact that a copy/move
1159 // constructor (i.e., a user-defined conversion function) is
1160 // called for those cases.
1161 QualType FromType = From->getType();
1162 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1163 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1164 S.IsDerivedFrom(FromType, ToType))) {
1165 ICS.setStandard();
1166 ICS.Standard.setAsIdentityConversion();
1167 ICS.Standard.setFromType(FromType);
1168 ICS.Standard.setAllToTypes(ToType);
1169
1170 // We don't actually check at this point whether there is a valid
1171 // copy/move constructor, since overloading just assumes that it
1172 // exists. When we actually perform initialization, we'll find the
1173 // appropriate constructor to copy the returned object, if needed.
1174 ICS.Standard.CopyConstructor = 0;
1175
1176 // Determine whether this is considered a derived-to-base conversion.
1177 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1178 ICS.Standard.Second = ICK_Derived_To_Base;
1179
1180 return ICS;
1181 }
1182
1183 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1184 AllowExplicit, InOverloadResolution, CStyle,
1185 AllowObjCWritebackConversion);
1186 }
1187
1188 ImplicitConversionSequence
TryImplicitConversion(Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1189 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1190 bool SuppressUserConversions,
1191 bool AllowExplicit,
1192 bool InOverloadResolution,
1193 bool CStyle,
1194 bool AllowObjCWritebackConversion) {
1195 return clang::TryImplicitConversion(*this, From, ToType,
1196 SuppressUserConversions, AllowExplicit,
1197 InOverloadResolution, CStyle,
1198 AllowObjCWritebackConversion);
1199 }
1200
1201 /// PerformImplicitConversion - Perform an implicit conversion of the
1202 /// expression From to the type ToType. Returns the
1203 /// converted expression. Flavor is the kind of conversion we're
1204 /// performing, used in the error message. If @p AllowExplicit,
1205 /// explicit user-defined conversions are permitted.
1206 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit)1207 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1208 AssignmentAction Action, bool AllowExplicit) {
1209 ImplicitConversionSequence ICS;
1210 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1211 }
1212
1213 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit,ImplicitConversionSequence & ICS)1214 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1215 AssignmentAction Action, bool AllowExplicit,
1216 ImplicitConversionSequence& ICS) {
1217 if (checkPlaceholderForOverload(*this, From))
1218 return ExprError();
1219
1220 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1221 bool AllowObjCWritebackConversion
1222 = getLangOpts().ObjCAutoRefCount &&
1223 (Action == AA_Passing || Action == AA_Sending);
1224
1225 ICS = clang::TryImplicitConversion(*this, From, ToType,
1226 /*SuppressUserConversions=*/false,
1227 AllowExplicit,
1228 /*InOverloadResolution=*/false,
1229 /*CStyle=*/false,
1230 AllowObjCWritebackConversion);
1231 return PerformImplicitConversion(From, ToType, ICS, Action);
1232 }
1233
1234 /// \brief Determine whether the conversion from FromType to ToType is a valid
1235 /// conversion that strips "noreturn" off the nested function type.
IsNoReturnConversion(QualType FromType,QualType ToType,QualType & ResultTy)1236 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1237 QualType &ResultTy) {
1238 if (Context.hasSameUnqualifiedType(FromType, ToType))
1239 return false;
1240
1241 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1242 // where F adds one of the following at most once:
1243 // - a pointer
1244 // - a member pointer
1245 // - a block pointer
1246 CanQualType CanTo = Context.getCanonicalType(ToType);
1247 CanQualType CanFrom = Context.getCanonicalType(FromType);
1248 Type::TypeClass TyClass = CanTo->getTypeClass();
1249 if (TyClass != CanFrom->getTypeClass()) return false;
1250 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1251 if (TyClass == Type::Pointer) {
1252 CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1253 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1254 } else if (TyClass == Type::BlockPointer) {
1255 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1256 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1257 } else if (TyClass == Type::MemberPointer) {
1258 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1259 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1260 } else {
1261 return false;
1262 }
1263
1264 TyClass = CanTo->getTypeClass();
1265 if (TyClass != CanFrom->getTypeClass()) return false;
1266 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1267 return false;
1268 }
1269
1270 const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1271 FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1272 if (!EInfo.getNoReturn()) return false;
1273
1274 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1275 assert(QualType(FromFn, 0).isCanonical());
1276 if (QualType(FromFn, 0) != CanTo) return false;
1277
1278 ResultTy = ToType;
1279 return true;
1280 }
1281
1282 /// \brief Determine whether the conversion from FromType to ToType is a valid
1283 /// vector conversion.
1284 ///
1285 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1286 /// conversion.
IsVectorConversion(ASTContext & Context,QualType FromType,QualType ToType,ImplicitConversionKind & ICK)1287 static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1288 QualType ToType, ImplicitConversionKind &ICK) {
1289 // We need at least one of these types to be a vector type to have a vector
1290 // conversion.
1291 if (!ToType->isVectorType() && !FromType->isVectorType())
1292 return false;
1293
1294 // Identical types require no conversions.
1295 if (Context.hasSameUnqualifiedType(FromType, ToType))
1296 return false;
1297
1298 // There are no conversions between extended vector types, only identity.
1299 if (ToType->isExtVectorType()) {
1300 // There are no conversions between extended vector types other than the
1301 // identity conversion.
1302 if (FromType->isExtVectorType())
1303 return false;
1304
1305 // Vector splat from any arithmetic type to a vector.
1306 if (FromType->isArithmeticType()) {
1307 ICK = ICK_Vector_Splat;
1308 return true;
1309 }
1310 }
1311
1312 // We can perform the conversion between vector types in the following cases:
1313 // 1)vector types are equivalent AltiVec and GCC vector types
1314 // 2)lax vector conversions are permitted and the vector types are of the
1315 // same size
1316 if (ToType->isVectorType() && FromType->isVectorType()) {
1317 if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1318 (Context.getLangOpts().LaxVectorConversions &&
1319 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1320 ICK = ICK_Vector_Conversion;
1321 return true;
1322 }
1323 }
1324
1325 return false;
1326 }
1327
1328 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1329 bool InOverloadResolution,
1330 StandardConversionSequence &SCS,
1331 bool CStyle);
1332
1333 /// IsStandardConversion - Determines whether there is a standard
1334 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1335 /// expression From to the type ToType. Standard conversion sequences
1336 /// only consider non-class types; for conversions that involve class
1337 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1338 /// contain the standard conversion sequence required to perform this
1339 /// conversion and this routine will return true. Otherwise, this
1340 /// routine will return false and the value of SCS is unspecified.
IsStandardConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle,bool AllowObjCWritebackConversion)1341 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1342 bool InOverloadResolution,
1343 StandardConversionSequence &SCS,
1344 bool CStyle,
1345 bool AllowObjCWritebackConversion) {
1346 QualType FromType = From->getType();
1347
1348 // Standard conversions (C++ [conv])
1349 SCS.setAsIdentityConversion();
1350 SCS.DeprecatedStringLiteralToCharPtr = false;
1351 SCS.IncompatibleObjC = false;
1352 SCS.setFromType(FromType);
1353 SCS.CopyConstructor = 0;
1354
1355 // There are no standard conversions for class types in C++, so
1356 // abort early. When overloading in C, however, we do permit
1357 if (FromType->isRecordType() || ToType->isRecordType()) {
1358 if (S.getLangOpts().CPlusPlus)
1359 return false;
1360
1361 // When we're overloading in C, we allow, as standard conversions,
1362 }
1363
1364 // The first conversion can be an lvalue-to-rvalue conversion,
1365 // array-to-pointer conversion, or function-to-pointer conversion
1366 // (C++ 4p1).
1367
1368 if (FromType == S.Context.OverloadTy) {
1369 DeclAccessPair AccessPair;
1370 if (FunctionDecl *Fn
1371 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1372 AccessPair)) {
1373 // We were able to resolve the address of the overloaded function,
1374 // so we can convert to the type of that function.
1375 FromType = Fn->getType();
1376
1377 // we can sometimes resolve &foo<int> regardless of ToType, so check
1378 // if the type matches (identity) or we are converting to bool
1379 if (!S.Context.hasSameUnqualifiedType(
1380 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1381 QualType resultTy;
1382 // if the function type matches except for [[noreturn]], it's ok
1383 if (!S.IsNoReturnConversion(FromType,
1384 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1385 // otherwise, only a boolean conversion is standard
1386 if (!ToType->isBooleanType())
1387 return false;
1388 }
1389
1390 // Check if the "from" expression is taking the address of an overloaded
1391 // function and recompute the FromType accordingly. Take advantage of the
1392 // fact that non-static member functions *must* have such an address-of
1393 // expression.
1394 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1395 if (Method && !Method->isStatic()) {
1396 assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1397 "Non-unary operator on non-static member address");
1398 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1399 == UO_AddrOf &&
1400 "Non-address-of operator on non-static member address");
1401 const Type *ClassType
1402 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1403 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1404 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1405 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1406 UO_AddrOf &&
1407 "Non-address-of operator for overloaded function expression");
1408 FromType = S.Context.getPointerType(FromType);
1409 }
1410
1411 // Check that we've computed the proper type after overload resolution.
1412 assert(S.Context.hasSameType(
1413 FromType,
1414 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1415 } else {
1416 return false;
1417 }
1418 }
1419 // Lvalue-to-rvalue conversion (C++11 4.1):
1420 // A glvalue (3.10) of a non-function, non-array type T can
1421 // be converted to a prvalue.
1422 bool argIsLValue = From->isGLValue();
1423 if (argIsLValue &&
1424 !FromType->isFunctionType() && !FromType->isArrayType() &&
1425 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1426 SCS.First = ICK_Lvalue_To_Rvalue;
1427
1428 // C11 6.3.2.1p2:
1429 // ... if the lvalue has atomic type, the value has the non-atomic version
1430 // of the type of the lvalue ...
1431 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1432 FromType = Atomic->getValueType();
1433
1434 // If T is a non-class type, the type of the rvalue is the
1435 // cv-unqualified version of T. Otherwise, the type of the rvalue
1436 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1437 // just strip the qualifiers because they don't matter.
1438 FromType = FromType.getUnqualifiedType();
1439 } else if (FromType->isArrayType()) {
1440 // Array-to-pointer conversion (C++ 4.2)
1441 SCS.First = ICK_Array_To_Pointer;
1442
1443 // An lvalue or rvalue of type "array of N T" or "array of unknown
1444 // bound of T" can be converted to an rvalue of type "pointer to
1445 // T" (C++ 4.2p1).
1446 FromType = S.Context.getArrayDecayedType(FromType);
1447
1448 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1449 // This conversion is deprecated. (C++ D.4).
1450 SCS.DeprecatedStringLiteralToCharPtr = true;
1451
1452 // For the purpose of ranking in overload resolution
1453 // (13.3.3.1.1), this conversion is considered an
1454 // array-to-pointer conversion followed by a qualification
1455 // conversion (4.4). (C++ 4.2p2)
1456 SCS.Second = ICK_Identity;
1457 SCS.Third = ICK_Qualification;
1458 SCS.QualificationIncludesObjCLifetime = false;
1459 SCS.setAllToTypes(FromType);
1460 return true;
1461 }
1462 } else if (FromType->isFunctionType() && argIsLValue) {
1463 // Function-to-pointer conversion (C++ 4.3).
1464 SCS.First = ICK_Function_To_Pointer;
1465
1466 // An lvalue of function type T can be converted to an rvalue of
1467 // type "pointer to T." The result is a pointer to the
1468 // function. (C++ 4.3p1).
1469 FromType = S.Context.getPointerType(FromType);
1470 } else {
1471 // We don't require any conversions for the first step.
1472 SCS.First = ICK_Identity;
1473 }
1474 SCS.setToType(0, FromType);
1475
1476 // The second conversion can be an integral promotion, floating
1477 // point promotion, integral conversion, floating point conversion,
1478 // floating-integral conversion, pointer conversion,
1479 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1480 // For overloading in C, this can also be a "compatible-type"
1481 // conversion.
1482 bool IncompatibleObjC = false;
1483 ImplicitConversionKind SecondICK = ICK_Identity;
1484 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1485 // The unqualified versions of the types are the same: there's no
1486 // conversion to do.
1487 SCS.Second = ICK_Identity;
1488 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1489 // Integral promotion (C++ 4.5).
1490 SCS.Second = ICK_Integral_Promotion;
1491 FromType = ToType.getUnqualifiedType();
1492 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1493 // Floating point promotion (C++ 4.6).
1494 SCS.Second = ICK_Floating_Promotion;
1495 FromType = ToType.getUnqualifiedType();
1496 } else if (S.IsComplexPromotion(FromType, ToType)) {
1497 // Complex promotion (Clang extension)
1498 SCS.Second = ICK_Complex_Promotion;
1499 FromType = ToType.getUnqualifiedType();
1500 } else if (ToType->isBooleanType() &&
1501 (FromType->isArithmeticType() ||
1502 FromType->isAnyPointerType() ||
1503 FromType->isBlockPointerType() ||
1504 FromType->isMemberPointerType() ||
1505 FromType->isNullPtrType())) {
1506 // Boolean conversions (C++ 4.12).
1507 SCS.Second = ICK_Boolean_Conversion;
1508 FromType = S.Context.BoolTy;
1509 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1510 ToType->isIntegralType(S.Context)) {
1511 // Integral conversions (C++ 4.7).
1512 SCS.Second = ICK_Integral_Conversion;
1513 FromType = ToType.getUnqualifiedType();
1514 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1515 // Complex conversions (C99 6.3.1.6)
1516 SCS.Second = ICK_Complex_Conversion;
1517 FromType = ToType.getUnqualifiedType();
1518 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1519 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1520 // Complex-real conversions (C99 6.3.1.7)
1521 SCS.Second = ICK_Complex_Real;
1522 FromType = ToType.getUnqualifiedType();
1523 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1524 // Floating point conversions (C++ 4.8).
1525 SCS.Second = ICK_Floating_Conversion;
1526 FromType = ToType.getUnqualifiedType();
1527 } else if ((FromType->isRealFloatingType() &&
1528 ToType->isIntegralType(S.Context)) ||
1529 (FromType->isIntegralOrUnscopedEnumerationType() &&
1530 ToType->isRealFloatingType())) {
1531 // Floating-integral conversions (C++ 4.9).
1532 SCS.Second = ICK_Floating_Integral;
1533 FromType = ToType.getUnqualifiedType();
1534 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1535 SCS.Second = ICK_Block_Pointer_Conversion;
1536 } else if (AllowObjCWritebackConversion &&
1537 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1538 SCS.Second = ICK_Writeback_Conversion;
1539 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1540 FromType, IncompatibleObjC)) {
1541 // Pointer conversions (C++ 4.10).
1542 SCS.Second = ICK_Pointer_Conversion;
1543 SCS.IncompatibleObjC = IncompatibleObjC;
1544 FromType = FromType.getUnqualifiedType();
1545 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1546 InOverloadResolution, FromType)) {
1547 // Pointer to member conversions (4.11).
1548 SCS.Second = ICK_Pointer_Member;
1549 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1550 SCS.Second = SecondICK;
1551 FromType = ToType.getUnqualifiedType();
1552 } else if (!S.getLangOpts().CPlusPlus &&
1553 S.Context.typesAreCompatible(ToType, FromType)) {
1554 // Compatible conversions (Clang extension for C function overloading)
1555 SCS.Second = ICK_Compatible_Conversion;
1556 FromType = ToType.getUnqualifiedType();
1557 } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1558 // Treat a conversion that strips "noreturn" as an identity conversion.
1559 SCS.Second = ICK_NoReturn_Adjustment;
1560 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1561 InOverloadResolution,
1562 SCS, CStyle)) {
1563 SCS.Second = ICK_TransparentUnionConversion;
1564 FromType = ToType;
1565 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1566 CStyle)) {
1567 // tryAtomicConversion has updated the standard conversion sequence
1568 // appropriately.
1569 return true;
1570 } else {
1571 // No second conversion required.
1572 SCS.Second = ICK_Identity;
1573 }
1574 SCS.setToType(1, FromType);
1575
1576 QualType CanonFrom;
1577 QualType CanonTo;
1578 // The third conversion can be a qualification conversion (C++ 4p1).
1579 bool ObjCLifetimeConversion;
1580 if (S.IsQualificationConversion(FromType, ToType, CStyle,
1581 ObjCLifetimeConversion)) {
1582 SCS.Third = ICK_Qualification;
1583 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1584 FromType = ToType;
1585 CanonFrom = S.Context.getCanonicalType(FromType);
1586 CanonTo = S.Context.getCanonicalType(ToType);
1587 } else {
1588 // No conversion required
1589 SCS.Third = ICK_Identity;
1590
1591 // C++ [over.best.ics]p6:
1592 // [...] Any difference in top-level cv-qualification is
1593 // subsumed by the initialization itself and does not constitute
1594 // a conversion. [...]
1595 CanonFrom = S.Context.getCanonicalType(FromType);
1596 CanonTo = S.Context.getCanonicalType(ToType);
1597 if (CanonFrom.getLocalUnqualifiedType()
1598 == CanonTo.getLocalUnqualifiedType() &&
1599 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1600 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1601 || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1602 FromType = ToType;
1603 CanonFrom = CanonTo;
1604 }
1605 }
1606 SCS.setToType(2, FromType);
1607
1608 // If we have not converted the argument type to the parameter type,
1609 // this is a bad conversion sequence.
1610 if (CanonFrom != CanonTo)
1611 return false;
1612
1613 return true;
1614 }
1615
1616 static bool
IsTransparentUnionStandardConversion(Sema & S,Expr * From,QualType & ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)1617 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1618 QualType &ToType,
1619 bool InOverloadResolution,
1620 StandardConversionSequence &SCS,
1621 bool CStyle) {
1622
1623 const RecordType *UT = ToType->getAsUnionType();
1624 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1625 return false;
1626 // The field to initialize within the transparent union.
1627 RecordDecl *UD = UT->getDecl();
1628 // It's compatible if the expression matches any of the fields.
1629 for (RecordDecl::field_iterator it = UD->field_begin(),
1630 itend = UD->field_end();
1631 it != itend; ++it) {
1632 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1633 CStyle, /*ObjCWritebackConversion=*/false)) {
1634 ToType = it->getType();
1635 return true;
1636 }
1637 }
1638 return false;
1639 }
1640
1641 /// IsIntegralPromotion - Determines whether the conversion from the
1642 /// expression From (whose potentially-adjusted type is FromType) to
1643 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1644 /// sets PromotedType to the promoted type.
IsIntegralPromotion(Expr * From,QualType FromType,QualType ToType)1645 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1646 const BuiltinType *To = ToType->getAs<BuiltinType>();
1647 // All integers are built-in.
1648 if (!To) {
1649 return false;
1650 }
1651
1652 // An rvalue of type char, signed char, unsigned char, short int, or
1653 // unsigned short int can be converted to an rvalue of type int if
1654 // int can represent all the values of the source type; otherwise,
1655 // the source rvalue can be converted to an rvalue of type unsigned
1656 // int (C++ 4.5p1).
1657 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1658 !FromType->isEnumeralType()) {
1659 if (// We can promote any signed, promotable integer type to an int
1660 (FromType->isSignedIntegerType() ||
1661 // We can promote any unsigned integer type whose size is
1662 // less than int to an int.
1663 (!FromType->isSignedIntegerType() &&
1664 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1665 return To->getKind() == BuiltinType::Int;
1666 }
1667
1668 return To->getKind() == BuiltinType::UInt;
1669 }
1670
1671 // C++0x [conv.prom]p3:
1672 // A prvalue of an unscoped enumeration type whose underlying type is not
1673 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1674 // following types that can represent all the values of the enumeration
1675 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
1676 // unsigned int, long int, unsigned long int, long long int, or unsigned
1677 // long long int. If none of the types in that list can represent all the
1678 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1679 // type can be converted to an rvalue a prvalue of the extended integer type
1680 // with lowest integer conversion rank (4.13) greater than the rank of long
1681 // long in which all the values of the enumeration can be represented. If
1682 // there are two such extended types, the signed one is chosen.
1683 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1684 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1685 // provided for a scoped enumeration.
1686 if (FromEnumType->getDecl()->isScoped())
1687 return false;
1688
1689 // We have already pre-calculated the promotion type, so this is trivial.
1690 if (ToType->isIntegerType() &&
1691 !RequireCompleteType(From->getLocStart(), FromType, 0))
1692 return Context.hasSameUnqualifiedType(ToType,
1693 FromEnumType->getDecl()->getPromotionType());
1694 }
1695
1696 // C++0x [conv.prom]p2:
1697 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1698 // to an rvalue a prvalue of the first of the following types that can
1699 // represent all the values of its underlying type: int, unsigned int,
1700 // long int, unsigned long int, long long int, or unsigned long long int.
1701 // If none of the types in that list can represent all the values of its
1702 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
1703 // or wchar_t can be converted to an rvalue a prvalue of its underlying
1704 // type.
1705 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1706 ToType->isIntegerType()) {
1707 // Determine whether the type we're converting from is signed or
1708 // unsigned.
1709 bool FromIsSigned = FromType->isSignedIntegerType();
1710 uint64_t FromSize = Context.getTypeSize(FromType);
1711
1712 // The types we'll try to promote to, in the appropriate
1713 // order. Try each of these types.
1714 QualType PromoteTypes[6] = {
1715 Context.IntTy, Context.UnsignedIntTy,
1716 Context.LongTy, Context.UnsignedLongTy ,
1717 Context.LongLongTy, Context.UnsignedLongLongTy
1718 };
1719 for (int Idx = 0; Idx < 6; ++Idx) {
1720 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1721 if (FromSize < ToSize ||
1722 (FromSize == ToSize &&
1723 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1724 // We found the type that we can promote to. If this is the
1725 // type we wanted, we have a promotion. Otherwise, no
1726 // promotion.
1727 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1728 }
1729 }
1730 }
1731
1732 // An rvalue for an integral bit-field (9.6) can be converted to an
1733 // rvalue of type int if int can represent all the values of the
1734 // bit-field; otherwise, it can be converted to unsigned int if
1735 // unsigned int can represent all the values of the bit-field. If
1736 // the bit-field is larger yet, no integral promotion applies to
1737 // it. If the bit-field has an enumerated type, it is treated as any
1738 // other value of that type for promotion purposes (C++ 4.5p3).
1739 // FIXME: We should delay checking of bit-fields until we actually perform the
1740 // conversion.
1741 using llvm::APSInt;
1742 if (From)
1743 if (FieldDecl *MemberDecl = From->getBitField()) {
1744 APSInt BitWidth;
1745 if (FromType->isIntegralType(Context) &&
1746 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1747 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1748 ToSize = Context.getTypeSize(ToType);
1749
1750 // Are we promoting to an int from a bitfield that fits in an int?
1751 if (BitWidth < ToSize ||
1752 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1753 return To->getKind() == BuiltinType::Int;
1754 }
1755
1756 // Are we promoting to an unsigned int from an unsigned bitfield
1757 // that fits into an unsigned int?
1758 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1759 return To->getKind() == BuiltinType::UInt;
1760 }
1761
1762 return false;
1763 }
1764 }
1765
1766 // An rvalue of type bool can be converted to an rvalue of type int,
1767 // with false becoming zero and true becoming one (C++ 4.5p4).
1768 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1769 return true;
1770 }
1771
1772 return false;
1773 }
1774
1775 /// IsFloatingPointPromotion - Determines whether the conversion from
1776 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1777 /// returns true and sets PromotedType to the promoted type.
IsFloatingPointPromotion(QualType FromType,QualType ToType)1778 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1779 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1780 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1781 /// An rvalue of type float can be converted to an rvalue of type
1782 /// double. (C++ 4.6p1).
1783 if (FromBuiltin->getKind() == BuiltinType::Float &&
1784 ToBuiltin->getKind() == BuiltinType::Double)
1785 return true;
1786
1787 // C99 6.3.1.5p1:
1788 // When a float is promoted to double or long double, or a
1789 // double is promoted to long double [...].
1790 if (!getLangOpts().CPlusPlus &&
1791 (FromBuiltin->getKind() == BuiltinType::Float ||
1792 FromBuiltin->getKind() == BuiltinType::Double) &&
1793 (ToBuiltin->getKind() == BuiltinType::LongDouble))
1794 return true;
1795
1796 // Half can be promoted to float.
1797 if (FromBuiltin->getKind() == BuiltinType::Half &&
1798 ToBuiltin->getKind() == BuiltinType::Float)
1799 return true;
1800 }
1801
1802 return false;
1803 }
1804
1805 /// \brief Determine if a conversion is a complex promotion.
1806 ///
1807 /// A complex promotion is defined as a complex -> complex conversion
1808 /// where the conversion between the underlying real types is a
1809 /// floating-point or integral promotion.
IsComplexPromotion(QualType FromType,QualType ToType)1810 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1811 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1812 if (!FromComplex)
1813 return false;
1814
1815 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1816 if (!ToComplex)
1817 return false;
1818
1819 return IsFloatingPointPromotion(FromComplex->getElementType(),
1820 ToComplex->getElementType()) ||
1821 IsIntegralPromotion(0, FromComplex->getElementType(),
1822 ToComplex->getElementType());
1823 }
1824
1825 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1826 /// the pointer type FromPtr to a pointer to type ToPointee, with the
1827 /// same type qualifiers as FromPtr has on its pointee type. ToType,
1828 /// if non-empty, will be a pointer to ToType that may or may not have
1829 /// the right set of qualifiers on its pointee.
1830 ///
1831 static QualType
BuildSimilarlyQualifiedPointerType(const Type * FromPtr,QualType ToPointee,QualType ToType,ASTContext & Context,bool StripObjCLifetime=false)1832 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1833 QualType ToPointee, QualType ToType,
1834 ASTContext &Context,
1835 bool StripObjCLifetime = false) {
1836 assert((FromPtr->getTypeClass() == Type::Pointer ||
1837 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1838 "Invalid similarly-qualified pointer type");
1839
1840 /// Conversions to 'id' subsume cv-qualifier conversions.
1841 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1842 return ToType.getUnqualifiedType();
1843
1844 QualType CanonFromPointee
1845 = Context.getCanonicalType(FromPtr->getPointeeType());
1846 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1847 Qualifiers Quals = CanonFromPointee.getQualifiers();
1848
1849 if (StripObjCLifetime)
1850 Quals.removeObjCLifetime();
1851
1852 // Exact qualifier match -> return the pointer type we're converting to.
1853 if (CanonToPointee.getLocalQualifiers() == Quals) {
1854 // ToType is exactly what we need. Return it.
1855 if (!ToType.isNull())
1856 return ToType.getUnqualifiedType();
1857
1858 // Build a pointer to ToPointee. It has the right qualifiers
1859 // already.
1860 if (isa<ObjCObjectPointerType>(ToType))
1861 return Context.getObjCObjectPointerType(ToPointee);
1862 return Context.getPointerType(ToPointee);
1863 }
1864
1865 // Just build a canonical type that has the right qualifiers.
1866 QualType QualifiedCanonToPointee
1867 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1868
1869 if (isa<ObjCObjectPointerType>(ToType))
1870 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1871 return Context.getPointerType(QualifiedCanonToPointee);
1872 }
1873
isNullPointerConstantForConversion(Expr * Expr,bool InOverloadResolution,ASTContext & Context)1874 static bool isNullPointerConstantForConversion(Expr *Expr,
1875 bool InOverloadResolution,
1876 ASTContext &Context) {
1877 // Handle value-dependent integral null pointer constants correctly.
1878 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1879 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1880 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1881 return !InOverloadResolution;
1882
1883 return Expr->isNullPointerConstant(Context,
1884 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1885 : Expr::NPC_ValueDependentIsNull);
1886 }
1887
1888 /// IsPointerConversion - Determines whether the conversion of the
1889 /// expression From, which has the (possibly adjusted) type FromType,
1890 /// can be converted to the type ToType via a pointer conversion (C++
1891 /// 4.10). If so, returns true and places the converted type (that
1892 /// might differ from ToType in its cv-qualifiers at some level) into
1893 /// ConvertedType.
1894 ///
1895 /// This routine also supports conversions to and from block pointers
1896 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
1897 /// pointers to interfaces. FIXME: Once we've determined the
1898 /// appropriate overloading rules for Objective-C, we may want to
1899 /// split the Objective-C checks into a different routine; however,
1900 /// GCC seems to consider all of these conversions to be pointer
1901 /// conversions, so for now they live here. IncompatibleObjC will be
1902 /// set if the conversion is an allowed Objective-C conversion that
1903 /// should result in a warning.
IsPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType,bool & IncompatibleObjC)1904 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1905 bool InOverloadResolution,
1906 QualType& ConvertedType,
1907 bool &IncompatibleObjC) {
1908 IncompatibleObjC = false;
1909 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1910 IncompatibleObjC))
1911 return true;
1912
1913 // Conversion from a null pointer constant to any Objective-C pointer type.
1914 if (ToType->isObjCObjectPointerType() &&
1915 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1916 ConvertedType = ToType;
1917 return true;
1918 }
1919
1920 // Blocks: Block pointers can be converted to void*.
1921 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1922 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1923 ConvertedType = ToType;
1924 return true;
1925 }
1926 // Blocks: A null pointer constant can be converted to a block
1927 // pointer type.
1928 if (ToType->isBlockPointerType() &&
1929 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1930 ConvertedType = ToType;
1931 return true;
1932 }
1933
1934 // If the left-hand-side is nullptr_t, the right side can be a null
1935 // pointer constant.
1936 if (ToType->isNullPtrType() &&
1937 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1938 ConvertedType = ToType;
1939 return true;
1940 }
1941
1942 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1943 if (!ToTypePtr)
1944 return false;
1945
1946 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1947 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1948 ConvertedType = ToType;
1949 return true;
1950 }
1951
1952 // Beyond this point, both types need to be pointers
1953 // , including objective-c pointers.
1954 QualType ToPointeeType = ToTypePtr->getPointeeType();
1955 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1956 !getLangOpts().ObjCAutoRefCount) {
1957 ConvertedType = BuildSimilarlyQualifiedPointerType(
1958 FromType->getAs<ObjCObjectPointerType>(),
1959 ToPointeeType,
1960 ToType, Context);
1961 return true;
1962 }
1963 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1964 if (!FromTypePtr)
1965 return false;
1966
1967 QualType FromPointeeType = FromTypePtr->getPointeeType();
1968
1969 // If the unqualified pointee types are the same, this can't be a
1970 // pointer conversion, so don't do all of the work below.
1971 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1972 return false;
1973
1974 // An rvalue of type "pointer to cv T," where T is an object type,
1975 // can be converted to an rvalue of type "pointer to cv void" (C++
1976 // 4.10p2).
1977 if (FromPointeeType->isIncompleteOrObjectType() &&
1978 ToPointeeType->isVoidType()) {
1979 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1980 ToPointeeType,
1981 ToType, Context,
1982 /*StripObjCLifetime=*/true);
1983 return true;
1984 }
1985
1986 // MSVC allows implicit function to void* type conversion.
1987 if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
1988 ToPointeeType->isVoidType()) {
1989 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1990 ToPointeeType,
1991 ToType, Context);
1992 return true;
1993 }
1994
1995 // When we're overloading in C, we allow a special kind of pointer
1996 // conversion for compatible-but-not-identical pointee types.
1997 if (!getLangOpts().CPlusPlus &&
1998 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1999 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2000 ToPointeeType,
2001 ToType, Context);
2002 return true;
2003 }
2004
2005 // C++ [conv.ptr]p3:
2006 //
2007 // An rvalue of type "pointer to cv D," where D is a class type,
2008 // can be converted to an rvalue of type "pointer to cv B," where
2009 // B is a base class (clause 10) of D. If B is an inaccessible
2010 // (clause 11) or ambiguous (10.2) base class of D, a program that
2011 // necessitates this conversion is ill-formed. The result of the
2012 // conversion is a pointer to the base class sub-object of the
2013 // derived class object. The null pointer value is converted to
2014 // the null pointer value of the destination type.
2015 //
2016 // Note that we do not check for ambiguity or inaccessibility
2017 // here. That is handled by CheckPointerConversion.
2018 if (getLangOpts().CPlusPlus &&
2019 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2020 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2021 !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
2022 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
2023 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2024 ToPointeeType,
2025 ToType, Context);
2026 return true;
2027 }
2028
2029 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2030 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2031 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2032 ToPointeeType,
2033 ToType, Context);
2034 return true;
2035 }
2036
2037 return false;
2038 }
2039
2040 /// \brief Adopt the given qualifiers for the given type.
AdoptQualifiers(ASTContext & Context,QualType T,Qualifiers Qs)2041 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2042 Qualifiers TQs = T.getQualifiers();
2043
2044 // Check whether qualifiers already match.
2045 if (TQs == Qs)
2046 return T;
2047
2048 if (Qs.compatiblyIncludes(TQs))
2049 return Context.getQualifiedType(T, Qs);
2050
2051 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2052 }
2053
2054 /// isObjCPointerConversion - Determines whether this is an
2055 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2056 /// with the same arguments and return values.
isObjCPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType,bool & IncompatibleObjC)2057 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2058 QualType& ConvertedType,
2059 bool &IncompatibleObjC) {
2060 if (!getLangOpts().ObjC1)
2061 return false;
2062
2063 // The set of qualifiers on the type we're converting from.
2064 Qualifiers FromQualifiers = FromType.getQualifiers();
2065
2066 // First, we handle all conversions on ObjC object pointer types.
2067 const ObjCObjectPointerType* ToObjCPtr =
2068 ToType->getAs<ObjCObjectPointerType>();
2069 const ObjCObjectPointerType *FromObjCPtr =
2070 FromType->getAs<ObjCObjectPointerType>();
2071
2072 if (ToObjCPtr && FromObjCPtr) {
2073 // If the pointee types are the same (ignoring qualifications),
2074 // then this is not a pointer conversion.
2075 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2076 FromObjCPtr->getPointeeType()))
2077 return false;
2078
2079 // Check for compatible
2080 // Objective C++: We're able to convert between "id" or "Class" and a
2081 // pointer to any interface (in both directions).
2082 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2083 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2084 return true;
2085 }
2086 // Conversions with Objective-C's id<...>.
2087 if ((FromObjCPtr->isObjCQualifiedIdType() ||
2088 ToObjCPtr->isObjCQualifiedIdType()) &&
2089 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2090 /*compare=*/false)) {
2091 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2092 return true;
2093 }
2094 // Objective C++: We're able to convert from a pointer to an
2095 // interface to a pointer to a different interface.
2096 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2097 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2098 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2099 if (getLangOpts().CPlusPlus && LHS && RHS &&
2100 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2101 FromObjCPtr->getPointeeType()))
2102 return false;
2103 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2104 ToObjCPtr->getPointeeType(),
2105 ToType, Context);
2106 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2107 return true;
2108 }
2109
2110 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2111 // Okay: this is some kind of implicit downcast of Objective-C
2112 // interfaces, which is permitted. However, we're going to
2113 // complain about it.
2114 IncompatibleObjC = true;
2115 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2116 ToObjCPtr->getPointeeType(),
2117 ToType, Context);
2118 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2119 return true;
2120 }
2121 }
2122 // Beyond this point, both types need to be C pointers or block pointers.
2123 QualType ToPointeeType;
2124 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2125 ToPointeeType = ToCPtr->getPointeeType();
2126 else if (const BlockPointerType *ToBlockPtr =
2127 ToType->getAs<BlockPointerType>()) {
2128 // Objective C++: We're able to convert from a pointer to any object
2129 // to a block pointer type.
2130 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2131 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2132 return true;
2133 }
2134 ToPointeeType = ToBlockPtr->getPointeeType();
2135 }
2136 else if (FromType->getAs<BlockPointerType>() &&
2137 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2138 // Objective C++: We're able to convert from a block pointer type to a
2139 // pointer to any object.
2140 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2141 return true;
2142 }
2143 else
2144 return false;
2145
2146 QualType FromPointeeType;
2147 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2148 FromPointeeType = FromCPtr->getPointeeType();
2149 else if (const BlockPointerType *FromBlockPtr =
2150 FromType->getAs<BlockPointerType>())
2151 FromPointeeType = FromBlockPtr->getPointeeType();
2152 else
2153 return false;
2154
2155 // If we have pointers to pointers, recursively check whether this
2156 // is an Objective-C conversion.
2157 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2158 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2159 IncompatibleObjC)) {
2160 // We always complain about this conversion.
2161 IncompatibleObjC = true;
2162 ConvertedType = Context.getPointerType(ConvertedType);
2163 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2164 return true;
2165 }
2166 // Allow conversion of pointee being objective-c pointer to another one;
2167 // as in I* to id.
2168 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2169 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2170 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2171 IncompatibleObjC)) {
2172
2173 ConvertedType = Context.getPointerType(ConvertedType);
2174 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2175 return true;
2176 }
2177
2178 // If we have pointers to functions or blocks, check whether the only
2179 // differences in the argument and result types are in Objective-C
2180 // pointer conversions. If so, we permit the conversion (but
2181 // complain about it).
2182 const FunctionProtoType *FromFunctionType
2183 = FromPointeeType->getAs<FunctionProtoType>();
2184 const FunctionProtoType *ToFunctionType
2185 = ToPointeeType->getAs<FunctionProtoType>();
2186 if (FromFunctionType && ToFunctionType) {
2187 // If the function types are exactly the same, this isn't an
2188 // Objective-C pointer conversion.
2189 if (Context.getCanonicalType(FromPointeeType)
2190 == Context.getCanonicalType(ToPointeeType))
2191 return false;
2192
2193 // Perform the quick checks that will tell us whether these
2194 // function types are obviously different.
2195 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2196 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2197 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2198 return false;
2199
2200 bool HasObjCConversion = false;
2201 if (Context.getCanonicalType(FromFunctionType->getResultType())
2202 == Context.getCanonicalType(ToFunctionType->getResultType())) {
2203 // Okay, the types match exactly. Nothing to do.
2204 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2205 ToFunctionType->getResultType(),
2206 ConvertedType, IncompatibleObjC)) {
2207 // Okay, we have an Objective-C pointer conversion.
2208 HasObjCConversion = true;
2209 } else {
2210 // Function types are too different. Abort.
2211 return false;
2212 }
2213
2214 // Check argument types.
2215 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2216 ArgIdx != NumArgs; ++ArgIdx) {
2217 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2218 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2219 if (Context.getCanonicalType(FromArgType)
2220 == Context.getCanonicalType(ToArgType)) {
2221 // Okay, the types match exactly. Nothing to do.
2222 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2223 ConvertedType, IncompatibleObjC)) {
2224 // Okay, we have an Objective-C pointer conversion.
2225 HasObjCConversion = true;
2226 } else {
2227 // Argument types are too different. Abort.
2228 return false;
2229 }
2230 }
2231
2232 if (HasObjCConversion) {
2233 // We had an Objective-C conversion. Allow this pointer
2234 // conversion, but complain about it.
2235 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2236 IncompatibleObjC = true;
2237 return true;
2238 }
2239 }
2240
2241 return false;
2242 }
2243
2244 /// \brief Determine whether this is an Objective-C writeback conversion,
2245 /// used for parameter passing when performing automatic reference counting.
2246 ///
2247 /// \param FromType The type we're converting form.
2248 ///
2249 /// \param ToType The type we're converting to.
2250 ///
2251 /// \param ConvertedType The type that will be produced after applying
2252 /// this conversion.
isObjCWritebackConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2253 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2254 QualType &ConvertedType) {
2255 if (!getLangOpts().ObjCAutoRefCount ||
2256 Context.hasSameUnqualifiedType(FromType, ToType))
2257 return false;
2258
2259 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2260 QualType ToPointee;
2261 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2262 ToPointee = ToPointer->getPointeeType();
2263 else
2264 return false;
2265
2266 Qualifiers ToQuals = ToPointee.getQualifiers();
2267 if (!ToPointee->isObjCLifetimeType() ||
2268 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2269 !ToQuals.withoutObjCLifetime().empty())
2270 return false;
2271
2272 // Argument must be a pointer to __strong to __weak.
2273 QualType FromPointee;
2274 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2275 FromPointee = FromPointer->getPointeeType();
2276 else
2277 return false;
2278
2279 Qualifiers FromQuals = FromPointee.getQualifiers();
2280 if (!FromPointee->isObjCLifetimeType() ||
2281 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2282 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2283 return false;
2284
2285 // Make sure that we have compatible qualifiers.
2286 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2287 if (!ToQuals.compatiblyIncludes(FromQuals))
2288 return false;
2289
2290 // Remove qualifiers from the pointee type we're converting from; they
2291 // aren't used in the compatibility check belong, and we'll be adding back
2292 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2293 FromPointee = FromPointee.getUnqualifiedType();
2294
2295 // The unqualified form of the pointee types must be compatible.
2296 ToPointee = ToPointee.getUnqualifiedType();
2297 bool IncompatibleObjC;
2298 if (Context.typesAreCompatible(FromPointee, ToPointee))
2299 FromPointee = ToPointee;
2300 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2301 IncompatibleObjC))
2302 return false;
2303
2304 /// \brief Construct the type we're converting to, which is a pointer to
2305 /// __autoreleasing pointee.
2306 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2307 ConvertedType = Context.getPointerType(FromPointee);
2308 return true;
2309 }
2310
IsBlockPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2311 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2312 QualType& ConvertedType) {
2313 QualType ToPointeeType;
2314 if (const BlockPointerType *ToBlockPtr =
2315 ToType->getAs<BlockPointerType>())
2316 ToPointeeType = ToBlockPtr->getPointeeType();
2317 else
2318 return false;
2319
2320 QualType FromPointeeType;
2321 if (const BlockPointerType *FromBlockPtr =
2322 FromType->getAs<BlockPointerType>())
2323 FromPointeeType = FromBlockPtr->getPointeeType();
2324 else
2325 return false;
2326 // We have pointer to blocks, check whether the only
2327 // differences in the argument and result types are in Objective-C
2328 // pointer conversions. If so, we permit the conversion.
2329
2330 const FunctionProtoType *FromFunctionType
2331 = FromPointeeType->getAs<FunctionProtoType>();
2332 const FunctionProtoType *ToFunctionType
2333 = ToPointeeType->getAs<FunctionProtoType>();
2334
2335 if (!FromFunctionType || !ToFunctionType)
2336 return false;
2337
2338 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2339 return true;
2340
2341 // Perform the quick checks that will tell us whether these
2342 // function types are obviously different.
2343 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2344 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2345 return false;
2346
2347 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2348 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2349 if (FromEInfo != ToEInfo)
2350 return false;
2351
2352 bool IncompatibleObjC = false;
2353 if (Context.hasSameType(FromFunctionType->getResultType(),
2354 ToFunctionType->getResultType())) {
2355 // Okay, the types match exactly. Nothing to do.
2356 } else {
2357 QualType RHS = FromFunctionType->getResultType();
2358 QualType LHS = ToFunctionType->getResultType();
2359 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2360 !RHS.hasQualifiers() && LHS.hasQualifiers())
2361 LHS = LHS.getUnqualifiedType();
2362
2363 if (Context.hasSameType(RHS,LHS)) {
2364 // OK exact match.
2365 } else if (isObjCPointerConversion(RHS, LHS,
2366 ConvertedType, IncompatibleObjC)) {
2367 if (IncompatibleObjC)
2368 return false;
2369 // Okay, we have an Objective-C pointer conversion.
2370 }
2371 else
2372 return false;
2373 }
2374
2375 // Check argument types.
2376 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2377 ArgIdx != NumArgs; ++ArgIdx) {
2378 IncompatibleObjC = false;
2379 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2380 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2381 if (Context.hasSameType(FromArgType, ToArgType)) {
2382 // Okay, the types match exactly. Nothing to do.
2383 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2384 ConvertedType, IncompatibleObjC)) {
2385 if (IncompatibleObjC)
2386 return false;
2387 // Okay, we have an Objective-C pointer conversion.
2388 } else
2389 // Argument types are too different. Abort.
2390 return false;
2391 }
2392 if (LangOpts.ObjCAutoRefCount &&
2393 !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2394 ToFunctionType))
2395 return false;
2396
2397 ConvertedType = ToType;
2398 return true;
2399 }
2400
2401 enum {
2402 ft_default,
2403 ft_different_class,
2404 ft_parameter_arity,
2405 ft_parameter_mismatch,
2406 ft_return_type,
2407 ft_qualifer_mismatch
2408 };
2409
2410 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2411 /// function types. Catches different number of parameter, mismatch in
2412 /// parameter types, and different return types.
HandleFunctionTypeMismatch(PartialDiagnostic & PDiag,QualType FromType,QualType ToType)2413 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2414 QualType FromType, QualType ToType) {
2415 // If either type is not valid, include no extra info.
2416 if (FromType.isNull() || ToType.isNull()) {
2417 PDiag << ft_default;
2418 return;
2419 }
2420
2421 // Get the function type from the pointers.
2422 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2423 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2424 *ToMember = ToType->getAs<MemberPointerType>();
2425 if (FromMember->getClass() != ToMember->getClass()) {
2426 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2427 << QualType(FromMember->getClass(), 0);
2428 return;
2429 }
2430 FromType = FromMember->getPointeeType();
2431 ToType = ToMember->getPointeeType();
2432 }
2433
2434 if (FromType->isPointerType())
2435 FromType = FromType->getPointeeType();
2436 if (ToType->isPointerType())
2437 ToType = ToType->getPointeeType();
2438
2439 // Remove references.
2440 FromType = FromType.getNonReferenceType();
2441 ToType = ToType.getNonReferenceType();
2442
2443 // Don't print extra info for non-specialized template functions.
2444 if (FromType->isInstantiationDependentType() &&
2445 !FromType->getAs<TemplateSpecializationType>()) {
2446 PDiag << ft_default;
2447 return;
2448 }
2449
2450 // No extra info for same types.
2451 if (Context.hasSameType(FromType, ToType)) {
2452 PDiag << ft_default;
2453 return;
2454 }
2455
2456 const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2457 *ToFunction = ToType->getAs<FunctionProtoType>();
2458
2459 // Both types need to be function types.
2460 if (!FromFunction || !ToFunction) {
2461 PDiag << ft_default;
2462 return;
2463 }
2464
2465 if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2466 PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2467 << FromFunction->getNumArgs();
2468 return;
2469 }
2470
2471 // Handle different parameter types.
2472 unsigned ArgPos;
2473 if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2474 PDiag << ft_parameter_mismatch << ArgPos + 1
2475 << ToFunction->getArgType(ArgPos)
2476 << FromFunction->getArgType(ArgPos);
2477 return;
2478 }
2479
2480 // Handle different return type.
2481 if (!Context.hasSameType(FromFunction->getResultType(),
2482 ToFunction->getResultType())) {
2483 PDiag << ft_return_type << ToFunction->getResultType()
2484 << FromFunction->getResultType();
2485 return;
2486 }
2487
2488 unsigned FromQuals = FromFunction->getTypeQuals(),
2489 ToQuals = ToFunction->getTypeQuals();
2490 if (FromQuals != ToQuals) {
2491 PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2492 return;
2493 }
2494
2495 // Unable to find a difference, so add no extra info.
2496 PDiag << ft_default;
2497 }
2498
2499 /// FunctionArgTypesAreEqual - This routine checks two function proto types
2500 /// for equality of their argument types. Caller has already checked that
2501 /// they have same number of arguments. This routine assumes that Objective-C
2502 /// pointer types which only differ in their protocol qualifiers are equal.
2503 /// If the parameters are different, ArgPos will have the parameter index
2504 /// of the first different parameter.
FunctionArgTypesAreEqual(const FunctionProtoType * OldType,const FunctionProtoType * NewType,unsigned * ArgPos)2505 bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2506 const FunctionProtoType *NewType,
2507 unsigned *ArgPos) {
2508 if (!getLangOpts().ObjC1) {
2509 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2510 N = NewType->arg_type_begin(),
2511 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2512 if (!Context.hasSameType(*O, *N)) {
2513 if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2514 return false;
2515 }
2516 }
2517 return true;
2518 }
2519
2520 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2521 N = NewType->arg_type_begin(),
2522 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2523 QualType ToType = (*O);
2524 QualType FromType = (*N);
2525 if (!Context.hasSameType(ToType, FromType)) {
2526 if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2527 if (const PointerType *PTFr = FromType->getAs<PointerType>())
2528 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2529 PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2530 (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2531 PTFr->getPointeeType()->isObjCQualifiedClassType()))
2532 continue;
2533 }
2534 else if (const ObjCObjectPointerType *PTTo =
2535 ToType->getAs<ObjCObjectPointerType>()) {
2536 if (const ObjCObjectPointerType *PTFr =
2537 FromType->getAs<ObjCObjectPointerType>())
2538 if (Context.hasSameUnqualifiedType(
2539 PTTo->getObjectType()->getBaseType(),
2540 PTFr->getObjectType()->getBaseType()))
2541 continue;
2542 }
2543 if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2544 return false;
2545 }
2546 }
2547 return true;
2548 }
2549
2550 /// CheckPointerConversion - Check the pointer conversion from the
2551 /// expression From to the type ToType. This routine checks for
2552 /// ambiguous or inaccessible derived-to-base pointer
2553 /// conversions for which IsPointerConversion has already returned
2554 /// true. It returns true and produces a diagnostic if there was an
2555 /// error, or returns false otherwise.
CheckPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)2556 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2557 CastKind &Kind,
2558 CXXCastPath& BasePath,
2559 bool IgnoreBaseAccess) {
2560 QualType FromType = From->getType();
2561 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2562
2563 Kind = CK_BitCast;
2564
2565 if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2566 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2567 Expr::NPCK_ZeroExpression) {
2568 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2569 DiagRuntimeBehavior(From->getExprLoc(), From,
2570 PDiag(diag::warn_impcast_bool_to_null_pointer)
2571 << ToType << From->getSourceRange());
2572 else if (!isUnevaluatedContext())
2573 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2574 << ToType << From->getSourceRange();
2575 }
2576 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2577 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2578 QualType FromPointeeType = FromPtrType->getPointeeType(),
2579 ToPointeeType = ToPtrType->getPointeeType();
2580
2581 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2582 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2583 // We must have a derived-to-base conversion. Check an
2584 // ambiguous or inaccessible conversion.
2585 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2586 From->getExprLoc(),
2587 From->getSourceRange(), &BasePath,
2588 IgnoreBaseAccess))
2589 return true;
2590
2591 // The conversion was successful.
2592 Kind = CK_DerivedToBase;
2593 }
2594 }
2595 } else if (const ObjCObjectPointerType *ToPtrType =
2596 ToType->getAs<ObjCObjectPointerType>()) {
2597 if (const ObjCObjectPointerType *FromPtrType =
2598 FromType->getAs<ObjCObjectPointerType>()) {
2599 // Objective-C++ conversions are always okay.
2600 // FIXME: We should have a different class of conversions for the
2601 // Objective-C++ implicit conversions.
2602 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2603 return false;
2604 } else if (FromType->isBlockPointerType()) {
2605 Kind = CK_BlockPointerToObjCPointerCast;
2606 } else {
2607 Kind = CK_CPointerToObjCPointerCast;
2608 }
2609 } else if (ToType->isBlockPointerType()) {
2610 if (!FromType->isBlockPointerType())
2611 Kind = CK_AnyPointerToBlockPointerCast;
2612 }
2613
2614 // We shouldn't fall into this case unless it's valid for other
2615 // reasons.
2616 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2617 Kind = CK_NullToPointer;
2618
2619 return false;
2620 }
2621
2622 /// IsMemberPointerConversion - Determines whether the conversion of the
2623 /// expression From, which has the (possibly adjusted) type FromType, can be
2624 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
2625 /// If so, returns true and places the converted type (that might differ from
2626 /// ToType in its cv-qualifiers at some level) into ConvertedType.
IsMemberPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType)2627 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2628 QualType ToType,
2629 bool InOverloadResolution,
2630 QualType &ConvertedType) {
2631 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2632 if (!ToTypePtr)
2633 return false;
2634
2635 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2636 if (From->isNullPointerConstant(Context,
2637 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2638 : Expr::NPC_ValueDependentIsNull)) {
2639 ConvertedType = ToType;
2640 return true;
2641 }
2642
2643 // Otherwise, both types have to be member pointers.
2644 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2645 if (!FromTypePtr)
2646 return false;
2647
2648 // A pointer to member of B can be converted to a pointer to member of D,
2649 // where D is derived from B (C++ 4.11p2).
2650 QualType FromClass(FromTypePtr->getClass(), 0);
2651 QualType ToClass(ToTypePtr->getClass(), 0);
2652
2653 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2654 !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
2655 IsDerivedFrom(ToClass, FromClass)) {
2656 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2657 ToClass.getTypePtr());
2658 return true;
2659 }
2660
2661 return false;
2662 }
2663
2664 /// CheckMemberPointerConversion - Check the member pointer conversion from the
2665 /// expression From to the type ToType. This routine checks for ambiguous or
2666 /// virtual or inaccessible base-to-derived member pointer conversions
2667 /// for which IsMemberPointerConversion has already returned true. It returns
2668 /// true and produces a diagnostic if there was an error, or returns false
2669 /// otherwise.
CheckMemberPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)2670 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2671 CastKind &Kind,
2672 CXXCastPath &BasePath,
2673 bool IgnoreBaseAccess) {
2674 QualType FromType = From->getType();
2675 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2676 if (!FromPtrType) {
2677 // This must be a null pointer to member pointer conversion
2678 assert(From->isNullPointerConstant(Context,
2679 Expr::NPC_ValueDependentIsNull) &&
2680 "Expr must be null pointer constant!");
2681 Kind = CK_NullToMemberPointer;
2682 return false;
2683 }
2684
2685 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2686 assert(ToPtrType && "No member pointer cast has a target type "
2687 "that is not a member pointer.");
2688
2689 QualType FromClass = QualType(FromPtrType->getClass(), 0);
2690 QualType ToClass = QualType(ToPtrType->getClass(), 0);
2691
2692 // FIXME: What about dependent types?
2693 assert(FromClass->isRecordType() && "Pointer into non-class.");
2694 assert(ToClass->isRecordType() && "Pointer into non-class.");
2695
2696 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2697 /*DetectVirtual=*/true);
2698 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2699 assert(DerivationOkay &&
2700 "Should not have been called if derivation isn't OK.");
2701 (void)DerivationOkay;
2702
2703 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2704 getUnqualifiedType())) {
2705 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2706 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2707 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2708 return true;
2709 }
2710
2711 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2712 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2713 << FromClass << ToClass << QualType(VBase, 0)
2714 << From->getSourceRange();
2715 return true;
2716 }
2717
2718 if (!IgnoreBaseAccess)
2719 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2720 Paths.front(),
2721 diag::err_downcast_from_inaccessible_base);
2722
2723 // Must be a base to derived member conversion.
2724 BuildBasePathArray(Paths, BasePath);
2725 Kind = CK_BaseToDerivedMemberPointer;
2726 return false;
2727 }
2728
2729 /// IsQualificationConversion - Determines whether the conversion from
2730 /// an rvalue of type FromType to ToType is a qualification conversion
2731 /// (C++ 4.4).
2732 ///
2733 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2734 /// when the qualification conversion involves a change in the Objective-C
2735 /// object lifetime.
2736 bool
IsQualificationConversion(QualType FromType,QualType ToType,bool CStyle,bool & ObjCLifetimeConversion)2737 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2738 bool CStyle, bool &ObjCLifetimeConversion) {
2739 FromType = Context.getCanonicalType(FromType);
2740 ToType = Context.getCanonicalType(ToType);
2741 ObjCLifetimeConversion = false;
2742
2743 // If FromType and ToType are the same type, this is not a
2744 // qualification conversion.
2745 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2746 return false;
2747
2748 // (C++ 4.4p4):
2749 // A conversion can add cv-qualifiers at levels other than the first
2750 // in multi-level pointers, subject to the following rules: [...]
2751 bool PreviousToQualsIncludeConst = true;
2752 bool UnwrappedAnyPointer = false;
2753 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2754 // Within each iteration of the loop, we check the qualifiers to
2755 // determine if this still looks like a qualification
2756 // conversion. Then, if all is well, we unwrap one more level of
2757 // pointers or pointers-to-members and do it all again
2758 // until there are no more pointers or pointers-to-members left to
2759 // unwrap.
2760 UnwrappedAnyPointer = true;
2761
2762 Qualifiers FromQuals = FromType.getQualifiers();
2763 Qualifiers ToQuals = ToType.getQualifiers();
2764
2765 // Objective-C ARC:
2766 // Check Objective-C lifetime conversions.
2767 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2768 UnwrappedAnyPointer) {
2769 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2770 ObjCLifetimeConversion = true;
2771 FromQuals.removeObjCLifetime();
2772 ToQuals.removeObjCLifetime();
2773 } else {
2774 // Qualification conversions cannot cast between different
2775 // Objective-C lifetime qualifiers.
2776 return false;
2777 }
2778 }
2779
2780 // Allow addition/removal of GC attributes but not changing GC attributes.
2781 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2782 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2783 FromQuals.removeObjCGCAttr();
2784 ToQuals.removeObjCGCAttr();
2785 }
2786
2787 // -- for every j > 0, if const is in cv 1,j then const is in cv
2788 // 2,j, and similarly for volatile.
2789 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2790 return false;
2791
2792 // -- if the cv 1,j and cv 2,j are different, then const is in
2793 // every cv for 0 < k < j.
2794 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2795 && !PreviousToQualsIncludeConst)
2796 return false;
2797
2798 // Keep track of whether all prior cv-qualifiers in the "to" type
2799 // include const.
2800 PreviousToQualsIncludeConst
2801 = PreviousToQualsIncludeConst && ToQuals.hasConst();
2802 }
2803
2804 // We are left with FromType and ToType being the pointee types
2805 // after unwrapping the original FromType and ToType the same number
2806 // of types. If we unwrapped any pointers, and if FromType and
2807 // ToType have the same unqualified type (since we checked
2808 // qualifiers above), then this is a qualification conversion.
2809 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2810 }
2811
2812 /// \brief - Determine whether this is a conversion from a scalar type to an
2813 /// atomic type.
2814 ///
2815 /// If successful, updates \c SCS's second and third steps in the conversion
2816 /// sequence to finish the conversion.
tryAtomicConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)2817 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2818 bool InOverloadResolution,
2819 StandardConversionSequence &SCS,
2820 bool CStyle) {
2821 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2822 if (!ToAtomic)
2823 return false;
2824
2825 StandardConversionSequence InnerSCS;
2826 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2827 InOverloadResolution, InnerSCS,
2828 CStyle, /*AllowObjCWritebackConversion=*/false))
2829 return false;
2830
2831 SCS.Second = InnerSCS.Second;
2832 SCS.setToType(1, InnerSCS.getToType(1));
2833 SCS.Third = InnerSCS.Third;
2834 SCS.QualificationIncludesObjCLifetime
2835 = InnerSCS.QualificationIncludesObjCLifetime;
2836 SCS.setToType(2, InnerSCS.getToType(2));
2837 return true;
2838 }
2839
isFirstArgumentCompatibleWithType(ASTContext & Context,CXXConstructorDecl * Constructor,QualType Type)2840 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2841 CXXConstructorDecl *Constructor,
2842 QualType Type) {
2843 const FunctionProtoType *CtorType =
2844 Constructor->getType()->getAs<FunctionProtoType>();
2845 if (CtorType->getNumArgs() > 0) {
2846 QualType FirstArg = CtorType->getArgType(0);
2847 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2848 return true;
2849 }
2850 return false;
2851 }
2852
2853 static OverloadingResult
IsInitializerListConstructorConversion(Sema & S,Expr * From,QualType ToType,CXXRecordDecl * To,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit)2854 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2855 CXXRecordDecl *To,
2856 UserDefinedConversionSequence &User,
2857 OverloadCandidateSet &CandidateSet,
2858 bool AllowExplicit) {
2859 DeclContext::lookup_iterator Con, ConEnd;
2860 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(To);
2861 Con != ConEnd; ++Con) {
2862 NamedDecl *D = *Con;
2863 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2864
2865 // Find the constructor (which may be a template).
2866 CXXConstructorDecl *Constructor = 0;
2867 FunctionTemplateDecl *ConstructorTmpl
2868 = dyn_cast<FunctionTemplateDecl>(D);
2869 if (ConstructorTmpl)
2870 Constructor
2871 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2872 else
2873 Constructor = cast<CXXConstructorDecl>(D);
2874
2875 bool Usable = !Constructor->isInvalidDecl() &&
2876 S.isInitListConstructor(Constructor) &&
2877 (AllowExplicit || !Constructor->isExplicit());
2878 if (Usable) {
2879 // If the first argument is (a reference to) the target type,
2880 // suppress conversions.
2881 bool SuppressUserConversions =
2882 isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2883 if (ConstructorTmpl)
2884 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2885 /*ExplicitArgs*/ 0,
2886 From, CandidateSet,
2887 SuppressUserConversions);
2888 else
2889 S.AddOverloadCandidate(Constructor, FoundDecl,
2890 From, CandidateSet,
2891 SuppressUserConversions);
2892 }
2893 }
2894
2895 bool HadMultipleCandidates = (CandidateSet.size() > 1);
2896
2897 OverloadCandidateSet::iterator Best;
2898 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2899 case OR_Success: {
2900 // Record the standard conversion we used and the conversion function.
2901 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2902 S.MarkFunctionReferenced(From->getLocStart(), Constructor);
2903
2904 QualType ThisType = Constructor->getThisType(S.Context);
2905 // Initializer lists don't have conversions as such.
2906 User.Before.setAsIdentityConversion();
2907 User.HadMultipleCandidates = HadMultipleCandidates;
2908 User.ConversionFunction = Constructor;
2909 User.FoundConversionFunction = Best->FoundDecl;
2910 User.After.setAsIdentityConversion();
2911 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2912 User.After.setAllToTypes(ToType);
2913 return OR_Success;
2914 }
2915
2916 case OR_No_Viable_Function:
2917 return OR_No_Viable_Function;
2918 case OR_Deleted:
2919 return OR_Deleted;
2920 case OR_Ambiguous:
2921 return OR_Ambiguous;
2922 }
2923
2924 llvm_unreachable("Invalid OverloadResult!");
2925 }
2926
2927 /// Determines whether there is a user-defined conversion sequence
2928 /// (C++ [over.ics.user]) that converts expression From to the type
2929 /// ToType. If such a conversion exists, User will contain the
2930 /// user-defined conversion sequence that performs such a conversion
2931 /// and this routine will return true. Otherwise, this routine returns
2932 /// false and User is unspecified.
2933 ///
2934 /// \param AllowExplicit true if the conversion should consider C++0x
2935 /// "explicit" conversion functions as well as non-explicit conversion
2936 /// functions (C++0x [class.conv.fct]p2).
2937 static OverloadingResult
IsUserDefinedConversion(Sema & S,Expr * From,QualType ToType,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit)2938 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2939 UserDefinedConversionSequence &User,
2940 OverloadCandidateSet &CandidateSet,
2941 bool AllowExplicit) {
2942 // Whether we will only visit constructors.
2943 bool ConstructorsOnly = false;
2944
2945 // If the type we are conversion to is a class type, enumerate its
2946 // constructors.
2947 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2948 // C++ [over.match.ctor]p1:
2949 // When objects of class type are direct-initialized (8.5), or
2950 // copy-initialized from an expression of the same or a
2951 // derived class type (8.5), overload resolution selects the
2952 // constructor. [...] For copy-initialization, the candidate
2953 // functions are all the converting constructors (12.3.1) of
2954 // that class. The argument list is the expression-list within
2955 // the parentheses of the initializer.
2956 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2957 (From->getType()->getAs<RecordType>() &&
2958 S.IsDerivedFrom(From->getType(), ToType)))
2959 ConstructorsOnly = true;
2960
2961 S.RequireCompleteType(From->getLocStart(), ToType, 0);
2962 // RequireCompleteType may have returned true due to some invalid decl
2963 // during template instantiation, but ToType may be complete enough now
2964 // to try to recover.
2965 if (ToType->isIncompleteType()) {
2966 // We're not going to find any constructors.
2967 } else if (CXXRecordDecl *ToRecordDecl
2968 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2969
2970 Expr **Args = &From;
2971 unsigned NumArgs = 1;
2972 bool ListInitializing = false;
2973 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
2974 // But first, see if there is an init-list-contructor that will work.
2975 OverloadingResult Result = IsInitializerListConstructorConversion(
2976 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
2977 if (Result != OR_No_Viable_Function)
2978 return Result;
2979 // Never mind.
2980 CandidateSet.clear();
2981
2982 // If we're list-initializing, we pass the individual elements as
2983 // arguments, not the entire list.
2984 Args = InitList->getInits();
2985 NumArgs = InitList->getNumInits();
2986 ListInitializing = true;
2987 }
2988
2989 DeclContext::lookup_iterator Con, ConEnd;
2990 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2991 Con != ConEnd; ++Con) {
2992 NamedDecl *D = *Con;
2993 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2994
2995 // Find the constructor (which may be a template).
2996 CXXConstructorDecl *Constructor = 0;
2997 FunctionTemplateDecl *ConstructorTmpl
2998 = dyn_cast<FunctionTemplateDecl>(D);
2999 if (ConstructorTmpl)
3000 Constructor
3001 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3002 else
3003 Constructor = cast<CXXConstructorDecl>(D);
3004
3005 bool Usable = !Constructor->isInvalidDecl();
3006 if (ListInitializing)
3007 Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3008 else
3009 Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3010 if (Usable) {
3011 bool SuppressUserConversions = !ConstructorsOnly;
3012 if (SuppressUserConversions && ListInitializing) {
3013 SuppressUserConversions = false;
3014 if (NumArgs == 1) {
3015 // If the first argument is (a reference to) the target type,
3016 // suppress conversions.
3017 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3018 S.Context, Constructor, ToType);
3019 }
3020 }
3021 if (ConstructorTmpl)
3022 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3023 /*ExplicitArgs*/ 0,
3024 llvm::makeArrayRef(Args, NumArgs),
3025 CandidateSet, SuppressUserConversions);
3026 else
3027 // Allow one user-defined conversion when user specifies a
3028 // From->ToType conversion via an static cast (c-style, etc).
3029 S.AddOverloadCandidate(Constructor, FoundDecl,
3030 llvm::makeArrayRef(Args, NumArgs),
3031 CandidateSet, SuppressUserConversions);
3032 }
3033 }
3034 }
3035 }
3036
3037 // Enumerate conversion functions, if we're allowed to.
3038 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3039 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
3040 // No conversion functions from incomplete types.
3041 } else if (const RecordType *FromRecordType
3042 = From->getType()->getAs<RecordType>()) {
3043 if (CXXRecordDecl *FromRecordDecl
3044 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3045 // Add all of the conversion functions as candidates.
3046 const UnresolvedSetImpl *Conversions
3047 = FromRecordDecl->getVisibleConversionFunctions();
3048 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3049 E = Conversions->end(); I != E; ++I) {
3050 DeclAccessPair FoundDecl = I.getPair();
3051 NamedDecl *D = FoundDecl.getDecl();
3052 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3053 if (isa<UsingShadowDecl>(D))
3054 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3055
3056 CXXConversionDecl *Conv;
3057 FunctionTemplateDecl *ConvTemplate;
3058 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3059 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3060 else
3061 Conv = cast<CXXConversionDecl>(D);
3062
3063 if (AllowExplicit || !Conv->isExplicit()) {
3064 if (ConvTemplate)
3065 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3066 ActingContext, From, ToType,
3067 CandidateSet);
3068 else
3069 S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3070 From, ToType, CandidateSet);
3071 }
3072 }
3073 }
3074 }
3075
3076 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3077
3078 OverloadCandidateSet::iterator Best;
3079 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3080 case OR_Success:
3081 // Record the standard conversion we used and the conversion function.
3082 if (CXXConstructorDecl *Constructor
3083 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3084 S.MarkFunctionReferenced(From->getLocStart(), Constructor);
3085
3086 // C++ [over.ics.user]p1:
3087 // If the user-defined conversion is specified by a
3088 // constructor (12.3.1), the initial standard conversion
3089 // sequence converts the source type to the type required by
3090 // the argument of the constructor.
3091 //
3092 QualType ThisType = Constructor->getThisType(S.Context);
3093 if (isa<InitListExpr>(From)) {
3094 // Initializer lists don't have conversions as such.
3095 User.Before.setAsIdentityConversion();
3096 } else {
3097 if (Best->Conversions[0].isEllipsis())
3098 User.EllipsisConversion = true;
3099 else {
3100 User.Before = Best->Conversions[0].Standard;
3101 User.EllipsisConversion = false;
3102 }
3103 }
3104 User.HadMultipleCandidates = HadMultipleCandidates;
3105 User.ConversionFunction = Constructor;
3106 User.FoundConversionFunction = Best->FoundDecl;
3107 User.After.setAsIdentityConversion();
3108 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3109 User.After.setAllToTypes(ToType);
3110 return OR_Success;
3111 }
3112 if (CXXConversionDecl *Conversion
3113 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3114 S.MarkFunctionReferenced(From->getLocStart(), Conversion);
3115
3116 // C++ [over.ics.user]p1:
3117 //
3118 // [...] If the user-defined conversion is specified by a
3119 // conversion function (12.3.2), the initial standard
3120 // conversion sequence converts the source type to the
3121 // implicit object parameter of the conversion function.
3122 User.Before = Best->Conversions[0].Standard;
3123 User.HadMultipleCandidates = HadMultipleCandidates;
3124 User.ConversionFunction = Conversion;
3125 User.FoundConversionFunction = Best->FoundDecl;
3126 User.EllipsisConversion = false;
3127
3128 // C++ [over.ics.user]p2:
3129 // The second standard conversion sequence converts the
3130 // result of the user-defined conversion to the target type
3131 // for the sequence. Since an implicit conversion sequence
3132 // is an initialization, the special rules for
3133 // initialization by user-defined conversion apply when
3134 // selecting the best user-defined conversion for a
3135 // user-defined conversion sequence (see 13.3.3 and
3136 // 13.3.3.1).
3137 User.After = Best->FinalConversion;
3138 return OR_Success;
3139 }
3140 llvm_unreachable("Not a constructor or conversion function?");
3141
3142 case OR_No_Viable_Function:
3143 return OR_No_Viable_Function;
3144 case OR_Deleted:
3145 // No conversion here! We're done.
3146 return OR_Deleted;
3147
3148 case OR_Ambiguous:
3149 return OR_Ambiguous;
3150 }
3151
3152 llvm_unreachable("Invalid OverloadResult!");
3153 }
3154
3155 bool
DiagnoseMultipleUserDefinedConversion(Expr * From,QualType ToType)3156 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3157 ImplicitConversionSequence ICS;
3158 OverloadCandidateSet CandidateSet(From->getExprLoc());
3159 OverloadingResult OvResult =
3160 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3161 CandidateSet, false);
3162 if (OvResult == OR_Ambiguous)
3163 Diag(From->getLocStart(),
3164 diag::err_typecheck_ambiguous_condition)
3165 << From->getType() << ToType << From->getSourceRange();
3166 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
3167 Diag(From->getLocStart(),
3168 diag::err_typecheck_nonviable_condition)
3169 << From->getType() << ToType << From->getSourceRange();
3170 else
3171 return false;
3172 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3173 return true;
3174 }
3175
3176 /// \brief Compare the user-defined conversion functions or constructors
3177 /// of two user-defined conversion sequences to determine whether any ordering
3178 /// is possible.
3179 static ImplicitConversionSequence::CompareKind
compareConversionFunctions(Sema & S,FunctionDecl * Function1,FunctionDecl * Function2)3180 compareConversionFunctions(Sema &S,
3181 FunctionDecl *Function1,
3182 FunctionDecl *Function2) {
3183 if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus0x)
3184 return ImplicitConversionSequence::Indistinguishable;
3185
3186 // Objective-C++:
3187 // If both conversion functions are implicitly-declared conversions from
3188 // a lambda closure type to a function pointer and a block pointer,
3189 // respectively, always prefer the conversion to a function pointer,
3190 // because the function pointer is more lightweight and is more likely
3191 // to keep code working.
3192 CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
3193 if (!Conv1)
3194 return ImplicitConversionSequence::Indistinguishable;
3195
3196 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3197 if (!Conv2)
3198 return ImplicitConversionSequence::Indistinguishable;
3199
3200 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3201 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3202 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3203 if (Block1 != Block2)
3204 return Block1? ImplicitConversionSequence::Worse
3205 : ImplicitConversionSequence::Better;
3206 }
3207
3208 return ImplicitConversionSequence::Indistinguishable;
3209 }
3210
3211 /// CompareImplicitConversionSequences - Compare two implicit
3212 /// conversion sequences to determine whether one is better than the
3213 /// other or if they are indistinguishable (C++ 13.3.3.2).
3214 static ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(Sema & S,const ImplicitConversionSequence & ICS1,const ImplicitConversionSequence & ICS2)3215 CompareImplicitConversionSequences(Sema &S,
3216 const ImplicitConversionSequence& ICS1,
3217 const ImplicitConversionSequence& ICS2)
3218 {
3219 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3220 // conversion sequences (as defined in 13.3.3.1)
3221 // -- a standard conversion sequence (13.3.3.1.1) is a better
3222 // conversion sequence than a user-defined conversion sequence or
3223 // an ellipsis conversion sequence, and
3224 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3225 // conversion sequence than an ellipsis conversion sequence
3226 // (13.3.3.1.3).
3227 //
3228 // C++0x [over.best.ics]p10:
3229 // For the purpose of ranking implicit conversion sequences as
3230 // described in 13.3.3.2, the ambiguous conversion sequence is
3231 // treated as a user-defined sequence that is indistinguishable
3232 // from any other user-defined conversion sequence.
3233 if (ICS1.getKindRank() < ICS2.getKindRank())
3234 return ImplicitConversionSequence::Better;
3235 if (ICS2.getKindRank() < ICS1.getKindRank())
3236 return ImplicitConversionSequence::Worse;
3237
3238 // The following checks require both conversion sequences to be of
3239 // the same kind.
3240 if (ICS1.getKind() != ICS2.getKind())
3241 return ImplicitConversionSequence::Indistinguishable;
3242
3243 ImplicitConversionSequence::CompareKind Result =
3244 ImplicitConversionSequence::Indistinguishable;
3245
3246 // Two implicit conversion sequences of the same form are
3247 // indistinguishable conversion sequences unless one of the
3248 // following rules apply: (C++ 13.3.3.2p3):
3249 if (ICS1.isStandard())
3250 Result = CompareStandardConversionSequences(S,
3251 ICS1.Standard, ICS2.Standard);
3252 else if (ICS1.isUserDefined()) {
3253 // User-defined conversion sequence U1 is a better conversion
3254 // sequence than another user-defined conversion sequence U2 if
3255 // they contain the same user-defined conversion function or
3256 // constructor and if the second standard conversion sequence of
3257 // U1 is better than the second standard conversion sequence of
3258 // U2 (C++ 13.3.3.2p3).
3259 if (ICS1.UserDefined.ConversionFunction ==
3260 ICS2.UserDefined.ConversionFunction)
3261 Result = CompareStandardConversionSequences(S,
3262 ICS1.UserDefined.After,
3263 ICS2.UserDefined.After);
3264 else
3265 Result = compareConversionFunctions(S,
3266 ICS1.UserDefined.ConversionFunction,
3267 ICS2.UserDefined.ConversionFunction);
3268 }
3269
3270 // List-initialization sequence L1 is a better conversion sequence than
3271 // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3272 // for some X and L2 does not.
3273 if (Result == ImplicitConversionSequence::Indistinguishable &&
3274 !ICS1.isBad() &&
3275 ICS1.isListInitializationSequence() &&
3276 ICS2.isListInitializationSequence()) {
3277 if (ICS1.isStdInitializerListElement() &&
3278 !ICS2.isStdInitializerListElement())
3279 return ImplicitConversionSequence::Better;
3280 if (!ICS1.isStdInitializerListElement() &&
3281 ICS2.isStdInitializerListElement())
3282 return ImplicitConversionSequence::Worse;
3283 }
3284
3285 return Result;
3286 }
3287
hasSimilarType(ASTContext & Context,QualType T1,QualType T2)3288 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3289 while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3290 Qualifiers Quals;
3291 T1 = Context.getUnqualifiedArrayType(T1, Quals);
3292 T2 = Context.getUnqualifiedArrayType(T2, Quals);
3293 }
3294
3295 return Context.hasSameUnqualifiedType(T1, T2);
3296 }
3297
3298 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3299 // determine if one is a proper subset of the other.
3300 static ImplicitConversionSequence::CompareKind
compareStandardConversionSubsets(ASTContext & Context,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3301 compareStandardConversionSubsets(ASTContext &Context,
3302 const StandardConversionSequence& SCS1,
3303 const StandardConversionSequence& SCS2) {
3304 ImplicitConversionSequence::CompareKind Result
3305 = ImplicitConversionSequence::Indistinguishable;
3306
3307 // the identity conversion sequence is considered to be a subsequence of
3308 // any non-identity conversion sequence
3309 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3310 return ImplicitConversionSequence::Better;
3311 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3312 return ImplicitConversionSequence::Worse;
3313
3314 if (SCS1.Second != SCS2.Second) {
3315 if (SCS1.Second == ICK_Identity)
3316 Result = ImplicitConversionSequence::Better;
3317 else if (SCS2.Second == ICK_Identity)
3318 Result = ImplicitConversionSequence::Worse;
3319 else
3320 return ImplicitConversionSequence::Indistinguishable;
3321 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3322 return ImplicitConversionSequence::Indistinguishable;
3323
3324 if (SCS1.Third == SCS2.Third) {
3325 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3326 : ImplicitConversionSequence::Indistinguishable;
3327 }
3328
3329 if (SCS1.Third == ICK_Identity)
3330 return Result == ImplicitConversionSequence::Worse
3331 ? ImplicitConversionSequence::Indistinguishable
3332 : ImplicitConversionSequence::Better;
3333
3334 if (SCS2.Third == ICK_Identity)
3335 return Result == ImplicitConversionSequence::Better
3336 ? ImplicitConversionSequence::Indistinguishable
3337 : ImplicitConversionSequence::Worse;
3338
3339 return ImplicitConversionSequence::Indistinguishable;
3340 }
3341
3342 /// \brief Determine whether one of the given reference bindings is better
3343 /// than the other based on what kind of bindings they are.
isBetterReferenceBindingKind(const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3344 static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3345 const StandardConversionSequence &SCS2) {
3346 // C++0x [over.ics.rank]p3b4:
3347 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3348 // implicit object parameter of a non-static member function declared
3349 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3350 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3351 // lvalue reference to a function lvalue and S2 binds an rvalue
3352 // reference*.
3353 //
3354 // FIXME: Rvalue references. We're going rogue with the above edits,
3355 // because the semantics in the current C++0x working paper (N3225 at the
3356 // time of this writing) break the standard definition of std::forward
3357 // and std::reference_wrapper when dealing with references to functions.
3358 // Proposed wording changes submitted to CWG for consideration.
3359 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3360 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3361 return false;
3362
3363 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3364 SCS2.IsLvalueReference) ||
3365 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3366 !SCS2.IsLvalueReference);
3367 }
3368
3369 /// CompareStandardConversionSequences - Compare two standard
3370 /// conversion sequences to determine whether one is better than the
3371 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3372 static ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3373 CompareStandardConversionSequences(Sema &S,
3374 const StandardConversionSequence& SCS1,
3375 const StandardConversionSequence& SCS2)
3376 {
3377 // Standard conversion sequence S1 is a better conversion sequence
3378 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3379
3380 // -- S1 is a proper subsequence of S2 (comparing the conversion
3381 // sequences in the canonical form defined by 13.3.3.1.1,
3382 // excluding any Lvalue Transformation; the identity conversion
3383 // sequence is considered to be a subsequence of any
3384 // non-identity conversion sequence) or, if not that,
3385 if (ImplicitConversionSequence::CompareKind CK
3386 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3387 return CK;
3388
3389 // -- the rank of S1 is better than the rank of S2 (by the rules
3390 // defined below), or, if not that,
3391 ImplicitConversionRank Rank1 = SCS1.getRank();
3392 ImplicitConversionRank Rank2 = SCS2.getRank();
3393 if (Rank1 < Rank2)
3394 return ImplicitConversionSequence::Better;
3395 else if (Rank2 < Rank1)
3396 return ImplicitConversionSequence::Worse;
3397
3398 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3399 // are indistinguishable unless one of the following rules
3400 // applies:
3401
3402 // A conversion that is not a conversion of a pointer, or
3403 // pointer to member, to bool is better than another conversion
3404 // that is such a conversion.
3405 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3406 return SCS2.isPointerConversionToBool()
3407 ? ImplicitConversionSequence::Better
3408 : ImplicitConversionSequence::Worse;
3409
3410 // C++ [over.ics.rank]p4b2:
3411 //
3412 // If class B is derived directly or indirectly from class A,
3413 // conversion of B* to A* is better than conversion of B* to
3414 // void*, and conversion of A* to void* is better than conversion
3415 // of B* to void*.
3416 bool SCS1ConvertsToVoid
3417 = SCS1.isPointerConversionToVoidPointer(S.Context);
3418 bool SCS2ConvertsToVoid
3419 = SCS2.isPointerConversionToVoidPointer(S.Context);
3420 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3421 // Exactly one of the conversion sequences is a conversion to
3422 // a void pointer; it's the worse conversion.
3423 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3424 : ImplicitConversionSequence::Worse;
3425 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3426 // Neither conversion sequence converts to a void pointer; compare
3427 // their derived-to-base conversions.
3428 if (ImplicitConversionSequence::CompareKind DerivedCK
3429 = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3430 return DerivedCK;
3431 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3432 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3433 // Both conversion sequences are conversions to void
3434 // pointers. Compare the source types to determine if there's an
3435 // inheritance relationship in their sources.
3436 QualType FromType1 = SCS1.getFromType();
3437 QualType FromType2 = SCS2.getFromType();
3438
3439 // Adjust the types we're converting from via the array-to-pointer
3440 // conversion, if we need to.
3441 if (SCS1.First == ICK_Array_To_Pointer)
3442 FromType1 = S.Context.getArrayDecayedType(FromType1);
3443 if (SCS2.First == ICK_Array_To_Pointer)
3444 FromType2 = S.Context.getArrayDecayedType(FromType2);
3445
3446 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3447 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3448
3449 if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3450 return ImplicitConversionSequence::Better;
3451 else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3452 return ImplicitConversionSequence::Worse;
3453
3454 // Objective-C++: If one interface is more specific than the
3455 // other, it is the better one.
3456 const ObjCObjectPointerType* FromObjCPtr1
3457 = FromType1->getAs<ObjCObjectPointerType>();
3458 const ObjCObjectPointerType* FromObjCPtr2
3459 = FromType2->getAs<ObjCObjectPointerType>();
3460 if (FromObjCPtr1 && FromObjCPtr2) {
3461 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3462 FromObjCPtr2);
3463 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3464 FromObjCPtr1);
3465 if (AssignLeft != AssignRight) {
3466 return AssignLeft? ImplicitConversionSequence::Better
3467 : ImplicitConversionSequence::Worse;
3468 }
3469 }
3470 }
3471
3472 // Compare based on qualification conversions (C++ 13.3.3.2p3,
3473 // bullet 3).
3474 if (ImplicitConversionSequence::CompareKind QualCK
3475 = CompareQualificationConversions(S, SCS1, SCS2))
3476 return QualCK;
3477
3478 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3479 // Check for a better reference binding based on the kind of bindings.
3480 if (isBetterReferenceBindingKind(SCS1, SCS2))
3481 return ImplicitConversionSequence::Better;
3482 else if (isBetterReferenceBindingKind(SCS2, SCS1))
3483 return ImplicitConversionSequence::Worse;
3484
3485 // C++ [over.ics.rank]p3b4:
3486 // -- S1 and S2 are reference bindings (8.5.3), and the types to
3487 // which the references refer are the same type except for
3488 // top-level cv-qualifiers, and the type to which the reference
3489 // initialized by S2 refers is more cv-qualified than the type
3490 // to which the reference initialized by S1 refers.
3491 QualType T1 = SCS1.getToType(2);
3492 QualType T2 = SCS2.getToType(2);
3493 T1 = S.Context.getCanonicalType(T1);
3494 T2 = S.Context.getCanonicalType(T2);
3495 Qualifiers T1Quals, T2Quals;
3496 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3497 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3498 if (UnqualT1 == UnqualT2) {
3499 // Objective-C++ ARC: If the references refer to objects with different
3500 // lifetimes, prefer bindings that don't change lifetime.
3501 if (SCS1.ObjCLifetimeConversionBinding !=
3502 SCS2.ObjCLifetimeConversionBinding) {
3503 return SCS1.ObjCLifetimeConversionBinding
3504 ? ImplicitConversionSequence::Worse
3505 : ImplicitConversionSequence::Better;
3506 }
3507
3508 // If the type is an array type, promote the element qualifiers to the
3509 // type for comparison.
3510 if (isa<ArrayType>(T1) && T1Quals)
3511 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3512 if (isa<ArrayType>(T2) && T2Quals)
3513 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3514 if (T2.isMoreQualifiedThan(T1))
3515 return ImplicitConversionSequence::Better;
3516 else if (T1.isMoreQualifiedThan(T2))
3517 return ImplicitConversionSequence::Worse;
3518 }
3519 }
3520
3521 // In Microsoft mode, prefer an integral conversion to a
3522 // floating-to-integral conversion if the integral conversion
3523 // is between types of the same size.
3524 // For example:
3525 // void f(float);
3526 // void f(int);
3527 // int main {
3528 // long a;
3529 // f(a);
3530 // }
3531 // Here, MSVC will call f(int) instead of generating a compile error
3532 // as clang will do in standard mode.
3533 if (S.getLangOpts().MicrosoftMode &&
3534 SCS1.Second == ICK_Integral_Conversion &&
3535 SCS2.Second == ICK_Floating_Integral &&
3536 S.Context.getTypeSize(SCS1.getFromType()) ==
3537 S.Context.getTypeSize(SCS1.getToType(2)))
3538 return ImplicitConversionSequence::Better;
3539
3540 return ImplicitConversionSequence::Indistinguishable;
3541 }
3542
3543 /// CompareQualificationConversions - Compares two standard conversion
3544 /// sequences to determine whether they can be ranked based on their
3545 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3546 ImplicitConversionSequence::CompareKind
CompareQualificationConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3547 CompareQualificationConversions(Sema &S,
3548 const StandardConversionSequence& SCS1,
3549 const StandardConversionSequence& SCS2) {
3550 // C++ 13.3.3.2p3:
3551 // -- S1 and S2 differ only in their qualification conversion and
3552 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
3553 // cv-qualification signature of type T1 is a proper subset of
3554 // the cv-qualification signature of type T2, and S1 is not the
3555 // deprecated string literal array-to-pointer conversion (4.2).
3556 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3557 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3558 return ImplicitConversionSequence::Indistinguishable;
3559
3560 // FIXME: the example in the standard doesn't use a qualification
3561 // conversion (!)
3562 QualType T1 = SCS1.getToType(2);
3563 QualType T2 = SCS2.getToType(2);
3564 T1 = S.Context.getCanonicalType(T1);
3565 T2 = S.Context.getCanonicalType(T2);
3566 Qualifiers T1Quals, T2Quals;
3567 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3568 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3569
3570 // If the types are the same, we won't learn anything by unwrapped
3571 // them.
3572 if (UnqualT1 == UnqualT2)
3573 return ImplicitConversionSequence::Indistinguishable;
3574
3575 // If the type is an array type, promote the element qualifiers to the type
3576 // for comparison.
3577 if (isa<ArrayType>(T1) && T1Quals)
3578 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3579 if (isa<ArrayType>(T2) && T2Quals)
3580 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3581
3582 ImplicitConversionSequence::CompareKind Result
3583 = ImplicitConversionSequence::Indistinguishable;
3584
3585 // Objective-C++ ARC:
3586 // Prefer qualification conversions not involving a change in lifetime
3587 // to qualification conversions that do not change lifetime.
3588 if (SCS1.QualificationIncludesObjCLifetime !=
3589 SCS2.QualificationIncludesObjCLifetime) {
3590 Result = SCS1.QualificationIncludesObjCLifetime
3591 ? ImplicitConversionSequence::Worse
3592 : ImplicitConversionSequence::Better;
3593 }
3594
3595 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3596 // Within each iteration of the loop, we check the qualifiers to
3597 // determine if this still looks like a qualification
3598 // conversion. Then, if all is well, we unwrap one more level of
3599 // pointers or pointers-to-members and do it all again
3600 // until there are no more pointers or pointers-to-members left
3601 // to unwrap. This essentially mimics what
3602 // IsQualificationConversion does, but here we're checking for a
3603 // strict subset of qualifiers.
3604 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3605 // The qualifiers are the same, so this doesn't tell us anything
3606 // about how the sequences rank.
3607 ;
3608 else if (T2.isMoreQualifiedThan(T1)) {
3609 // T1 has fewer qualifiers, so it could be the better sequence.
3610 if (Result == ImplicitConversionSequence::Worse)
3611 // Neither has qualifiers that are a subset of the other's
3612 // qualifiers.
3613 return ImplicitConversionSequence::Indistinguishable;
3614
3615 Result = ImplicitConversionSequence::Better;
3616 } else if (T1.isMoreQualifiedThan(T2)) {
3617 // T2 has fewer qualifiers, so it could be the better sequence.
3618 if (Result == ImplicitConversionSequence::Better)
3619 // Neither has qualifiers that are a subset of the other's
3620 // qualifiers.
3621 return ImplicitConversionSequence::Indistinguishable;
3622
3623 Result = ImplicitConversionSequence::Worse;
3624 } else {
3625 // Qualifiers are disjoint.
3626 return ImplicitConversionSequence::Indistinguishable;
3627 }
3628
3629 // If the types after this point are equivalent, we're done.
3630 if (S.Context.hasSameUnqualifiedType(T1, T2))
3631 break;
3632 }
3633
3634 // Check that the winning standard conversion sequence isn't using
3635 // the deprecated string literal array to pointer conversion.
3636 switch (Result) {
3637 case ImplicitConversionSequence::Better:
3638 if (SCS1.DeprecatedStringLiteralToCharPtr)
3639 Result = ImplicitConversionSequence::Indistinguishable;
3640 break;
3641
3642 case ImplicitConversionSequence::Indistinguishable:
3643 break;
3644
3645 case ImplicitConversionSequence::Worse:
3646 if (SCS2.DeprecatedStringLiteralToCharPtr)
3647 Result = ImplicitConversionSequence::Indistinguishable;
3648 break;
3649 }
3650
3651 return Result;
3652 }
3653
3654 /// CompareDerivedToBaseConversions - Compares two standard conversion
3655 /// sequences to determine whether they can be ranked based on their
3656 /// various kinds of derived-to-base conversions (C++
3657 /// [over.ics.rank]p4b3). As part of these checks, we also look at
3658 /// conversions between Objective-C interface types.
3659 ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3660 CompareDerivedToBaseConversions(Sema &S,
3661 const StandardConversionSequence& SCS1,
3662 const StandardConversionSequence& SCS2) {
3663 QualType FromType1 = SCS1.getFromType();
3664 QualType ToType1 = SCS1.getToType(1);
3665 QualType FromType2 = SCS2.getFromType();
3666 QualType ToType2 = SCS2.getToType(1);
3667
3668 // Adjust the types we're converting from via the array-to-pointer
3669 // conversion, if we need to.
3670 if (SCS1.First == ICK_Array_To_Pointer)
3671 FromType1 = S.Context.getArrayDecayedType(FromType1);
3672 if (SCS2.First == ICK_Array_To_Pointer)
3673 FromType2 = S.Context.getArrayDecayedType(FromType2);
3674
3675 // Canonicalize all of the types.
3676 FromType1 = S.Context.getCanonicalType(FromType1);
3677 ToType1 = S.Context.getCanonicalType(ToType1);
3678 FromType2 = S.Context.getCanonicalType(FromType2);
3679 ToType2 = S.Context.getCanonicalType(ToType2);
3680
3681 // C++ [over.ics.rank]p4b3:
3682 //
3683 // If class B is derived directly or indirectly from class A and
3684 // class C is derived directly or indirectly from B,
3685 //
3686 // Compare based on pointer conversions.
3687 if (SCS1.Second == ICK_Pointer_Conversion &&
3688 SCS2.Second == ICK_Pointer_Conversion &&
3689 /*FIXME: Remove if Objective-C id conversions get their own rank*/
3690 FromType1->isPointerType() && FromType2->isPointerType() &&
3691 ToType1->isPointerType() && ToType2->isPointerType()) {
3692 QualType FromPointee1
3693 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3694 QualType ToPointee1
3695 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3696 QualType FromPointee2
3697 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3698 QualType ToPointee2
3699 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3700
3701 // -- conversion of C* to B* is better than conversion of C* to A*,
3702 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3703 if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3704 return ImplicitConversionSequence::Better;
3705 else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3706 return ImplicitConversionSequence::Worse;
3707 }
3708
3709 // -- conversion of B* to A* is better than conversion of C* to A*,
3710 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3711 if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3712 return ImplicitConversionSequence::Better;
3713 else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3714 return ImplicitConversionSequence::Worse;
3715 }
3716 } else if (SCS1.Second == ICK_Pointer_Conversion &&
3717 SCS2.Second == ICK_Pointer_Conversion) {
3718 const ObjCObjectPointerType *FromPtr1
3719 = FromType1->getAs<ObjCObjectPointerType>();
3720 const ObjCObjectPointerType *FromPtr2
3721 = FromType2->getAs<ObjCObjectPointerType>();
3722 const ObjCObjectPointerType *ToPtr1
3723 = ToType1->getAs<ObjCObjectPointerType>();
3724 const ObjCObjectPointerType *ToPtr2
3725 = ToType2->getAs<ObjCObjectPointerType>();
3726
3727 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3728 // Apply the same conversion ranking rules for Objective-C pointer types
3729 // that we do for C++ pointers to class types. However, we employ the
3730 // Objective-C pseudo-subtyping relationship used for assignment of
3731 // Objective-C pointer types.
3732 bool FromAssignLeft
3733 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3734 bool FromAssignRight
3735 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3736 bool ToAssignLeft
3737 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3738 bool ToAssignRight
3739 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3740
3741 // A conversion to an a non-id object pointer type or qualified 'id'
3742 // type is better than a conversion to 'id'.
3743 if (ToPtr1->isObjCIdType() &&
3744 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3745 return ImplicitConversionSequence::Worse;
3746 if (ToPtr2->isObjCIdType() &&
3747 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3748 return ImplicitConversionSequence::Better;
3749
3750 // A conversion to a non-id object pointer type is better than a
3751 // conversion to a qualified 'id' type
3752 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3753 return ImplicitConversionSequence::Worse;
3754 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3755 return ImplicitConversionSequence::Better;
3756
3757 // A conversion to an a non-Class object pointer type or qualified 'Class'
3758 // type is better than a conversion to 'Class'.
3759 if (ToPtr1->isObjCClassType() &&
3760 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3761 return ImplicitConversionSequence::Worse;
3762 if (ToPtr2->isObjCClassType() &&
3763 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3764 return ImplicitConversionSequence::Better;
3765
3766 // A conversion to a non-Class object pointer type is better than a
3767 // conversion to a qualified 'Class' type.
3768 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3769 return ImplicitConversionSequence::Worse;
3770 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3771 return ImplicitConversionSequence::Better;
3772
3773 // -- "conversion of C* to B* is better than conversion of C* to A*,"
3774 if (S.Context.hasSameType(FromType1, FromType2) &&
3775 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3776 (ToAssignLeft != ToAssignRight))
3777 return ToAssignLeft? ImplicitConversionSequence::Worse
3778 : ImplicitConversionSequence::Better;
3779
3780 // -- "conversion of B* to A* is better than conversion of C* to A*,"
3781 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3782 (FromAssignLeft != FromAssignRight))
3783 return FromAssignLeft? ImplicitConversionSequence::Better
3784 : ImplicitConversionSequence::Worse;
3785 }
3786 }
3787
3788 // Ranking of member-pointer types.
3789 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3790 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3791 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3792 const MemberPointerType * FromMemPointer1 =
3793 FromType1->getAs<MemberPointerType>();
3794 const MemberPointerType * ToMemPointer1 =
3795 ToType1->getAs<MemberPointerType>();
3796 const MemberPointerType * FromMemPointer2 =
3797 FromType2->getAs<MemberPointerType>();
3798 const MemberPointerType * ToMemPointer2 =
3799 ToType2->getAs<MemberPointerType>();
3800 const Type *FromPointeeType1 = FromMemPointer1->getClass();
3801 const Type *ToPointeeType1 = ToMemPointer1->getClass();
3802 const Type *FromPointeeType2 = FromMemPointer2->getClass();
3803 const Type *ToPointeeType2 = ToMemPointer2->getClass();
3804 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3805 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3806 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3807 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3808 // conversion of A::* to B::* is better than conversion of A::* to C::*,
3809 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3810 if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3811 return ImplicitConversionSequence::Worse;
3812 else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3813 return ImplicitConversionSequence::Better;
3814 }
3815 // conversion of B::* to C::* is better than conversion of A::* to C::*
3816 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3817 if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3818 return ImplicitConversionSequence::Better;
3819 else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3820 return ImplicitConversionSequence::Worse;
3821 }
3822 }
3823
3824 if (SCS1.Second == ICK_Derived_To_Base) {
3825 // -- conversion of C to B is better than conversion of C to A,
3826 // -- binding of an expression of type C to a reference of type
3827 // B& is better than binding an expression of type C to a
3828 // reference of type A&,
3829 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3830 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3831 if (S.IsDerivedFrom(ToType1, ToType2))
3832 return ImplicitConversionSequence::Better;
3833 else if (S.IsDerivedFrom(ToType2, ToType1))
3834 return ImplicitConversionSequence::Worse;
3835 }
3836
3837 // -- conversion of B to A is better than conversion of C to A.
3838 // -- binding of an expression of type B to a reference of type
3839 // A& is better than binding an expression of type C to a
3840 // reference of type A&,
3841 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3842 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3843 if (S.IsDerivedFrom(FromType2, FromType1))
3844 return ImplicitConversionSequence::Better;
3845 else if (S.IsDerivedFrom(FromType1, FromType2))
3846 return ImplicitConversionSequence::Worse;
3847 }
3848 }
3849
3850 return ImplicitConversionSequence::Indistinguishable;
3851 }
3852
3853 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
3854 /// determine whether they are reference-related,
3855 /// reference-compatible, reference-compatible with added
3856 /// qualification, or incompatible, for use in C++ initialization by
3857 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3858 /// type, and the first type (T1) is the pointee type of the reference
3859 /// type being initialized.
3860 Sema::ReferenceCompareResult
CompareReferenceRelationship(SourceLocation Loc,QualType OrigT1,QualType OrigT2,bool & DerivedToBase,bool & ObjCConversion,bool & ObjCLifetimeConversion)3861 Sema::CompareReferenceRelationship(SourceLocation Loc,
3862 QualType OrigT1, QualType OrigT2,
3863 bool &DerivedToBase,
3864 bool &ObjCConversion,
3865 bool &ObjCLifetimeConversion) {
3866 assert(!OrigT1->isReferenceType() &&
3867 "T1 must be the pointee type of the reference type");
3868 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3869
3870 QualType T1 = Context.getCanonicalType(OrigT1);
3871 QualType T2 = Context.getCanonicalType(OrigT2);
3872 Qualifiers T1Quals, T2Quals;
3873 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3874 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3875
3876 // C++ [dcl.init.ref]p4:
3877 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3878 // reference-related to "cv2 T2" if T1 is the same type as T2, or
3879 // T1 is a base class of T2.
3880 DerivedToBase = false;
3881 ObjCConversion = false;
3882 ObjCLifetimeConversion = false;
3883 if (UnqualT1 == UnqualT2) {
3884 // Nothing to do.
3885 } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
3886 IsDerivedFrom(UnqualT2, UnqualT1))
3887 DerivedToBase = true;
3888 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3889 UnqualT2->isObjCObjectOrInterfaceType() &&
3890 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3891 ObjCConversion = true;
3892 else
3893 return Ref_Incompatible;
3894
3895 // At this point, we know that T1 and T2 are reference-related (at
3896 // least).
3897
3898 // If the type is an array type, promote the element qualifiers to the type
3899 // for comparison.
3900 if (isa<ArrayType>(T1) && T1Quals)
3901 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3902 if (isa<ArrayType>(T2) && T2Quals)
3903 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3904
3905 // C++ [dcl.init.ref]p4:
3906 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3907 // reference-related to T2 and cv1 is the same cv-qualification
3908 // as, or greater cv-qualification than, cv2. For purposes of
3909 // overload resolution, cases for which cv1 is greater
3910 // cv-qualification than cv2 are identified as
3911 // reference-compatible with added qualification (see 13.3.3.2).
3912 //
3913 // Note that we also require equivalence of Objective-C GC and address-space
3914 // qualifiers when performing these computations, so that e.g., an int in
3915 // address space 1 is not reference-compatible with an int in address
3916 // space 2.
3917 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3918 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3919 T1Quals.removeObjCLifetime();
3920 T2Quals.removeObjCLifetime();
3921 ObjCLifetimeConversion = true;
3922 }
3923
3924 if (T1Quals == T2Quals)
3925 return Ref_Compatible;
3926 else if (T1Quals.compatiblyIncludes(T2Quals))
3927 return Ref_Compatible_With_Added_Qualification;
3928 else
3929 return Ref_Related;
3930 }
3931
3932 /// \brief Look for a user-defined conversion to an value reference-compatible
3933 /// with DeclType. Return true if something definite is found.
3934 static bool
FindConversionForRefInit(Sema & S,ImplicitConversionSequence & ICS,QualType DeclType,SourceLocation DeclLoc,Expr * Init,QualType T2,bool AllowRvalues,bool AllowExplicit)3935 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3936 QualType DeclType, SourceLocation DeclLoc,
3937 Expr *Init, QualType T2, bool AllowRvalues,
3938 bool AllowExplicit) {
3939 assert(T2->isRecordType() && "Can only find conversions of record types.");
3940 CXXRecordDecl *T2RecordDecl
3941 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3942
3943 OverloadCandidateSet CandidateSet(DeclLoc);
3944 const UnresolvedSetImpl *Conversions
3945 = T2RecordDecl->getVisibleConversionFunctions();
3946 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3947 E = Conversions->end(); I != E; ++I) {
3948 NamedDecl *D = *I;
3949 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3950 if (isa<UsingShadowDecl>(D))
3951 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3952
3953 FunctionTemplateDecl *ConvTemplate
3954 = dyn_cast<FunctionTemplateDecl>(D);
3955 CXXConversionDecl *Conv;
3956 if (ConvTemplate)
3957 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3958 else
3959 Conv = cast<CXXConversionDecl>(D);
3960
3961 // If this is an explicit conversion, and we're not allowed to consider
3962 // explicit conversions, skip it.
3963 if (!AllowExplicit && Conv->isExplicit())
3964 continue;
3965
3966 if (AllowRvalues) {
3967 bool DerivedToBase = false;
3968 bool ObjCConversion = false;
3969 bool ObjCLifetimeConversion = false;
3970
3971 // If we are initializing an rvalue reference, don't permit conversion
3972 // functions that return lvalues.
3973 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
3974 const ReferenceType *RefType
3975 = Conv->getConversionType()->getAs<LValueReferenceType>();
3976 if (RefType && !RefType->getPointeeType()->isFunctionType())
3977 continue;
3978 }
3979
3980 if (!ConvTemplate &&
3981 S.CompareReferenceRelationship(
3982 DeclLoc,
3983 Conv->getConversionType().getNonReferenceType()
3984 .getUnqualifiedType(),
3985 DeclType.getNonReferenceType().getUnqualifiedType(),
3986 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3987 Sema::Ref_Incompatible)
3988 continue;
3989 } else {
3990 // If the conversion function doesn't return a reference type,
3991 // it can't be considered for this conversion. An rvalue reference
3992 // is only acceptable if its referencee is a function type.
3993
3994 const ReferenceType *RefType =
3995 Conv->getConversionType()->getAs<ReferenceType>();
3996 if (!RefType ||
3997 (!RefType->isLValueReferenceType() &&
3998 !RefType->getPointeeType()->isFunctionType()))
3999 continue;
4000 }
4001
4002 if (ConvTemplate)
4003 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4004 Init, DeclType, CandidateSet);
4005 else
4006 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4007 DeclType, CandidateSet);
4008 }
4009
4010 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4011
4012 OverloadCandidateSet::iterator Best;
4013 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4014 case OR_Success:
4015 // C++ [over.ics.ref]p1:
4016 //
4017 // [...] If the parameter binds directly to the result of
4018 // applying a conversion function to the argument
4019 // expression, the implicit conversion sequence is a
4020 // user-defined conversion sequence (13.3.3.1.2), with the
4021 // second standard conversion sequence either an identity
4022 // conversion or, if the conversion function returns an
4023 // entity of a type that is a derived class of the parameter
4024 // type, a derived-to-base Conversion.
4025 if (!Best->FinalConversion.DirectBinding)
4026 return false;
4027
4028 if (Best->Function)
4029 S.MarkFunctionReferenced(DeclLoc, Best->Function);
4030 ICS.setUserDefined();
4031 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4032 ICS.UserDefined.After = Best->FinalConversion;
4033 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4034 ICS.UserDefined.ConversionFunction = Best->Function;
4035 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4036 ICS.UserDefined.EllipsisConversion = false;
4037 assert(ICS.UserDefined.After.ReferenceBinding &&
4038 ICS.UserDefined.After.DirectBinding &&
4039 "Expected a direct reference binding!");
4040 return true;
4041
4042 case OR_Ambiguous:
4043 ICS.setAmbiguous();
4044 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4045 Cand != CandidateSet.end(); ++Cand)
4046 if (Cand->Viable)
4047 ICS.Ambiguous.addConversion(Cand->Function);
4048 return true;
4049
4050 case OR_No_Viable_Function:
4051 case OR_Deleted:
4052 // There was no suitable conversion, or we found a deleted
4053 // conversion; continue with other checks.
4054 return false;
4055 }
4056
4057 llvm_unreachable("Invalid OverloadResult!");
4058 }
4059
4060 /// \brief Compute an implicit conversion sequence for reference
4061 /// initialization.
4062 static ImplicitConversionSequence
TryReferenceInit(Sema & S,Expr * Init,QualType DeclType,SourceLocation DeclLoc,bool SuppressUserConversions,bool AllowExplicit)4063 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4064 SourceLocation DeclLoc,
4065 bool SuppressUserConversions,
4066 bool AllowExplicit) {
4067 assert(DeclType->isReferenceType() && "Reference init needs a reference");
4068
4069 // Most paths end in a failed conversion.
4070 ImplicitConversionSequence ICS;
4071 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4072
4073 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4074 QualType T2 = Init->getType();
4075
4076 // If the initializer is the address of an overloaded function, try
4077 // to resolve the overloaded function. If all goes well, T2 is the
4078 // type of the resulting function.
4079 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4080 DeclAccessPair Found;
4081 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4082 false, Found))
4083 T2 = Fn->getType();
4084 }
4085
4086 // Compute some basic properties of the types and the initializer.
4087 bool isRValRef = DeclType->isRValueReferenceType();
4088 bool DerivedToBase = false;
4089 bool ObjCConversion = false;
4090 bool ObjCLifetimeConversion = false;
4091 Expr::Classification InitCategory = Init->Classify(S.Context);
4092 Sema::ReferenceCompareResult RefRelationship
4093 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4094 ObjCConversion, ObjCLifetimeConversion);
4095
4096
4097 // C++0x [dcl.init.ref]p5:
4098 // A reference to type "cv1 T1" is initialized by an expression
4099 // of type "cv2 T2" as follows:
4100
4101 // -- If reference is an lvalue reference and the initializer expression
4102 if (!isRValRef) {
4103 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4104 // reference-compatible with "cv2 T2," or
4105 //
4106 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4107 if (InitCategory.isLValue() &&
4108 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4109 // C++ [over.ics.ref]p1:
4110 // When a parameter of reference type binds directly (8.5.3)
4111 // to an argument expression, the implicit conversion sequence
4112 // is the identity conversion, unless the argument expression
4113 // has a type that is a derived class of the parameter type,
4114 // in which case the implicit conversion sequence is a
4115 // derived-to-base Conversion (13.3.3.1).
4116 ICS.setStandard();
4117 ICS.Standard.First = ICK_Identity;
4118 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4119 : ObjCConversion? ICK_Compatible_Conversion
4120 : ICK_Identity;
4121 ICS.Standard.Third = ICK_Identity;
4122 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4123 ICS.Standard.setToType(0, T2);
4124 ICS.Standard.setToType(1, T1);
4125 ICS.Standard.setToType(2, T1);
4126 ICS.Standard.ReferenceBinding = true;
4127 ICS.Standard.DirectBinding = true;
4128 ICS.Standard.IsLvalueReference = !isRValRef;
4129 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4130 ICS.Standard.BindsToRvalue = false;
4131 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4132 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4133 ICS.Standard.CopyConstructor = 0;
4134
4135 // Nothing more to do: the inaccessibility/ambiguity check for
4136 // derived-to-base conversions is suppressed when we're
4137 // computing the implicit conversion sequence (C++
4138 // [over.best.ics]p2).
4139 return ICS;
4140 }
4141
4142 // -- has a class type (i.e., T2 is a class type), where T1 is
4143 // not reference-related to T2, and can be implicitly
4144 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4145 // is reference-compatible with "cv3 T3" 92) (this
4146 // conversion is selected by enumerating the applicable
4147 // conversion functions (13.3.1.6) and choosing the best
4148 // one through overload resolution (13.3)),
4149 if (!SuppressUserConversions && T2->isRecordType() &&
4150 !S.RequireCompleteType(DeclLoc, T2, 0) &&
4151 RefRelationship == Sema::Ref_Incompatible) {
4152 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4153 Init, T2, /*AllowRvalues=*/false,
4154 AllowExplicit))
4155 return ICS;
4156 }
4157 }
4158
4159 // -- Otherwise, the reference shall be an lvalue reference to a
4160 // non-volatile const type (i.e., cv1 shall be const), or the reference
4161 // shall be an rvalue reference.
4162 //
4163 // We actually handle one oddity of C++ [over.ics.ref] at this
4164 // point, which is that, due to p2 (which short-circuits reference
4165 // binding by only attempting a simple conversion for non-direct
4166 // bindings) and p3's strange wording, we allow a const volatile
4167 // reference to bind to an rvalue. Hence the check for the presence
4168 // of "const" rather than checking for "const" being the only
4169 // qualifier.
4170 // This is also the point where rvalue references and lvalue inits no longer
4171 // go together.
4172 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4173 return ICS;
4174
4175 // -- If the initializer expression
4176 //
4177 // -- is an xvalue, class prvalue, array prvalue or function
4178 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4179 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4180 (InitCategory.isXValue() ||
4181 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4182 (InitCategory.isLValue() && T2->isFunctionType()))) {
4183 ICS.setStandard();
4184 ICS.Standard.First = ICK_Identity;
4185 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4186 : ObjCConversion? ICK_Compatible_Conversion
4187 : ICK_Identity;
4188 ICS.Standard.Third = ICK_Identity;
4189 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4190 ICS.Standard.setToType(0, T2);
4191 ICS.Standard.setToType(1, T1);
4192 ICS.Standard.setToType(2, T1);
4193 ICS.Standard.ReferenceBinding = true;
4194 // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4195 // binding unless we're binding to a class prvalue.
4196 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4197 // allow the use of rvalue references in C++98/03 for the benefit of
4198 // standard library implementors; therefore, we need the xvalue check here.
4199 ICS.Standard.DirectBinding =
4200 S.getLangOpts().CPlusPlus0x ||
4201 (InitCategory.isPRValue() && !T2->isRecordType());
4202 ICS.Standard.IsLvalueReference = !isRValRef;
4203 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4204 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4205 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4206 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4207 ICS.Standard.CopyConstructor = 0;
4208 return ICS;
4209 }
4210
4211 // -- has a class type (i.e., T2 is a class type), where T1 is not
4212 // reference-related to T2, and can be implicitly converted to
4213 // an xvalue, class prvalue, or function lvalue of type
4214 // "cv3 T3", where "cv1 T1" is reference-compatible with
4215 // "cv3 T3",
4216 //
4217 // then the reference is bound to the value of the initializer
4218 // expression in the first case and to the result of the conversion
4219 // in the second case (or, in either case, to an appropriate base
4220 // class subobject).
4221 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4222 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4223 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4224 Init, T2, /*AllowRvalues=*/true,
4225 AllowExplicit)) {
4226 // In the second case, if the reference is an rvalue reference
4227 // and the second standard conversion sequence of the
4228 // user-defined conversion sequence includes an lvalue-to-rvalue
4229 // conversion, the program is ill-formed.
4230 if (ICS.isUserDefined() && isRValRef &&
4231 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4232 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4233
4234 return ICS;
4235 }
4236
4237 // -- Otherwise, a temporary of type "cv1 T1" is created and
4238 // initialized from the initializer expression using the
4239 // rules for a non-reference copy initialization (8.5). The
4240 // reference is then bound to the temporary. If T1 is
4241 // reference-related to T2, cv1 must be the same
4242 // cv-qualification as, or greater cv-qualification than,
4243 // cv2; otherwise, the program is ill-formed.
4244 if (RefRelationship == Sema::Ref_Related) {
4245 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4246 // we would be reference-compatible or reference-compatible with
4247 // added qualification. But that wasn't the case, so the reference
4248 // initialization fails.
4249 //
4250 // Note that we only want to check address spaces and cvr-qualifiers here.
4251 // ObjC GC and lifetime qualifiers aren't important.
4252 Qualifiers T1Quals = T1.getQualifiers();
4253 Qualifiers T2Quals = T2.getQualifiers();
4254 T1Quals.removeObjCGCAttr();
4255 T1Quals.removeObjCLifetime();
4256 T2Quals.removeObjCGCAttr();
4257 T2Quals.removeObjCLifetime();
4258 if (!T1Quals.compatiblyIncludes(T2Quals))
4259 return ICS;
4260 }
4261
4262 // If at least one of the types is a class type, the types are not
4263 // related, and we aren't allowed any user conversions, the
4264 // reference binding fails. This case is important for breaking
4265 // recursion, since TryImplicitConversion below will attempt to
4266 // create a temporary through the use of a copy constructor.
4267 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4268 (T1->isRecordType() || T2->isRecordType()))
4269 return ICS;
4270
4271 // If T1 is reference-related to T2 and the reference is an rvalue
4272 // reference, the initializer expression shall not be an lvalue.
4273 if (RefRelationship >= Sema::Ref_Related &&
4274 isRValRef && Init->Classify(S.Context).isLValue())
4275 return ICS;
4276
4277 // C++ [over.ics.ref]p2:
4278 // When a parameter of reference type is not bound directly to
4279 // an argument expression, the conversion sequence is the one
4280 // required to convert the argument expression to the
4281 // underlying type of the reference according to
4282 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4283 // to copy-initializing a temporary of the underlying type with
4284 // the argument expression. Any difference in top-level
4285 // cv-qualification is subsumed by the initialization itself
4286 // and does not constitute a conversion.
4287 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4288 /*AllowExplicit=*/false,
4289 /*InOverloadResolution=*/false,
4290 /*CStyle=*/false,
4291 /*AllowObjCWritebackConversion=*/false);
4292
4293 // Of course, that's still a reference binding.
4294 if (ICS.isStandard()) {
4295 ICS.Standard.ReferenceBinding = true;
4296 ICS.Standard.IsLvalueReference = !isRValRef;
4297 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4298 ICS.Standard.BindsToRvalue = true;
4299 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4300 ICS.Standard.ObjCLifetimeConversionBinding = false;
4301 } else if (ICS.isUserDefined()) {
4302 // Don't allow rvalue references to bind to lvalues.
4303 if (DeclType->isRValueReferenceType()) {
4304 if (const ReferenceType *RefType
4305 = ICS.UserDefined.ConversionFunction->getResultType()
4306 ->getAs<LValueReferenceType>()) {
4307 if (!RefType->getPointeeType()->isFunctionType()) {
4308 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4309 DeclType);
4310 return ICS;
4311 }
4312 }
4313 }
4314
4315 ICS.UserDefined.After.ReferenceBinding = true;
4316 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4317 ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4318 ICS.UserDefined.After.BindsToRvalue = true;
4319 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4320 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4321 }
4322
4323 return ICS;
4324 }
4325
4326 static ImplicitConversionSequence
4327 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4328 bool SuppressUserConversions,
4329 bool InOverloadResolution,
4330 bool AllowObjCWritebackConversion,
4331 bool AllowExplicit = false);
4332
4333 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4334 /// initializer list From.
4335 static ImplicitConversionSequence
TryListConversion(Sema & S,InitListExpr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion)4336 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4337 bool SuppressUserConversions,
4338 bool InOverloadResolution,
4339 bool AllowObjCWritebackConversion) {
4340 // C++11 [over.ics.list]p1:
4341 // When an argument is an initializer list, it is not an expression and
4342 // special rules apply for converting it to a parameter type.
4343
4344 ImplicitConversionSequence Result;
4345 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4346 Result.setListInitializationSequence();
4347
4348 // We need a complete type for what follows. Incomplete types can never be
4349 // initialized from init lists.
4350 if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
4351 return Result;
4352
4353 // C++11 [over.ics.list]p2:
4354 // If the parameter type is std::initializer_list<X> or "array of X" and
4355 // all the elements can be implicitly converted to X, the implicit
4356 // conversion sequence is the worst conversion necessary to convert an
4357 // element of the list to X.
4358 bool toStdInitializerList = false;
4359 QualType X;
4360 if (ToType->isArrayType())
4361 X = S.Context.getBaseElementType(ToType);
4362 else
4363 toStdInitializerList = S.isStdInitializerList(ToType, &X);
4364 if (!X.isNull()) {
4365 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4366 Expr *Init = From->getInit(i);
4367 ImplicitConversionSequence ICS =
4368 TryCopyInitialization(S, Init, X, SuppressUserConversions,
4369 InOverloadResolution,
4370 AllowObjCWritebackConversion);
4371 // If a single element isn't convertible, fail.
4372 if (ICS.isBad()) {
4373 Result = ICS;
4374 break;
4375 }
4376 // Otherwise, look for the worst conversion.
4377 if (Result.isBad() ||
4378 CompareImplicitConversionSequences(S, ICS, Result) ==
4379 ImplicitConversionSequence::Worse)
4380 Result = ICS;
4381 }
4382
4383 // For an empty list, we won't have computed any conversion sequence.
4384 // Introduce the identity conversion sequence.
4385 if (From->getNumInits() == 0) {
4386 Result.setStandard();
4387 Result.Standard.setAsIdentityConversion();
4388 Result.Standard.setFromType(ToType);
4389 Result.Standard.setAllToTypes(ToType);
4390 }
4391
4392 Result.setListInitializationSequence();
4393 Result.setStdInitializerListElement(toStdInitializerList);
4394 return Result;
4395 }
4396
4397 // C++11 [over.ics.list]p3:
4398 // Otherwise, if the parameter is a non-aggregate class X and overload
4399 // resolution chooses a single best constructor [...] the implicit
4400 // conversion sequence is a user-defined conversion sequence. If multiple
4401 // constructors are viable but none is better than the others, the
4402 // implicit conversion sequence is a user-defined conversion sequence.
4403 if (ToType->isRecordType() && !ToType->isAggregateType()) {
4404 // This function can deal with initializer lists.
4405 Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4406 /*AllowExplicit=*/false,
4407 InOverloadResolution, /*CStyle=*/false,
4408 AllowObjCWritebackConversion);
4409 Result.setListInitializationSequence();
4410 return Result;
4411 }
4412
4413 // C++11 [over.ics.list]p4:
4414 // Otherwise, if the parameter has an aggregate type which can be
4415 // initialized from the initializer list [...] the implicit conversion
4416 // sequence is a user-defined conversion sequence.
4417 if (ToType->isAggregateType()) {
4418 // Type is an aggregate, argument is an init list. At this point it comes
4419 // down to checking whether the initialization works.
4420 // FIXME: Find out whether this parameter is consumed or not.
4421 InitializedEntity Entity =
4422 InitializedEntity::InitializeParameter(S.Context, ToType,
4423 /*Consumed=*/false);
4424 if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4425 Result.setUserDefined();
4426 Result.UserDefined.Before.setAsIdentityConversion();
4427 // Initializer lists don't have a type.
4428 Result.UserDefined.Before.setFromType(QualType());
4429 Result.UserDefined.Before.setAllToTypes(QualType());
4430
4431 Result.UserDefined.After.setAsIdentityConversion();
4432 Result.UserDefined.After.setFromType(ToType);
4433 Result.UserDefined.After.setAllToTypes(ToType);
4434 Result.UserDefined.ConversionFunction = 0;
4435 }
4436 return Result;
4437 }
4438
4439 // C++11 [over.ics.list]p5:
4440 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4441 if (ToType->isReferenceType()) {
4442 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4443 // mention initializer lists in any way. So we go by what list-
4444 // initialization would do and try to extrapolate from that.
4445
4446 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4447
4448 // If the initializer list has a single element that is reference-related
4449 // to the parameter type, we initialize the reference from that.
4450 if (From->getNumInits() == 1) {
4451 Expr *Init = From->getInit(0);
4452
4453 QualType T2 = Init->getType();
4454
4455 // If the initializer is the address of an overloaded function, try
4456 // to resolve the overloaded function. If all goes well, T2 is the
4457 // type of the resulting function.
4458 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4459 DeclAccessPair Found;
4460 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4461 Init, ToType, false, Found))
4462 T2 = Fn->getType();
4463 }
4464
4465 // Compute some basic properties of the types and the initializer.
4466 bool dummy1 = false;
4467 bool dummy2 = false;
4468 bool dummy3 = false;
4469 Sema::ReferenceCompareResult RefRelationship
4470 = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4471 dummy2, dummy3);
4472
4473 if (RefRelationship >= Sema::Ref_Related)
4474 return TryReferenceInit(S, Init, ToType,
4475 /*FIXME:*/From->getLocStart(),
4476 SuppressUserConversions,
4477 /*AllowExplicit=*/false);
4478 }
4479
4480 // Otherwise, we bind the reference to a temporary created from the
4481 // initializer list.
4482 Result = TryListConversion(S, From, T1, SuppressUserConversions,
4483 InOverloadResolution,
4484 AllowObjCWritebackConversion);
4485 if (Result.isFailure())
4486 return Result;
4487 assert(!Result.isEllipsis() &&
4488 "Sub-initialization cannot result in ellipsis conversion.");
4489
4490 // Can we even bind to a temporary?
4491 if (ToType->isRValueReferenceType() ||
4492 (T1.isConstQualified() && !T1.isVolatileQualified())) {
4493 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4494 Result.UserDefined.After;
4495 SCS.ReferenceBinding = true;
4496 SCS.IsLvalueReference = ToType->isLValueReferenceType();
4497 SCS.BindsToRvalue = true;
4498 SCS.BindsToFunctionLvalue = false;
4499 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4500 SCS.ObjCLifetimeConversionBinding = false;
4501 } else
4502 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4503 From, ToType);
4504 return Result;
4505 }
4506
4507 // C++11 [over.ics.list]p6:
4508 // Otherwise, if the parameter type is not a class:
4509 if (!ToType->isRecordType()) {
4510 // - if the initializer list has one element, the implicit conversion
4511 // sequence is the one required to convert the element to the
4512 // parameter type.
4513 unsigned NumInits = From->getNumInits();
4514 if (NumInits == 1)
4515 Result = TryCopyInitialization(S, From->getInit(0), ToType,
4516 SuppressUserConversions,
4517 InOverloadResolution,
4518 AllowObjCWritebackConversion);
4519 // - if the initializer list has no elements, the implicit conversion
4520 // sequence is the identity conversion.
4521 else if (NumInits == 0) {
4522 Result.setStandard();
4523 Result.Standard.setAsIdentityConversion();
4524 Result.Standard.setFromType(ToType);
4525 Result.Standard.setAllToTypes(ToType);
4526 }
4527 Result.setListInitializationSequence();
4528 return Result;
4529 }
4530
4531 // C++11 [over.ics.list]p7:
4532 // In all cases other than those enumerated above, no conversion is possible
4533 return Result;
4534 }
4535
4536 /// TryCopyInitialization - Try to copy-initialize a value of type
4537 /// ToType from the expression From. Return the implicit conversion
4538 /// sequence required to pass this argument, which may be a bad
4539 /// conversion sequence (meaning that the argument cannot be passed to
4540 /// a parameter of this type). If @p SuppressUserConversions, then we
4541 /// do not permit any user-defined conversion sequences.
4542 static ImplicitConversionSequence
TryCopyInitialization(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion,bool AllowExplicit)4543 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4544 bool SuppressUserConversions,
4545 bool InOverloadResolution,
4546 bool AllowObjCWritebackConversion,
4547 bool AllowExplicit) {
4548 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4549 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4550 InOverloadResolution,AllowObjCWritebackConversion);
4551
4552 if (ToType->isReferenceType())
4553 return TryReferenceInit(S, From, ToType,
4554 /*FIXME:*/From->getLocStart(),
4555 SuppressUserConversions,
4556 AllowExplicit);
4557
4558 return TryImplicitConversion(S, From, ToType,
4559 SuppressUserConversions,
4560 /*AllowExplicit=*/false,
4561 InOverloadResolution,
4562 /*CStyle=*/false,
4563 AllowObjCWritebackConversion);
4564 }
4565
TryCopyInitialization(const CanQualType FromQTy,const CanQualType ToQTy,Sema & S,SourceLocation Loc,ExprValueKind FromVK)4566 static bool TryCopyInitialization(const CanQualType FromQTy,
4567 const CanQualType ToQTy,
4568 Sema &S,
4569 SourceLocation Loc,
4570 ExprValueKind FromVK) {
4571 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4572 ImplicitConversionSequence ICS =
4573 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4574
4575 return !ICS.isBad();
4576 }
4577
4578 /// TryObjectArgumentInitialization - Try to initialize the object
4579 /// parameter of the given member function (@c Method) from the
4580 /// expression @p From.
4581 static ImplicitConversionSequence
TryObjectArgumentInitialization(Sema & S,QualType OrigFromType,Expr::Classification FromClassification,CXXMethodDecl * Method,CXXRecordDecl * ActingContext)4582 TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
4583 Expr::Classification FromClassification,
4584 CXXMethodDecl *Method,
4585 CXXRecordDecl *ActingContext) {
4586 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4587 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4588 // const volatile object.
4589 unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4590 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4591 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals);
4592
4593 // Set up the conversion sequence as a "bad" conversion, to allow us
4594 // to exit early.
4595 ImplicitConversionSequence ICS;
4596
4597 // We need to have an object of class type.
4598 QualType FromType = OrigFromType;
4599 if (const PointerType *PT = FromType->getAs<PointerType>()) {
4600 FromType = PT->getPointeeType();
4601
4602 // When we had a pointer, it's implicitly dereferenced, so we
4603 // better have an lvalue.
4604 assert(FromClassification.isLValue());
4605 }
4606
4607 assert(FromType->isRecordType());
4608
4609 // C++0x [over.match.funcs]p4:
4610 // For non-static member functions, the type of the implicit object
4611 // parameter is
4612 //
4613 // - "lvalue reference to cv X" for functions declared without a
4614 // ref-qualifier or with the & ref-qualifier
4615 // - "rvalue reference to cv X" for functions declared with the &&
4616 // ref-qualifier
4617 //
4618 // where X is the class of which the function is a member and cv is the
4619 // cv-qualification on the member function declaration.
4620 //
4621 // However, when finding an implicit conversion sequence for the argument, we
4622 // are not allowed to create temporaries or perform user-defined conversions
4623 // (C++ [over.match.funcs]p5). We perform a simplified version of
4624 // reference binding here, that allows class rvalues to bind to
4625 // non-constant references.
4626
4627 // First check the qualifiers.
4628 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4629 if (ImplicitParamType.getCVRQualifiers()
4630 != FromTypeCanon.getLocalCVRQualifiers() &&
4631 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4632 ICS.setBad(BadConversionSequence::bad_qualifiers,
4633 OrigFromType, ImplicitParamType);
4634 return ICS;
4635 }
4636
4637 // Check that we have either the same type or a derived type. It
4638 // affects the conversion rank.
4639 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4640 ImplicitConversionKind SecondKind;
4641 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4642 SecondKind = ICK_Identity;
4643 } else if (S.IsDerivedFrom(FromType, ClassType))
4644 SecondKind = ICK_Derived_To_Base;
4645 else {
4646 ICS.setBad(BadConversionSequence::unrelated_class,
4647 FromType, ImplicitParamType);
4648 return ICS;
4649 }
4650
4651 // Check the ref-qualifier.
4652 switch (Method->getRefQualifier()) {
4653 case RQ_None:
4654 // Do nothing; we don't care about lvalueness or rvalueness.
4655 break;
4656
4657 case RQ_LValue:
4658 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4659 // non-const lvalue reference cannot bind to an rvalue
4660 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4661 ImplicitParamType);
4662 return ICS;
4663 }
4664 break;
4665
4666 case RQ_RValue:
4667 if (!FromClassification.isRValue()) {
4668 // rvalue reference cannot bind to an lvalue
4669 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4670 ImplicitParamType);
4671 return ICS;
4672 }
4673 break;
4674 }
4675
4676 // Success. Mark this as a reference binding.
4677 ICS.setStandard();
4678 ICS.Standard.setAsIdentityConversion();
4679 ICS.Standard.Second = SecondKind;
4680 ICS.Standard.setFromType(FromType);
4681 ICS.Standard.setAllToTypes(ImplicitParamType);
4682 ICS.Standard.ReferenceBinding = true;
4683 ICS.Standard.DirectBinding = true;
4684 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4685 ICS.Standard.BindsToFunctionLvalue = false;
4686 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4687 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4688 = (Method->getRefQualifier() == RQ_None);
4689 return ICS;
4690 }
4691
4692 /// PerformObjectArgumentInitialization - Perform initialization of
4693 /// the implicit object parameter for the given Method with the given
4694 /// expression.
4695 ExprResult
PerformObjectArgumentInitialization(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,CXXMethodDecl * Method)4696 Sema::PerformObjectArgumentInitialization(Expr *From,
4697 NestedNameSpecifier *Qualifier,
4698 NamedDecl *FoundDecl,
4699 CXXMethodDecl *Method) {
4700 QualType FromRecordType, DestType;
4701 QualType ImplicitParamRecordType =
4702 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4703
4704 Expr::Classification FromClassification;
4705 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4706 FromRecordType = PT->getPointeeType();
4707 DestType = Method->getThisType(Context);
4708 FromClassification = Expr::Classification::makeSimpleLValue();
4709 } else {
4710 FromRecordType = From->getType();
4711 DestType = ImplicitParamRecordType;
4712 FromClassification = From->Classify(Context);
4713 }
4714
4715 // Note that we always use the true parent context when performing
4716 // the actual argument initialization.
4717 ImplicitConversionSequence ICS
4718 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4719 Method, Method->getParent());
4720 if (ICS.isBad()) {
4721 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4722 Qualifiers FromQs = FromRecordType.getQualifiers();
4723 Qualifiers ToQs = DestType.getQualifiers();
4724 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4725 if (CVR) {
4726 Diag(From->getLocStart(),
4727 diag::err_member_function_call_bad_cvr)
4728 << Method->getDeclName() << FromRecordType << (CVR - 1)
4729 << From->getSourceRange();
4730 Diag(Method->getLocation(), diag::note_previous_decl)
4731 << Method->getDeclName();
4732 return ExprError();
4733 }
4734 }
4735
4736 return Diag(From->getLocStart(),
4737 diag::err_implicit_object_parameter_init)
4738 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4739 }
4740
4741 if (ICS.Standard.Second == ICK_Derived_To_Base) {
4742 ExprResult FromRes =
4743 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4744 if (FromRes.isInvalid())
4745 return ExprError();
4746 From = FromRes.take();
4747 }
4748
4749 if (!Context.hasSameType(From->getType(), DestType))
4750 From = ImpCastExprToType(From, DestType, CK_NoOp,
4751 From->getValueKind()).take();
4752 return Owned(From);
4753 }
4754
4755 /// TryContextuallyConvertToBool - Attempt to contextually convert the
4756 /// expression From to bool (C++0x [conv]p3).
4757 static ImplicitConversionSequence
TryContextuallyConvertToBool(Sema & S,Expr * From)4758 TryContextuallyConvertToBool(Sema &S, Expr *From) {
4759 // FIXME: This is pretty broken.
4760 return TryImplicitConversion(S, From, S.Context.BoolTy,
4761 // FIXME: Are these flags correct?
4762 /*SuppressUserConversions=*/false,
4763 /*AllowExplicit=*/true,
4764 /*InOverloadResolution=*/false,
4765 /*CStyle=*/false,
4766 /*AllowObjCWritebackConversion=*/false);
4767 }
4768
4769 /// PerformContextuallyConvertToBool - Perform a contextual conversion
4770 /// of the expression From to bool (C++0x [conv]p3).
PerformContextuallyConvertToBool(Expr * From)4771 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4772 if (checkPlaceholderForOverload(*this, From))
4773 return ExprError();
4774
4775 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4776 if (!ICS.isBad())
4777 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4778
4779 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4780 return Diag(From->getLocStart(),
4781 diag::err_typecheck_bool_condition)
4782 << From->getType() << From->getSourceRange();
4783 return ExprError();
4784 }
4785
4786 /// Check that the specified conversion is permitted in a converted constant
4787 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
4788 /// is acceptable.
CheckConvertedConstantConversions(Sema & S,StandardConversionSequence & SCS)4789 static bool CheckConvertedConstantConversions(Sema &S,
4790 StandardConversionSequence &SCS) {
4791 // Since we know that the target type is an integral or unscoped enumeration
4792 // type, most conversion kinds are impossible. All possible First and Third
4793 // conversions are fine.
4794 switch (SCS.Second) {
4795 case ICK_Identity:
4796 case ICK_Integral_Promotion:
4797 case ICK_Integral_Conversion:
4798 return true;
4799
4800 case ICK_Boolean_Conversion:
4801 // Conversion from an integral or unscoped enumeration type to bool is
4802 // classified as ICK_Boolean_Conversion, but it's also an integral
4803 // conversion, so it's permitted in a converted constant expression.
4804 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4805 SCS.getToType(2)->isBooleanType();
4806
4807 case ICK_Floating_Integral:
4808 case ICK_Complex_Real:
4809 return false;
4810
4811 case ICK_Lvalue_To_Rvalue:
4812 case ICK_Array_To_Pointer:
4813 case ICK_Function_To_Pointer:
4814 case ICK_NoReturn_Adjustment:
4815 case ICK_Qualification:
4816 case ICK_Compatible_Conversion:
4817 case ICK_Vector_Conversion:
4818 case ICK_Vector_Splat:
4819 case ICK_Derived_To_Base:
4820 case ICK_Pointer_Conversion:
4821 case ICK_Pointer_Member:
4822 case ICK_Block_Pointer_Conversion:
4823 case ICK_Writeback_Conversion:
4824 case ICK_Floating_Promotion:
4825 case ICK_Complex_Promotion:
4826 case ICK_Complex_Conversion:
4827 case ICK_Floating_Conversion:
4828 case ICK_TransparentUnionConversion:
4829 llvm_unreachable("unexpected second conversion kind");
4830
4831 case ICK_Num_Conversion_Kinds:
4832 break;
4833 }
4834
4835 llvm_unreachable("unknown conversion kind");
4836 }
4837
4838 /// CheckConvertedConstantExpression - Check that the expression From is a
4839 /// converted constant expression of type T, perform the conversion and produce
4840 /// the converted expression, per C++11 [expr.const]p3.
CheckConvertedConstantExpression(Expr * From,QualType T,llvm::APSInt & Value,CCEKind CCE)4841 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4842 llvm::APSInt &Value,
4843 CCEKind CCE) {
4844 assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
4845 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4846
4847 if (checkPlaceholderForOverload(*this, From))
4848 return ExprError();
4849
4850 // C++11 [expr.const]p3 with proposed wording fixes:
4851 // A converted constant expression of type T is a core constant expression,
4852 // implicitly converted to a prvalue of type T, where the converted
4853 // expression is a literal constant expression and the implicit conversion
4854 // sequence contains only user-defined conversions, lvalue-to-rvalue
4855 // conversions, integral promotions, and integral conversions other than
4856 // narrowing conversions.
4857 ImplicitConversionSequence ICS =
4858 TryImplicitConversion(From, T,
4859 /*SuppressUserConversions=*/false,
4860 /*AllowExplicit=*/false,
4861 /*InOverloadResolution=*/false,
4862 /*CStyle=*/false,
4863 /*AllowObjcWritebackConversion=*/false);
4864 StandardConversionSequence *SCS = 0;
4865 switch (ICS.getKind()) {
4866 case ImplicitConversionSequence::StandardConversion:
4867 if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4868 return Diag(From->getLocStart(),
4869 diag::err_typecheck_converted_constant_expression_disallowed)
4870 << From->getType() << From->getSourceRange() << T;
4871 SCS = &ICS.Standard;
4872 break;
4873 case ImplicitConversionSequence::UserDefinedConversion:
4874 // We are converting from class type to an integral or enumeration type, so
4875 // the Before sequence must be trivial.
4876 if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4877 return Diag(From->getLocStart(),
4878 diag::err_typecheck_converted_constant_expression_disallowed)
4879 << From->getType() << From->getSourceRange() << T;
4880 SCS = &ICS.UserDefined.After;
4881 break;
4882 case ImplicitConversionSequence::AmbiguousConversion:
4883 case ImplicitConversionSequence::BadConversion:
4884 if (!DiagnoseMultipleUserDefinedConversion(From, T))
4885 return Diag(From->getLocStart(),
4886 diag::err_typecheck_converted_constant_expression)
4887 << From->getType() << From->getSourceRange() << T;
4888 return ExprError();
4889
4890 case ImplicitConversionSequence::EllipsisConversion:
4891 llvm_unreachable("ellipsis conversion in converted constant expression");
4892 }
4893
4894 ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4895 if (Result.isInvalid())
4896 return Result;
4897
4898 // Check for a narrowing implicit conversion.
4899 APValue PreNarrowingValue;
4900 QualType PreNarrowingType;
4901 switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
4902 PreNarrowingType)) {
4903 case NK_Variable_Narrowing:
4904 // Implicit conversion to a narrower type, and the value is not a constant
4905 // expression. We'll diagnose this in a moment.
4906 case NK_Not_Narrowing:
4907 break;
4908
4909 case NK_Constant_Narrowing:
4910 Diag(From->getLocStart(),
4911 isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4912 diag::err_cce_narrowing)
4913 << CCE << /*Constant*/1
4914 << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
4915 break;
4916
4917 case NK_Type_Narrowing:
4918 Diag(From->getLocStart(),
4919 isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4920 diag::err_cce_narrowing)
4921 << CCE << /*Constant*/0 << From->getType() << T;
4922 break;
4923 }
4924
4925 // Check the expression is a constant expression.
4926 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
4927 Expr::EvalResult Eval;
4928 Eval.Diag = &Notes;
4929
4930 if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
4931 // The expression can't be folded, so we can't keep it at this position in
4932 // the AST.
4933 Result = ExprError();
4934 } else {
4935 Value = Eval.Val.getInt();
4936
4937 if (Notes.empty()) {
4938 // It's a constant expression.
4939 return Result;
4940 }
4941 }
4942
4943 // It's not a constant expression. Produce an appropriate diagnostic.
4944 if (Notes.size() == 1 &&
4945 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
4946 Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
4947 else {
4948 Diag(From->getLocStart(), diag::err_expr_not_cce)
4949 << CCE << From->getSourceRange();
4950 for (unsigned I = 0; I < Notes.size(); ++I)
4951 Diag(Notes[I].first, Notes[I].second);
4952 }
4953 return Result;
4954 }
4955
4956 /// dropPointerConversions - If the given standard conversion sequence
4957 /// involves any pointer conversions, remove them. This may change
4958 /// the result type of the conversion sequence.
dropPointerConversion(StandardConversionSequence & SCS)4959 static void dropPointerConversion(StandardConversionSequence &SCS) {
4960 if (SCS.Second == ICK_Pointer_Conversion) {
4961 SCS.Second = ICK_Identity;
4962 SCS.Third = ICK_Identity;
4963 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
4964 }
4965 }
4966
4967 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
4968 /// convert the expression From to an Objective-C pointer type.
4969 static ImplicitConversionSequence
TryContextuallyConvertToObjCPointer(Sema & S,Expr * From)4970 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
4971 // Do an implicit conversion to 'id'.
4972 QualType Ty = S.Context.getObjCIdType();
4973 ImplicitConversionSequence ICS
4974 = TryImplicitConversion(S, From, Ty,
4975 // FIXME: Are these flags correct?
4976 /*SuppressUserConversions=*/false,
4977 /*AllowExplicit=*/true,
4978 /*InOverloadResolution=*/false,
4979 /*CStyle=*/false,
4980 /*AllowObjCWritebackConversion=*/false);
4981
4982 // Strip off any final conversions to 'id'.
4983 switch (ICS.getKind()) {
4984 case ImplicitConversionSequence::BadConversion:
4985 case ImplicitConversionSequence::AmbiguousConversion:
4986 case ImplicitConversionSequence::EllipsisConversion:
4987 break;
4988
4989 case ImplicitConversionSequence::UserDefinedConversion:
4990 dropPointerConversion(ICS.UserDefined.After);
4991 break;
4992
4993 case ImplicitConversionSequence::StandardConversion:
4994 dropPointerConversion(ICS.Standard);
4995 break;
4996 }
4997
4998 return ICS;
4999 }
5000
5001 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5002 /// conversion of the expression From to an Objective-C pointer type.
PerformContextuallyConvertToObjCPointer(Expr * From)5003 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5004 if (checkPlaceholderForOverload(*this, From))
5005 return ExprError();
5006
5007 QualType Ty = Context.getObjCIdType();
5008 ImplicitConversionSequence ICS =
5009 TryContextuallyConvertToObjCPointer(*this, From);
5010 if (!ICS.isBad())
5011 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5012 return ExprError();
5013 }
5014
5015 /// Determine whether the provided type is an integral type, or an enumeration
5016 /// type of a permitted flavor.
isIntegralOrEnumerationType(QualType T,bool AllowScopedEnum)5017 static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
5018 return AllowScopedEnum ? T->isIntegralOrEnumerationType()
5019 : T->isIntegralOrUnscopedEnumerationType();
5020 }
5021
5022 /// \brief Attempt to convert the given expression to an integral or
5023 /// enumeration type.
5024 ///
5025 /// This routine will attempt to convert an expression of class type to an
5026 /// integral or enumeration type, if that class type only has a single
5027 /// conversion to an integral or enumeration type.
5028 ///
5029 /// \param Loc The source location of the construct that requires the
5030 /// conversion.
5031 ///
5032 /// \param From The expression we're converting from.
5033 ///
5034 /// \param Diagnoser Used to output any diagnostics.
5035 ///
5036 /// \param AllowScopedEnumerations Specifies whether conversions to scoped
5037 /// enumerations should be considered.
5038 ///
5039 /// \returns The expression, converted to an integral or enumeration type if
5040 /// successful.
5041 ExprResult
ConvertToIntegralOrEnumerationType(SourceLocation Loc,Expr * From,ICEConvertDiagnoser & Diagnoser,bool AllowScopedEnumerations)5042 Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
5043 ICEConvertDiagnoser &Diagnoser,
5044 bool AllowScopedEnumerations) {
5045 // We can't perform any more checking for type-dependent expressions.
5046 if (From->isTypeDependent())
5047 return Owned(From);
5048
5049 // Process placeholders immediately.
5050 if (From->hasPlaceholderType()) {
5051 ExprResult result = CheckPlaceholderExpr(From);
5052 if (result.isInvalid()) return result;
5053 From = result.take();
5054 }
5055
5056 // If the expression already has integral or enumeration type, we're golden.
5057 QualType T = From->getType();
5058 if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
5059 return DefaultLvalueConversion(From);
5060
5061 // FIXME: Check for missing '()' if T is a function type?
5062
5063 // If we don't have a class type in C++, there's no way we can get an
5064 // expression of integral or enumeration type.
5065 const RecordType *RecordTy = T->getAs<RecordType>();
5066 if (!RecordTy || !getLangOpts().CPlusPlus) {
5067 if (!Diagnoser.Suppress)
5068 Diagnoser.diagnoseNotInt(*this, Loc, T) << From->getSourceRange();
5069 return Owned(From);
5070 }
5071
5072 // We must have a complete class type.
5073 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5074 ICEConvertDiagnoser &Diagnoser;
5075 Expr *From;
5076
5077 TypeDiagnoserPartialDiag(ICEConvertDiagnoser &Diagnoser, Expr *From)
5078 : TypeDiagnoser(Diagnoser.Suppress), Diagnoser(Diagnoser), From(From) {}
5079
5080 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
5081 Diagnoser.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5082 }
5083 } IncompleteDiagnoser(Diagnoser, From);
5084
5085 if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
5086 return Owned(From);
5087
5088 // Look for a conversion to an integral or enumeration type.
5089 UnresolvedSet<4> ViableConversions;
5090 UnresolvedSet<4> ExplicitConversions;
5091 const UnresolvedSetImpl *Conversions
5092 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5093
5094 bool HadMultipleCandidates = (Conversions->size() > 1);
5095
5096 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5097 E = Conversions->end();
5098 I != E;
5099 ++I) {
5100 if (CXXConversionDecl *Conversion
5101 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
5102 if (isIntegralOrEnumerationType(
5103 Conversion->getConversionType().getNonReferenceType(),
5104 AllowScopedEnumerations)) {
5105 if (Conversion->isExplicit())
5106 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5107 else
5108 ViableConversions.addDecl(I.getDecl(), I.getAccess());
5109 }
5110 }
5111 }
5112
5113 switch (ViableConversions.size()) {
5114 case 0:
5115 if (ExplicitConversions.size() == 1 && !Diagnoser.Suppress) {
5116 DeclAccessPair Found = ExplicitConversions[0];
5117 CXXConversionDecl *Conversion
5118 = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5119
5120 // The user probably meant to invoke the given explicit
5121 // conversion; use it.
5122 QualType ConvTy
5123 = Conversion->getConversionType().getNonReferenceType();
5124 std::string TypeStr;
5125 ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
5126
5127 Diagnoser.diagnoseExplicitConv(*this, Loc, T, ConvTy)
5128 << FixItHint::CreateInsertion(From->getLocStart(),
5129 "static_cast<" + TypeStr + ">(")
5130 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
5131 ")");
5132 Diagnoser.noteExplicitConv(*this, Conversion, ConvTy);
5133
5134 // If we aren't in a SFINAE context, build a call to the
5135 // explicit conversion function.
5136 if (isSFINAEContext())
5137 return ExprError();
5138
5139 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5140 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5141 HadMultipleCandidates);
5142 if (Result.isInvalid())
5143 return ExprError();
5144 // Record usage of conversion in an implicit cast.
5145 From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5146 CK_UserDefinedConversion,
5147 Result.get(), 0,
5148 Result.get()->getValueKind());
5149 }
5150
5151 // We'll complain below about a non-integral condition type.
5152 break;
5153
5154 case 1: {
5155 // Apply this conversion.
5156 DeclAccessPair Found = ViableConversions[0];
5157 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5158
5159 CXXConversionDecl *Conversion
5160 = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5161 QualType ConvTy
5162 = Conversion->getConversionType().getNonReferenceType();
5163 if (!Diagnoser.SuppressConversion) {
5164 if (isSFINAEContext())
5165 return ExprError();
5166
5167 Diagnoser.diagnoseConversion(*this, Loc, T, ConvTy)
5168 << From->getSourceRange();
5169 }
5170
5171 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5172 HadMultipleCandidates);
5173 if (Result.isInvalid())
5174 return ExprError();
5175 // Record usage of conversion in an implicit cast.
5176 From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5177 CK_UserDefinedConversion,
5178 Result.get(), 0,
5179 Result.get()->getValueKind());
5180 break;
5181 }
5182
5183 default:
5184 if (Diagnoser.Suppress)
5185 return ExprError();
5186
5187 Diagnoser.diagnoseAmbiguous(*this, Loc, T) << From->getSourceRange();
5188 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5189 CXXConversionDecl *Conv
5190 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5191 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5192 Diagnoser.noteAmbiguous(*this, Conv, ConvTy);
5193 }
5194 return Owned(From);
5195 }
5196
5197 if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
5198 !Diagnoser.Suppress) {
5199 Diagnoser.diagnoseNotInt(*this, Loc, From->getType())
5200 << From->getSourceRange();
5201 }
5202
5203 return DefaultLvalueConversion(From);
5204 }
5205
5206 /// AddOverloadCandidate - Adds the given function to the set of
5207 /// candidate functions, using the given function call arguments. If
5208 /// @p SuppressUserConversions, then don't allow user-defined
5209 /// conversions via constructors or conversion operators.
5210 ///
5211 /// \param PartialOverloading true if we are performing "partial" overloading
5212 /// based on an incomplete set of function arguments. This feature is used by
5213 /// code completion.
5214 void
AddOverloadCandidate(FunctionDecl * Function,DeclAccessPair FoundDecl,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,bool AllowExplicit)5215 Sema::AddOverloadCandidate(FunctionDecl *Function,
5216 DeclAccessPair FoundDecl,
5217 llvm::ArrayRef<Expr *> Args,
5218 OverloadCandidateSet& CandidateSet,
5219 bool SuppressUserConversions,
5220 bool PartialOverloading,
5221 bool AllowExplicit) {
5222 const FunctionProtoType* Proto
5223 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5224 assert(Proto && "Functions without a prototype cannot be overloaded");
5225 assert(!Function->getDescribedFunctionTemplate() &&
5226 "Use AddTemplateOverloadCandidate for function templates");
5227
5228 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5229 if (!isa<CXXConstructorDecl>(Method)) {
5230 // If we get here, it's because we're calling a member function
5231 // that is named without a member access expression (e.g.,
5232 // "this->f") that was either written explicitly or created
5233 // implicitly. This can happen with a qualified call to a member
5234 // function, e.g., X::f(). We use an empty type for the implied
5235 // object argument (C++ [over.call.func]p3), and the acting context
5236 // is irrelevant.
5237 AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5238 QualType(), Expr::Classification::makeSimpleLValue(),
5239 Args, CandidateSet, SuppressUserConversions);
5240 return;
5241 }
5242 // We treat a constructor like a non-member function, since its object
5243 // argument doesn't participate in overload resolution.
5244 }
5245
5246 if (!CandidateSet.isNewCandidate(Function))
5247 return;
5248
5249 // Overload resolution is always an unevaluated context.
5250 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5251
5252 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
5253 // C++ [class.copy]p3:
5254 // A member function template is never instantiated to perform the copy
5255 // of a class object to an object of its class type.
5256 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5257 if (Args.size() == 1 &&
5258 Constructor->isSpecializationCopyingObject() &&
5259 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5260 IsDerivedFrom(Args[0]->getType(), ClassType)))
5261 return;
5262 }
5263
5264 // Add this candidate
5265 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5266 Candidate.FoundDecl = FoundDecl;
5267 Candidate.Function = Function;
5268 Candidate.Viable = true;
5269 Candidate.IsSurrogate = false;
5270 Candidate.IgnoreObjectArgument = false;
5271 Candidate.ExplicitCallArguments = Args.size();
5272
5273 unsigned NumArgsInProto = Proto->getNumArgs();
5274
5275 // (C++ 13.3.2p2): A candidate function having fewer than m
5276 // parameters is viable only if it has an ellipsis in its parameter
5277 // list (8.3.5).
5278 if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
5279 !Proto->isVariadic()) {
5280 Candidate.Viable = false;
5281 Candidate.FailureKind = ovl_fail_too_many_arguments;
5282 return;
5283 }
5284
5285 // (C++ 13.3.2p2): A candidate function having more than m parameters
5286 // is viable only if the (m+1)st parameter has a default argument
5287 // (8.3.6). For the purposes of overload resolution, the
5288 // parameter list is truncated on the right, so that there are
5289 // exactly m parameters.
5290 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5291 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5292 // Not enough arguments.
5293 Candidate.Viable = false;
5294 Candidate.FailureKind = ovl_fail_too_few_arguments;
5295 return;
5296 }
5297
5298 // (CUDA B.1): Check for invalid calls between targets.
5299 if (getLangOpts().CUDA)
5300 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5301 if (CheckCUDATarget(Caller, Function)) {
5302 Candidate.Viable = false;
5303 Candidate.FailureKind = ovl_fail_bad_target;
5304 return;
5305 }
5306
5307 // Determine the implicit conversion sequences for each of the
5308 // arguments.
5309 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5310 if (ArgIdx < NumArgsInProto) {
5311 // (C++ 13.3.2p3): for F to be a viable function, there shall
5312 // exist for each argument an implicit conversion sequence
5313 // (13.3.3.1) that converts that argument to the corresponding
5314 // parameter of F.
5315 QualType ParamType = Proto->getArgType(ArgIdx);
5316 Candidate.Conversions[ArgIdx]
5317 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5318 SuppressUserConversions,
5319 /*InOverloadResolution=*/true,
5320 /*AllowObjCWritebackConversion=*/
5321 getLangOpts().ObjCAutoRefCount,
5322 AllowExplicit);
5323 if (Candidate.Conversions[ArgIdx].isBad()) {
5324 Candidate.Viable = false;
5325 Candidate.FailureKind = ovl_fail_bad_conversion;
5326 break;
5327 }
5328 } else {
5329 // (C++ 13.3.2p2): For the purposes of overload resolution, any
5330 // argument for which there is no corresponding parameter is
5331 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5332 Candidate.Conversions[ArgIdx].setEllipsis();
5333 }
5334 }
5335 }
5336
5337 /// \brief Add all of the function declarations in the given function set to
5338 /// the overload canddiate set.
AddFunctionCandidates(const UnresolvedSetImpl & Fns,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,TemplateArgumentListInfo * ExplicitTemplateArgs)5339 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5340 llvm::ArrayRef<Expr *> Args,
5341 OverloadCandidateSet& CandidateSet,
5342 bool SuppressUserConversions,
5343 TemplateArgumentListInfo *ExplicitTemplateArgs) {
5344 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5345 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5346 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5347 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5348 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5349 cast<CXXMethodDecl>(FD)->getParent(),
5350 Args[0]->getType(), Args[0]->Classify(Context),
5351 Args.slice(1), CandidateSet,
5352 SuppressUserConversions);
5353 else
5354 AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5355 SuppressUserConversions);
5356 } else {
5357 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5358 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5359 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5360 AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5361 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5362 ExplicitTemplateArgs,
5363 Args[0]->getType(),
5364 Args[0]->Classify(Context), Args.slice(1),
5365 CandidateSet, SuppressUserConversions);
5366 else
5367 AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5368 ExplicitTemplateArgs, Args,
5369 CandidateSet, SuppressUserConversions);
5370 }
5371 }
5372 }
5373
5374 /// AddMethodCandidate - Adds a named decl (which is some kind of
5375 /// method) as a method candidate to the given overload set.
AddMethodCandidate(DeclAccessPair FoundDecl,QualType ObjectType,Expr::Classification ObjectClassification,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)5376 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5377 QualType ObjectType,
5378 Expr::Classification ObjectClassification,
5379 Expr **Args, unsigned NumArgs,
5380 OverloadCandidateSet& CandidateSet,
5381 bool SuppressUserConversions) {
5382 NamedDecl *Decl = FoundDecl.getDecl();
5383 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5384
5385 if (isa<UsingShadowDecl>(Decl))
5386 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5387
5388 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5389 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5390 "Expected a member function template");
5391 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5392 /*ExplicitArgs*/ 0,
5393 ObjectType, ObjectClassification,
5394 llvm::makeArrayRef(Args, NumArgs), CandidateSet,
5395 SuppressUserConversions);
5396 } else {
5397 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5398 ObjectType, ObjectClassification,
5399 llvm::makeArrayRef(Args, NumArgs),
5400 CandidateSet, SuppressUserConversions);
5401 }
5402 }
5403
5404 /// AddMethodCandidate - Adds the given C++ member function to the set
5405 /// of candidate functions, using the given function call arguments
5406 /// and the object argument (@c Object). For example, in a call
5407 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5408 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5409 /// allow user-defined conversions via constructors or conversion
5410 /// operators.
5411 void
AddMethodCandidate(CXXMethodDecl * Method,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)5412 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5413 CXXRecordDecl *ActingContext, QualType ObjectType,
5414 Expr::Classification ObjectClassification,
5415 llvm::ArrayRef<Expr *> Args,
5416 OverloadCandidateSet& CandidateSet,
5417 bool SuppressUserConversions) {
5418 const FunctionProtoType* Proto
5419 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5420 assert(Proto && "Methods without a prototype cannot be overloaded");
5421 assert(!isa<CXXConstructorDecl>(Method) &&
5422 "Use AddOverloadCandidate for constructors");
5423
5424 if (!CandidateSet.isNewCandidate(Method))
5425 return;
5426
5427 // Overload resolution is always an unevaluated context.
5428 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5429
5430 // Add this candidate
5431 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5432 Candidate.FoundDecl = FoundDecl;
5433 Candidate.Function = Method;
5434 Candidate.IsSurrogate = false;
5435 Candidate.IgnoreObjectArgument = false;
5436 Candidate.ExplicitCallArguments = Args.size();
5437
5438 unsigned NumArgsInProto = Proto->getNumArgs();
5439
5440 // (C++ 13.3.2p2): A candidate function having fewer than m
5441 // parameters is viable only if it has an ellipsis in its parameter
5442 // list (8.3.5).
5443 if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5444 Candidate.Viable = false;
5445 Candidate.FailureKind = ovl_fail_too_many_arguments;
5446 return;
5447 }
5448
5449 // (C++ 13.3.2p2): A candidate function having more than m parameters
5450 // is viable only if the (m+1)st parameter has a default argument
5451 // (8.3.6). For the purposes of overload resolution, the
5452 // parameter list is truncated on the right, so that there are
5453 // exactly m parameters.
5454 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5455 if (Args.size() < MinRequiredArgs) {
5456 // Not enough arguments.
5457 Candidate.Viable = false;
5458 Candidate.FailureKind = ovl_fail_too_few_arguments;
5459 return;
5460 }
5461
5462 Candidate.Viable = true;
5463
5464 if (Method->isStatic() || ObjectType.isNull())
5465 // The implicit object argument is ignored.
5466 Candidate.IgnoreObjectArgument = true;
5467 else {
5468 // Determine the implicit conversion sequence for the object
5469 // parameter.
5470 Candidate.Conversions[0]
5471 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5472 Method, ActingContext);
5473 if (Candidate.Conversions[0].isBad()) {
5474 Candidate.Viable = false;
5475 Candidate.FailureKind = ovl_fail_bad_conversion;
5476 return;
5477 }
5478 }
5479
5480 // Determine the implicit conversion sequences for each of the
5481 // arguments.
5482 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5483 if (ArgIdx < NumArgsInProto) {
5484 // (C++ 13.3.2p3): for F to be a viable function, there shall
5485 // exist for each argument an implicit conversion sequence
5486 // (13.3.3.1) that converts that argument to the corresponding
5487 // parameter of F.
5488 QualType ParamType = Proto->getArgType(ArgIdx);
5489 Candidate.Conversions[ArgIdx + 1]
5490 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5491 SuppressUserConversions,
5492 /*InOverloadResolution=*/true,
5493 /*AllowObjCWritebackConversion=*/
5494 getLangOpts().ObjCAutoRefCount);
5495 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5496 Candidate.Viable = false;
5497 Candidate.FailureKind = ovl_fail_bad_conversion;
5498 break;
5499 }
5500 } else {
5501 // (C++ 13.3.2p2): For the purposes of overload resolution, any
5502 // argument for which there is no corresponding parameter is
5503 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5504 Candidate.Conversions[ArgIdx + 1].setEllipsis();
5505 }
5506 }
5507 }
5508
5509 /// \brief Add a C++ member function template as a candidate to the candidate
5510 /// set, using template argument deduction to produce an appropriate member
5511 /// function template specialization.
5512 void
AddMethodTemplateCandidate(FunctionTemplateDecl * MethodTmpl,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ObjectType,Expr::Classification ObjectClassification,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)5513 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5514 DeclAccessPair FoundDecl,
5515 CXXRecordDecl *ActingContext,
5516 TemplateArgumentListInfo *ExplicitTemplateArgs,
5517 QualType ObjectType,
5518 Expr::Classification ObjectClassification,
5519 llvm::ArrayRef<Expr *> Args,
5520 OverloadCandidateSet& CandidateSet,
5521 bool SuppressUserConversions) {
5522 if (!CandidateSet.isNewCandidate(MethodTmpl))
5523 return;
5524
5525 // C++ [over.match.funcs]p7:
5526 // In each case where a candidate is a function template, candidate
5527 // function template specializations are generated using template argument
5528 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
5529 // candidate functions in the usual way.113) A given name can refer to one
5530 // or more function templates and also to a set of overloaded non-template
5531 // functions. In such a case, the candidate functions generated from each
5532 // function template are combined with the set of non-template candidate
5533 // functions.
5534 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5535 FunctionDecl *Specialization = 0;
5536 if (TemplateDeductionResult Result
5537 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
5538 Specialization, Info)) {
5539 OverloadCandidate &Candidate = CandidateSet.addCandidate();
5540 Candidate.FoundDecl = FoundDecl;
5541 Candidate.Function = MethodTmpl->getTemplatedDecl();
5542 Candidate.Viable = false;
5543 Candidate.FailureKind = ovl_fail_bad_deduction;
5544 Candidate.IsSurrogate = false;
5545 Candidate.IgnoreObjectArgument = false;
5546 Candidate.ExplicitCallArguments = Args.size();
5547 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5548 Info);
5549 return;
5550 }
5551
5552 // Add the function template specialization produced by template argument
5553 // deduction as a candidate.
5554 assert(Specialization && "Missing member function template specialization?");
5555 assert(isa<CXXMethodDecl>(Specialization) &&
5556 "Specialization is not a member function?");
5557 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5558 ActingContext, ObjectType, ObjectClassification, Args,
5559 CandidateSet, SuppressUserConversions);
5560 }
5561
5562 /// \brief Add a C++ function template specialization as a candidate
5563 /// in the candidate set, using template argument deduction to produce
5564 /// an appropriate function template specialization.
5565 void
AddTemplateOverloadCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)5566 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5567 DeclAccessPair FoundDecl,
5568 TemplateArgumentListInfo *ExplicitTemplateArgs,
5569 llvm::ArrayRef<Expr *> Args,
5570 OverloadCandidateSet& CandidateSet,
5571 bool SuppressUserConversions) {
5572 if (!CandidateSet.isNewCandidate(FunctionTemplate))
5573 return;
5574
5575 // C++ [over.match.funcs]p7:
5576 // In each case where a candidate is a function template, candidate
5577 // function template specializations are generated using template argument
5578 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
5579 // candidate functions in the usual way.113) A given name can refer to one
5580 // or more function templates and also to a set of overloaded non-template
5581 // functions. In such a case, the candidate functions generated from each
5582 // function template are combined with the set of non-template candidate
5583 // functions.
5584 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5585 FunctionDecl *Specialization = 0;
5586 if (TemplateDeductionResult Result
5587 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
5588 Specialization, Info)) {
5589 OverloadCandidate &Candidate = CandidateSet.addCandidate();
5590 Candidate.FoundDecl = FoundDecl;
5591 Candidate.Function = FunctionTemplate->getTemplatedDecl();
5592 Candidate.Viable = false;
5593 Candidate.FailureKind = ovl_fail_bad_deduction;
5594 Candidate.IsSurrogate = false;
5595 Candidate.IgnoreObjectArgument = false;
5596 Candidate.ExplicitCallArguments = Args.size();
5597 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5598 Info);
5599 return;
5600 }
5601
5602 // Add the function template specialization produced by template argument
5603 // deduction as a candidate.
5604 assert(Specialization && "Missing function template specialization?");
5605 AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
5606 SuppressUserConversions);
5607 }
5608
5609 /// AddConversionCandidate - Add a C++ conversion function as a
5610 /// candidate in the candidate set (C++ [over.match.conv],
5611 /// C++ [over.match.copy]). From is the expression we're converting from,
5612 /// and ToType is the type that we're eventually trying to convert to
5613 /// (which may or may not be the same type as the type that the
5614 /// conversion function produces).
5615 void
AddConversionCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet)5616 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5617 DeclAccessPair FoundDecl,
5618 CXXRecordDecl *ActingContext,
5619 Expr *From, QualType ToType,
5620 OverloadCandidateSet& CandidateSet) {
5621 assert(!Conversion->getDescribedFunctionTemplate() &&
5622 "Conversion function templates use AddTemplateConversionCandidate");
5623 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5624 if (!CandidateSet.isNewCandidate(Conversion))
5625 return;
5626
5627 // Overload resolution is always an unevaluated context.
5628 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5629
5630 // Add this candidate
5631 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5632 Candidate.FoundDecl = FoundDecl;
5633 Candidate.Function = Conversion;
5634 Candidate.IsSurrogate = false;
5635 Candidate.IgnoreObjectArgument = false;
5636 Candidate.FinalConversion.setAsIdentityConversion();
5637 Candidate.FinalConversion.setFromType(ConvType);
5638 Candidate.FinalConversion.setAllToTypes(ToType);
5639 Candidate.Viable = true;
5640 Candidate.ExplicitCallArguments = 1;
5641
5642 // C++ [over.match.funcs]p4:
5643 // For conversion functions, the function is considered to be a member of
5644 // the class of the implicit implied object argument for the purpose of
5645 // defining the type of the implicit object parameter.
5646 //
5647 // Determine the implicit conversion sequence for the implicit
5648 // object parameter.
5649 QualType ImplicitParamType = From->getType();
5650 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5651 ImplicitParamType = FromPtrType->getPointeeType();
5652 CXXRecordDecl *ConversionContext
5653 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5654
5655 Candidate.Conversions[0]
5656 = TryObjectArgumentInitialization(*this, From->getType(),
5657 From->Classify(Context),
5658 Conversion, ConversionContext);
5659
5660 if (Candidate.Conversions[0].isBad()) {
5661 Candidate.Viable = false;
5662 Candidate.FailureKind = ovl_fail_bad_conversion;
5663 return;
5664 }
5665
5666 // We won't go through a user-define type conversion function to convert a
5667 // derived to base as such conversions are given Conversion Rank. They only
5668 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5669 QualType FromCanon
5670 = Context.getCanonicalType(From->getType().getUnqualifiedType());
5671 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5672 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5673 Candidate.Viable = false;
5674 Candidate.FailureKind = ovl_fail_trivial_conversion;
5675 return;
5676 }
5677
5678 // To determine what the conversion from the result of calling the
5679 // conversion function to the type we're eventually trying to
5680 // convert to (ToType), we need to synthesize a call to the
5681 // conversion function and attempt copy initialization from it. This
5682 // makes sure that we get the right semantics with respect to
5683 // lvalues/rvalues and the type. Fortunately, we can allocate this
5684 // call on the stack and we don't need its arguments to be
5685 // well-formed.
5686 DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
5687 VK_LValue, From->getLocStart());
5688 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5689 Context.getPointerType(Conversion->getType()),
5690 CK_FunctionToPointerDecay,
5691 &ConversionRef, VK_RValue);
5692
5693 QualType ConversionType = Conversion->getConversionType();
5694 if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5695 Candidate.Viable = false;
5696 Candidate.FailureKind = ovl_fail_bad_final_conversion;
5697 return;
5698 }
5699
5700 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5701
5702 // Note that it is safe to allocate CallExpr on the stack here because
5703 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5704 // allocator).
5705 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5706 CallExpr Call(Context, &ConversionFn, MultiExprArg(), CallResultType, VK,
5707 From->getLocStart());
5708 ImplicitConversionSequence ICS =
5709 TryCopyInitialization(*this, &Call, ToType,
5710 /*SuppressUserConversions=*/true,
5711 /*InOverloadResolution=*/false,
5712 /*AllowObjCWritebackConversion=*/false);
5713
5714 switch (ICS.getKind()) {
5715 case ImplicitConversionSequence::StandardConversion:
5716 Candidate.FinalConversion = ICS.Standard;
5717
5718 // C++ [over.ics.user]p3:
5719 // If the user-defined conversion is specified by a specialization of a
5720 // conversion function template, the second standard conversion sequence
5721 // shall have exact match rank.
5722 if (Conversion->getPrimaryTemplate() &&
5723 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5724 Candidate.Viable = false;
5725 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5726 }
5727
5728 // C++0x [dcl.init.ref]p5:
5729 // In the second case, if the reference is an rvalue reference and
5730 // the second standard conversion sequence of the user-defined
5731 // conversion sequence includes an lvalue-to-rvalue conversion, the
5732 // program is ill-formed.
5733 if (ToType->isRValueReferenceType() &&
5734 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5735 Candidate.Viable = false;
5736 Candidate.FailureKind = ovl_fail_bad_final_conversion;
5737 }
5738 break;
5739
5740 case ImplicitConversionSequence::BadConversion:
5741 Candidate.Viable = false;
5742 Candidate.FailureKind = ovl_fail_bad_final_conversion;
5743 break;
5744
5745 default:
5746 llvm_unreachable(
5747 "Can only end up with a standard conversion sequence or failure");
5748 }
5749 }
5750
5751 /// \brief Adds a conversion function template specialization
5752 /// candidate to the overload set, using template argument deduction
5753 /// to deduce the template arguments of the conversion function
5754 /// template from the type that we are converting to (C++
5755 /// [temp.deduct.conv]).
5756 void
AddTemplateConversionCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,CXXRecordDecl * ActingDC,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet)5757 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5758 DeclAccessPair FoundDecl,
5759 CXXRecordDecl *ActingDC,
5760 Expr *From, QualType ToType,
5761 OverloadCandidateSet &CandidateSet) {
5762 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5763 "Only conversion function templates permitted here");
5764
5765 if (!CandidateSet.isNewCandidate(FunctionTemplate))
5766 return;
5767
5768 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5769 CXXConversionDecl *Specialization = 0;
5770 if (TemplateDeductionResult Result
5771 = DeduceTemplateArguments(FunctionTemplate, ToType,
5772 Specialization, Info)) {
5773 OverloadCandidate &Candidate = CandidateSet.addCandidate();
5774 Candidate.FoundDecl = FoundDecl;
5775 Candidate.Function = FunctionTemplate->getTemplatedDecl();
5776 Candidate.Viable = false;
5777 Candidate.FailureKind = ovl_fail_bad_deduction;
5778 Candidate.IsSurrogate = false;
5779 Candidate.IgnoreObjectArgument = false;
5780 Candidate.ExplicitCallArguments = 1;
5781 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5782 Info);
5783 return;
5784 }
5785
5786 // Add the conversion function template specialization produced by
5787 // template argument deduction as a candidate.
5788 assert(Specialization && "Missing function template specialization?");
5789 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
5790 CandidateSet);
5791 }
5792
5793 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
5794 /// converts the given @c Object to a function pointer via the
5795 /// conversion function @c Conversion, and then attempts to call it
5796 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
5797 /// the type of function that we'll eventually be calling.
AddSurrogateCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,const FunctionProtoType * Proto,Expr * Object,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)5798 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
5799 DeclAccessPair FoundDecl,
5800 CXXRecordDecl *ActingContext,
5801 const FunctionProtoType *Proto,
5802 Expr *Object,
5803 llvm::ArrayRef<Expr *> Args,
5804 OverloadCandidateSet& CandidateSet) {
5805 if (!CandidateSet.isNewCandidate(Conversion))
5806 return;
5807
5808 // Overload resolution is always an unevaluated context.
5809 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5810
5811 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5812 Candidate.FoundDecl = FoundDecl;
5813 Candidate.Function = 0;
5814 Candidate.Surrogate = Conversion;
5815 Candidate.Viable = true;
5816 Candidate.IsSurrogate = true;
5817 Candidate.IgnoreObjectArgument = false;
5818 Candidate.ExplicitCallArguments = Args.size();
5819
5820 // Determine the implicit conversion sequence for the implicit
5821 // object parameter.
5822 ImplicitConversionSequence ObjectInit
5823 = TryObjectArgumentInitialization(*this, Object->getType(),
5824 Object->Classify(Context),
5825 Conversion, ActingContext);
5826 if (ObjectInit.isBad()) {
5827 Candidate.Viable = false;
5828 Candidate.FailureKind = ovl_fail_bad_conversion;
5829 Candidate.Conversions[0] = ObjectInit;
5830 return;
5831 }
5832
5833 // The first conversion is actually a user-defined conversion whose
5834 // first conversion is ObjectInit's standard conversion (which is
5835 // effectively a reference binding). Record it as such.
5836 Candidate.Conversions[0].setUserDefined();
5837 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
5838 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
5839 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
5840 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
5841 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
5842 Candidate.Conversions[0].UserDefined.After
5843 = Candidate.Conversions[0].UserDefined.Before;
5844 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
5845
5846 // Find the
5847 unsigned NumArgsInProto = Proto->getNumArgs();
5848
5849 // (C++ 13.3.2p2): A candidate function having fewer than m
5850 // parameters is viable only if it has an ellipsis in its parameter
5851 // list (8.3.5).
5852 if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5853 Candidate.Viable = false;
5854 Candidate.FailureKind = ovl_fail_too_many_arguments;
5855 return;
5856 }
5857
5858 // Function types don't have any default arguments, so just check if
5859 // we have enough arguments.
5860 if (Args.size() < NumArgsInProto) {
5861 // Not enough arguments.
5862 Candidate.Viable = false;
5863 Candidate.FailureKind = ovl_fail_too_few_arguments;
5864 return;
5865 }
5866
5867 // Determine the implicit conversion sequences for each of the
5868 // arguments.
5869 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5870 if (ArgIdx < NumArgsInProto) {
5871 // (C++ 13.3.2p3): for F to be a viable function, there shall
5872 // exist for each argument an implicit conversion sequence
5873 // (13.3.3.1) that converts that argument to the corresponding
5874 // parameter of F.
5875 QualType ParamType = Proto->getArgType(ArgIdx);
5876 Candidate.Conversions[ArgIdx + 1]
5877 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5878 /*SuppressUserConversions=*/false,
5879 /*InOverloadResolution=*/false,
5880 /*AllowObjCWritebackConversion=*/
5881 getLangOpts().ObjCAutoRefCount);
5882 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5883 Candidate.Viable = false;
5884 Candidate.FailureKind = ovl_fail_bad_conversion;
5885 break;
5886 }
5887 } else {
5888 // (C++ 13.3.2p2): For the purposes of overload resolution, any
5889 // argument for which there is no corresponding parameter is
5890 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5891 Candidate.Conversions[ArgIdx + 1].setEllipsis();
5892 }
5893 }
5894 }
5895
5896 /// \brief Add overload candidates for overloaded operators that are
5897 /// member functions.
5898 ///
5899 /// Add the overloaded operator candidates that are member functions
5900 /// for the operator Op that was used in an operator expression such
5901 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
5902 /// CandidateSet will store the added overload candidates. (C++
5903 /// [over.match.oper]).
AddMemberOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,SourceRange OpRange)5904 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
5905 SourceLocation OpLoc,
5906 Expr **Args, unsigned NumArgs,
5907 OverloadCandidateSet& CandidateSet,
5908 SourceRange OpRange) {
5909 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5910
5911 // C++ [over.match.oper]p3:
5912 // For a unary operator @ with an operand of a type whose
5913 // cv-unqualified version is T1, and for a binary operator @ with
5914 // a left operand of a type whose cv-unqualified version is T1 and
5915 // a right operand of a type whose cv-unqualified version is T2,
5916 // three sets of candidate functions, designated member
5917 // candidates, non-member candidates and built-in candidates, are
5918 // constructed as follows:
5919 QualType T1 = Args[0]->getType();
5920
5921 // -- If T1 is a class type, the set of member candidates is the
5922 // result of the qualified lookup of T1::operator@
5923 // (13.3.1.1.1); otherwise, the set of member candidates is
5924 // empty.
5925 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
5926 // Complete the type if it can be completed. Otherwise, we're done.
5927 if (RequireCompleteType(OpLoc, T1, 0))
5928 return;
5929
5930 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
5931 LookupQualifiedName(Operators, T1Rec->getDecl());
5932 Operators.suppressDiagnostics();
5933
5934 for (LookupResult::iterator Oper = Operators.begin(),
5935 OperEnd = Operators.end();
5936 Oper != OperEnd;
5937 ++Oper)
5938 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
5939 Args[0]->Classify(Context), Args + 1, NumArgs - 1,
5940 CandidateSet,
5941 /* SuppressUserConversions = */ false);
5942 }
5943 }
5944
5945 /// AddBuiltinCandidate - Add a candidate for a built-in
5946 /// operator. ResultTy and ParamTys are the result and parameter types
5947 /// of the built-in candidate, respectively. Args and NumArgs are the
5948 /// arguments being passed to the candidate. IsAssignmentOperator
5949 /// should be true when this built-in candidate is an assignment
5950 /// operator. NumContextualBoolArguments is the number of arguments
5951 /// (at the beginning of the argument list) that will be contextually
5952 /// converted to bool.
AddBuiltinCandidate(QualType ResultTy,QualType * ParamTys,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool IsAssignmentOperator,unsigned NumContextualBoolArguments)5953 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
5954 Expr **Args, unsigned NumArgs,
5955 OverloadCandidateSet& CandidateSet,
5956 bool IsAssignmentOperator,
5957 unsigned NumContextualBoolArguments) {
5958 // Overload resolution is always an unevaluated context.
5959 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5960
5961 // Add this candidate
5962 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
5963 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
5964 Candidate.Function = 0;
5965 Candidate.IsSurrogate = false;
5966 Candidate.IgnoreObjectArgument = false;
5967 Candidate.BuiltinTypes.ResultTy = ResultTy;
5968 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5969 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
5970
5971 // Determine the implicit conversion sequences for each of the
5972 // arguments.
5973 Candidate.Viable = true;
5974 Candidate.ExplicitCallArguments = NumArgs;
5975 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5976 // C++ [over.match.oper]p4:
5977 // For the built-in assignment operators, conversions of the
5978 // left operand are restricted as follows:
5979 // -- no temporaries are introduced to hold the left operand, and
5980 // -- no user-defined conversions are applied to the left
5981 // operand to achieve a type match with the left-most
5982 // parameter of a built-in candidate.
5983 //
5984 // We block these conversions by turning off user-defined
5985 // conversions, since that is the only way that initialization of
5986 // a reference to a non-class type can occur from something that
5987 // is not of the same type.
5988 if (ArgIdx < NumContextualBoolArguments) {
5989 assert(ParamTys[ArgIdx] == Context.BoolTy &&
5990 "Contextual conversion to bool requires bool type");
5991 Candidate.Conversions[ArgIdx]
5992 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
5993 } else {
5994 Candidate.Conversions[ArgIdx]
5995 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
5996 ArgIdx == 0 && IsAssignmentOperator,
5997 /*InOverloadResolution=*/false,
5998 /*AllowObjCWritebackConversion=*/
5999 getLangOpts().ObjCAutoRefCount);
6000 }
6001 if (Candidate.Conversions[ArgIdx].isBad()) {
6002 Candidate.Viable = false;
6003 Candidate.FailureKind = ovl_fail_bad_conversion;
6004 break;
6005 }
6006 }
6007 }
6008
6009 /// BuiltinCandidateTypeSet - A set of types that will be used for the
6010 /// candidate operator functions for built-in operators (C++
6011 /// [over.built]). The types are separated into pointer types and
6012 /// enumeration types.
6013 class BuiltinCandidateTypeSet {
6014 /// TypeSet - A set of types.
6015 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6016
6017 /// PointerTypes - The set of pointer types that will be used in the
6018 /// built-in candidates.
6019 TypeSet PointerTypes;
6020
6021 /// MemberPointerTypes - The set of member pointer types that will be
6022 /// used in the built-in candidates.
6023 TypeSet MemberPointerTypes;
6024
6025 /// EnumerationTypes - The set of enumeration types that will be
6026 /// used in the built-in candidates.
6027 TypeSet EnumerationTypes;
6028
6029 /// \brief The set of vector types that will be used in the built-in
6030 /// candidates.
6031 TypeSet VectorTypes;
6032
6033 /// \brief A flag indicating non-record types are viable candidates
6034 bool HasNonRecordTypes;
6035
6036 /// \brief A flag indicating whether either arithmetic or enumeration types
6037 /// were present in the candidate set.
6038 bool HasArithmeticOrEnumeralTypes;
6039
6040 /// \brief A flag indicating whether the nullptr type was present in the
6041 /// candidate set.
6042 bool HasNullPtrType;
6043
6044 /// Sema - The semantic analysis instance where we are building the
6045 /// candidate type set.
6046 Sema &SemaRef;
6047
6048 /// Context - The AST context in which we will build the type sets.
6049 ASTContext &Context;
6050
6051 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6052 const Qualifiers &VisibleQuals);
6053 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6054
6055 public:
6056 /// iterator - Iterates through the types that are part of the set.
6057 typedef TypeSet::iterator iterator;
6058
BuiltinCandidateTypeSet(Sema & SemaRef)6059 BuiltinCandidateTypeSet(Sema &SemaRef)
6060 : HasNonRecordTypes(false),
6061 HasArithmeticOrEnumeralTypes(false),
6062 HasNullPtrType(false),
6063 SemaRef(SemaRef),
6064 Context(SemaRef.Context) { }
6065
6066 void AddTypesConvertedFrom(QualType Ty,
6067 SourceLocation Loc,
6068 bool AllowUserConversions,
6069 bool AllowExplicitConversions,
6070 const Qualifiers &VisibleTypeConversionsQuals);
6071
6072 /// pointer_begin - First pointer type found;
pointer_begin()6073 iterator pointer_begin() { return PointerTypes.begin(); }
6074
6075 /// pointer_end - Past the last pointer type found;
pointer_end()6076 iterator pointer_end() { return PointerTypes.end(); }
6077
6078 /// member_pointer_begin - First member pointer type found;
member_pointer_begin()6079 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6080
6081 /// member_pointer_end - Past the last member pointer type found;
member_pointer_end()6082 iterator member_pointer_end() { return MemberPointerTypes.end(); }
6083
6084 /// enumeration_begin - First enumeration type found;
enumeration_begin()6085 iterator enumeration_begin() { return EnumerationTypes.begin(); }
6086
6087 /// enumeration_end - Past the last enumeration type found;
enumeration_end()6088 iterator enumeration_end() { return EnumerationTypes.end(); }
6089
vector_begin()6090 iterator vector_begin() { return VectorTypes.begin(); }
vector_end()6091 iterator vector_end() { return VectorTypes.end(); }
6092
hasNonRecordTypes()6093 bool hasNonRecordTypes() { return HasNonRecordTypes; }
hasArithmeticOrEnumeralTypes()6094 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
hasNullPtrType() const6095 bool hasNullPtrType() const { return HasNullPtrType; }
6096 };
6097
6098 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6099 /// the set of pointer types along with any more-qualified variants of
6100 /// that type. For example, if @p Ty is "int const *", this routine
6101 /// will add "int const *", "int const volatile *", "int const
6102 /// restrict *", and "int const volatile restrict *" to the set of
6103 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6104 /// false otherwise.
6105 ///
6106 /// FIXME: what to do about extended qualifiers?
6107 bool
AddPointerWithMoreQualifiedTypeVariants(QualType Ty,const Qualifiers & VisibleQuals)6108 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6109 const Qualifiers &VisibleQuals) {
6110
6111 // Insert this type.
6112 if (!PointerTypes.insert(Ty))
6113 return false;
6114
6115 QualType PointeeTy;
6116 const PointerType *PointerTy = Ty->getAs<PointerType>();
6117 bool buildObjCPtr = false;
6118 if (!PointerTy) {
6119 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6120 PointeeTy = PTy->getPointeeType();
6121 buildObjCPtr = true;
6122 } else {
6123 PointeeTy = PointerTy->getPointeeType();
6124 }
6125
6126 // Don't add qualified variants of arrays. For one, they're not allowed
6127 // (the qualifier would sink to the element type), and for another, the
6128 // only overload situation where it matters is subscript or pointer +- int,
6129 // and those shouldn't have qualifier variants anyway.
6130 if (PointeeTy->isArrayType())
6131 return true;
6132
6133 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6134 bool hasVolatile = VisibleQuals.hasVolatile();
6135 bool hasRestrict = VisibleQuals.hasRestrict();
6136
6137 // Iterate through all strict supersets of BaseCVR.
6138 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6139 if ((CVR | BaseCVR) != CVR) continue;
6140 // Skip over volatile if no volatile found anywhere in the types.
6141 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6142
6143 // Skip over restrict if no restrict found anywhere in the types, or if
6144 // the type cannot be restrict-qualified.
6145 if ((CVR & Qualifiers::Restrict) &&
6146 (!hasRestrict ||
6147 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6148 continue;
6149
6150 // Build qualified pointee type.
6151 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6152
6153 // Build qualified pointer type.
6154 QualType QPointerTy;
6155 if (!buildObjCPtr)
6156 QPointerTy = Context.getPointerType(QPointeeTy);
6157 else
6158 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6159
6160 // Insert qualified pointer type.
6161 PointerTypes.insert(QPointerTy);
6162 }
6163
6164 return true;
6165 }
6166
6167 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6168 /// to the set of pointer types along with any more-qualified variants of
6169 /// that type. For example, if @p Ty is "int const *", this routine
6170 /// will add "int const *", "int const volatile *", "int const
6171 /// restrict *", and "int const volatile restrict *" to the set of
6172 /// pointer types. Returns true if the add of @p Ty itself succeeded,
6173 /// false otherwise.
6174 ///
6175 /// FIXME: what to do about extended qualifiers?
6176 bool
AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty)6177 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6178 QualType Ty) {
6179 // Insert this type.
6180 if (!MemberPointerTypes.insert(Ty))
6181 return false;
6182
6183 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6184 assert(PointerTy && "type was not a member pointer type!");
6185
6186 QualType PointeeTy = PointerTy->getPointeeType();
6187 // Don't add qualified variants of arrays. For one, they're not allowed
6188 // (the qualifier would sink to the element type), and for another, the
6189 // only overload situation where it matters is subscript or pointer +- int,
6190 // and those shouldn't have qualifier variants anyway.
6191 if (PointeeTy->isArrayType())
6192 return true;
6193 const Type *ClassTy = PointerTy->getClass();
6194
6195 // Iterate through all strict supersets of the pointee type's CVR
6196 // qualifiers.
6197 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6198 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6199 if ((CVR | BaseCVR) != CVR) continue;
6200
6201 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6202 MemberPointerTypes.insert(
6203 Context.getMemberPointerType(QPointeeTy, ClassTy));
6204 }
6205
6206 return true;
6207 }
6208
6209 /// AddTypesConvertedFrom - Add each of the types to which the type @p
6210 /// Ty can be implicit converted to the given set of @p Types. We're
6211 /// primarily interested in pointer types and enumeration types. We also
6212 /// take member pointer types, for the conditional operator.
6213 /// AllowUserConversions is true if we should look at the conversion
6214 /// functions of a class type, and AllowExplicitConversions if we
6215 /// should also include the explicit conversion functions of a class
6216 /// type.
6217 void
AddTypesConvertedFrom(QualType Ty,SourceLocation Loc,bool AllowUserConversions,bool AllowExplicitConversions,const Qualifiers & VisibleQuals)6218 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6219 SourceLocation Loc,
6220 bool AllowUserConversions,
6221 bool AllowExplicitConversions,
6222 const Qualifiers &VisibleQuals) {
6223 // Only deal with canonical types.
6224 Ty = Context.getCanonicalType(Ty);
6225
6226 // Look through reference types; they aren't part of the type of an
6227 // expression for the purposes of conversions.
6228 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6229 Ty = RefTy->getPointeeType();
6230
6231 // If we're dealing with an array type, decay to the pointer.
6232 if (Ty->isArrayType())
6233 Ty = SemaRef.Context.getArrayDecayedType(Ty);
6234
6235 // Otherwise, we don't care about qualifiers on the type.
6236 Ty = Ty.getLocalUnqualifiedType();
6237
6238 // Flag if we ever add a non-record type.
6239 const RecordType *TyRec = Ty->getAs<RecordType>();
6240 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6241
6242 // Flag if we encounter an arithmetic type.
6243 HasArithmeticOrEnumeralTypes =
6244 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6245
6246 if (Ty->isObjCIdType() || Ty->isObjCClassType())
6247 PointerTypes.insert(Ty);
6248 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6249 // Insert our type, and its more-qualified variants, into the set
6250 // of types.
6251 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6252 return;
6253 } else if (Ty->isMemberPointerType()) {
6254 // Member pointers are far easier, since the pointee can't be converted.
6255 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6256 return;
6257 } else if (Ty->isEnumeralType()) {
6258 HasArithmeticOrEnumeralTypes = true;
6259 EnumerationTypes.insert(Ty);
6260 } else if (Ty->isVectorType()) {
6261 // We treat vector types as arithmetic types in many contexts as an
6262 // extension.
6263 HasArithmeticOrEnumeralTypes = true;
6264 VectorTypes.insert(Ty);
6265 } else if (Ty->isNullPtrType()) {
6266 HasNullPtrType = true;
6267 } else if (AllowUserConversions && TyRec) {
6268 // No conversion functions in incomplete types.
6269 if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6270 return;
6271
6272 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6273 const UnresolvedSetImpl *Conversions
6274 = ClassDecl->getVisibleConversionFunctions();
6275 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6276 E = Conversions->end(); I != E; ++I) {
6277 NamedDecl *D = I.getDecl();
6278 if (isa<UsingShadowDecl>(D))
6279 D = cast<UsingShadowDecl>(D)->getTargetDecl();
6280
6281 // Skip conversion function templates; they don't tell us anything
6282 // about which builtin types we can convert to.
6283 if (isa<FunctionTemplateDecl>(D))
6284 continue;
6285
6286 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6287 if (AllowExplicitConversions || !Conv->isExplicit()) {
6288 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6289 VisibleQuals);
6290 }
6291 }
6292 }
6293 }
6294
6295 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6296 /// the volatile- and non-volatile-qualified assignment operators for the
6297 /// given type to the candidate set.
AddBuiltinAssignmentOperatorCandidates(Sema & S,QualType T,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet)6298 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6299 QualType T,
6300 Expr **Args,
6301 unsigned NumArgs,
6302 OverloadCandidateSet &CandidateSet) {
6303 QualType ParamTypes[2];
6304
6305 // T& operator=(T&, T)
6306 ParamTypes[0] = S.Context.getLValueReferenceType(T);
6307 ParamTypes[1] = T;
6308 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6309 /*IsAssignmentOperator=*/true);
6310
6311 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6312 // volatile T& operator=(volatile T&, T)
6313 ParamTypes[0]
6314 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6315 ParamTypes[1] = T;
6316 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6317 /*IsAssignmentOperator=*/true);
6318 }
6319 }
6320
6321 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6322 /// if any, found in visible type conversion functions found in ArgExpr's type.
CollectVRQualifiers(ASTContext & Context,Expr * ArgExpr)6323 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6324 Qualifiers VRQuals;
6325 const RecordType *TyRec;
6326 if (const MemberPointerType *RHSMPType =
6327 ArgExpr->getType()->getAs<MemberPointerType>())
6328 TyRec = RHSMPType->getClass()->getAs<RecordType>();
6329 else
6330 TyRec = ArgExpr->getType()->getAs<RecordType>();
6331 if (!TyRec) {
6332 // Just to be safe, assume the worst case.
6333 VRQuals.addVolatile();
6334 VRQuals.addRestrict();
6335 return VRQuals;
6336 }
6337
6338 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6339 if (!ClassDecl->hasDefinition())
6340 return VRQuals;
6341
6342 const UnresolvedSetImpl *Conversions =
6343 ClassDecl->getVisibleConversionFunctions();
6344
6345 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6346 E = Conversions->end(); I != E; ++I) {
6347 NamedDecl *D = I.getDecl();
6348 if (isa<UsingShadowDecl>(D))
6349 D = cast<UsingShadowDecl>(D)->getTargetDecl();
6350 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6351 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6352 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6353 CanTy = ResTypeRef->getPointeeType();
6354 // Need to go down the pointer/mempointer chain and add qualifiers
6355 // as see them.
6356 bool done = false;
6357 while (!done) {
6358 if (CanTy.isRestrictQualified())
6359 VRQuals.addRestrict();
6360 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6361 CanTy = ResTypePtr->getPointeeType();
6362 else if (const MemberPointerType *ResTypeMPtr =
6363 CanTy->getAs<MemberPointerType>())
6364 CanTy = ResTypeMPtr->getPointeeType();
6365 else
6366 done = true;
6367 if (CanTy.isVolatileQualified())
6368 VRQuals.addVolatile();
6369 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6370 return VRQuals;
6371 }
6372 }
6373 }
6374 return VRQuals;
6375 }
6376
6377 namespace {
6378
6379 /// \brief Helper class to manage the addition of builtin operator overload
6380 /// candidates. It provides shared state and utility methods used throughout
6381 /// the process, as well as a helper method to add each group of builtin
6382 /// operator overloads from the standard to a candidate set.
6383 class BuiltinOperatorOverloadBuilder {
6384 // Common instance state available to all overload candidate addition methods.
6385 Sema &S;
6386 Expr **Args;
6387 unsigned NumArgs;
6388 Qualifiers VisibleTypeConversionsQuals;
6389 bool HasArithmeticOrEnumeralCandidateType;
6390 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6391 OverloadCandidateSet &CandidateSet;
6392
6393 // Define some constants used to index and iterate over the arithemetic types
6394 // provided via the getArithmeticType() method below.
6395 // The "promoted arithmetic types" are the arithmetic
6396 // types are that preserved by promotion (C++ [over.built]p2).
6397 static const unsigned FirstIntegralType = 3;
6398 static const unsigned LastIntegralType = 20;
6399 static const unsigned FirstPromotedIntegralType = 3,
6400 LastPromotedIntegralType = 11;
6401 static const unsigned FirstPromotedArithmeticType = 0,
6402 LastPromotedArithmeticType = 11;
6403 static const unsigned NumArithmeticTypes = 20;
6404
6405 /// \brief Get the canonical type for a given arithmetic type index.
getArithmeticType(unsigned index)6406 CanQualType getArithmeticType(unsigned index) {
6407 assert(index < NumArithmeticTypes);
6408 static CanQualType ASTContext::* const
6409 ArithmeticTypes[NumArithmeticTypes] = {
6410 // Start of promoted types.
6411 &ASTContext::FloatTy,
6412 &ASTContext::DoubleTy,
6413 &ASTContext::LongDoubleTy,
6414
6415 // Start of integral types.
6416 &ASTContext::IntTy,
6417 &ASTContext::LongTy,
6418 &ASTContext::LongLongTy,
6419 &ASTContext::Int128Ty,
6420 &ASTContext::UnsignedIntTy,
6421 &ASTContext::UnsignedLongTy,
6422 &ASTContext::UnsignedLongLongTy,
6423 &ASTContext::UnsignedInt128Ty,
6424 // End of promoted types.
6425
6426 &ASTContext::BoolTy,
6427 &ASTContext::CharTy,
6428 &ASTContext::WCharTy,
6429 &ASTContext::Char16Ty,
6430 &ASTContext::Char32Ty,
6431 &ASTContext::SignedCharTy,
6432 &ASTContext::ShortTy,
6433 &ASTContext::UnsignedCharTy,
6434 &ASTContext::UnsignedShortTy,
6435 // End of integral types.
6436 // FIXME: What about complex? What about half?
6437 };
6438 return S.Context.*ArithmeticTypes[index];
6439 }
6440
6441 /// \brief Gets the canonical type resulting from the usual arithemetic
6442 /// converions for the given arithmetic types.
getUsualArithmeticConversions(unsigned L,unsigned R)6443 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6444 // Accelerator table for performing the usual arithmetic conversions.
6445 // The rules are basically:
6446 // - if either is floating-point, use the wider floating-point
6447 // - if same signedness, use the higher rank
6448 // - if same size, use unsigned of the higher rank
6449 // - use the larger type
6450 // These rules, together with the axiom that higher ranks are
6451 // never smaller, are sufficient to precompute all of these results
6452 // *except* when dealing with signed types of higher rank.
6453 // (we could precompute SLL x UI for all known platforms, but it's
6454 // better not to make any assumptions).
6455 // We assume that int128 has a higher rank than long long on all platforms.
6456 enum PromotedType {
6457 Dep=-1,
6458 Flt, Dbl, LDbl, SI, SL, SLL, S128, UI, UL, ULL, U128
6459 };
6460 static const PromotedType ConversionsTable[LastPromotedArithmeticType]
6461 [LastPromotedArithmeticType] = {
6462 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt, Flt, Flt },
6463 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl },
6464 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6465 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, S128, UI, UL, ULL, U128 },
6466 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, S128, Dep, UL, ULL, U128 },
6467 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, S128, Dep, Dep, ULL, U128 },
6468 /*S128*/ { Flt, Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
6469 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, S128, UI, UL, ULL, U128 },
6470 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, S128, UL, UL, ULL, U128 },
6471 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, S128, ULL, ULL, ULL, U128 },
6472 /*U128*/ { Flt, Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
6473 };
6474
6475 assert(L < LastPromotedArithmeticType);
6476 assert(R < LastPromotedArithmeticType);
6477 int Idx = ConversionsTable[L][R];
6478
6479 // Fast path: the table gives us a concrete answer.
6480 if (Idx != Dep) return getArithmeticType(Idx);
6481
6482 // Slow path: we need to compare widths.
6483 // An invariant is that the signed type has higher rank.
6484 CanQualType LT = getArithmeticType(L),
6485 RT = getArithmeticType(R);
6486 unsigned LW = S.Context.getIntWidth(LT),
6487 RW = S.Context.getIntWidth(RT);
6488
6489 // If they're different widths, use the signed type.
6490 if (LW > RW) return LT;
6491 else if (LW < RW) return RT;
6492
6493 // Otherwise, use the unsigned type of the signed type's rank.
6494 if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6495 assert(L == SLL || R == SLL);
6496 return S.Context.UnsignedLongLongTy;
6497 }
6498
6499 /// \brief Helper method to factor out the common pattern of adding overloads
6500 /// for '++' and '--' builtin operators.
addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,bool HasVolatile,bool HasRestrict)6501 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6502 bool HasVolatile,
6503 bool HasRestrict) {
6504 QualType ParamTypes[2] = {
6505 S.Context.getLValueReferenceType(CandidateTy),
6506 S.Context.IntTy
6507 };
6508
6509 // Non-volatile version.
6510 if (NumArgs == 1)
6511 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6512 else
6513 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6514
6515 // Use a heuristic to reduce number of builtin candidates in the set:
6516 // add volatile version only if there are conversions to a volatile type.
6517 if (HasVolatile) {
6518 ParamTypes[0] =
6519 S.Context.getLValueReferenceType(
6520 S.Context.getVolatileType(CandidateTy));
6521 if (NumArgs == 1)
6522 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6523 else
6524 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6525 }
6526
6527 // Add restrict version only if there are conversions to a restrict type
6528 // and our candidate type is a non-restrict-qualified pointer.
6529 if (HasRestrict && CandidateTy->isAnyPointerType() &&
6530 !CandidateTy.isRestrictQualified()) {
6531 ParamTypes[0]
6532 = S.Context.getLValueReferenceType(
6533 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
6534 if (NumArgs == 1)
6535 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6536 else
6537 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6538
6539 if (HasVolatile) {
6540 ParamTypes[0]
6541 = S.Context.getLValueReferenceType(
6542 S.Context.getCVRQualifiedType(CandidateTy,
6543 (Qualifiers::Volatile |
6544 Qualifiers::Restrict)));
6545 if (NumArgs == 1)
6546 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1,
6547 CandidateSet);
6548 else
6549 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6550 }
6551 }
6552
6553 }
6554
6555 public:
BuiltinOperatorOverloadBuilder(Sema & S,Expr ** Args,unsigned NumArgs,Qualifiers VisibleTypeConversionsQuals,bool HasArithmeticOrEnumeralCandidateType,SmallVectorImpl<BuiltinCandidateTypeSet> & CandidateTypes,OverloadCandidateSet & CandidateSet)6556 BuiltinOperatorOverloadBuilder(
6557 Sema &S, Expr **Args, unsigned NumArgs,
6558 Qualifiers VisibleTypeConversionsQuals,
6559 bool HasArithmeticOrEnumeralCandidateType,
6560 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6561 OverloadCandidateSet &CandidateSet)
6562 : S(S), Args(Args), NumArgs(NumArgs),
6563 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6564 HasArithmeticOrEnumeralCandidateType(
6565 HasArithmeticOrEnumeralCandidateType),
6566 CandidateTypes(CandidateTypes),
6567 CandidateSet(CandidateSet) {
6568 // Validate some of our static helper constants in debug builds.
6569 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6570 "Invalid first promoted integral type");
6571 assert(getArithmeticType(LastPromotedIntegralType - 1)
6572 == S.Context.UnsignedInt128Ty &&
6573 "Invalid last promoted integral type");
6574 assert(getArithmeticType(FirstPromotedArithmeticType)
6575 == S.Context.FloatTy &&
6576 "Invalid first promoted arithmetic type");
6577 assert(getArithmeticType(LastPromotedArithmeticType - 1)
6578 == S.Context.UnsignedInt128Ty &&
6579 "Invalid last promoted arithmetic type");
6580 }
6581
6582 // C++ [over.built]p3:
6583 //
6584 // For every pair (T, VQ), where T is an arithmetic type, and VQ
6585 // is either volatile or empty, there exist candidate operator
6586 // functions of the form
6587 //
6588 // VQ T& operator++(VQ T&);
6589 // T operator++(VQ T&, int);
6590 //
6591 // C++ [over.built]p4:
6592 //
6593 // For every pair (T, VQ), where T is an arithmetic type other
6594 // than bool, and VQ is either volatile or empty, there exist
6595 // candidate operator functions of the form
6596 //
6597 // VQ T& operator--(VQ T&);
6598 // T operator--(VQ T&, int);
addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op)6599 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6600 if (!HasArithmeticOrEnumeralCandidateType)
6601 return;
6602
6603 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6604 Arith < NumArithmeticTypes; ++Arith) {
6605 addPlusPlusMinusMinusStyleOverloads(
6606 getArithmeticType(Arith),
6607 VisibleTypeConversionsQuals.hasVolatile(),
6608 VisibleTypeConversionsQuals.hasRestrict());
6609 }
6610 }
6611
6612 // C++ [over.built]p5:
6613 //
6614 // For every pair (T, VQ), where T is a cv-qualified or
6615 // cv-unqualified object type, and VQ is either volatile or
6616 // empty, there exist candidate operator functions of the form
6617 //
6618 // T*VQ& operator++(T*VQ&);
6619 // T*VQ& operator--(T*VQ&);
6620 // T* operator++(T*VQ&, int);
6621 // T* operator--(T*VQ&, int);
addPlusPlusMinusMinusPointerOverloads()6622 void addPlusPlusMinusMinusPointerOverloads() {
6623 for (BuiltinCandidateTypeSet::iterator
6624 Ptr = CandidateTypes[0].pointer_begin(),
6625 PtrEnd = CandidateTypes[0].pointer_end();
6626 Ptr != PtrEnd; ++Ptr) {
6627 // Skip pointer types that aren't pointers to object types.
6628 if (!(*Ptr)->getPointeeType()->isObjectType())
6629 continue;
6630
6631 addPlusPlusMinusMinusStyleOverloads(*Ptr,
6632 (!(*Ptr).isVolatileQualified() &&
6633 VisibleTypeConversionsQuals.hasVolatile()),
6634 (!(*Ptr).isRestrictQualified() &&
6635 VisibleTypeConversionsQuals.hasRestrict()));
6636 }
6637 }
6638
6639 // C++ [over.built]p6:
6640 // For every cv-qualified or cv-unqualified object type T, there
6641 // exist candidate operator functions of the form
6642 //
6643 // T& operator*(T*);
6644 //
6645 // C++ [over.built]p7:
6646 // For every function type T that does not have cv-qualifiers or a
6647 // ref-qualifier, there exist candidate operator functions of the form
6648 // T& operator*(T*);
addUnaryStarPointerOverloads()6649 void addUnaryStarPointerOverloads() {
6650 for (BuiltinCandidateTypeSet::iterator
6651 Ptr = CandidateTypes[0].pointer_begin(),
6652 PtrEnd = CandidateTypes[0].pointer_end();
6653 Ptr != PtrEnd; ++Ptr) {
6654 QualType ParamTy = *Ptr;
6655 QualType PointeeTy = ParamTy->getPointeeType();
6656 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6657 continue;
6658
6659 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6660 if (Proto->getTypeQuals() || Proto->getRefQualifier())
6661 continue;
6662
6663 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6664 &ParamTy, Args, 1, CandidateSet);
6665 }
6666 }
6667
6668 // C++ [over.built]p9:
6669 // For every promoted arithmetic type T, there exist candidate
6670 // operator functions of the form
6671 //
6672 // T operator+(T);
6673 // T operator-(T);
addUnaryPlusOrMinusArithmeticOverloads()6674 void addUnaryPlusOrMinusArithmeticOverloads() {
6675 if (!HasArithmeticOrEnumeralCandidateType)
6676 return;
6677
6678 for (unsigned Arith = FirstPromotedArithmeticType;
6679 Arith < LastPromotedArithmeticType; ++Arith) {
6680 QualType ArithTy = getArithmeticType(Arith);
6681 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
6682 }
6683
6684 // Extension: We also add these operators for vector types.
6685 for (BuiltinCandidateTypeSet::iterator
6686 Vec = CandidateTypes[0].vector_begin(),
6687 VecEnd = CandidateTypes[0].vector_end();
6688 Vec != VecEnd; ++Vec) {
6689 QualType VecTy = *Vec;
6690 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6691 }
6692 }
6693
6694 // C++ [over.built]p8:
6695 // For every type T, there exist candidate operator functions of
6696 // the form
6697 //
6698 // T* operator+(T*);
addUnaryPlusPointerOverloads()6699 void addUnaryPlusPointerOverloads() {
6700 for (BuiltinCandidateTypeSet::iterator
6701 Ptr = CandidateTypes[0].pointer_begin(),
6702 PtrEnd = CandidateTypes[0].pointer_end();
6703 Ptr != PtrEnd; ++Ptr) {
6704 QualType ParamTy = *Ptr;
6705 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
6706 }
6707 }
6708
6709 // C++ [over.built]p10:
6710 // For every promoted integral type T, there exist candidate
6711 // operator functions of the form
6712 //
6713 // T operator~(T);
addUnaryTildePromotedIntegralOverloads()6714 void addUnaryTildePromotedIntegralOverloads() {
6715 if (!HasArithmeticOrEnumeralCandidateType)
6716 return;
6717
6718 for (unsigned Int = FirstPromotedIntegralType;
6719 Int < LastPromotedIntegralType; ++Int) {
6720 QualType IntTy = getArithmeticType(Int);
6721 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
6722 }
6723
6724 // Extension: We also add this operator for vector types.
6725 for (BuiltinCandidateTypeSet::iterator
6726 Vec = CandidateTypes[0].vector_begin(),
6727 VecEnd = CandidateTypes[0].vector_end();
6728 Vec != VecEnd; ++Vec) {
6729 QualType VecTy = *Vec;
6730 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6731 }
6732 }
6733
6734 // C++ [over.match.oper]p16:
6735 // For every pointer to member type T, there exist candidate operator
6736 // functions of the form
6737 //
6738 // bool operator==(T,T);
6739 // bool operator!=(T,T);
addEqualEqualOrNotEqualMemberPointerOverloads()6740 void addEqualEqualOrNotEqualMemberPointerOverloads() {
6741 /// Set of (canonical) types that we've already handled.
6742 llvm::SmallPtrSet<QualType, 8> AddedTypes;
6743
6744 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6745 for (BuiltinCandidateTypeSet::iterator
6746 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6747 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6748 MemPtr != MemPtrEnd;
6749 ++MemPtr) {
6750 // Don't add the same builtin candidate twice.
6751 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6752 continue;
6753
6754 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6755 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6756 CandidateSet);
6757 }
6758 }
6759 }
6760
6761 // C++ [over.built]p15:
6762 //
6763 // For every T, where T is an enumeration type, a pointer type, or
6764 // std::nullptr_t, there exist candidate operator functions of the form
6765 //
6766 // bool operator<(T, T);
6767 // bool operator>(T, T);
6768 // bool operator<=(T, T);
6769 // bool operator>=(T, T);
6770 // bool operator==(T, T);
6771 // bool operator!=(T, T);
addRelationalPointerOrEnumeralOverloads()6772 void addRelationalPointerOrEnumeralOverloads() {
6773 // C++ [over.built]p1:
6774 // If there is a user-written candidate with the same name and parameter
6775 // types as a built-in candidate operator function, the built-in operator
6776 // function is hidden and is not included in the set of candidate
6777 // functions.
6778 //
6779 // The text is actually in a note, but if we don't implement it then we end
6780 // up with ambiguities when the user provides an overloaded operator for
6781 // an enumeration type. Note that only enumeration types have this problem,
6782 // so we track which enumeration types we've seen operators for. Also, the
6783 // only other overloaded operator with enumeration argumenst, operator=,
6784 // cannot be overloaded for enumeration types, so this is the only place
6785 // where we must suppress candidates like this.
6786 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
6787 UserDefinedBinaryOperators;
6788
6789 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6790 if (CandidateTypes[ArgIdx].enumeration_begin() !=
6791 CandidateTypes[ArgIdx].enumeration_end()) {
6792 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
6793 CEnd = CandidateSet.end();
6794 C != CEnd; ++C) {
6795 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
6796 continue;
6797
6798 QualType FirstParamType =
6799 C->Function->getParamDecl(0)->getType().getUnqualifiedType();
6800 QualType SecondParamType =
6801 C->Function->getParamDecl(1)->getType().getUnqualifiedType();
6802
6803 // Skip if either parameter isn't of enumeral type.
6804 if (!FirstParamType->isEnumeralType() ||
6805 !SecondParamType->isEnumeralType())
6806 continue;
6807
6808 // Add this operator to the set of known user-defined operators.
6809 UserDefinedBinaryOperators.insert(
6810 std::make_pair(S.Context.getCanonicalType(FirstParamType),
6811 S.Context.getCanonicalType(SecondParamType)));
6812 }
6813 }
6814 }
6815
6816 /// Set of (canonical) types that we've already handled.
6817 llvm::SmallPtrSet<QualType, 8> AddedTypes;
6818
6819 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6820 for (BuiltinCandidateTypeSet::iterator
6821 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6822 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6823 Ptr != PtrEnd; ++Ptr) {
6824 // Don't add the same builtin candidate twice.
6825 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6826 continue;
6827
6828 QualType ParamTypes[2] = { *Ptr, *Ptr };
6829 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6830 CandidateSet);
6831 }
6832 for (BuiltinCandidateTypeSet::iterator
6833 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6834 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6835 Enum != EnumEnd; ++Enum) {
6836 CanQualType CanonType = S.Context.getCanonicalType(*Enum);
6837
6838 // Don't add the same builtin candidate twice, or if a user defined
6839 // candidate exists.
6840 if (!AddedTypes.insert(CanonType) ||
6841 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
6842 CanonType)))
6843 continue;
6844
6845 QualType ParamTypes[2] = { *Enum, *Enum };
6846 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6847 CandidateSet);
6848 }
6849
6850 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
6851 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
6852 if (AddedTypes.insert(NullPtrTy) &&
6853 !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
6854 NullPtrTy))) {
6855 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
6856 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6857 CandidateSet);
6858 }
6859 }
6860 }
6861 }
6862
6863 // C++ [over.built]p13:
6864 //
6865 // For every cv-qualified or cv-unqualified object type T
6866 // there exist candidate operator functions of the form
6867 //
6868 // T* operator+(T*, ptrdiff_t);
6869 // T& operator[](T*, ptrdiff_t); [BELOW]
6870 // T* operator-(T*, ptrdiff_t);
6871 // T* operator+(ptrdiff_t, T*);
6872 // T& operator[](ptrdiff_t, T*); [BELOW]
6873 //
6874 // C++ [over.built]p14:
6875 //
6876 // For every T, where T is a pointer to object type, there
6877 // exist candidate operator functions of the form
6878 //
6879 // ptrdiff_t operator-(T, T);
addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op)6880 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
6881 /// Set of (canonical) types that we've already handled.
6882 llvm::SmallPtrSet<QualType, 8> AddedTypes;
6883
6884 for (int Arg = 0; Arg < 2; ++Arg) {
6885 QualType AsymetricParamTypes[2] = {
6886 S.Context.getPointerDiffType(),
6887 S.Context.getPointerDiffType(),
6888 };
6889 for (BuiltinCandidateTypeSet::iterator
6890 Ptr = CandidateTypes[Arg].pointer_begin(),
6891 PtrEnd = CandidateTypes[Arg].pointer_end();
6892 Ptr != PtrEnd; ++Ptr) {
6893 QualType PointeeTy = (*Ptr)->getPointeeType();
6894 if (!PointeeTy->isObjectType())
6895 continue;
6896
6897 AsymetricParamTypes[Arg] = *Ptr;
6898 if (Arg == 0 || Op == OO_Plus) {
6899 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
6900 // T* operator+(ptrdiff_t, T*);
6901 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
6902 CandidateSet);
6903 }
6904 if (Op == OO_Minus) {
6905 // ptrdiff_t operator-(T, T);
6906 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6907 continue;
6908
6909 QualType ParamTypes[2] = { *Ptr, *Ptr };
6910 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
6911 Args, 2, CandidateSet);
6912 }
6913 }
6914 }
6915 }
6916
6917 // C++ [over.built]p12:
6918 //
6919 // For every pair of promoted arithmetic types L and R, there
6920 // exist candidate operator functions of the form
6921 //
6922 // LR operator*(L, R);
6923 // LR operator/(L, R);
6924 // LR operator+(L, R);
6925 // LR operator-(L, R);
6926 // bool operator<(L, R);
6927 // bool operator>(L, R);
6928 // bool operator<=(L, R);
6929 // bool operator>=(L, R);
6930 // bool operator==(L, R);
6931 // bool operator!=(L, R);
6932 //
6933 // where LR is the result of the usual arithmetic conversions
6934 // between types L and R.
6935 //
6936 // C++ [over.built]p24:
6937 //
6938 // For every pair of promoted arithmetic types L and R, there exist
6939 // candidate operator functions of the form
6940 //
6941 // LR operator?(bool, L, R);
6942 //
6943 // where LR is the result of the usual arithmetic conversions
6944 // between types L and R.
6945 // Our candidates ignore the first parameter.
addGenericBinaryArithmeticOverloads(bool isComparison)6946 void addGenericBinaryArithmeticOverloads(bool isComparison) {
6947 if (!HasArithmeticOrEnumeralCandidateType)
6948 return;
6949
6950 for (unsigned Left = FirstPromotedArithmeticType;
6951 Left < LastPromotedArithmeticType; ++Left) {
6952 for (unsigned Right = FirstPromotedArithmeticType;
6953 Right < LastPromotedArithmeticType; ++Right) {
6954 QualType LandR[2] = { getArithmeticType(Left),
6955 getArithmeticType(Right) };
6956 QualType Result =
6957 isComparison ? S.Context.BoolTy
6958 : getUsualArithmeticConversions(Left, Right);
6959 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6960 }
6961 }
6962
6963 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
6964 // conditional operator for vector types.
6965 for (BuiltinCandidateTypeSet::iterator
6966 Vec1 = CandidateTypes[0].vector_begin(),
6967 Vec1End = CandidateTypes[0].vector_end();
6968 Vec1 != Vec1End; ++Vec1) {
6969 for (BuiltinCandidateTypeSet::iterator
6970 Vec2 = CandidateTypes[1].vector_begin(),
6971 Vec2End = CandidateTypes[1].vector_end();
6972 Vec2 != Vec2End; ++Vec2) {
6973 QualType LandR[2] = { *Vec1, *Vec2 };
6974 QualType Result = S.Context.BoolTy;
6975 if (!isComparison) {
6976 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
6977 Result = *Vec1;
6978 else
6979 Result = *Vec2;
6980 }
6981
6982 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6983 }
6984 }
6985 }
6986
6987 // C++ [over.built]p17:
6988 //
6989 // For every pair of promoted integral types L and R, there
6990 // exist candidate operator functions of the form
6991 //
6992 // LR operator%(L, R);
6993 // LR operator&(L, R);
6994 // LR operator^(L, R);
6995 // LR operator|(L, R);
6996 // L operator<<(L, R);
6997 // L operator>>(L, R);
6998 //
6999 // where LR is the result of the usual arithmetic conversions
7000 // between types L and R.
addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op)7001 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7002 if (!HasArithmeticOrEnumeralCandidateType)
7003 return;
7004
7005 for (unsigned Left = FirstPromotedIntegralType;
7006 Left < LastPromotedIntegralType; ++Left) {
7007 for (unsigned Right = FirstPromotedIntegralType;
7008 Right < LastPromotedIntegralType; ++Right) {
7009 QualType LandR[2] = { getArithmeticType(Left),
7010 getArithmeticType(Right) };
7011 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7012 ? LandR[0]
7013 : getUsualArithmeticConversions(Left, Right);
7014 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
7015 }
7016 }
7017 }
7018
7019 // C++ [over.built]p20:
7020 //
7021 // For every pair (T, VQ), where T is an enumeration or
7022 // pointer to member type and VQ is either volatile or
7023 // empty, there exist candidate operator functions of the form
7024 //
7025 // VQ T& operator=(VQ T&, T);
addAssignmentMemberPointerOrEnumeralOverloads()7026 void addAssignmentMemberPointerOrEnumeralOverloads() {
7027 /// Set of (canonical) types that we've already handled.
7028 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7029
7030 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7031 for (BuiltinCandidateTypeSet::iterator
7032 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7033 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7034 Enum != EnumEnd; ++Enum) {
7035 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7036 continue;
7037
7038 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
7039 CandidateSet);
7040 }
7041
7042 for (BuiltinCandidateTypeSet::iterator
7043 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7044 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7045 MemPtr != MemPtrEnd; ++MemPtr) {
7046 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7047 continue;
7048
7049 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
7050 CandidateSet);
7051 }
7052 }
7053 }
7054
7055 // C++ [over.built]p19:
7056 //
7057 // For every pair (T, VQ), where T is any type and VQ is either
7058 // volatile or empty, there exist candidate operator functions
7059 // of the form
7060 //
7061 // T*VQ& operator=(T*VQ&, T*);
7062 //
7063 // C++ [over.built]p21:
7064 //
7065 // For every pair (T, VQ), where T is a cv-qualified or
7066 // cv-unqualified object type and VQ is either volatile or
7067 // empty, there exist candidate operator functions of the form
7068 //
7069 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
7070 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
addAssignmentPointerOverloads(bool isEqualOp)7071 void addAssignmentPointerOverloads(bool isEqualOp) {
7072 /// Set of (canonical) types that we've already handled.
7073 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7074
7075 for (BuiltinCandidateTypeSet::iterator
7076 Ptr = CandidateTypes[0].pointer_begin(),
7077 PtrEnd = CandidateTypes[0].pointer_end();
7078 Ptr != PtrEnd; ++Ptr) {
7079 // If this is operator=, keep track of the builtin candidates we added.
7080 if (isEqualOp)
7081 AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7082 else if (!(*Ptr)->getPointeeType()->isObjectType())
7083 continue;
7084
7085 // non-volatile version
7086 QualType ParamTypes[2] = {
7087 S.Context.getLValueReferenceType(*Ptr),
7088 isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7089 };
7090 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7091 /*IsAssigmentOperator=*/ isEqualOp);
7092
7093 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7094 VisibleTypeConversionsQuals.hasVolatile();
7095 if (NeedVolatile) {
7096 // volatile version
7097 ParamTypes[0] =
7098 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7099 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7100 /*IsAssigmentOperator=*/isEqualOp);
7101 }
7102
7103 if (!(*Ptr).isRestrictQualified() &&
7104 VisibleTypeConversionsQuals.hasRestrict()) {
7105 // restrict version
7106 ParamTypes[0]
7107 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7108 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7109 /*IsAssigmentOperator=*/isEqualOp);
7110
7111 if (NeedVolatile) {
7112 // volatile restrict version
7113 ParamTypes[0]
7114 = S.Context.getLValueReferenceType(
7115 S.Context.getCVRQualifiedType(*Ptr,
7116 (Qualifiers::Volatile |
7117 Qualifiers::Restrict)));
7118 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7119 CandidateSet,
7120 /*IsAssigmentOperator=*/isEqualOp);
7121 }
7122 }
7123 }
7124
7125 if (isEqualOp) {
7126 for (BuiltinCandidateTypeSet::iterator
7127 Ptr = CandidateTypes[1].pointer_begin(),
7128 PtrEnd = CandidateTypes[1].pointer_end();
7129 Ptr != PtrEnd; ++Ptr) {
7130 // Make sure we don't add the same candidate twice.
7131 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7132 continue;
7133
7134 QualType ParamTypes[2] = {
7135 S.Context.getLValueReferenceType(*Ptr),
7136 *Ptr,
7137 };
7138
7139 // non-volatile version
7140 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7141 /*IsAssigmentOperator=*/true);
7142
7143 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7144 VisibleTypeConversionsQuals.hasVolatile();
7145 if (NeedVolatile) {
7146 // volatile version
7147 ParamTypes[0] =
7148 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7149 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7150 CandidateSet, /*IsAssigmentOperator=*/true);
7151 }
7152
7153 if (!(*Ptr).isRestrictQualified() &&
7154 VisibleTypeConversionsQuals.hasRestrict()) {
7155 // restrict version
7156 ParamTypes[0]
7157 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7158 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7159 CandidateSet, /*IsAssigmentOperator=*/true);
7160
7161 if (NeedVolatile) {
7162 // volatile restrict version
7163 ParamTypes[0]
7164 = S.Context.getLValueReferenceType(
7165 S.Context.getCVRQualifiedType(*Ptr,
7166 (Qualifiers::Volatile |
7167 Qualifiers::Restrict)));
7168 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7169 CandidateSet, /*IsAssigmentOperator=*/true);
7170
7171 }
7172 }
7173 }
7174 }
7175 }
7176
7177 // C++ [over.built]p18:
7178 //
7179 // For every triple (L, VQ, R), where L is an arithmetic type,
7180 // VQ is either volatile or empty, and R is a promoted
7181 // arithmetic type, there exist candidate operator functions of
7182 // the form
7183 //
7184 // VQ L& operator=(VQ L&, R);
7185 // VQ L& operator*=(VQ L&, R);
7186 // VQ L& operator/=(VQ L&, R);
7187 // VQ L& operator+=(VQ L&, R);
7188 // VQ L& operator-=(VQ L&, R);
addAssignmentArithmeticOverloads(bool isEqualOp)7189 void addAssignmentArithmeticOverloads(bool isEqualOp) {
7190 if (!HasArithmeticOrEnumeralCandidateType)
7191 return;
7192
7193 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7194 for (unsigned Right = FirstPromotedArithmeticType;
7195 Right < LastPromotedArithmeticType; ++Right) {
7196 QualType ParamTypes[2];
7197 ParamTypes[1] = getArithmeticType(Right);
7198
7199 // Add this built-in operator as a candidate (VQ is empty).
7200 ParamTypes[0] =
7201 S.Context.getLValueReferenceType(getArithmeticType(Left));
7202 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7203 /*IsAssigmentOperator=*/isEqualOp);
7204
7205 // Add this built-in operator as a candidate (VQ is 'volatile').
7206 if (VisibleTypeConversionsQuals.hasVolatile()) {
7207 ParamTypes[0] =
7208 S.Context.getVolatileType(getArithmeticType(Left));
7209 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7210 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7211 CandidateSet,
7212 /*IsAssigmentOperator=*/isEqualOp);
7213 }
7214 }
7215 }
7216
7217 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7218 for (BuiltinCandidateTypeSet::iterator
7219 Vec1 = CandidateTypes[0].vector_begin(),
7220 Vec1End = CandidateTypes[0].vector_end();
7221 Vec1 != Vec1End; ++Vec1) {
7222 for (BuiltinCandidateTypeSet::iterator
7223 Vec2 = CandidateTypes[1].vector_begin(),
7224 Vec2End = CandidateTypes[1].vector_end();
7225 Vec2 != Vec2End; ++Vec2) {
7226 QualType ParamTypes[2];
7227 ParamTypes[1] = *Vec2;
7228 // Add this built-in operator as a candidate (VQ is empty).
7229 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7230 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7231 /*IsAssigmentOperator=*/isEqualOp);
7232
7233 // Add this built-in operator as a candidate (VQ is 'volatile').
7234 if (VisibleTypeConversionsQuals.hasVolatile()) {
7235 ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7236 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7237 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7238 CandidateSet,
7239 /*IsAssigmentOperator=*/isEqualOp);
7240 }
7241 }
7242 }
7243 }
7244
7245 // C++ [over.built]p22:
7246 //
7247 // For every triple (L, VQ, R), where L is an integral type, VQ
7248 // is either volatile or empty, and R is a promoted integral
7249 // type, there exist candidate operator functions of the form
7250 //
7251 // VQ L& operator%=(VQ L&, R);
7252 // VQ L& operator<<=(VQ L&, R);
7253 // VQ L& operator>>=(VQ L&, R);
7254 // VQ L& operator&=(VQ L&, R);
7255 // VQ L& operator^=(VQ L&, R);
7256 // VQ L& operator|=(VQ L&, R);
addAssignmentIntegralOverloads()7257 void addAssignmentIntegralOverloads() {
7258 if (!HasArithmeticOrEnumeralCandidateType)
7259 return;
7260
7261 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7262 for (unsigned Right = FirstPromotedIntegralType;
7263 Right < LastPromotedIntegralType; ++Right) {
7264 QualType ParamTypes[2];
7265 ParamTypes[1] = getArithmeticType(Right);
7266
7267 // Add this built-in operator as a candidate (VQ is empty).
7268 ParamTypes[0] =
7269 S.Context.getLValueReferenceType(getArithmeticType(Left));
7270 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
7271 if (VisibleTypeConversionsQuals.hasVolatile()) {
7272 // Add this built-in operator as a candidate (VQ is 'volatile').
7273 ParamTypes[0] = getArithmeticType(Left);
7274 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7275 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7276 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7277 CandidateSet);
7278 }
7279 }
7280 }
7281 }
7282
7283 // C++ [over.operator]p23:
7284 //
7285 // There also exist candidate operator functions of the form
7286 //
7287 // bool operator!(bool);
7288 // bool operator&&(bool, bool);
7289 // bool operator||(bool, bool);
addExclaimOverload()7290 void addExclaimOverload() {
7291 QualType ParamTy = S.Context.BoolTy;
7292 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
7293 /*IsAssignmentOperator=*/false,
7294 /*NumContextualBoolArguments=*/1);
7295 }
addAmpAmpOrPipePipeOverload()7296 void addAmpAmpOrPipePipeOverload() {
7297 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7298 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
7299 /*IsAssignmentOperator=*/false,
7300 /*NumContextualBoolArguments=*/2);
7301 }
7302
7303 // C++ [over.built]p13:
7304 //
7305 // For every cv-qualified or cv-unqualified object type T there
7306 // exist candidate operator functions of the form
7307 //
7308 // T* operator+(T*, ptrdiff_t); [ABOVE]
7309 // T& operator[](T*, ptrdiff_t);
7310 // T* operator-(T*, ptrdiff_t); [ABOVE]
7311 // T* operator+(ptrdiff_t, T*); [ABOVE]
7312 // T& operator[](ptrdiff_t, T*);
addSubscriptOverloads()7313 void addSubscriptOverloads() {
7314 for (BuiltinCandidateTypeSet::iterator
7315 Ptr = CandidateTypes[0].pointer_begin(),
7316 PtrEnd = CandidateTypes[0].pointer_end();
7317 Ptr != PtrEnd; ++Ptr) {
7318 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7319 QualType PointeeType = (*Ptr)->getPointeeType();
7320 if (!PointeeType->isObjectType())
7321 continue;
7322
7323 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7324
7325 // T& operator[](T*, ptrdiff_t)
7326 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7327 }
7328
7329 for (BuiltinCandidateTypeSet::iterator
7330 Ptr = CandidateTypes[1].pointer_begin(),
7331 PtrEnd = CandidateTypes[1].pointer_end();
7332 Ptr != PtrEnd; ++Ptr) {
7333 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7334 QualType PointeeType = (*Ptr)->getPointeeType();
7335 if (!PointeeType->isObjectType())
7336 continue;
7337
7338 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7339
7340 // T& operator[](ptrdiff_t, T*)
7341 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7342 }
7343 }
7344
7345 // C++ [over.built]p11:
7346 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7347 // C1 is the same type as C2 or is a derived class of C2, T is an object
7348 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7349 // there exist candidate operator functions of the form
7350 //
7351 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7352 //
7353 // where CV12 is the union of CV1 and CV2.
addArrowStarOverloads()7354 void addArrowStarOverloads() {
7355 for (BuiltinCandidateTypeSet::iterator
7356 Ptr = CandidateTypes[0].pointer_begin(),
7357 PtrEnd = CandidateTypes[0].pointer_end();
7358 Ptr != PtrEnd; ++Ptr) {
7359 QualType C1Ty = (*Ptr);
7360 QualType C1;
7361 QualifierCollector Q1;
7362 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7363 if (!isa<RecordType>(C1))
7364 continue;
7365 // heuristic to reduce number of builtin candidates in the set.
7366 // Add volatile/restrict version only if there are conversions to a
7367 // volatile/restrict type.
7368 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7369 continue;
7370 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7371 continue;
7372 for (BuiltinCandidateTypeSet::iterator
7373 MemPtr = CandidateTypes[1].member_pointer_begin(),
7374 MemPtrEnd = CandidateTypes[1].member_pointer_end();
7375 MemPtr != MemPtrEnd; ++MemPtr) {
7376 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7377 QualType C2 = QualType(mptr->getClass(), 0);
7378 C2 = C2.getUnqualifiedType();
7379 if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7380 break;
7381 QualType ParamTypes[2] = { *Ptr, *MemPtr };
7382 // build CV12 T&
7383 QualType T = mptr->getPointeeType();
7384 if (!VisibleTypeConversionsQuals.hasVolatile() &&
7385 T.isVolatileQualified())
7386 continue;
7387 if (!VisibleTypeConversionsQuals.hasRestrict() &&
7388 T.isRestrictQualified())
7389 continue;
7390 T = Q1.apply(S.Context, T);
7391 QualType ResultTy = S.Context.getLValueReferenceType(T);
7392 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7393 }
7394 }
7395 }
7396
7397 // Note that we don't consider the first argument, since it has been
7398 // contextually converted to bool long ago. The candidates below are
7399 // therefore added as binary.
7400 //
7401 // C++ [over.built]p25:
7402 // For every type T, where T is a pointer, pointer-to-member, or scoped
7403 // enumeration type, there exist candidate operator functions of the form
7404 //
7405 // T operator?(bool, T, T);
7406 //
addConditionalOperatorOverloads()7407 void addConditionalOperatorOverloads() {
7408 /// Set of (canonical) types that we've already handled.
7409 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7410
7411 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7412 for (BuiltinCandidateTypeSet::iterator
7413 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7414 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7415 Ptr != PtrEnd; ++Ptr) {
7416 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7417 continue;
7418
7419 QualType ParamTypes[2] = { *Ptr, *Ptr };
7420 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
7421 }
7422
7423 for (BuiltinCandidateTypeSet::iterator
7424 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7425 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7426 MemPtr != MemPtrEnd; ++MemPtr) {
7427 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7428 continue;
7429
7430 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7431 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
7432 }
7433
7434 if (S.getLangOpts().CPlusPlus0x) {
7435 for (BuiltinCandidateTypeSet::iterator
7436 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7437 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7438 Enum != EnumEnd; ++Enum) {
7439 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7440 continue;
7441
7442 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7443 continue;
7444
7445 QualType ParamTypes[2] = { *Enum, *Enum };
7446 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
7447 }
7448 }
7449 }
7450 }
7451 };
7452
7453 } // end anonymous namespace
7454
7455 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
7456 /// operator overloads to the candidate set (C++ [over.built]), based
7457 /// on the operator @p Op and the arguments given. For example, if the
7458 /// operator is a binary '+', this routine might add "int
7459 /// operator+(int, int)" to cover integer addition.
7460 void
AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet)7461 Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7462 SourceLocation OpLoc,
7463 Expr **Args, unsigned NumArgs,
7464 OverloadCandidateSet& CandidateSet) {
7465 // Find all of the types that the arguments can convert to, but only
7466 // if the operator we're looking at has built-in operator candidates
7467 // that make use of these types. Also record whether we encounter non-record
7468 // candidate types or either arithmetic or enumeral candidate types.
7469 Qualifiers VisibleTypeConversionsQuals;
7470 VisibleTypeConversionsQuals.addConst();
7471 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7472 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7473
7474 bool HasNonRecordCandidateType = false;
7475 bool HasArithmeticOrEnumeralCandidateType = false;
7476 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7477 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
7478 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7479 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7480 OpLoc,
7481 true,
7482 (Op == OO_Exclaim ||
7483 Op == OO_AmpAmp ||
7484 Op == OO_PipePipe),
7485 VisibleTypeConversionsQuals);
7486 HasNonRecordCandidateType = HasNonRecordCandidateType ||
7487 CandidateTypes[ArgIdx].hasNonRecordTypes();
7488 HasArithmeticOrEnumeralCandidateType =
7489 HasArithmeticOrEnumeralCandidateType ||
7490 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7491 }
7492
7493 // Exit early when no non-record types have been added to the candidate set
7494 // for any of the arguments to the operator.
7495 //
7496 // We can't exit early for !, ||, or &&, since there we have always have
7497 // 'bool' overloads.
7498 if (!HasNonRecordCandidateType &&
7499 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7500 return;
7501
7502 // Setup an object to manage the common state for building overloads.
7503 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
7504 VisibleTypeConversionsQuals,
7505 HasArithmeticOrEnumeralCandidateType,
7506 CandidateTypes, CandidateSet);
7507
7508 // Dispatch over the operation to add in only those overloads which apply.
7509 switch (Op) {
7510 case OO_None:
7511 case NUM_OVERLOADED_OPERATORS:
7512 llvm_unreachable("Expected an overloaded operator");
7513
7514 case OO_New:
7515 case OO_Delete:
7516 case OO_Array_New:
7517 case OO_Array_Delete:
7518 case OO_Call:
7519 llvm_unreachable(
7520 "Special operators don't use AddBuiltinOperatorCandidates");
7521
7522 case OO_Comma:
7523 case OO_Arrow:
7524 // C++ [over.match.oper]p3:
7525 // -- For the operator ',', the unary operator '&', or the
7526 // operator '->', the built-in candidates set is empty.
7527 break;
7528
7529 case OO_Plus: // '+' is either unary or binary
7530 if (NumArgs == 1)
7531 OpBuilder.addUnaryPlusPointerOverloads();
7532 // Fall through.
7533
7534 case OO_Minus: // '-' is either unary or binary
7535 if (NumArgs == 1) {
7536 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7537 } else {
7538 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7539 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7540 }
7541 break;
7542
7543 case OO_Star: // '*' is either unary or binary
7544 if (NumArgs == 1)
7545 OpBuilder.addUnaryStarPointerOverloads();
7546 else
7547 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7548 break;
7549
7550 case OO_Slash:
7551 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7552 break;
7553
7554 case OO_PlusPlus:
7555 case OO_MinusMinus:
7556 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7557 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7558 break;
7559
7560 case OO_EqualEqual:
7561 case OO_ExclaimEqual:
7562 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7563 // Fall through.
7564
7565 case OO_Less:
7566 case OO_Greater:
7567 case OO_LessEqual:
7568 case OO_GreaterEqual:
7569 OpBuilder.addRelationalPointerOrEnumeralOverloads();
7570 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7571 break;
7572
7573 case OO_Percent:
7574 case OO_Caret:
7575 case OO_Pipe:
7576 case OO_LessLess:
7577 case OO_GreaterGreater:
7578 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7579 break;
7580
7581 case OO_Amp: // '&' is either unary or binary
7582 if (NumArgs == 1)
7583 // C++ [over.match.oper]p3:
7584 // -- For the operator ',', the unary operator '&', or the
7585 // operator '->', the built-in candidates set is empty.
7586 break;
7587
7588 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7589 break;
7590
7591 case OO_Tilde:
7592 OpBuilder.addUnaryTildePromotedIntegralOverloads();
7593 break;
7594
7595 case OO_Equal:
7596 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7597 // Fall through.
7598
7599 case OO_PlusEqual:
7600 case OO_MinusEqual:
7601 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7602 // Fall through.
7603
7604 case OO_StarEqual:
7605 case OO_SlashEqual:
7606 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7607 break;
7608
7609 case OO_PercentEqual:
7610 case OO_LessLessEqual:
7611 case OO_GreaterGreaterEqual:
7612 case OO_AmpEqual:
7613 case OO_CaretEqual:
7614 case OO_PipeEqual:
7615 OpBuilder.addAssignmentIntegralOverloads();
7616 break;
7617
7618 case OO_Exclaim:
7619 OpBuilder.addExclaimOverload();
7620 break;
7621
7622 case OO_AmpAmp:
7623 case OO_PipePipe:
7624 OpBuilder.addAmpAmpOrPipePipeOverload();
7625 break;
7626
7627 case OO_Subscript:
7628 OpBuilder.addSubscriptOverloads();
7629 break;
7630
7631 case OO_ArrowStar:
7632 OpBuilder.addArrowStarOverloads();
7633 break;
7634
7635 case OO_Conditional:
7636 OpBuilder.addConditionalOperatorOverloads();
7637 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7638 break;
7639 }
7640 }
7641
7642 /// \brief Add function candidates found via argument-dependent lookup
7643 /// to the set of overloading candidates.
7644 ///
7645 /// This routine performs argument-dependent name lookup based on the
7646 /// given function name (which may also be an operator name) and adds
7647 /// all of the overload candidates found by ADL to the overload
7648 /// candidate set (C++ [basic.lookup.argdep]).
7649 void
AddArgumentDependentLookupCandidates(DeclarationName Name,bool Operator,SourceLocation Loc,llvm::ArrayRef<Expr * > Args,TemplateArgumentListInfo * ExplicitTemplateArgs,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool StdNamespaceIsAssociated)7650 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7651 bool Operator, SourceLocation Loc,
7652 llvm::ArrayRef<Expr *> Args,
7653 TemplateArgumentListInfo *ExplicitTemplateArgs,
7654 OverloadCandidateSet& CandidateSet,
7655 bool PartialOverloading,
7656 bool StdNamespaceIsAssociated) {
7657 ADLResult Fns;
7658
7659 // FIXME: This approach for uniquing ADL results (and removing
7660 // redundant candidates from the set) relies on pointer-equality,
7661 // which means we need to key off the canonical decl. However,
7662 // always going back to the canonical decl might not get us the
7663 // right set of default arguments. What default arguments are
7664 // we supposed to consider on ADL candidates, anyway?
7665
7666 // FIXME: Pass in the explicit template arguments?
7667 ArgumentDependentLookup(Name, Operator, Loc, Args, Fns,
7668 StdNamespaceIsAssociated);
7669
7670 // Erase all of the candidates we already knew about.
7671 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7672 CandEnd = CandidateSet.end();
7673 Cand != CandEnd; ++Cand)
7674 if (Cand->Function) {
7675 Fns.erase(Cand->Function);
7676 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7677 Fns.erase(FunTmpl);
7678 }
7679
7680 // For each of the ADL candidates we found, add it to the overload
7681 // set.
7682 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7683 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7684 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7685 if (ExplicitTemplateArgs)
7686 continue;
7687
7688 AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
7689 PartialOverloading);
7690 } else
7691 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7692 FoundDecl, ExplicitTemplateArgs,
7693 Args, CandidateSet);
7694 }
7695 }
7696
7697 /// isBetterOverloadCandidate - Determines whether the first overload
7698 /// candidate is a better candidate than the second (C++ 13.3.3p1).
7699 bool
isBetterOverloadCandidate(Sema & S,const OverloadCandidate & Cand1,const OverloadCandidate & Cand2,SourceLocation Loc,bool UserDefinedConversion)7700 isBetterOverloadCandidate(Sema &S,
7701 const OverloadCandidate &Cand1,
7702 const OverloadCandidate &Cand2,
7703 SourceLocation Loc,
7704 bool UserDefinedConversion) {
7705 // Define viable functions to be better candidates than non-viable
7706 // functions.
7707 if (!Cand2.Viable)
7708 return Cand1.Viable;
7709 else if (!Cand1.Viable)
7710 return false;
7711
7712 // C++ [over.match.best]p1:
7713 //
7714 // -- if F is a static member function, ICS1(F) is defined such
7715 // that ICS1(F) is neither better nor worse than ICS1(G) for
7716 // any function G, and, symmetrically, ICS1(G) is neither
7717 // better nor worse than ICS1(F).
7718 unsigned StartArg = 0;
7719 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7720 StartArg = 1;
7721
7722 // C++ [over.match.best]p1:
7723 // A viable function F1 is defined to be a better function than another
7724 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
7725 // conversion sequence than ICSi(F2), and then...
7726 unsigned NumArgs = Cand1.NumConversions;
7727 assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7728 bool HasBetterConversion = false;
7729 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7730 switch (CompareImplicitConversionSequences(S,
7731 Cand1.Conversions[ArgIdx],
7732 Cand2.Conversions[ArgIdx])) {
7733 case ImplicitConversionSequence::Better:
7734 // Cand1 has a better conversion sequence.
7735 HasBetterConversion = true;
7736 break;
7737
7738 case ImplicitConversionSequence::Worse:
7739 // Cand1 can't be better than Cand2.
7740 return false;
7741
7742 case ImplicitConversionSequence::Indistinguishable:
7743 // Do nothing.
7744 break;
7745 }
7746 }
7747
7748 // -- for some argument j, ICSj(F1) is a better conversion sequence than
7749 // ICSj(F2), or, if not that,
7750 if (HasBetterConversion)
7751 return true;
7752
7753 // - F1 is a non-template function and F2 is a function template
7754 // specialization, or, if not that,
7755 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7756 Cand2.Function && Cand2.Function->getPrimaryTemplate())
7757 return true;
7758
7759 // -- F1 and F2 are function template specializations, and the function
7760 // template for F1 is more specialized than the template for F2
7761 // according to the partial ordering rules described in 14.5.5.2, or,
7762 // if not that,
7763 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7764 Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7765 if (FunctionTemplateDecl *BetterTemplate
7766 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7767 Cand2.Function->getPrimaryTemplate(),
7768 Loc,
7769 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7770 : TPOC_Call,
7771 Cand1.ExplicitCallArguments))
7772 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7773 }
7774
7775 // -- the context is an initialization by user-defined conversion
7776 // (see 8.5, 13.3.1.5) and the standard conversion sequence
7777 // from the return type of F1 to the destination type (i.e.,
7778 // the type of the entity being initialized) is a better
7779 // conversion sequence than the standard conversion sequence
7780 // from the return type of F2 to the destination type.
7781 if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7782 isa<CXXConversionDecl>(Cand1.Function) &&
7783 isa<CXXConversionDecl>(Cand2.Function)) {
7784 // First check whether we prefer one of the conversion functions over the
7785 // other. This only distinguishes the results in non-standard, extension
7786 // cases such as the conversion from a lambda closure type to a function
7787 // pointer or block.
7788 ImplicitConversionSequence::CompareKind FuncResult
7789 = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
7790 if (FuncResult != ImplicitConversionSequence::Indistinguishable)
7791 return FuncResult;
7792
7793 switch (CompareStandardConversionSequences(S,
7794 Cand1.FinalConversion,
7795 Cand2.FinalConversion)) {
7796 case ImplicitConversionSequence::Better:
7797 // Cand1 has a better conversion sequence.
7798 return true;
7799
7800 case ImplicitConversionSequence::Worse:
7801 // Cand1 can't be better than Cand2.
7802 return false;
7803
7804 case ImplicitConversionSequence::Indistinguishable:
7805 // Do nothing
7806 break;
7807 }
7808 }
7809
7810 return false;
7811 }
7812
7813 /// \brief Computes the best viable function (C++ 13.3.3)
7814 /// within an overload candidate set.
7815 ///
7816 /// \param Loc The location of the function name (or operator symbol) for
7817 /// which overload resolution occurs.
7818 ///
7819 /// \param Best If overload resolution was successful or found a deleted
7820 /// function, \p Best points to the candidate function found.
7821 ///
7822 /// \returns The result of overload resolution.
7823 OverloadingResult
BestViableFunction(Sema & S,SourceLocation Loc,iterator & Best,bool UserDefinedConversion)7824 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
7825 iterator &Best,
7826 bool UserDefinedConversion) {
7827 // Find the best viable function.
7828 Best = end();
7829 for (iterator Cand = begin(); Cand != end(); ++Cand) {
7830 if (Cand->Viable)
7831 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
7832 UserDefinedConversion))
7833 Best = Cand;
7834 }
7835
7836 // If we didn't find any viable functions, abort.
7837 if (Best == end())
7838 return OR_No_Viable_Function;
7839
7840 // Make sure that this function is better than every other viable
7841 // function. If not, we have an ambiguity.
7842 for (iterator Cand = begin(); Cand != end(); ++Cand) {
7843 if (Cand->Viable &&
7844 Cand != Best &&
7845 !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
7846 UserDefinedConversion)) {
7847 Best = end();
7848 return OR_Ambiguous;
7849 }
7850 }
7851
7852 // Best is the best viable function.
7853 if (Best->Function &&
7854 (Best->Function->isDeleted() ||
7855 S.isFunctionConsideredUnavailable(Best->Function)))
7856 return OR_Deleted;
7857
7858 return OR_Success;
7859 }
7860
7861 namespace {
7862
7863 enum OverloadCandidateKind {
7864 oc_function,
7865 oc_method,
7866 oc_constructor,
7867 oc_function_template,
7868 oc_method_template,
7869 oc_constructor_template,
7870 oc_implicit_default_constructor,
7871 oc_implicit_copy_constructor,
7872 oc_implicit_move_constructor,
7873 oc_implicit_copy_assignment,
7874 oc_implicit_move_assignment,
7875 oc_implicit_inherited_constructor
7876 };
7877
ClassifyOverloadCandidate(Sema & S,FunctionDecl * Fn,std::string & Description)7878 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
7879 FunctionDecl *Fn,
7880 std::string &Description) {
7881 bool isTemplate = false;
7882
7883 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
7884 isTemplate = true;
7885 Description = S.getTemplateArgumentBindingsText(
7886 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
7887 }
7888
7889 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
7890 if (!Ctor->isImplicit())
7891 return isTemplate ? oc_constructor_template : oc_constructor;
7892
7893 if (Ctor->getInheritedConstructor())
7894 return oc_implicit_inherited_constructor;
7895
7896 if (Ctor->isDefaultConstructor())
7897 return oc_implicit_default_constructor;
7898
7899 if (Ctor->isMoveConstructor())
7900 return oc_implicit_move_constructor;
7901
7902 assert(Ctor->isCopyConstructor() &&
7903 "unexpected sort of implicit constructor");
7904 return oc_implicit_copy_constructor;
7905 }
7906
7907 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
7908 // This actually gets spelled 'candidate function' for now, but
7909 // it doesn't hurt to split it out.
7910 if (!Meth->isImplicit())
7911 return isTemplate ? oc_method_template : oc_method;
7912
7913 if (Meth->isMoveAssignmentOperator())
7914 return oc_implicit_move_assignment;
7915
7916 if (Meth->isCopyAssignmentOperator())
7917 return oc_implicit_copy_assignment;
7918
7919 assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
7920 return oc_method;
7921 }
7922
7923 return isTemplate ? oc_function_template : oc_function;
7924 }
7925
MaybeEmitInheritedConstructorNote(Sema & S,FunctionDecl * Fn)7926 void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
7927 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
7928 if (!Ctor) return;
7929
7930 Ctor = Ctor->getInheritedConstructor();
7931 if (!Ctor) return;
7932
7933 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
7934 }
7935
7936 } // end anonymous namespace
7937
7938 // Notes the location of an overload candidate.
NoteOverloadCandidate(FunctionDecl * Fn,QualType DestType)7939 void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
7940 std::string FnDesc;
7941 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
7942 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
7943 << (unsigned) K << FnDesc;
7944 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
7945 Diag(Fn->getLocation(), PD);
7946 MaybeEmitInheritedConstructorNote(*this, Fn);
7947 }
7948
7949 //Notes the location of all overload candidates designated through
7950 // OverloadedExpr
NoteAllOverloadCandidates(Expr * OverloadedExpr,QualType DestType)7951 void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
7952 assert(OverloadedExpr->getType() == Context.OverloadTy);
7953
7954 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
7955 OverloadExpr *OvlExpr = Ovl.Expression;
7956
7957 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7958 IEnd = OvlExpr->decls_end();
7959 I != IEnd; ++I) {
7960 if (FunctionTemplateDecl *FunTmpl =
7961 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
7962 NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
7963 } else if (FunctionDecl *Fun
7964 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
7965 NoteOverloadCandidate(Fun, DestType);
7966 }
7967 }
7968 }
7969
7970 /// Diagnoses an ambiguous conversion. The partial diagnostic is the
7971 /// "lead" diagnostic; it will be given two arguments, the source and
7972 /// target types of the conversion.
DiagnoseAmbiguousConversion(Sema & S,SourceLocation CaretLoc,const PartialDiagnostic & PDiag) const7973 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
7974 Sema &S,
7975 SourceLocation CaretLoc,
7976 const PartialDiagnostic &PDiag) const {
7977 S.Diag(CaretLoc, PDiag)
7978 << Ambiguous.getFromType() << Ambiguous.getToType();
7979 for (AmbiguousConversionSequence::const_iterator
7980 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
7981 S.NoteOverloadCandidate(*I);
7982 }
7983 }
7984
7985 namespace {
7986
DiagnoseBadConversion(Sema & S,OverloadCandidate * Cand,unsigned I)7987 void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
7988 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
7989 assert(Conv.isBad());
7990 assert(Cand->Function && "for now, candidate must be a function");
7991 FunctionDecl *Fn = Cand->Function;
7992
7993 // There's a conversion slot for the object argument if this is a
7994 // non-constructor method. Note that 'I' corresponds the
7995 // conversion-slot index.
7996 bool isObjectArgument = false;
7997 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
7998 if (I == 0)
7999 isObjectArgument = true;
8000 else
8001 I--;
8002 }
8003
8004 std::string FnDesc;
8005 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8006
8007 Expr *FromExpr = Conv.Bad.FromExpr;
8008 QualType FromTy = Conv.Bad.getFromType();
8009 QualType ToTy = Conv.Bad.getToType();
8010
8011 if (FromTy == S.Context.OverloadTy) {
8012 assert(FromExpr && "overload set argument came from implicit argument?");
8013 Expr *E = FromExpr->IgnoreParens();
8014 if (isa<UnaryOperator>(E))
8015 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8016 DeclarationName Name = cast<OverloadExpr>(E)->getName();
8017
8018 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8019 << (unsigned) FnKind << FnDesc
8020 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8021 << ToTy << Name << I+1;
8022 MaybeEmitInheritedConstructorNote(S, Fn);
8023 return;
8024 }
8025
8026 // Do some hand-waving analysis to see if the non-viability is due
8027 // to a qualifier mismatch.
8028 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8029 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8030 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8031 CToTy = RT->getPointeeType();
8032 else {
8033 // TODO: detect and diagnose the full richness of const mismatches.
8034 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8035 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8036 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8037 }
8038
8039 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8040 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8041 Qualifiers FromQs = CFromTy.getQualifiers();
8042 Qualifiers ToQs = CToTy.getQualifiers();
8043
8044 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
8045 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
8046 << (unsigned) FnKind << FnDesc
8047 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8048 << FromTy
8049 << FromQs.getAddressSpace() << ToQs.getAddressSpace()
8050 << (unsigned) isObjectArgument << I+1;
8051 MaybeEmitInheritedConstructorNote(S, Fn);
8052 return;
8053 }
8054
8055 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8056 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
8057 << (unsigned) FnKind << FnDesc
8058 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8059 << FromTy
8060 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
8061 << (unsigned) isObjectArgument << I+1;
8062 MaybeEmitInheritedConstructorNote(S, Fn);
8063 return;
8064 }
8065
8066 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
8067 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
8068 << (unsigned) FnKind << FnDesc
8069 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8070 << FromTy
8071 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
8072 << (unsigned) isObjectArgument << I+1;
8073 MaybeEmitInheritedConstructorNote(S, Fn);
8074 return;
8075 }
8076
8077 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
8078 assert(CVR && "unexpected qualifiers mismatch");
8079
8080 if (isObjectArgument) {
8081 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
8082 << (unsigned) FnKind << FnDesc
8083 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8084 << FromTy << (CVR - 1);
8085 } else {
8086 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
8087 << (unsigned) FnKind << FnDesc
8088 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8089 << FromTy << (CVR - 1) << I+1;
8090 }
8091 MaybeEmitInheritedConstructorNote(S, Fn);
8092 return;
8093 }
8094
8095 // Special diagnostic for failure to convert an initializer list, since
8096 // telling the user that it has type void is not useful.
8097 if (FromExpr && isa<InitListExpr>(FromExpr)) {
8098 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
8099 << (unsigned) FnKind << FnDesc
8100 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8101 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8102 MaybeEmitInheritedConstructorNote(S, Fn);
8103 return;
8104 }
8105
8106 // Diagnose references or pointers to incomplete types differently,
8107 // since it's far from impossible that the incompleteness triggered
8108 // the failure.
8109 QualType TempFromTy = FromTy.getNonReferenceType();
8110 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8111 TempFromTy = PTy->getPointeeType();
8112 if (TempFromTy->isIncompleteType()) {
8113 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8114 << (unsigned) FnKind << FnDesc
8115 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8116 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8117 MaybeEmitInheritedConstructorNote(S, Fn);
8118 return;
8119 }
8120
8121 // Diagnose base -> derived pointer conversions.
8122 unsigned BaseToDerivedConversion = 0;
8123 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8124 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8125 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8126 FromPtrTy->getPointeeType()) &&
8127 !FromPtrTy->getPointeeType()->isIncompleteType() &&
8128 !ToPtrTy->getPointeeType()->isIncompleteType() &&
8129 S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8130 FromPtrTy->getPointeeType()))
8131 BaseToDerivedConversion = 1;
8132 }
8133 } else if (const ObjCObjectPointerType *FromPtrTy
8134 = FromTy->getAs<ObjCObjectPointerType>()) {
8135 if (const ObjCObjectPointerType *ToPtrTy
8136 = ToTy->getAs<ObjCObjectPointerType>())
8137 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8138 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8139 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8140 FromPtrTy->getPointeeType()) &&
8141 FromIface->isSuperClassOf(ToIface))
8142 BaseToDerivedConversion = 2;
8143 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8144 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8145 !FromTy->isIncompleteType() &&
8146 !ToRefTy->getPointeeType()->isIncompleteType() &&
8147 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
8148 BaseToDerivedConversion = 3;
8149 } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
8150 ToTy.getNonReferenceType().getCanonicalType() ==
8151 FromTy.getNonReferenceType().getCanonicalType()) {
8152 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
8153 << (unsigned) FnKind << FnDesc
8154 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8155 << (unsigned) isObjectArgument << I + 1;
8156 MaybeEmitInheritedConstructorNote(S, Fn);
8157 return;
8158 }
8159 }
8160
8161 if (BaseToDerivedConversion) {
8162 S.Diag(Fn->getLocation(),
8163 diag::note_ovl_candidate_bad_base_to_derived_conv)
8164 << (unsigned) FnKind << FnDesc
8165 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8166 << (BaseToDerivedConversion - 1)
8167 << FromTy << ToTy << I+1;
8168 MaybeEmitInheritedConstructorNote(S, Fn);
8169 return;
8170 }
8171
8172 if (isa<ObjCObjectPointerType>(CFromTy) &&
8173 isa<PointerType>(CToTy)) {
8174 Qualifiers FromQs = CFromTy.getQualifiers();
8175 Qualifiers ToQs = CToTy.getQualifiers();
8176 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8177 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8178 << (unsigned) FnKind << FnDesc
8179 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8180 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8181 MaybeEmitInheritedConstructorNote(S, Fn);
8182 return;
8183 }
8184 }
8185
8186 // Emit the generic diagnostic and, optionally, add the hints to it.
8187 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8188 FDiag << (unsigned) FnKind << FnDesc
8189 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8190 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8191 << (unsigned) (Cand->Fix.Kind);
8192
8193 // If we can fix the conversion, suggest the FixIts.
8194 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8195 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8196 FDiag << *HI;
8197 S.Diag(Fn->getLocation(), FDiag);
8198
8199 MaybeEmitInheritedConstructorNote(S, Fn);
8200 }
8201
DiagnoseArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumFormalArgs)8202 void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8203 unsigned NumFormalArgs) {
8204 // TODO: treat calls to a missing default constructor as a special case
8205
8206 FunctionDecl *Fn = Cand->Function;
8207 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8208
8209 unsigned MinParams = Fn->getMinRequiredArguments();
8210
8211 // With invalid overloaded operators, it's possible that we think we
8212 // have an arity mismatch when it fact it looks like we have the
8213 // right number of arguments, because only overloaded operators have
8214 // the weird behavior of overloading member and non-member functions.
8215 // Just don't report anything.
8216 if (Fn->isInvalidDecl() &&
8217 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8218 return;
8219
8220 // at least / at most / exactly
8221 unsigned mode, modeCount;
8222 if (NumFormalArgs < MinParams) {
8223 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8224 (Cand->FailureKind == ovl_fail_bad_deduction &&
8225 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8226 if (MinParams != FnTy->getNumArgs() ||
8227 FnTy->isVariadic() || FnTy->isTemplateVariadic())
8228 mode = 0; // "at least"
8229 else
8230 mode = 2; // "exactly"
8231 modeCount = MinParams;
8232 } else {
8233 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8234 (Cand->FailureKind == ovl_fail_bad_deduction &&
8235 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8236 if (MinParams != FnTy->getNumArgs())
8237 mode = 1; // "at most"
8238 else
8239 mode = 2; // "exactly"
8240 modeCount = FnTy->getNumArgs();
8241 }
8242
8243 std::string Description;
8244 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8245
8246 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
8247 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
8248 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8249 << Fn->getParamDecl(0) << NumFormalArgs;
8250 else
8251 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8252 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8253 << modeCount << NumFormalArgs;
8254 MaybeEmitInheritedConstructorNote(S, Fn);
8255 }
8256
8257 /// Diagnose a failed template-argument deduction.
DiagnoseBadDeduction(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)8258 void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
8259 unsigned NumArgs) {
8260 FunctionDecl *Fn = Cand->Function; // pattern
8261
8262 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
8263 NamedDecl *ParamD;
8264 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8265 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8266 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8267 switch (Cand->DeductionFailure.Result) {
8268 case Sema::TDK_Success:
8269 llvm_unreachable("TDK_success while diagnosing bad deduction");
8270
8271 case Sema::TDK_Incomplete: {
8272 assert(ParamD && "no parameter found for incomplete deduction result");
8273 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
8274 << ParamD->getDeclName();
8275 MaybeEmitInheritedConstructorNote(S, Fn);
8276 return;
8277 }
8278
8279 case Sema::TDK_Underqualified: {
8280 assert(ParamD && "no parameter found for bad qualifiers deduction result");
8281 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8282
8283 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
8284
8285 // Param will have been canonicalized, but it should just be a
8286 // qualified version of ParamD, so move the qualifiers to that.
8287 QualifierCollector Qs;
8288 Qs.strip(Param);
8289 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8290 assert(S.Context.hasSameType(Param, NonCanonParam));
8291
8292 // Arg has also been canonicalized, but there's nothing we can do
8293 // about that. It also doesn't matter as much, because it won't
8294 // have any template parameters in it (because deduction isn't
8295 // done on dependent types).
8296 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
8297
8298 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
8299 << ParamD->getDeclName() << Arg << NonCanonParam;
8300 MaybeEmitInheritedConstructorNote(S, Fn);
8301 return;
8302 }
8303
8304 case Sema::TDK_Inconsistent: {
8305 assert(ParamD && "no parameter found for inconsistent deduction result");
8306 int which = 0;
8307 if (isa<TemplateTypeParmDecl>(ParamD))
8308 which = 0;
8309 else if (isa<NonTypeTemplateParmDecl>(ParamD))
8310 which = 1;
8311 else {
8312 which = 2;
8313 }
8314
8315 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
8316 << which << ParamD->getDeclName()
8317 << *Cand->DeductionFailure.getFirstArg()
8318 << *Cand->DeductionFailure.getSecondArg();
8319 MaybeEmitInheritedConstructorNote(S, Fn);
8320 return;
8321 }
8322
8323 case Sema::TDK_InvalidExplicitArguments:
8324 assert(ParamD && "no parameter found for invalid explicit arguments");
8325 if (ParamD->getDeclName())
8326 S.Diag(Fn->getLocation(),
8327 diag::note_ovl_candidate_explicit_arg_mismatch_named)
8328 << ParamD->getDeclName();
8329 else {
8330 int index = 0;
8331 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
8332 index = TTP->getIndex();
8333 else if (NonTypeTemplateParmDecl *NTTP
8334 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
8335 index = NTTP->getIndex();
8336 else
8337 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
8338 S.Diag(Fn->getLocation(),
8339 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
8340 << (index + 1);
8341 }
8342 MaybeEmitInheritedConstructorNote(S, Fn);
8343 return;
8344
8345 case Sema::TDK_TooManyArguments:
8346 case Sema::TDK_TooFewArguments:
8347 DiagnoseArityMismatch(S, Cand, NumArgs);
8348 return;
8349
8350 case Sema::TDK_InstantiationDepth:
8351 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
8352 MaybeEmitInheritedConstructorNote(S, Fn);
8353 return;
8354
8355 case Sema::TDK_SubstitutionFailure: {
8356 // Format the template argument list into the argument string.
8357 llvm::SmallString<128> TemplateArgString;
8358 if (TemplateArgumentList *Args =
8359 Cand->DeductionFailure.getTemplateArgumentList()) {
8360 TemplateArgString = " ";
8361 TemplateArgString += S.getTemplateArgumentBindingsText(
8362 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), *Args);
8363 }
8364
8365 // If this candidate was disabled by enable_if, say so.
8366 PartialDiagnosticAt *PDiag = Cand->DeductionFailure.getSFINAEDiagnostic();
8367 if (PDiag && PDiag->second.getDiagID() ==
8368 diag::err_typename_nested_not_found_enable_if) {
8369 // FIXME: Use the source range of the condition, and the fully-qualified
8370 // name of the enable_if template. These are both present in PDiag.
8371 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
8372 << "'enable_if'" << TemplateArgString;
8373 return;
8374 }
8375
8376 // Format the SFINAE diagnostic into the argument string.
8377 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
8378 // formatted message in another diagnostic.
8379 llvm::SmallString<128> SFINAEArgString;
8380 SourceRange R;
8381 if (PDiag) {
8382 SFINAEArgString = ": ";
8383 R = SourceRange(PDiag->first, PDiag->first);
8384 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
8385 }
8386
8387 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
8388 << TemplateArgString << SFINAEArgString << R;
8389 MaybeEmitInheritedConstructorNote(S, Fn);
8390 return;
8391 }
8392
8393 // TODO: diagnose these individually, then kill off
8394 // note_ovl_candidate_bad_deduction, which is uselessly vague.
8395 case Sema::TDK_NonDeducedMismatch:
8396 case Sema::TDK_FailedOverloadResolution:
8397 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
8398 MaybeEmitInheritedConstructorNote(S, Fn);
8399 return;
8400 }
8401 }
8402
8403 /// CUDA: diagnose an invalid call across targets.
DiagnoseBadTarget(Sema & S,OverloadCandidate * Cand)8404 void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8405 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8406 FunctionDecl *Callee = Cand->Function;
8407
8408 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8409 CalleeTarget = S.IdentifyCUDATarget(Callee);
8410
8411 std::string FnDesc;
8412 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8413
8414 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8415 << (unsigned) FnKind << CalleeTarget << CallerTarget;
8416 }
8417
8418 /// Generates a 'note' diagnostic for an overload candidate. We've
8419 /// already generated a primary error at the call site.
8420 ///
8421 /// It really does need to be a single diagnostic with its caret
8422 /// pointed at the candidate declaration. Yes, this creates some
8423 /// major challenges of technical writing. Yes, this makes pointing
8424 /// out problems with specific arguments quite awkward. It's still
8425 /// better than generating twenty screens of text for every failed
8426 /// overload.
8427 ///
8428 /// It would be great to be able to express per-candidate problems
8429 /// more richly for those diagnostic clients that cared, but we'd
8430 /// still have to be just as careful with the default diagnostics.
NoteFunctionCandidate(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)8431 void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8432 unsigned NumArgs) {
8433 FunctionDecl *Fn = Cand->Function;
8434
8435 // Note deleted candidates, but only if they're viable.
8436 if (Cand->Viable && (Fn->isDeleted() ||
8437 S.isFunctionConsideredUnavailable(Fn))) {
8438 std::string FnDesc;
8439 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8440
8441 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8442 << FnKind << FnDesc
8443 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
8444 MaybeEmitInheritedConstructorNote(S, Fn);
8445 return;
8446 }
8447
8448 // We don't really have anything else to say about viable candidates.
8449 if (Cand->Viable) {
8450 S.NoteOverloadCandidate(Fn);
8451 return;
8452 }
8453
8454 switch (Cand->FailureKind) {
8455 case ovl_fail_too_many_arguments:
8456 case ovl_fail_too_few_arguments:
8457 return DiagnoseArityMismatch(S, Cand, NumArgs);
8458
8459 case ovl_fail_bad_deduction:
8460 return DiagnoseBadDeduction(S, Cand, NumArgs);
8461
8462 case ovl_fail_trivial_conversion:
8463 case ovl_fail_bad_final_conversion:
8464 case ovl_fail_final_conversion_not_exact:
8465 return S.NoteOverloadCandidate(Fn);
8466
8467 case ovl_fail_bad_conversion: {
8468 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8469 for (unsigned N = Cand->NumConversions; I != N; ++I)
8470 if (Cand->Conversions[I].isBad())
8471 return DiagnoseBadConversion(S, Cand, I);
8472
8473 // FIXME: this currently happens when we're called from SemaInit
8474 // when user-conversion overload fails. Figure out how to handle
8475 // those conditions and diagnose them well.
8476 return S.NoteOverloadCandidate(Fn);
8477 }
8478
8479 case ovl_fail_bad_target:
8480 return DiagnoseBadTarget(S, Cand);
8481 }
8482 }
8483
NoteSurrogateCandidate(Sema & S,OverloadCandidate * Cand)8484 void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8485 // Desugar the type of the surrogate down to a function type,
8486 // retaining as many typedefs as possible while still showing
8487 // the function type (and, therefore, its parameter types).
8488 QualType FnType = Cand->Surrogate->getConversionType();
8489 bool isLValueReference = false;
8490 bool isRValueReference = false;
8491 bool isPointer = false;
8492 if (const LValueReferenceType *FnTypeRef =
8493 FnType->getAs<LValueReferenceType>()) {
8494 FnType = FnTypeRef->getPointeeType();
8495 isLValueReference = true;
8496 } else if (const RValueReferenceType *FnTypeRef =
8497 FnType->getAs<RValueReferenceType>()) {
8498 FnType = FnTypeRef->getPointeeType();
8499 isRValueReference = true;
8500 }
8501 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8502 FnType = FnTypePtr->getPointeeType();
8503 isPointer = true;
8504 }
8505 // Desugar down to a function type.
8506 FnType = QualType(FnType->getAs<FunctionType>(), 0);
8507 // Reconstruct the pointer/reference as appropriate.
8508 if (isPointer) FnType = S.Context.getPointerType(FnType);
8509 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8510 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8511
8512 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8513 << FnType;
8514 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8515 }
8516
NoteBuiltinOperatorCandidate(Sema & S,const char * Opc,SourceLocation OpLoc,OverloadCandidate * Cand)8517 void NoteBuiltinOperatorCandidate(Sema &S,
8518 const char *Opc,
8519 SourceLocation OpLoc,
8520 OverloadCandidate *Cand) {
8521 assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8522 std::string TypeStr("operator");
8523 TypeStr += Opc;
8524 TypeStr += "(";
8525 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8526 if (Cand->NumConversions == 1) {
8527 TypeStr += ")";
8528 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8529 } else {
8530 TypeStr += ", ";
8531 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8532 TypeStr += ")";
8533 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8534 }
8535 }
8536
NoteAmbiguousUserConversions(Sema & S,SourceLocation OpLoc,OverloadCandidate * Cand)8537 void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8538 OverloadCandidate *Cand) {
8539 unsigned NoOperands = Cand->NumConversions;
8540 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8541 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8542 if (ICS.isBad()) break; // all meaningless after first invalid
8543 if (!ICS.isAmbiguous()) continue;
8544
8545 ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8546 S.PDiag(diag::note_ambiguous_type_conversion));
8547 }
8548 }
8549
GetLocationForCandidate(const OverloadCandidate * Cand)8550 SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8551 if (Cand->Function)
8552 return Cand->Function->getLocation();
8553 if (Cand->IsSurrogate)
8554 return Cand->Surrogate->getLocation();
8555 return SourceLocation();
8556 }
8557
8558 static unsigned
RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo & DFI)8559 RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
8560 switch ((Sema::TemplateDeductionResult)DFI.Result) {
8561 case Sema::TDK_Success:
8562 llvm_unreachable("TDK_success while diagnosing bad deduction");
8563
8564 case Sema::TDK_Incomplete:
8565 return 1;
8566
8567 case Sema::TDK_Underqualified:
8568 case Sema::TDK_Inconsistent:
8569 return 2;
8570
8571 case Sema::TDK_SubstitutionFailure:
8572 case Sema::TDK_NonDeducedMismatch:
8573 return 3;
8574
8575 case Sema::TDK_InstantiationDepth:
8576 case Sema::TDK_FailedOverloadResolution:
8577 return 4;
8578
8579 case Sema::TDK_InvalidExplicitArguments:
8580 return 5;
8581
8582 case Sema::TDK_TooManyArguments:
8583 case Sema::TDK_TooFewArguments:
8584 return 6;
8585 }
8586 llvm_unreachable("Unhandled deduction result");
8587 }
8588
8589 struct CompareOverloadCandidatesForDisplay {
8590 Sema &S;
CompareOverloadCandidatesForDisplayclang::__anon37f1ecb90611::CompareOverloadCandidatesForDisplay8591 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8592
operator ()clang::__anon37f1ecb90611::CompareOverloadCandidatesForDisplay8593 bool operator()(const OverloadCandidate *L,
8594 const OverloadCandidate *R) {
8595 // Fast-path this check.
8596 if (L == R) return false;
8597
8598 // Order first by viability.
8599 if (L->Viable) {
8600 if (!R->Viable) return true;
8601
8602 // TODO: introduce a tri-valued comparison for overload
8603 // candidates. Would be more worthwhile if we had a sort
8604 // that could exploit it.
8605 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8606 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8607 } else if (R->Viable)
8608 return false;
8609
8610 assert(L->Viable == R->Viable);
8611
8612 // Criteria by which we can sort non-viable candidates:
8613 if (!L->Viable) {
8614 // 1. Arity mismatches come after other candidates.
8615 if (L->FailureKind == ovl_fail_too_many_arguments ||
8616 L->FailureKind == ovl_fail_too_few_arguments)
8617 return false;
8618 if (R->FailureKind == ovl_fail_too_many_arguments ||
8619 R->FailureKind == ovl_fail_too_few_arguments)
8620 return true;
8621
8622 // 2. Bad conversions come first and are ordered by the number
8623 // of bad conversions and quality of good conversions.
8624 if (L->FailureKind == ovl_fail_bad_conversion) {
8625 if (R->FailureKind != ovl_fail_bad_conversion)
8626 return true;
8627
8628 // The conversion that can be fixed with a smaller number of changes,
8629 // comes first.
8630 unsigned numLFixes = L->Fix.NumConversionsFixed;
8631 unsigned numRFixes = R->Fix.NumConversionsFixed;
8632 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8633 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8634 if (numLFixes != numRFixes) {
8635 if (numLFixes < numRFixes)
8636 return true;
8637 else
8638 return false;
8639 }
8640
8641 // If there's any ordering between the defined conversions...
8642 // FIXME: this might not be transitive.
8643 assert(L->NumConversions == R->NumConversions);
8644
8645 int leftBetter = 0;
8646 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8647 for (unsigned E = L->NumConversions; I != E; ++I) {
8648 switch (CompareImplicitConversionSequences(S,
8649 L->Conversions[I],
8650 R->Conversions[I])) {
8651 case ImplicitConversionSequence::Better:
8652 leftBetter++;
8653 break;
8654
8655 case ImplicitConversionSequence::Worse:
8656 leftBetter--;
8657 break;
8658
8659 case ImplicitConversionSequence::Indistinguishable:
8660 break;
8661 }
8662 }
8663 if (leftBetter > 0) return true;
8664 if (leftBetter < 0) return false;
8665
8666 } else if (R->FailureKind == ovl_fail_bad_conversion)
8667 return false;
8668
8669 if (L->FailureKind == ovl_fail_bad_deduction) {
8670 if (R->FailureKind != ovl_fail_bad_deduction)
8671 return true;
8672
8673 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8674 return RankDeductionFailure(L->DeductionFailure)
8675 < RankDeductionFailure(R->DeductionFailure);
8676 } else if (R->FailureKind == ovl_fail_bad_deduction)
8677 return false;
8678
8679 // TODO: others?
8680 }
8681
8682 // Sort everything else by location.
8683 SourceLocation LLoc = GetLocationForCandidate(L);
8684 SourceLocation RLoc = GetLocationForCandidate(R);
8685
8686 // Put candidates without locations (e.g. builtins) at the end.
8687 if (LLoc.isInvalid()) return false;
8688 if (RLoc.isInvalid()) return true;
8689
8690 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8691 }
8692 };
8693
8694 /// CompleteNonViableCandidate - Normally, overload resolution only
8695 /// computes up to the first. Produces the FixIt set if possible.
CompleteNonViableCandidate(Sema & S,OverloadCandidate * Cand,llvm::ArrayRef<Expr * > Args)8696 void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
8697 llvm::ArrayRef<Expr *> Args) {
8698 assert(!Cand->Viable);
8699
8700 // Don't do anything on failures other than bad conversion.
8701 if (Cand->FailureKind != ovl_fail_bad_conversion) return;
8702
8703 // We only want the FixIts if all the arguments can be corrected.
8704 bool Unfixable = false;
8705 // Use a implicit copy initialization to check conversion fixes.
8706 Cand->Fix.setConversionChecker(TryCopyInitialization);
8707
8708 // Skip forward to the first bad conversion.
8709 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
8710 unsigned ConvCount = Cand->NumConversions;
8711 while (true) {
8712 assert(ConvIdx != ConvCount && "no bad conversion in candidate");
8713 ConvIdx++;
8714 if (Cand->Conversions[ConvIdx - 1].isBad()) {
8715 Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
8716 break;
8717 }
8718 }
8719
8720 if (ConvIdx == ConvCount)
8721 return;
8722
8723 assert(!Cand->Conversions[ConvIdx].isInitialized() &&
8724 "remaining conversion is initialized?");
8725
8726 // FIXME: this should probably be preserved from the overload
8727 // operation somehow.
8728 bool SuppressUserConversions = false;
8729
8730 const FunctionProtoType* Proto;
8731 unsigned ArgIdx = ConvIdx;
8732
8733 if (Cand->IsSurrogate) {
8734 QualType ConvType
8735 = Cand->Surrogate->getConversionType().getNonReferenceType();
8736 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8737 ConvType = ConvPtrType->getPointeeType();
8738 Proto = ConvType->getAs<FunctionProtoType>();
8739 ArgIdx--;
8740 } else if (Cand->Function) {
8741 Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
8742 if (isa<CXXMethodDecl>(Cand->Function) &&
8743 !isa<CXXConstructorDecl>(Cand->Function))
8744 ArgIdx--;
8745 } else {
8746 // Builtin binary operator with a bad first conversion.
8747 assert(ConvCount <= 3);
8748 for (; ConvIdx != ConvCount; ++ConvIdx)
8749 Cand->Conversions[ConvIdx]
8750 = TryCopyInitialization(S, Args[ConvIdx],
8751 Cand->BuiltinTypes.ParamTypes[ConvIdx],
8752 SuppressUserConversions,
8753 /*InOverloadResolution*/ true,
8754 /*AllowObjCWritebackConversion=*/
8755 S.getLangOpts().ObjCAutoRefCount);
8756 return;
8757 }
8758
8759 // Fill in the rest of the conversions.
8760 unsigned NumArgsInProto = Proto->getNumArgs();
8761 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
8762 if (ArgIdx < NumArgsInProto) {
8763 Cand->Conversions[ConvIdx]
8764 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
8765 SuppressUserConversions,
8766 /*InOverloadResolution=*/true,
8767 /*AllowObjCWritebackConversion=*/
8768 S.getLangOpts().ObjCAutoRefCount);
8769 // Store the FixIt in the candidate if it exists.
8770 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
8771 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
8772 }
8773 else
8774 Cand->Conversions[ConvIdx].setEllipsis();
8775 }
8776 }
8777
8778 } // end anonymous namespace
8779
8780 /// PrintOverloadCandidates - When overload resolution fails, prints
8781 /// diagnostic messages containing the candidates in the candidate
8782 /// set.
NoteCandidates(Sema & S,OverloadCandidateDisplayKind OCD,llvm::ArrayRef<Expr * > Args,const char * Opc,SourceLocation OpLoc)8783 void OverloadCandidateSet::NoteCandidates(Sema &S,
8784 OverloadCandidateDisplayKind OCD,
8785 llvm::ArrayRef<Expr *> Args,
8786 const char *Opc,
8787 SourceLocation OpLoc) {
8788 // Sort the candidates by viability and position. Sorting directly would
8789 // be prohibitive, so we make a set of pointers and sort those.
8790 SmallVector<OverloadCandidate*, 32> Cands;
8791 if (OCD == OCD_AllCandidates) Cands.reserve(size());
8792 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
8793 if (Cand->Viable)
8794 Cands.push_back(Cand);
8795 else if (OCD == OCD_AllCandidates) {
8796 CompleteNonViableCandidate(S, Cand, Args);
8797 if (Cand->Function || Cand->IsSurrogate)
8798 Cands.push_back(Cand);
8799 // Otherwise, this a non-viable builtin candidate. We do not, in general,
8800 // want to list every possible builtin candidate.
8801 }
8802 }
8803
8804 std::sort(Cands.begin(), Cands.end(),
8805 CompareOverloadCandidatesForDisplay(S));
8806
8807 bool ReportedAmbiguousConversions = false;
8808
8809 SmallVectorImpl<OverloadCandidate*>::iterator I, E;
8810 const DiagnosticsEngine::OverloadsShown ShowOverloads =
8811 S.Diags.getShowOverloads();
8812 unsigned CandsShown = 0;
8813 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
8814 OverloadCandidate *Cand = *I;
8815
8816 // Set an arbitrary limit on the number of candidate functions we'll spam
8817 // the user with. FIXME: This limit should depend on details of the
8818 // candidate list.
8819 if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) {
8820 break;
8821 }
8822 ++CandsShown;
8823
8824 if (Cand->Function)
8825 NoteFunctionCandidate(S, Cand, Args.size());
8826 else if (Cand->IsSurrogate)
8827 NoteSurrogateCandidate(S, Cand);
8828 else {
8829 assert(Cand->Viable &&
8830 "Non-viable built-in candidates are not added to Cands.");
8831 // Generally we only see ambiguities including viable builtin
8832 // operators if overload resolution got screwed up by an
8833 // ambiguous user-defined conversion.
8834 //
8835 // FIXME: It's quite possible for different conversions to see
8836 // different ambiguities, though.
8837 if (!ReportedAmbiguousConversions) {
8838 NoteAmbiguousUserConversions(S, OpLoc, Cand);
8839 ReportedAmbiguousConversions = true;
8840 }
8841
8842 // If this is a viable builtin, print it.
8843 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
8844 }
8845 }
8846
8847 if (I != E)
8848 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
8849 }
8850
8851 // [PossiblyAFunctionType] --> [Return]
8852 // NonFunctionType --> NonFunctionType
8853 // R (A) --> R(A)
8854 // R (*)(A) --> R (A)
8855 // R (&)(A) --> R (A)
8856 // R (S::*)(A) --> R (A)
ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType)8857 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
8858 QualType Ret = PossiblyAFunctionType;
8859 if (const PointerType *ToTypePtr =
8860 PossiblyAFunctionType->getAs<PointerType>())
8861 Ret = ToTypePtr->getPointeeType();
8862 else if (const ReferenceType *ToTypeRef =
8863 PossiblyAFunctionType->getAs<ReferenceType>())
8864 Ret = ToTypeRef->getPointeeType();
8865 else if (const MemberPointerType *MemTypePtr =
8866 PossiblyAFunctionType->getAs<MemberPointerType>())
8867 Ret = MemTypePtr->getPointeeType();
8868 Ret =
8869 Context.getCanonicalType(Ret).getUnqualifiedType();
8870 return Ret;
8871 }
8872
8873 // A helper class to help with address of function resolution
8874 // - allows us to avoid passing around all those ugly parameters
8875 class AddressOfFunctionResolver
8876 {
8877 Sema& S;
8878 Expr* SourceExpr;
8879 const QualType& TargetType;
8880 QualType TargetFunctionType; // Extracted function type from target type
8881
8882 bool Complain;
8883 //DeclAccessPair& ResultFunctionAccessPair;
8884 ASTContext& Context;
8885
8886 bool TargetTypeIsNonStaticMemberFunction;
8887 bool FoundNonTemplateFunction;
8888
8889 OverloadExpr::FindResult OvlExprInfo;
8890 OverloadExpr *OvlExpr;
8891 TemplateArgumentListInfo OvlExplicitTemplateArgs;
8892 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
8893
8894 public:
AddressOfFunctionResolver(Sema & S,Expr * SourceExpr,const QualType & TargetType,bool Complain)8895 AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
8896 const QualType& TargetType, bool Complain)
8897 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
8898 Complain(Complain), Context(S.getASTContext()),
8899 TargetTypeIsNonStaticMemberFunction(
8900 !!TargetType->getAs<MemberPointerType>()),
8901 FoundNonTemplateFunction(false),
8902 OvlExprInfo(OverloadExpr::find(SourceExpr)),
8903 OvlExpr(OvlExprInfo.Expression)
8904 {
8905 ExtractUnqualifiedFunctionTypeFromTargetType();
8906
8907 if (!TargetFunctionType->isFunctionType()) {
8908 if (OvlExpr->hasExplicitTemplateArgs()) {
8909 DeclAccessPair dap;
8910 if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
8911 OvlExpr, false, &dap) ) {
8912
8913 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8914 if (!Method->isStatic()) {
8915 // If the target type is a non-function type and the function
8916 // found is a non-static member function, pretend as if that was
8917 // the target, it's the only possible type to end up with.
8918 TargetTypeIsNonStaticMemberFunction = true;
8919
8920 // And skip adding the function if its not in the proper form.
8921 // We'll diagnose this due to an empty set of functions.
8922 if (!OvlExprInfo.HasFormOfMemberPointer)
8923 return;
8924 }
8925 }
8926
8927 Matches.push_back(std::make_pair(dap,Fn));
8928 }
8929 }
8930 return;
8931 }
8932
8933 if (OvlExpr->hasExplicitTemplateArgs())
8934 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
8935
8936 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
8937 // C++ [over.over]p4:
8938 // If more than one function is selected, [...]
8939 if (Matches.size() > 1) {
8940 if (FoundNonTemplateFunction)
8941 EliminateAllTemplateMatches();
8942 else
8943 EliminateAllExceptMostSpecializedTemplate();
8944 }
8945 }
8946 }
8947
8948 private:
isTargetTypeAFunction() const8949 bool isTargetTypeAFunction() const {
8950 return TargetFunctionType->isFunctionType();
8951 }
8952
8953 // [ToType] [Return]
8954
8955 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
8956 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
8957 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
ExtractUnqualifiedFunctionTypeFromTargetType()8958 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
8959 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
8960 }
8961
8962 // return true if any matching specializations were found
AddMatchingTemplateFunction(FunctionTemplateDecl * FunctionTemplate,const DeclAccessPair & CurAccessFunPair)8963 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
8964 const DeclAccessPair& CurAccessFunPair) {
8965 if (CXXMethodDecl *Method
8966 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
8967 // Skip non-static function templates when converting to pointer, and
8968 // static when converting to member pointer.
8969 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8970 return false;
8971 }
8972 else if (TargetTypeIsNonStaticMemberFunction)
8973 return false;
8974
8975 // C++ [over.over]p2:
8976 // If the name is a function template, template argument deduction is
8977 // done (14.8.2.2), and if the argument deduction succeeds, the
8978 // resulting template argument list is used to generate a single
8979 // function template specialization, which is added to the set of
8980 // overloaded functions considered.
8981 FunctionDecl *Specialization = 0;
8982 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
8983 if (Sema::TemplateDeductionResult Result
8984 = S.DeduceTemplateArguments(FunctionTemplate,
8985 &OvlExplicitTemplateArgs,
8986 TargetFunctionType, Specialization,
8987 Info)) {
8988 // FIXME: make a note of the failed deduction for diagnostics.
8989 (void)Result;
8990 return false;
8991 }
8992
8993 // Template argument deduction ensures that we have an exact match.
8994 // This function template specicalization works.
8995 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
8996 assert(TargetFunctionType
8997 == Context.getCanonicalType(Specialization->getType()));
8998 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
8999 return true;
9000 }
9001
AddMatchingNonTemplateFunction(NamedDecl * Fn,const DeclAccessPair & CurAccessFunPair)9002 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
9003 const DeclAccessPair& CurAccessFunPair) {
9004 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9005 // Skip non-static functions when converting to pointer, and static
9006 // when converting to member pointer.
9007 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9008 return false;
9009 }
9010 else if (TargetTypeIsNonStaticMemberFunction)
9011 return false;
9012
9013 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
9014 if (S.getLangOpts().CUDA)
9015 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
9016 if (S.CheckCUDATarget(Caller, FunDecl))
9017 return false;
9018
9019 QualType ResultTy;
9020 if (Context.hasSameUnqualifiedType(TargetFunctionType,
9021 FunDecl->getType()) ||
9022 S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
9023 ResultTy)) {
9024 Matches.push_back(std::make_pair(CurAccessFunPair,
9025 cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
9026 FoundNonTemplateFunction = true;
9027 return true;
9028 }
9029 }
9030
9031 return false;
9032 }
9033
FindAllFunctionsThatMatchTargetTypeExactly()9034 bool FindAllFunctionsThatMatchTargetTypeExactly() {
9035 bool Ret = false;
9036
9037 // If the overload expression doesn't have the form of a pointer to
9038 // member, don't try to convert it to a pointer-to-member type.
9039 if (IsInvalidFormOfPointerToMemberFunction())
9040 return false;
9041
9042 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9043 E = OvlExpr->decls_end();
9044 I != E; ++I) {
9045 // Look through any using declarations to find the underlying function.
9046 NamedDecl *Fn = (*I)->getUnderlyingDecl();
9047
9048 // C++ [over.over]p3:
9049 // Non-member functions and static member functions match
9050 // targets of type "pointer-to-function" or "reference-to-function."
9051 // Nonstatic member functions match targets of
9052 // type "pointer-to-member-function."
9053 // Note that according to DR 247, the containing class does not matter.
9054 if (FunctionTemplateDecl *FunctionTemplate
9055 = dyn_cast<FunctionTemplateDecl>(Fn)) {
9056 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
9057 Ret = true;
9058 }
9059 // If we have explicit template arguments supplied, skip non-templates.
9060 else if (!OvlExpr->hasExplicitTemplateArgs() &&
9061 AddMatchingNonTemplateFunction(Fn, I.getPair()))
9062 Ret = true;
9063 }
9064 assert(Ret || Matches.empty());
9065 return Ret;
9066 }
9067
EliminateAllExceptMostSpecializedTemplate()9068 void EliminateAllExceptMostSpecializedTemplate() {
9069 // [...] and any given function template specialization F1 is
9070 // eliminated if the set contains a second function template
9071 // specialization whose function template is more specialized
9072 // than the function template of F1 according to the partial
9073 // ordering rules of 14.5.5.2.
9074
9075 // The algorithm specified above is quadratic. We instead use a
9076 // two-pass algorithm (similar to the one used to identify the
9077 // best viable function in an overload set) that identifies the
9078 // best function template (if it exists).
9079
9080 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
9081 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
9082 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
9083
9084 UnresolvedSetIterator Result =
9085 S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
9086 TPOC_Other, 0, SourceExpr->getLocStart(),
9087 S.PDiag(),
9088 S.PDiag(diag::err_addr_ovl_ambiguous)
9089 << Matches[0].second->getDeclName(),
9090 S.PDiag(diag::note_ovl_candidate)
9091 << (unsigned) oc_function_template,
9092 Complain, TargetFunctionType);
9093
9094 if (Result != MatchesCopy.end()) {
9095 // Make it the first and only element
9096 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
9097 Matches[0].second = cast<FunctionDecl>(*Result);
9098 Matches.resize(1);
9099 }
9100 }
9101
EliminateAllTemplateMatches()9102 void EliminateAllTemplateMatches() {
9103 // [...] any function template specializations in the set are
9104 // eliminated if the set also contains a non-template function, [...]
9105 for (unsigned I = 0, N = Matches.size(); I != N; ) {
9106 if (Matches[I].second->getPrimaryTemplate() == 0)
9107 ++I;
9108 else {
9109 Matches[I] = Matches[--N];
9110 Matches.set_size(N);
9111 }
9112 }
9113 }
9114
9115 public:
ComplainNoMatchesFound() const9116 void ComplainNoMatchesFound() const {
9117 assert(Matches.empty());
9118 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
9119 << OvlExpr->getName() << TargetFunctionType
9120 << OvlExpr->getSourceRange();
9121 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9122 }
9123
IsInvalidFormOfPointerToMemberFunction() const9124 bool IsInvalidFormOfPointerToMemberFunction() const {
9125 return TargetTypeIsNonStaticMemberFunction &&
9126 !OvlExprInfo.HasFormOfMemberPointer;
9127 }
9128
ComplainIsInvalidFormOfPointerToMemberFunction() const9129 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
9130 // TODO: Should we condition this on whether any functions might
9131 // have matched, or is it more appropriate to do that in callers?
9132 // TODO: a fixit wouldn't hurt.
9133 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
9134 << TargetType << OvlExpr->getSourceRange();
9135 }
9136
ComplainOfInvalidConversion() const9137 void ComplainOfInvalidConversion() const {
9138 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
9139 << OvlExpr->getName() << TargetType;
9140 }
9141
ComplainMultipleMatchesFound() const9142 void ComplainMultipleMatchesFound() const {
9143 assert(Matches.size() > 1);
9144 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
9145 << OvlExpr->getName()
9146 << OvlExpr->getSourceRange();
9147 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9148 }
9149
hadMultipleCandidates() const9150 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
9151
getNumMatches() const9152 int getNumMatches() const { return Matches.size(); }
9153
getMatchingFunctionDecl() const9154 FunctionDecl* getMatchingFunctionDecl() const {
9155 if (Matches.size() != 1) return 0;
9156 return Matches[0].second;
9157 }
9158
getMatchingFunctionAccessPair() const9159 const DeclAccessPair* getMatchingFunctionAccessPair() const {
9160 if (Matches.size() != 1) return 0;
9161 return &Matches[0].first;
9162 }
9163 };
9164
9165 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
9166 /// an overloaded function (C++ [over.over]), where @p From is an
9167 /// expression with overloaded function type and @p ToType is the type
9168 /// we're trying to resolve to. For example:
9169 ///
9170 /// @code
9171 /// int f(double);
9172 /// int f(int);
9173 ///
9174 /// int (*pfd)(double) = f; // selects f(double)
9175 /// @endcode
9176 ///
9177 /// This routine returns the resulting FunctionDecl if it could be
9178 /// resolved, and NULL otherwise. When @p Complain is true, this
9179 /// routine will emit diagnostics if there is an error.
9180 FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr * AddressOfExpr,QualType TargetType,bool Complain,DeclAccessPair & FoundResult,bool * pHadMultipleCandidates)9181 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
9182 QualType TargetType,
9183 bool Complain,
9184 DeclAccessPair &FoundResult,
9185 bool *pHadMultipleCandidates) {
9186 assert(AddressOfExpr->getType() == Context.OverloadTy);
9187
9188 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
9189 Complain);
9190 int NumMatches = Resolver.getNumMatches();
9191 FunctionDecl* Fn = 0;
9192 if (NumMatches == 0 && Complain) {
9193 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
9194 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
9195 else
9196 Resolver.ComplainNoMatchesFound();
9197 }
9198 else if (NumMatches > 1 && Complain)
9199 Resolver.ComplainMultipleMatchesFound();
9200 else if (NumMatches == 1) {
9201 Fn = Resolver.getMatchingFunctionDecl();
9202 assert(Fn);
9203 FoundResult = *Resolver.getMatchingFunctionAccessPair();
9204 MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn);
9205 if (Complain)
9206 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
9207 }
9208
9209 if (pHadMultipleCandidates)
9210 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
9211 return Fn;
9212 }
9213
9214 /// \brief Given an expression that refers to an overloaded function, try to
9215 /// resolve that overloaded function expression down to a single function.
9216 ///
9217 /// This routine can only resolve template-ids that refer to a single function
9218 /// template, where that template-id refers to a single template whose template
9219 /// arguments are either provided by the template-id or have defaults,
9220 /// as described in C++0x [temp.arg.explicit]p3.
9221 FunctionDecl *
ResolveSingleFunctionTemplateSpecialization(OverloadExpr * ovl,bool Complain,DeclAccessPair * FoundResult)9222 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
9223 bool Complain,
9224 DeclAccessPair *FoundResult) {
9225 // C++ [over.over]p1:
9226 // [...] [Note: any redundant set of parentheses surrounding the
9227 // overloaded function name is ignored (5.1). ]
9228 // C++ [over.over]p1:
9229 // [...] The overloaded function name can be preceded by the &
9230 // operator.
9231
9232 // If we didn't actually find any template-ids, we're done.
9233 if (!ovl->hasExplicitTemplateArgs())
9234 return 0;
9235
9236 TemplateArgumentListInfo ExplicitTemplateArgs;
9237 ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
9238
9239 // Look through all of the overloaded functions, searching for one
9240 // whose type matches exactly.
9241 FunctionDecl *Matched = 0;
9242 for (UnresolvedSetIterator I = ovl->decls_begin(),
9243 E = ovl->decls_end(); I != E; ++I) {
9244 // C++0x [temp.arg.explicit]p3:
9245 // [...] In contexts where deduction is done and fails, or in contexts
9246 // where deduction is not done, if a template argument list is
9247 // specified and it, along with any default template arguments,
9248 // identifies a single function template specialization, then the
9249 // template-id is an lvalue for the function template specialization.
9250 FunctionTemplateDecl *FunctionTemplate
9251 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
9252
9253 // C++ [over.over]p2:
9254 // If the name is a function template, template argument deduction is
9255 // done (14.8.2.2), and if the argument deduction succeeds, the
9256 // resulting template argument list is used to generate a single
9257 // function template specialization, which is added to the set of
9258 // overloaded functions considered.
9259 FunctionDecl *Specialization = 0;
9260 TemplateDeductionInfo Info(Context, ovl->getNameLoc());
9261 if (TemplateDeductionResult Result
9262 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
9263 Specialization, Info)) {
9264 // FIXME: make a note of the failed deduction for diagnostics.
9265 (void)Result;
9266 continue;
9267 }
9268
9269 assert(Specialization && "no specialization and no error?");
9270
9271 // Multiple matches; we can't resolve to a single declaration.
9272 if (Matched) {
9273 if (Complain) {
9274 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
9275 << ovl->getName();
9276 NoteAllOverloadCandidates(ovl);
9277 }
9278 return 0;
9279 }
9280
9281 Matched = Specialization;
9282 if (FoundResult) *FoundResult = I.getPair();
9283 }
9284
9285 return Matched;
9286 }
9287
9288
9289
9290
9291 // Resolve and fix an overloaded expression that can be resolved
9292 // because it identifies a single function template specialization.
9293 //
9294 // Last three arguments should only be supplied if Complain = true
9295 //
9296 // Return true if it was logically possible to so resolve the
9297 // expression, regardless of whether or not it succeeded. Always
9298 // returns true if 'complain' is set.
ResolveAndFixSingleFunctionTemplateSpecialization(ExprResult & SrcExpr,bool doFunctionPointerConverion,bool complain,const SourceRange & OpRangeForComplaining,QualType DestTypeForComplaining,unsigned DiagIDForComplaining)9299 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
9300 ExprResult &SrcExpr, bool doFunctionPointerConverion,
9301 bool complain, const SourceRange& OpRangeForComplaining,
9302 QualType DestTypeForComplaining,
9303 unsigned DiagIDForComplaining) {
9304 assert(SrcExpr.get()->getType() == Context.OverloadTy);
9305
9306 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
9307
9308 DeclAccessPair found;
9309 ExprResult SingleFunctionExpression;
9310 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
9311 ovl.Expression, /*complain*/ false, &found)) {
9312 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
9313 SrcExpr = ExprError();
9314 return true;
9315 }
9316
9317 // It is only correct to resolve to an instance method if we're
9318 // resolving a form that's permitted to be a pointer to member.
9319 // Otherwise we'll end up making a bound member expression, which
9320 // is illegal in all the contexts we resolve like this.
9321 if (!ovl.HasFormOfMemberPointer &&
9322 isa<CXXMethodDecl>(fn) &&
9323 cast<CXXMethodDecl>(fn)->isInstance()) {
9324 if (!complain) return false;
9325
9326 Diag(ovl.Expression->getExprLoc(),
9327 diag::err_bound_member_function)
9328 << 0 << ovl.Expression->getSourceRange();
9329
9330 // TODO: I believe we only end up here if there's a mix of
9331 // static and non-static candidates (otherwise the expression
9332 // would have 'bound member' type, not 'overload' type).
9333 // Ideally we would note which candidate was chosen and why
9334 // the static candidates were rejected.
9335 SrcExpr = ExprError();
9336 return true;
9337 }
9338
9339 // Fix the expression to refer to 'fn'.
9340 SingleFunctionExpression =
9341 Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
9342
9343 // If desired, do function-to-pointer decay.
9344 if (doFunctionPointerConverion) {
9345 SingleFunctionExpression =
9346 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
9347 if (SingleFunctionExpression.isInvalid()) {
9348 SrcExpr = ExprError();
9349 return true;
9350 }
9351 }
9352 }
9353
9354 if (!SingleFunctionExpression.isUsable()) {
9355 if (complain) {
9356 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
9357 << ovl.Expression->getName()
9358 << DestTypeForComplaining
9359 << OpRangeForComplaining
9360 << ovl.Expression->getQualifierLoc().getSourceRange();
9361 NoteAllOverloadCandidates(SrcExpr.get());
9362
9363 SrcExpr = ExprError();
9364 return true;
9365 }
9366
9367 return false;
9368 }
9369
9370 SrcExpr = SingleFunctionExpression;
9371 return true;
9372 }
9373
9374 /// \brief Add a single candidate to the overload set.
AddOverloadedCallCandidate(Sema & S,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool KnownValid)9375 static void AddOverloadedCallCandidate(Sema &S,
9376 DeclAccessPair FoundDecl,
9377 TemplateArgumentListInfo *ExplicitTemplateArgs,
9378 llvm::ArrayRef<Expr *> Args,
9379 OverloadCandidateSet &CandidateSet,
9380 bool PartialOverloading,
9381 bool KnownValid) {
9382 NamedDecl *Callee = FoundDecl.getDecl();
9383 if (isa<UsingShadowDecl>(Callee))
9384 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9385
9386 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9387 if (ExplicitTemplateArgs) {
9388 assert(!KnownValid && "Explicit template arguments?");
9389 return;
9390 }
9391 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
9392 PartialOverloading);
9393 return;
9394 }
9395
9396 if (FunctionTemplateDecl *FuncTemplate
9397 = dyn_cast<FunctionTemplateDecl>(Callee)) {
9398 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9399 ExplicitTemplateArgs, Args, CandidateSet);
9400 return;
9401 }
9402
9403 assert(!KnownValid && "unhandled case in overloaded call candidate");
9404 }
9405
9406 /// \brief Add the overload candidates named by callee and/or found by argument
9407 /// dependent lookup to the given overload set.
AddOverloadedCallCandidates(UnresolvedLookupExpr * ULE,llvm::ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading)9408 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9409 llvm::ArrayRef<Expr *> Args,
9410 OverloadCandidateSet &CandidateSet,
9411 bool PartialOverloading) {
9412
9413 #ifndef NDEBUG
9414 // Verify that ArgumentDependentLookup is consistent with the rules
9415 // in C++0x [basic.lookup.argdep]p3:
9416 //
9417 // Let X be the lookup set produced by unqualified lookup (3.4.1)
9418 // and let Y be the lookup set produced by argument dependent
9419 // lookup (defined as follows). If X contains
9420 //
9421 // -- a declaration of a class member, or
9422 //
9423 // -- a block-scope function declaration that is not a
9424 // using-declaration, or
9425 //
9426 // -- a declaration that is neither a function or a function
9427 // template
9428 //
9429 // then Y is empty.
9430
9431 if (ULE->requiresADL()) {
9432 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9433 E = ULE->decls_end(); I != E; ++I) {
9434 assert(!(*I)->getDeclContext()->isRecord());
9435 assert(isa<UsingShadowDecl>(*I) ||
9436 !(*I)->getDeclContext()->isFunctionOrMethod());
9437 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9438 }
9439 }
9440 #endif
9441
9442 // It would be nice to avoid this copy.
9443 TemplateArgumentListInfo TABuffer;
9444 TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9445 if (ULE->hasExplicitTemplateArgs()) {
9446 ULE->copyTemplateArgumentsInto(TABuffer);
9447 ExplicitTemplateArgs = &TABuffer;
9448 }
9449
9450 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9451 E = ULE->decls_end(); I != E; ++I)
9452 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
9453 CandidateSet, PartialOverloading,
9454 /*KnownValid*/ true);
9455
9456 if (ULE->requiresADL())
9457 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9458 ULE->getExprLoc(),
9459 Args, ExplicitTemplateArgs,
9460 CandidateSet, PartialOverloading,
9461 ULE->isStdAssociatedNamespace());
9462 }
9463
9464 /// Attempt to recover from an ill-formed use of a non-dependent name in a
9465 /// template, where the non-dependent name was declared after the template
9466 /// was defined. This is common in code written for a compilers which do not
9467 /// correctly implement two-stage name lookup.
9468 ///
9469 /// Returns true if a viable candidate was found and a diagnostic was issued.
9470 static bool
DiagnoseTwoPhaseLookup(Sema & SemaRef,SourceLocation FnLoc,const CXXScopeSpec & SS,LookupResult & R,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args)9471 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9472 const CXXScopeSpec &SS, LookupResult &R,
9473 TemplateArgumentListInfo *ExplicitTemplateArgs,
9474 llvm::ArrayRef<Expr *> Args) {
9475 if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9476 return false;
9477
9478 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9479 if (DC->isTransparentContext())
9480 continue;
9481
9482 SemaRef.LookupQualifiedName(R, DC);
9483
9484 if (!R.empty()) {
9485 R.suppressDiagnostics();
9486
9487 if (isa<CXXRecordDecl>(DC)) {
9488 // Don't diagnose names we find in classes; we get much better
9489 // diagnostics for these from DiagnoseEmptyLookup.
9490 R.clear();
9491 return false;
9492 }
9493
9494 OverloadCandidateSet Candidates(FnLoc);
9495 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9496 AddOverloadedCallCandidate(SemaRef, I.getPair(),
9497 ExplicitTemplateArgs, Args,
9498 Candidates, false, /*KnownValid*/ false);
9499
9500 OverloadCandidateSet::iterator Best;
9501 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9502 // No viable functions. Don't bother the user with notes for functions
9503 // which don't work and shouldn't be found anyway.
9504 R.clear();
9505 return false;
9506 }
9507
9508 // Find the namespaces where ADL would have looked, and suggest
9509 // declaring the function there instead.
9510 Sema::AssociatedNamespaceSet AssociatedNamespaces;
9511 Sema::AssociatedClassSet AssociatedClasses;
9512 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
9513 AssociatedNamespaces,
9514 AssociatedClasses);
9515 // Never suggest declaring a function within namespace 'std'.
9516 Sema::AssociatedNamespaceSet SuggestedNamespaces;
9517 if (DeclContext *Std = SemaRef.getStdNamespace()) {
9518 for (Sema::AssociatedNamespaceSet::iterator
9519 it = AssociatedNamespaces.begin(),
9520 end = AssociatedNamespaces.end(); it != end; ++it) {
9521 if (!Std->Encloses(*it))
9522 SuggestedNamespaces.insert(*it);
9523 }
9524 } else {
9525 // Lacking the 'std::' namespace, use all of the associated namespaces.
9526 SuggestedNamespaces = AssociatedNamespaces;
9527 }
9528
9529 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
9530 << R.getLookupName();
9531 if (SuggestedNamespaces.empty()) {
9532 SemaRef.Diag(Best->Function->getLocation(),
9533 diag::note_not_found_by_two_phase_lookup)
9534 << R.getLookupName() << 0;
9535 } else if (SuggestedNamespaces.size() == 1) {
9536 SemaRef.Diag(Best->Function->getLocation(),
9537 diag::note_not_found_by_two_phase_lookup)
9538 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
9539 } else {
9540 // FIXME: It would be useful to list the associated namespaces here,
9541 // but the diagnostics infrastructure doesn't provide a way to produce
9542 // a localized representation of a list of items.
9543 SemaRef.Diag(Best->Function->getLocation(),
9544 diag::note_not_found_by_two_phase_lookup)
9545 << R.getLookupName() << 2;
9546 }
9547
9548 // Try to recover by calling this function.
9549 return true;
9550 }
9551
9552 R.clear();
9553 }
9554
9555 return false;
9556 }
9557
9558 /// Attempt to recover from ill-formed use of a non-dependent operator in a
9559 /// template, where the non-dependent operator was declared after the template
9560 /// was defined.
9561 ///
9562 /// Returns true if a viable candidate was found and a diagnostic was issued.
9563 static bool
DiagnoseTwoPhaseOperatorLookup(Sema & SemaRef,OverloadedOperatorKind Op,SourceLocation OpLoc,llvm::ArrayRef<Expr * > Args)9564 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
9565 SourceLocation OpLoc,
9566 llvm::ArrayRef<Expr *> Args) {
9567 DeclarationName OpName =
9568 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
9569 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
9570 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
9571 /*ExplicitTemplateArgs=*/0, Args);
9572 }
9573
9574 namespace {
9575 // Callback to limit the allowed keywords and to only accept typo corrections
9576 // that are keywords or whose decls refer to functions (or template functions)
9577 // that accept the given number of arguments.
9578 class RecoveryCallCCC : public CorrectionCandidateCallback {
9579 public:
RecoveryCallCCC(Sema & SemaRef,unsigned NumArgs,bool HasExplicitTemplateArgs)9580 RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
9581 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
9582 WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
9583 WantRemainingKeywords = false;
9584 }
9585
ValidateCandidate(const TypoCorrection & candidate)9586 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9587 if (!candidate.getCorrectionDecl())
9588 return candidate.isKeyword();
9589
9590 for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
9591 DIEnd = candidate.end(); DI != DIEnd; ++DI) {
9592 FunctionDecl *FD = 0;
9593 NamedDecl *ND = (*DI)->getUnderlyingDecl();
9594 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
9595 FD = FTD->getTemplatedDecl();
9596 if (!HasExplicitTemplateArgs && !FD) {
9597 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
9598 // If the Decl is neither a function nor a template function,
9599 // determine if it is a pointer or reference to a function. If so,
9600 // check against the number of arguments expected for the pointee.
9601 QualType ValType = cast<ValueDecl>(ND)->getType();
9602 if (ValType->isAnyPointerType() || ValType->isReferenceType())
9603 ValType = ValType->getPointeeType();
9604 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
9605 if (FPT->getNumArgs() == NumArgs)
9606 return true;
9607 }
9608 }
9609 if (FD && FD->getNumParams() >= NumArgs &&
9610 FD->getMinRequiredArguments() <= NumArgs)
9611 return true;
9612 }
9613 return false;
9614 }
9615
9616 private:
9617 unsigned NumArgs;
9618 bool HasExplicitTemplateArgs;
9619 };
9620
9621 // Callback that effectively disabled typo correction
9622 class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
9623 public:
NoTypoCorrectionCCC()9624 NoTypoCorrectionCCC() {
9625 WantTypeSpecifiers = false;
9626 WantExpressionKeywords = false;
9627 WantCXXNamedCasts = false;
9628 WantRemainingKeywords = false;
9629 }
9630
ValidateCandidate(const TypoCorrection & candidate)9631 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9632 return false;
9633 }
9634 };
9635 }
9636
9637 /// Attempts to recover from a call where no functions were found.
9638 ///
9639 /// Returns true if new candidates were found.
9640 static ExprResult
BuildRecoveryCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,llvm::MutableArrayRef<Expr * > Args,SourceLocation RParenLoc,bool EmptyLookup,bool AllowTypoCorrection)9641 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9642 UnresolvedLookupExpr *ULE,
9643 SourceLocation LParenLoc,
9644 llvm::MutableArrayRef<Expr *> Args,
9645 SourceLocation RParenLoc,
9646 bool EmptyLookup, bool AllowTypoCorrection) {
9647
9648 CXXScopeSpec SS;
9649 SS.Adopt(ULE->getQualifierLoc());
9650 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
9651
9652 TemplateArgumentListInfo TABuffer;
9653 TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9654 if (ULE->hasExplicitTemplateArgs()) {
9655 ULE->copyTemplateArgumentsInto(TABuffer);
9656 ExplicitTemplateArgs = &TABuffer;
9657 }
9658
9659 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
9660 Sema::LookupOrdinaryName);
9661 RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0);
9662 NoTypoCorrectionCCC RejectAll;
9663 CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
9664 (CorrectionCandidateCallback*)&Validator :
9665 (CorrectionCandidateCallback*)&RejectAll;
9666 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
9667 ExplicitTemplateArgs, Args) &&
9668 (!EmptyLookup ||
9669 SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
9670 ExplicitTemplateArgs, Args)))
9671 return ExprError();
9672
9673 assert(!R.empty() && "lookup results empty despite recovery");
9674
9675 // Build an implicit member call if appropriate. Just drop the
9676 // casts and such from the call, we don't really care.
9677 ExprResult NewFn = ExprError();
9678 if ((*R.begin())->isCXXClassMember())
9679 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
9680 R, ExplicitTemplateArgs);
9681 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
9682 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
9683 ExplicitTemplateArgs);
9684 else
9685 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
9686
9687 if (NewFn.isInvalid())
9688 return ExprError();
9689
9690 // This shouldn't cause an infinite loop because we're giving it
9691 // an expression with viable lookup results, which should never
9692 // end up here.
9693 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
9694 MultiExprArg(Args.data(), Args.size()),
9695 RParenLoc);
9696 }
9697
9698 /// \brief Constructs and populates an OverloadedCandidateSet from
9699 /// the given function.
9700 /// \returns true when an the ExprResult output parameter has been set.
buildOverloadedCallSet(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,OverloadCandidateSet * CandidateSet,ExprResult * Result)9701 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
9702 UnresolvedLookupExpr *ULE,
9703 Expr **Args, unsigned NumArgs,
9704 SourceLocation RParenLoc,
9705 OverloadCandidateSet *CandidateSet,
9706 ExprResult *Result) {
9707 #ifndef NDEBUG
9708 if (ULE->requiresADL()) {
9709 // To do ADL, we must have found an unqualified name.
9710 assert(!ULE->getQualifier() && "qualified name with ADL");
9711
9712 // We don't perform ADL for implicit declarations of builtins.
9713 // Verify that this was correctly set up.
9714 FunctionDecl *F;
9715 if (ULE->decls_begin() + 1 == ULE->decls_end() &&
9716 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
9717 F->getBuiltinID() && F->isImplicit())
9718 llvm_unreachable("performing ADL for builtin");
9719
9720 // We don't perform ADL in C.
9721 assert(getLangOpts().CPlusPlus && "ADL enabled in C");
9722 } else
9723 assert(!ULE->isStdAssociatedNamespace() &&
9724 "std is associated namespace but not doing ADL");
9725 #endif
9726
9727 UnbridgedCastsSet UnbridgedCasts;
9728 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) {
9729 *Result = ExprError();
9730 return true;
9731 }
9732
9733 // Add the functions denoted by the callee to the set of candidate
9734 // functions, including those from argument-dependent lookup.
9735 AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs),
9736 *CandidateSet);
9737
9738 // If we found nothing, try to recover.
9739 // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
9740 // out if it fails.
9741 if (CandidateSet->empty()) {
9742 // In Microsoft mode, if we are inside a template class member function then
9743 // create a type dependent CallExpr. The goal is to postpone name lookup
9744 // to instantiation time to be able to search into type dependent base
9745 // classes.
9746 if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
9747 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
9748 CallExpr *CE = new (Context) CallExpr(Context, Fn,
9749 llvm::makeArrayRef(Args, NumArgs),
9750 Context.DependentTy, VK_RValue,
9751 RParenLoc);
9752 CE->setTypeDependent(true);
9753 *Result = Owned(CE);
9754 return true;
9755 }
9756 return false;
9757 }
9758
9759 UnbridgedCasts.restore();
9760 return false;
9761 }
9762
9763 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
9764 /// the completed call expression. If overload resolution fails, emits
9765 /// diagnostics and returns ExprError()
FinishOverloadedCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * ExecConfig,OverloadCandidateSet * CandidateSet,OverloadCandidateSet::iterator * Best,OverloadingResult OverloadResult,bool AllowTypoCorrection)9766 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9767 UnresolvedLookupExpr *ULE,
9768 SourceLocation LParenLoc,
9769 Expr **Args, unsigned NumArgs,
9770 SourceLocation RParenLoc,
9771 Expr *ExecConfig,
9772 OverloadCandidateSet *CandidateSet,
9773 OverloadCandidateSet::iterator *Best,
9774 OverloadingResult OverloadResult,
9775 bool AllowTypoCorrection) {
9776 if (CandidateSet->empty())
9777 return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
9778 llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9779 RParenLoc, /*EmptyLookup=*/true,
9780 AllowTypoCorrection);
9781
9782 switch (OverloadResult) {
9783 case OR_Success: {
9784 FunctionDecl *FDecl = (*Best)->Function;
9785 SemaRef.MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
9786 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
9787 SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
9788 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
9789 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9790 RParenLoc, ExecConfig);
9791 }
9792
9793 case OR_No_Viable_Function: {
9794 // Try to recover by looking for viable functions which the user might
9795 // have meant to call.
9796 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
9797 llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9798 RParenLoc,
9799 /*EmptyLookup=*/false,
9800 AllowTypoCorrection);
9801 if (!Recovery.isInvalid())
9802 return Recovery;
9803
9804 SemaRef.Diag(Fn->getLocStart(),
9805 diag::err_ovl_no_viable_function_in_call)
9806 << ULE->getName() << Fn->getSourceRange();
9807 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates,
9808 llvm::makeArrayRef(Args, NumArgs));
9809 break;
9810 }
9811
9812 case OR_Ambiguous:
9813 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
9814 << ULE->getName() << Fn->getSourceRange();
9815 CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates,
9816 llvm::makeArrayRef(Args, NumArgs));
9817 break;
9818
9819 case OR_Deleted: {
9820 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
9821 << (*Best)->Function->isDeleted()
9822 << ULE->getName()
9823 << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
9824 << Fn->getSourceRange();
9825 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates,
9826 llvm::makeArrayRef(Args, NumArgs));
9827
9828 // We emitted an error for the unvailable/deleted function call but keep
9829 // the call in the AST.
9830 FunctionDecl *FDecl = (*Best)->Function;
9831 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
9832 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9833 RParenLoc, ExecConfig);
9834 }
9835 }
9836
9837 // Overload resolution failed.
9838 return ExprError();
9839 }
9840
9841 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
9842 /// (which eventually refers to the declaration Func) and the call
9843 /// arguments Args/NumArgs, attempt to resolve the function call down
9844 /// to a specific function. If overload resolution succeeds, returns
9845 /// the call expression produced by overload resolution.
9846 /// Otherwise, emits diagnostics and returns ExprError.
BuildOverloadedCallExpr(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * ExecConfig,bool AllowTypoCorrection)9847 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
9848 UnresolvedLookupExpr *ULE,
9849 SourceLocation LParenLoc,
9850 Expr **Args, unsigned NumArgs,
9851 SourceLocation RParenLoc,
9852 Expr *ExecConfig,
9853 bool AllowTypoCorrection) {
9854 OverloadCandidateSet CandidateSet(Fn->getExprLoc());
9855 ExprResult result;
9856
9857 if (buildOverloadedCallSet(S, Fn, ULE, Args, NumArgs, LParenLoc,
9858 &CandidateSet, &result))
9859 return result;
9860
9861 OverloadCandidateSet::iterator Best;
9862 OverloadingResult OverloadResult =
9863 CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
9864
9865 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
9866 RParenLoc, ExecConfig, &CandidateSet,
9867 &Best, OverloadResult,
9868 AllowTypoCorrection);
9869 }
9870
IsOverloaded(const UnresolvedSetImpl & Functions)9871 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
9872 return Functions.size() > 1 ||
9873 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
9874 }
9875
9876 /// \brief Create a unary operation that may resolve to an overloaded
9877 /// operator.
9878 ///
9879 /// \param OpLoc The location of the operator itself (e.g., '*').
9880 ///
9881 /// \param OpcIn The UnaryOperator::Opcode that describes this
9882 /// operator.
9883 ///
9884 /// \param Fns The set of non-member functions that will be
9885 /// considered by overload resolution. The caller needs to build this
9886 /// set based on the context using, e.g.,
9887 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9888 /// set should not contain any member functions; those will be added
9889 /// by CreateOverloadedUnaryOp().
9890 ///
9891 /// \param Input The input argument.
9892 ExprResult
CreateOverloadedUnaryOp(SourceLocation OpLoc,unsigned OpcIn,const UnresolvedSetImpl & Fns,Expr * Input)9893 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
9894 const UnresolvedSetImpl &Fns,
9895 Expr *Input) {
9896 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
9897
9898 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
9899 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
9900 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9901 // TODO: provide better source location info.
9902 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9903
9904 if (checkPlaceholderForOverload(*this, Input))
9905 return ExprError();
9906
9907 Expr *Args[2] = { Input, 0 };
9908 unsigned NumArgs = 1;
9909
9910 // For post-increment and post-decrement, add the implicit '0' as
9911 // the second argument, so that we know this is a post-increment or
9912 // post-decrement.
9913 if (Opc == UO_PostInc || Opc == UO_PostDec) {
9914 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
9915 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
9916 SourceLocation());
9917 NumArgs = 2;
9918 }
9919
9920 if (Input->isTypeDependent()) {
9921 if (Fns.empty())
9922 return Owned(new (Context) UnaryOperator(Input,
9923 Opc,
9924 Context.DependentTy,
9925 VK_RValue, OK_Ordinary,
9926 OpLoc));
9927
9928 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9929 UnresolvedLookupExpr *Fn
9930 = UnresolvedLookupExpr::Create(Context, NamingClass,
9931 NestedNameSpecifierLoc(), OpNameInfo,
9932 /*ADL*/ true, IsOverloaded(Fns),
9933 Fns.begin(), Fns.end());
9934 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9935 llvm::makeArrayRef(Args, NumArgs),
9936 Context.DependentTy,
9937 VK_RValue,
9938 OpLoc));
9939 }
9940
9941 // Build an empty overload set.
9942 OverloadCandidateSet CandidateSet(OpLoc);
9943
9944 // Add the candidates from the given function set.
9945 AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet,
9946 false);
9947
9948 // Add operator candidates that are member functions.
9949 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9950
9951 // Add candidates from ADL.
9952 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9953 OpLoc, llvm::makeArrayRef(Args, NumArgs),
9954 /*ExplicitTemplateArgs*/ 0,
9955 CandidateSet);
9956
9957 // Add builtin operator candidates.
9958 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9959
9960 bool HadMultipleCandidates = (CandidateSet.size() > 1);
9961
9962 // Perform overload resolution.
9963 OverloadCandidateSet::iterator Best;
9964 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9965 case OR_Success: {
9966 // We found a built-in operator or an overloaded operator.
9967 FunctionDecl *FnDecl = Best->Function;
9968
9969 if (FnDecl) {
9970 // We matched an overloaded operator. Build a call to that
9971 // operator.
9972
9973 MarkFunctionReferenced(OpLoc, FnDecl);
9974
9975 // Convert the arguments.
9976 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
9977 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
9978
9979 ExprResult InputRes =
9980 PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
9981 Best->FoundDecl, Method);
9982 if (InputRes.isInvalid())
9983 return ExprError();
9984 Input = InputRes.take();
9985 } else {
9986 // Convert the arguments.
9987 ExprResult InputInit
9988 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9989 Context,
9990 FnDecl->getParamDecl(0)),
9991 SourceLocation(),
9992 Input);
9993 if (InputInit.isInvalid())
9994 return ExprError();
9995 Input = InputInit.take();
9996 }
9997
9998 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9999
10000 // Determine the result type.
10001 QualType ResultTy = FnDecl->getResultType();
10002 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10003 ResultTy = ResultTy.getNonLValueExprType(Context);
10004
10005 // Build the actual expression node.
10006 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10007 HadMultipleCandidates, OpLoc);
10008 if (FnExpr.isInvalid())
10009 return ExprError();
10010
10011 Args[0] = Input;
10012 CallExpr *TheCall =
10013 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10014 llvm::makeArrayRef(Args, NumArgs),
10015 ResultTy, VK, OpLoc);
10016
10017 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10018 FnDecl))
10019 return ExprError();
10020
10021 return MaybeBindToTemporary(TheCall);
10022 } else {
10023 // We matched a built-in operator. Convert the arguments, then
10024 // break out so that we will build the appropriate built-in
10025 // operator node.
10026 ExprResult InputRes =
10027 PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
10028 Best->Conversions[0], AA_Passing);
10029 if (InputRes.isInvalid())
10030 return ExprError();
10031 Input = InputRes.take();
10032 break;
10033 }
10034 }
10035
10036 case OR_No_Viable_Function:
10037 // This is an erroneous use of an operator which can be overloaded by
10038 // a non-member function. Check for non-member operators which were
10039 // defined too late to be candidates.
10040 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc,
10041 llvm::makeArrayRef(Args, NumArgs)))
10042 // FIXME: Recover by calling the found function.
10043 return ExprError();
10044
10045 // No viable function; fall through to handling this as a
10046 // built-in operator, which will produce an error message for us.
10047 break;
10048
10049 case OR_Ambiguous:
10050 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
10051 << UnaryOperator::getOpcodeStr(Opc)
10052 << Input->getType()
10053 << Input->getSourceRange();
10054 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
10055 llvm::makeArrayRef(Args, NumArgs),
10056 UnaryOperator::getOpcodeStr(Opc), OpLoc);
10057 return ExprError();
10058
10059 case OR_Deleted:
10060 Diag(OpLoc, diag::err_ovl_deleted_oper)
10061 << Best->Function->isDeleted()
10062 << UnaryOperator::getOpcodeStr(Opc)
10063 << getDeletedOrUnavailableSuffix(Best->Function)
10064 << Input->getSourceRange();
10065 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10066 llvm::makeArrayRef(Args, NumArgs),
10067 UnaryOperator::getOpcodeStr(Opc), OpLoc);
10068 return ExprError();
10069 }
10070
10071 // Either we found no viable overloaded operator or we matched a
10072 // built-in operator. In either case, fall through to trying to
10073 // build a built-in operation.
10074 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10075 }
10076
10077 /// \brief Create a binary operation that may resolve to an overloaded
10078 /// operator.
10079 ///
10080 /// \param OpLoc The location of the operator itself (e.g., '+').
10081 ///
10082 /// \param OpcIn The BinaryOperator::Opcode that describes this
10083 /// operator.
10084 ///
10085 /// \param Fns The set of non-member functions that will be
10086 /// considered by overload resolution. The caller needs to build this
10087 /// set based on the context using, e.g.,
10088 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10089 /// set should not contain any member functions; those will be added
10090 /// by CreateOverloadedBinOp().
10091 ///
10092 /// \param LHS Left-hand argument.
10093 /// \param RHS Right-hand argument.
10094 ExprResult
CreateOverloadedBinOp(SourceLocation OpLoc,unsigned OpcIn,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS)10095 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
10096 unsigned OpcIn,
10097 const UnresolvedSetImpl &Fns,
10098 Expr *LHS, Expr *RHS) {
10099 Expr *Args[2] = { LHS, RHS };
10100 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
10101
10102 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
10103 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
10104 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10105
10106 // If either side is type-dependent, create an appropriate dependent
10107 // expression.
10108 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10109 if (Fns.empty()) {
10110 // If there are no functions to store, just build a dependent
10111 // BinaryOperator or CompoundAssignment.
10112 if (Opc <= BO_Assign || Opc > BO_OrAssign)
10113 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
10114 Context.DependentTy,
10115 VK_RValue, OK_Ordinary,
10116 OpLoc));
10117
10118 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
10119 Context.DependentTy,
10120 VK_LValue,
10121 OK_Ordinary,
10122 Context.DependentTy,
10123 Context.DependentTy,
10124 OpLoc));
10125 }
10126
10127 // FIXME: save results of ADL from here?
10128 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10129 // TODO: provide better source location info in DNLoc component.
10130 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10131 UnresolvedLookupExpr *Fn
10132 = UnresolvedLookupExpr::Create(Context, NamingClass,
10133 NestedNameSpecifierLoc(), OpNameInfo,
10134 /*ADL*/ true, IsOverloaded(Fns),
10135 Fns.begin(), Fns.end());
10136 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
10137 Args,
10138 Context.DependentTy,
10139 VK_RValue,
10140 OpLoc));
10141 }
10142
10143 // Always do placeholder-like conversions on the RHS.
10144 if (checkPlaceholderForOverload(*this, Args[1]))
10145 return ExprError();
10146
10147 // Do placeholder-like conversion on the LHS; note that we should
10148 // not get here with a PseudoObject LHS.
10149 assert(Args[0]->getObjectKind() != OK_ObjCProperty);
10150 if (checkPlaceholderForOverload(*this, Args[0]))
10151 return ExprError();
10152
10153 // If this is the assignment operator, we only perform overload resolution
10154 // if the left-hand side is a class or enumeration type. This is actually
10155 // a hack. The standard requires that we do overload resolution between the
10156 // various built-in candidates, but as DR507 points out, this can lead to
10157 // problems. So we do it this way, which pretty much follows what GCC does.
10158 // Note that we go the traditional code path for compound assignment forms.
10159 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
10160 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10161
10162 // If this is the .* operator, which is not overloadable, just
10163 // create a built-in binary operator.
10164 if (Opc == BO_PtrMemD)
10165 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10166
10167 // Build an empty overload set.
10168 OverloadCandidateSet CandidateSet(OpLoc);
10169
10170 // Add the candidates from the given function set.
10171 AddFunctionCandidates(Fns, Args, CandidateSet, false);
10172
10173 // Add operator candidates that are member functions.
10174 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
10175
10176 // Add candidates from ADL.
10177 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
10178 OpLoc, Args,
10179 /*ExplicitTemplateArgs*/ 0,
10180 CandidateSet);
10181
10182 // Add builtin operator candidates.
10183 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
10184
10185 bool HadMultipleCandidates = (CandidateSet.size() > 1);
10186
10187 // Perform overload resolution.
10188 OverloadCandidateSet::iterator Best;
10189 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10190 case OR_Success: {
10191 // We found a built-in operator or an overloaded operator.
10192 FunctionDecl *FnDecl = Best->Function;
10193
10194 if (FnDecl) {
10195 // We matched an overloaded operator. Build a call to that
10196 // operator.
10197
10198 MarkFunctionReferenced(OpLoc, FnDecl);
10199
10200 // Convert the arguments.
10201 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10202 // Best->Access is only meaningful for class members.
10203 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
10204
10205 ExprResult Arg1 =
10206 PerformCopyInitialization(
10207 InitializedEntity::InitializeParameter(Context,
10208 FnDecl->getParamDecl(0)),
10209 SourceLocation(), Owned(Args[1]));
10210 if (Arg1.isInvalid())
10211 return ExprError();
10212
10213 ExprResult Arg0 =
10214 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10215 Best->FoundDecl, Method);
10216 if (Arg0.isInvalid())
10217 return ExprError();
10218 Args[0] = Arg0.takeAs<Expr>();
10219 Args[1] = RHS = Arg1.takeAs<Expr>();
10220 } else {
10221 // Convert the arguments.
10222 ExprResult Arg0 = PerformCopyInitialization(
10223 InitializedEntity::InitializeParameter(Context,
10224 FnDecl->getParamDecl(0)),
10225 SourceLocation(), Owned(Args[0]));
10226 if (Arg0.isInvalid())
10227 return ExprError();
10228
10229 ExprResult Arg1 =
10230 PerformCopyInitialization(
10231 InitializedEntity::InitializeParameter(Context,
10232 FnDecl->getParamDecl(1)),
10233 SourceLocation(), Owned(Args[1]));
10234 if (Arg1.isInvalid())
10235 return ExprError();
10236 Args[0] = LHS = Arg0.takeAs<Expr>();
10237 Args[1] = RHS = Arg1.takeAs<Expr>();
10238 }
10239
10240 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10241
10242 // Determine the result type.
10243 QualType ResultTy = FnDecl->getResultType();
10244 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10245 ResultTy = ResultTy.getNonLValueExprType(Context);
10246
10247 // Build the actual expression node.
10248 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10249 HadMultipleCandidates, OpLoc);
10250 if (FnExpr.isInvalid())
10251 return ExprError();
10252
10253 CXXOperatorCallExpr *TheCall =
10254 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10255 Args, ResultTy, VK, OpLoc);
10256
10257 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10258 FnDecl))
10259 return ExprError();
10260
10261 return MaybeBindToTemporary(TheCall);
10262 } else {
10263 // We matched a built-in operator. Convert the arguments, then
10264 // break out so that we will build the appropriate built-in
10265 // operator node.
10266 ExprResult ArgsRes0 =
10267 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10268 Best->Conversions[0], AA_Passing);
10269 if (ArgsRes0.isInvalid())
10270 return ExprError();
10271 Args[0] = ArgsRes0.take();
10272
10273 ExprResult ArgsRes1 =
10274 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10275 Best->Conversions[1], AA_Passing);
10276 if (ArgsRes1.isInvalid())
10277 return ExprError();
10278 Args[1] = ArgsRes1.take();
10279 break;
10280 }
10281 }
10282
10283 case OR_No_Viable_Function: {
10284 // C++ [over.match.oper]p9:
10285 // If the operator is the operator , [...] and there are no
10286 // viable functions, then the operator is assumed to be the
10287 // built-in operator and interpreted according to clause 5.
10288 if (Opc == BO_Comma)
10289 break;
10290
10291 // For class as left operand for assignment or compound assigment
10292 // operator do not fall through to handling in built-in, but report that
10293 // no overloaded assignment operator found
10294 ExprResult Result = ExprError();
10295 if (Args[0]->getType()->isRecordType() &&
10296 Opc >= BO_Assign && Opc <= BO_OrAssign) {
10297 Diag(OpLoc, diag::err_ovl_no_viable_oper)
10298 << BinaryOperator::getOpcodeStr(Opc)
10299 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10300 } else {
10301 // This is an erroneous use of an operator which can be overloaded by
10302 // a non-member function. Check for non-member operators which were
10303 // defined too late to be candidates.
10304 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
10305 // FIXME: Recover by calling the found function.
10306 return ExprError();
10307
10308 // No viable function; try to create a built-in operation, which will
10309 // produce an error. Then, show the non-viable candidates.
10310 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10311 }
10312 assert(Result.isInvalid() &&
10313 "C++ binary operator overloading is missing candidates!");
10314 if (Result.isInvalid())
10315 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10316 BinaryOperator::getOpcodeStr(Opc), OpLoc);
10317 return Result;
10318 }
10319
10320 case OR_Ambiguous:
10321 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary)
10322 << BinaryOperator::getOpcodeStr(Opc)
10323 << Args[0]->getType() << Args[1]->getType()
10324 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10325 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10326 BinaryOperator::getOpcodeStr(Opc), OpLoc);
10327 return ExprError();
10328
10329 case OR_Deleted:
10330 if (isImplicitlyDeleted(Best->Function)) {
10331 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10332 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
10333 << getSpecialMember(Method)
10334 << BinaryOperator::getOpcodeStr(Opc)
10335 << getDeletedOrUnavailableSuffix(Best->Function);
10336
10337 if (getSpecialMember(Method) != CXXInvalid) {
10338 // The user probably meant to call this special member. Just
10339 // explain why it's deleted.
10340 NoteDeletedFunction(Method);
10341 return ExprError();
10342 }
10343 } else {
10344 Diag(OpLoc, diag::err_ovl_deleted_oper)
10345 << Best->Function->isDeleted()
10346 << BinaryOperator::getOpcodeStr(Opc)
10347 << getDeletedOrUnavailableSuffix(Best->Function)
10348 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10349 }
10350 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10351 BinaryOperator::getOpcodeStr(Opc), OpLoc);
10352 return ExprError();
10353 }
10354
10355 // We matched a built-in operator; build it.
10356 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10357 }
10358
10359 ExprResult
CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,SourceLocation RLoc,Expr * Base,Expr * Idx)10360 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
10361 SourceLocation RLoc,
10362 Expr *Base, Expr *Idx) {
10363 Expr *Args[2] = { Base, Idx };
10364 DeclarationName OpName =
10365 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
10366
10367 // If either side is type-dependent, create an appropriate dependent
10368 // expression.
10369 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10370
10371 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10372 // CHECKME: no 'operator' keyword?
10373 DeclarationNameInfo OpNameInfo(OpName, LLoc);
10374 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10375 UnresolvedLookupExpr *Fn
10376 = UnresolvedLookupExpr::Create(Context, NamingClass,
10377 NestedNameSpecifierLoc(), OpNameInfo,
10378 /*ADL*/ true, /*Overloaded*/ false,
10379 UnresolvedSetIterator(),
10380 UnresolvedSetIterator());
10381 // Can't add any actual overloads yet
10382
10383 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
10384 Args,
10385 Context.DependentTy,
10386 VK_RValue,
10387 RLoc));
10388 }
10389
10390 // Handle placeholders on both operands.
10391 if (checkPlaceholderForOverload(*this, Args[0]))
10392 return ExprError();
10393 if (checkPlaceholderForOverload(*this, Args[1]))
10394 return ExprError();
10395
10396 // Build an empty overload set.
10397 OverloadCandidateSet CandidateSet(LLoc);
10398
10399 // Subscript can only be overloaded as a member function.
10400
10401 // Add operator candidates that are member functions.
10402 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10403
10404 // Add builtin operator candidates.
10405 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10406
10407 bool HadMultipleCandidates = (CandidateSet.size() > 1);
10408
10409 // Perform overload resolution.
10410 OverloadCandidateSet::iterator Best;
10411 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
10412 case OR_Success: {
10413 // We found a built-in operator or an overloaded operator.
10414 FunctionDecl *FnDecl = Best->Function;
10415
10416 if (FnDecl) {
10417 // We matched an overloaded operator. Build a call to that
10418 // operator.
10419
10420 MarkFunctionReferenced(LLoc, FnDecl);
10421
10422 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
10423 DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
10424
10425 // Convert the arguments.
10426 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
10427 ExprResult Arg0 =
10428 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10429 Best->FoundDecl, Method);
10430 if (Arg0.isInvalid())
10431 return ExprError();
10432 Args[0] = Arg0.take();
10433
10434 // Convert the arguments.
10435 ExprResult InputInit
10436 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10437 Context,
10438 FnDecl->getParamDecl(0)),
10439 SourceLocation(),
10440 Owned(Args[1]));
10441 if (InputInit.isInvalid())
10442 return ExprError();
10443
10444 Args[1] = InputInit.takeAs<Expr>();
10445
10446 // Determine the result type
10447 QualType ResultTy = FnDecl->getResultType();
10448 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10449 ResultTy = ResultTy.getNonLValueExprType(Context);
10450
10451 // Build the actual expression node.
10452 DeclarationNameInfo OpLocInfo(OpName, LLoc);
10453 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10454 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10455 HadMultipleCandidates,
10456 OpLocInfo.getLoc(),
10457 OpLocInfo.getInfo());
10458 if (FnExpr.isInvalid())
10459 return ExprError();
10460
10461 CXXOperatorCallExpr *TheCall =
10462 new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10463 FnExpr.take(), Args,
10464 ResultTy, VK, RLoc);
10465
10466 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10467 FnDecl))
10468 return ExprError();
10469
10470 return MaybeBindToTemporary(TheCall);
10471 } else {
10472 // We matched a built-in operator. Convert the arguments, then
10473 // break out so that we will build the appropriate built-in
10474 // operator node.
10475 ExprResult ArgsRes0 =
10476 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10477 Best->Conversions[0], AA_Passing);
10478 if (ArgsRes0.isInvalid())
10479 return ExprError();
10480 Args[0] = ArgsRes0.take();
10481
10482 ExprResult ArgsRes1 =
10483 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10484 Best->Conversions[1], AA_Passing);
10485 if (ArgsRes1.isInvalid())
10486 return ExprError();
10487 Args[1] = ArgsRes1.take();
10488
10489 break;
10490 }
10491 }
10492
10493 case OR_No_Viable_Function: {
10494 if (CandidateSet.empty())
10495 Diag(LLoc, diag::err_ovl_no_oper)
10496 << Args[0]->getType() << /*subscript*/ 0
10497 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10498 else
10499 Diag(LLoc, diag::err_ovl_no_viable_subscript)
10500 << Args[0]->getType()
10501 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10502 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10503 "[]", LLoc);
10504 return ExprError();
10505 }
10506
10507 case OR_Ambiguous:
10508 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary)
10509 << "[]"
10510 << Args[0]->getType() << Args[1]->getType()
10511 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10512 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10513 "[]", LLoc);
10514 return ExprError();
10515
10516 case OR_Deleted:
10517 Diag(LLoc, diag::err_ovl_deleted_oper)
10518 << Best->Function->isDeleted() << "[]"
10519 << getDeletedOrUnavailableSuffix(Best->Function)
10520 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10521 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10522 "[]", LLoc);
10523 return ExprError();
10524 }
10525
10526 // We matched a built-in operator; build it.
10527 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10528 }
10529
10530 /// BuildCallToMemberFunction - Build a call to a member
10531 /// function. MemExpr is the expression that refers to the member
10532 /// function (and includes the object parameter), Args/NumArgs are the
10533 /// arguments to the function call (not including the object
10534 /// parameter). The caller needs to validate that the member
10535 /// expression refers to a non-static member function or an overloaded
10536 /// member function.
10537 ExprResult
BuildCallToMemberFunction(Scope * S,Expr * MemExprE,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc)10538 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10539 SourceLocation LParenLoc, Expr **Args,
10540 unsigned NumArgs, SourceLocation RParenLoc) {
10541 assert(MemExprE->getType() == Context.BoundMemberTy ||
10542 MemExprE->getType() == Context.OverloadTy);
10543
10544 // Dig out the member expression. This holds both the object
10545 // argument and the member function we're referring to.
10546 Expr *NakedMemExpr = MemExprE->IgnoreParens();
10547
10548 // Determine whether this is a call to a pointer-to-member function.
10549 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10550 assert(op->getType() == Context.BoundMemberTy);
10551 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10552
10553 QualType fnType =
10554 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10555
10556 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10557 QualType resultType = proto->getCallResultType(Context);
10558 ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10559
10560 // Check that the object type isn't more qualified than the
10561 // member function we're calling.
10562 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10563
10564 QualType objectType = op->getLHS()->getType();
10565 if (op->getOpcode() == BO_PtrMemI)
10566 objectType = objectType->castAs<PointerType>()->getPointeeType();
10567 Qualifiers objectQuals = objectType.getQualifiers();
10568
10569 Qualifiers difference = objectQuals - funcQuals;
10570 difference.removeObjCGCAttr();
10571 difference.removeAddressSpace();
10572 if (difference) {
10573 std::string qualsString = difference.getAsString();
10574 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
10575 << fnType.getUnqualifiedType()
10576 << qualsString
10577 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
10578 }
10579
10580 CXXMemberCallExpr *call
10581 = new (Context) CXXMemberCallExpr(Context, MemExprE,
10582 llvm::makeArrayRef(Args, NumArgs),
10583 resultType, valueKind, RParenLoc);
10584
10585 if (CheckCallReturnType(proto->getResultType(),
10586 op->getRHS()->getLocStart(),
10587 call, 0))
10588 return ExprError();
10589
10590 if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
10591 return ExprError();
10592
10593 return MaybeBindToTemporary(call);
10594 }
10595
10596 UnbridgedCastsSet UnbridgedCasts;
10597 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10598 return ExprError();
10599
10600 MemberExpr *MemExpr;
10601 CXXMethodDecl *Method = 0;
10602 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
10603 NestedNameSpecifier *Qualifier = 0;
10604 if (isa<MemberExpr>(NakedMemExpr)) {
10605 MemExpr = cast<MemberExpr>(NakedMemExpr);
10606 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
10607 FoundDecl = MemExpr->getFoundDecl();
10608 Qualifier = MemExpr->getQualifier();
10609 UnbridgedCasts.restore();
10610 } else {
10611 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
10612 Qualifier = UnresExpr->getQualifier();
10613
10614 QualType ObjectType = UnresExpr->getBaseType();
10615 Expr::Classification ObjectClassification
10616 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
10617 : UnresExpr->getBase()->Classify(Context);
10618
10619 // Add overload candidates
10620 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
10621
10622 // FIXME: avoid copy.
10623 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10624 if (UnresExpr->hasExplicitTemplateArgs()) {
10625 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10626 TemplateArgs = &TemplateArgsBuffer;
10627 }
10628
10629 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
10630 E = UnresExpr->decls_end(); I != E; ++I) {
10631
10632 NamedDecl *Func = *I;
10633 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
10634 if (isa<UsingShadowDecl>(Func))
10635 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
10636
10637
10638 // Microsoft supports direct constructor calls.
10639 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
10640 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
10641 llvm::makeArrayRef(Args, NumArgs), CandidateSet);
10642 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
10643 // If explicit template arguments were provided, we can't call a
10644 // non-template member function.
10645 if (TemplateArgs)
10646 continue;
10647
10648 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
10649 ObjectClassification,
10650 llvm::makeArrayRef(Args, NumArgs), CandidateSet,
10651 /*SuppressUserConversions=*/false);
10652 } else {
10653 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
10654 I.getPair(), ActingDC, TemplateArgs,
10655 ObjectType, ObjectClassification,
10656 llvm::makeArrayRef(Args, NumArgs),
10657 CandidateSet,
10658 /*SuppressUsedConversions=*/false);
10659 }
10660 }
10661
10662 DeclarationName DeclName = UnresExpr->getMemberName();
10663
10664 UnbridgedCasts.restore();
10665
10666 OverloadCandidateSet::iterator Best;
10667 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
10668 Best)) {
10669 case OR_Success:
10670 Method = cast<CXXMethodDecl>(Best->Function);
10671 MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
10672 FoundDecl = Best->FoundDecl;
10673 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
10674 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
10675 break;
10676
10677 case OR_No_Viable_Function:
10678 Diag(UnresExpr->getMemberLoc(),
10679 diag::err_ovl_no_viable_member_function_in_call)
10680 << DeclName << MemExprE->getSourceRange();
10681 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10682 llvm::makeArrayRef(Args, NumArgs));
10683 // FIXME: Leaking incoming expressions!
10684 return ExprError();
10685
10686 case OR_Ambiguous:
10687 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
10688 << DeclName << MemExprE->getSourceRange();
10689 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10690 llvm::makeArrayRef(Args, NumArgs));
10691 // FIXME: Leaking incoming expressions!
10692 return ExprError();
10693
10694 case OR_Deleted:
10695 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
10696 << Best->Function->isDeleted()
10697 << DeclName
10698 << getDeletedOrUnavailableSuffix(Best->Function)
10699 << MemExprE->getSourceRange();
10700 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10701 llvm::makeArrayRef(Args, NumArgs));
10702 // FIXME: Leaking incoming expressions!
10703 return ExprError();
10704 }
10705
10706 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
10707
10708 // If overload resolution picked a static member, build a
10709 // non-member call based on that function.
10710 if (Method->isStatic()) {
10711 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
10712 Args, NumArgs, RParenLoc);
10713 }
10714
10715 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
10716 }
10717
10718 QualType ResultType = Method->getResultType();
10719 ExprValueKind VK = Expr::getValueKindForType(ResultType);
10720 ResultType = ResultType.getNonLValueExprType(Context);
10721
10722 assert(Method && "Member call to something that isn't a method?");
10723 CXXMemberCallExpr *TheCall =
10724 new (Context) CXXMemberCallExpr(Context, MemExprE,
10725 llvm::makeArrayRef(Args, NumArgs),
10726 ResultType, VK, RParenLoc);
10727
10728 // Check for a valid return type.
10729 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
10730 TheCall, Method))
10731 return ExprError();
10732
10733 // Convert the object argument (for a non-static member function call).
10734 // We only need to do this if there was actually an overload; otherwise
10735 // it was done at lookup.
10736 if (!Method->isStatic()) {
10737 ExprResult ObjectArg =
10738 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
10739 FoundDecl, Method);
10740 if (ObjectArg.isInvalid())
10741 return ExprError();
10742 MemExpr->setBase(ObjectArg.take());
10743 }
10744
10745 // Convert the rest of the arguments
10746 const FunctionProtoType *Proto =
10747 Method->getType()->getAs<FunctionProtoType>();
10748 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
10749 RParenLoc))
10750 return ExprError();
10751
10752 DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
10753
10754 if (CheckFunctionCall(Method, TheCall, Proto))
10755 return ExprError();
10756
10757 if ((isa<CXXConstructorDecl>(CurContext) ||
10758 isa<CXXDestructorDecl>(CurContext)) &&
10759 TheCall->getMethodDecl()->isPure()) {
10760 const CXXMethodDecl *MD = TheCall->getMethodDecl();
10761
10762 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
10763 Diag(MemExpr->getLocStart(),
10764 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
10765 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
10766 << MD->getParent()->getDeclName();
10767
10768 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
10769 }
10770 }
10771 return MaybeBindToTemporary(TheCall);
10772 }
10773
10774 /// BuildCallToObjectOfClassType - Build a call to an object of class
10775 /// type (C++ [over.call.object]), which can end up invoking an
10776 /// overloaded function call operator (@c operator()) or performing a
10777 /// user-defined conversion on the object argument.
10778 ExprResult
BuildCallToObjectOfClassType(Scope * S,Expr * Obj,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc)10779 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
10780 SourceLocation LParenLoc,
10781 Expr **Args, unsigned NumArgs,
10782 SourceLocation RParenLoc) {
10783 if (checkPlaceholderForOverload(*this, Obj))
10784 return ExprError();
10785 ExprResult Object = Owned(Obj);
10786
10787 UnbridgedCastsSet UnbridgedCasts;
10788 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10789 return ExprError();
10790
10791 assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
10792 const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
10793
10794 // C++ [over.call.object]p1:
10795 // If the primary-expression E in the function call syntax
10796 // evaluates to a class object of type "cv T", then the set of
10797 // candidate functions includes at least the function call
10798 // operators of T. The function call operators of T are obtained by
10799 // ordinary lookup of the name operator() in the context of
10800 // (E).operator().
10801 OverloadCandidateSet CandidateSet(LParenLoc);
10802 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
10803
10804 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
10805 diag::err_incomplete_object_call, Object.get()))
10806 return true;
10807
10808 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
10809 LookupQualifiedName(R, Record->getDecl());
10810 R.suppressDiagnostics();
10811
10812 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10813 Oper != OperEnd; ++Oper) {
10814 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
10815 Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
10816 /*SuppressUserConversions=*/ false);
10817 }
10818
10819 // C++ [over.call.object]p2:
10820 // In addition, for each (non-explicit in C++0x) conversion function
10821 // declared in T of the form
10822 //
10823 // operator conversion-type-id () cv-qualifier;
10824 //
10825 // where cv-qualifier is the same cv-qualification as, or a
10826 // greater cv-qualification than, cv, and where conversion-type-id
10827 // denotes the type "pointer to function of (P1,...,Pn) returning
10828 // R", or the type "reference to pointer to function of
10829 // (P1,...,Pn) returning R", or the type "reference to function
10830 // of (P1,...,Pn) returning R", a surrogate call function [...]
10831 // is also considered as a candidate function. Similarly,
10832 // surrogate call functions are added to the set of candidate
10833 // functions for each conversion function declared in an
10834 // accessible base class provided the function is not hidden
10835 // within T by another intervening declaration.
10836 const UnresolvedSetImpl *Conversions
10837 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
10838 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
10839 E = Conversions->end(); I != E; ++I) {
10840 NamedDecl *D = *I;
10841 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
10842 if (isa<UsingShadowDecl>(D))
10843 D = cast<UsingShadowDecl>(D)->getTargetDecl();
10844
10845 // Skip over templated conversion functions; they aren't
10846 // surrogates.
10847 if (isa<FunctionTemplateDecl>(D))
10848 continue;
10849
10850 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
10851 if (!Conv->isExplicit()) {
10852 // Strip the reference type (if any) and then the pointer type (if
10853 // any) to get down to what might be a function type.
10854 QualType ConvType = Conv->getConversionType().getNonReferenceType();
10855 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10856 ConvType = ConvPtrType->getPointeeType();
10857
10858 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
10859 {
10860 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
10861 Object.get(), llvm::makeArrayRef(Args, NumArgs),
10862 CandidateSet);
10863 }
10864 }
10865 }
10866
10867 bool HadMultipleCandidates = (CandidateSet.size() > 1);
10868
10869 // Perform overload resolution.
10870 OverloadCandidateSet::iterator Best;
10871 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
10872 Best)) {
10873 case OR_Success:
10874 // Overload resolution succeeded; we'll build the appropriate call
10875 // below.
10876 break;
10877
10878 case OR_No_Viable_Function:
10879 if (CandidateSet.empty())
10880 Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
10881 << Object.get()->getType() << /*call*/ 1
10882 << Object.get()->getSourceRange();
10883 else
10884 Diag(Object.get()->getLocStart(),
10885 diag::err_ovl_no_viable_object_call)
10886 << Object.get()->getType() << Object.get()->getSourceRange();
10887 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10888 llvm::makeArrayRef(Args, NumArgs));
10889 break;
10890
10891 case OR_Ambiguous:
10892 Diag(Object.get()->getLocStart(),
10893 diag::err_ovl_ambiguous_object_call)
10894 << Object.get()->getType() << Object.get()->getSourceRange();
10895 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
10896 llvm::makeArrayRef(Args, NumArgs));
10897 break;
10898
10899 case OR_Deleted:
10900 Diag(Object.get()->getLocStart(),
10901 diag::err_ovl_deleted_object_call)
10902 << Best->Function->isDeleted()
10903 << Object.get()->getType()
10904 << getDeletedOrUnavailableSuffix(Best->Function)
10905 << Object.get()->getSourceRange();
10906 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10907 llvm::makeArrayRef(Args, NumArgs));
10908 break;
10909 }
10910
10911 if (Best == CandidateSet.end())
10912 return true;
10913
10914 UnbridgedCasts.restore();
10915
10916 if (Best->Function == 0) {
10917 // Since there is no function declaration, this is one of the
10918 // surrogate candidates. Dig out the conversion function.
10919 CXXConversionDecl *Conv
10920 = cast<CXXConversionDecl>(
10921 Best->Conversions[0].UserDefined.ConversionFunction);
10922
10923 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10924 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10925
10926 // We selected one of the surrogate functions that converts the
10927 // object parameter to a function pointer. Perform the conversion
10928 // on the object argument, then let ActOnCallExpr finish the job.
10929
10930 // Create an implicit member expr to refer to the conversion operator.
10931 // and then call it.
10932 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
10933 Conv, HadMultipleCandidates);
10934 if (Call.isInvalid())
10935 return ExprError();
10936 // Record usage of conversion in an implicit cast.
10937 Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
10938 CK_UserDefinedConversion,
10939 Call.get(), 0, VK_RValue));
10940
10941 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
10942 RParenLoc);
10943 }
10944
10945 MarkFunctionReferenced(LParenLoc, Best->Function);
10946 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10947 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10948
10949 // We found an overloaded operator(). Build a CXXOperatorCallExpr
10950 // that calls this method, using Object for the implicit object
10951 // parameter and passing along the remaining arguments.
10952 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10953 const FunctionProtoType *Proto =
10954 Method->getType()->getAs<FunctionProtoType>();
10955
10956 unsigned NumArgsInProto = Proto->getNumArgs();
10957 unsigned NumArgsToCheck = NumArgs;
10958
10959 // Build the full argument list for the method call (the
10960 // implicit object parameter is placed at the beginning of the
10961 // list).
10962 Expr **MethodArgs;
10963 if (NumArgs < NumArgsInProto) {
10964 NumArgsToCheck = NumArgsInProto;
10965 MethodArgs = new Expr*[NumArgsInProto + 1];
10966 } else {
10967 MethodArgs = new Expr*[NumArgs + 1];
10968 }
10969 MethodArgs[0] = Object.get();
10970 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
10971 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
10972
10973 DeclarationNameInfo OpLocInfo(
10974 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
10975 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
10976 ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
10977 HadMultipleCandidates,
10978 OpLocInfo.getLoc(),
10979 OpLocInfo.getInfo());
10980 if (NewFn.isInvalid())
10981 return true;
10982
10983 // Once we've built TheCall, all of the expressions are properly
10984 // owned.
10985 QualType ResultTy = Method->getResultType();
10986 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10987 ResultTy = ResultTy.getNonLValueExprType(Context);
10988
10989 CXXOperatorCallExpr *TheCall =
10990 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
10991 llvm::makeArrayRef(MethodArgs, NumArgs+1),
10992 ResultTy, VK, RParenLoc);
10993 delete [] MethodArgs;
10994
10995 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
10996 Method))
10997 return true;
10998
10999 // We may have default arguments. If so, we need to allocate more
11000 // slots in the call for them.
11001 if (NumArgs < NumArgsInProto)
11002 TheCall->setNumArgs(Context, NumArgsInProto + 1);
11003 else if (NumArgs > NumArgsInProto)
11004 NumArgsToCheck = NumArgsInProto;
11005
11006 bool IsError = false;
11007
11008 // Initialize the implicit object parameter.
11009 ExprResult ObjRes =
11010 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
11011 Best->FoundDecl, Method);
11012 if (ObjRes.isInvalid())
11013 IsError = true;
11014 else
11015 Object = ObjRes;
11016 TheCall->setArg(0, Object.take());
11017
11018 // Check the argument types.
11019 for (unsigned i = 0; i != NumArgsToCheck; i++) {
11020 Expr *Arg;
11021 if (i < NumArgs) {
11022 Arg = Args[i];
11023
11024 // Pass the argument.
11025
11026 ExprResult InputInit
11027 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11028 Context,
11029 Method->getParamDecl(i)),
11030 SourceLocation(), Arg);
11031
11032 IsError |= InputInit.isInvalid();
11033 Arg = InputInit.takeAs<Expr>();
11034 } else {
11035 ExprResult DefArg
11036 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
11037 if (DefArg.isInvalid()) {
11038 IsError = true;
11039 break;
11040 }
11041
11042 Arg = DefArg.takeAs<Expr>();
11043 }
11044
11045 TheCall->setArg(i + 1, Arg);
11046 }
11047
11048 // If this is a variadic call, handle args passed through "...".
11049 if (Proto->isVariadic()) {
11050 // Promote the arguments (C99 6.5.2.2p7).
11051 for (unsigned i = NumArgsInProto; i < NumArgs; i++) {
11052 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
11053 IsError |= Arg.isInvalid();
11054 TheCall->setArg(i + 1, Arg.take());
11055 }
11056 }
11057
11058 if (IsError) return true;
11059
11060 DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
11061
11062 if (CheckFunctionCall(Method, TheCall, Proto))
11063 return true;
11064
11065 return MaybeBindToTemporary(TheCall);
11066 }
11067
11068 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
11069 /// (if one exists), where @c Base is an expression of class type and
11070 /// @c Member is the name of the member we're trying to find.
11071 ExprResult
BuildOverloadedArrowExpr(Scope * S,Expr * Base,SourceLocation OpLoc)11072 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
11073 assert(Base->getType()->isRecordType() &&
11074 "left-hand side must have class type");
11075
11076 if (checkPlaceholderForOverload(*this, Base))
11077 return ExprError();
11078
11079 SourceLocation Loc = Base->getExprLoc();
11080
11081 // C++ [over.ref]p1:
11082 //
11083 // [...] An expression x->m is interpreted as (x.operator->())->m
11084 // for a class object x of type T if T::operator->() exists and if
11085 // the operator is selected as the best match function by the
11086 // overload resolution mechanism (13.3).
11087 DeclarationName OpName =
11088 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
11089 OverloadCandidateSet CandidateSet(Loc);
11090 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
11091
11092 if (RequireCompleteType(Loc, Base->getType(),
11093 diag::err_typecheck_incomplete_tag, Base))
11094 return ExprError();
11095
11096 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
11097 LookupQualifiedName(R, BaseRecord->getDecl());
11098 R.suppressDiagnostics();
11099
11100 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11101 Oper != OperEnd; ++Oper) {
11102 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
11103 0, 0, CandidateSet, /*SuppressUserConversions=*/false);
11104 }
11105
11106 bool HadMultipleCandidates = (CandidateSet.size() > 1);
11107
11108 // Perform overload resolution.
11109 OverloadCandidateSet::iterator Best;
11110 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11111 case OR_Success:
11112 // Overload resolution succeeded; we'll build the call below.
11113 break;
11114
11115 case OR_No_Viable_Function:
11116 if (CandidateSet.empty())
11117 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
11118 << Base->getType() << Base->getSourceRange();
11119 else
11120 Diag(OpLoc, diag::err_ovl_no_viable_oper)
11121 << "operator->" << Base->getSourceRange();
11122 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11123 return ExprError();
11124
11125 case OR_Ambiguous:
11126 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
11127 << "->" << Base->getType() << Base->getSourceRange();
11128 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
11129 return ExprError();
11130
11131 case OR_Deleted:
11132 Diag(OpLoc, diag::err_ovl_deleted_oper)
11133 << Best->Function->isDeleted()
11134 << "->"
11135 << getDeletedOrUnavailableSuffix(Best->Function)
11136 << Base->getSourceRange();
11137 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11138 return ExprError();
11139 }
11140
11141 MarkFunctionReferenced(OpLoc, Best->Function);
11142 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
11143 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
11144
11145 // Convert the object parameter.
11146 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11147 ExprResult BaseResult =
11148 PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
11149 Best->FoundDecl, Method);
11150 if (BaseResult.isInvalid())
11151 return ExprError();
11152 Base = BaseResult.take();
11153
11154 // Build the operator call.
11155 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
11156 HadMultipleCandidates, OpLoc);
11157 if (FnExpr.isInvalid())
11158 return ExprError();
11159
11160 QualType ResultTy = Method->getResultType();
11161 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11162 ResultTy = ResultTy.getNonLValueExprType(Context);
11163 CXXOperatorCallExpr *TheCall =
11164 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
11165 Base, ResultTy, VK, OpLoc);
11166
11167 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
11168 Method))
11169 return ExprError();
11170
11171 return MaybeBindToTemporary(TheCall);
11172 }
11173
11174 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
11175 /// a literal operator described by the provided lookup results.
BuildLiteralOperatorCall(LookupResult & R,DeclarationNameInfo & SuffixInfo,ArrayRef<Expr * > Args,SourceLocation LitEndLoc,TemplateArgumentListInfo * TemplateArgs)11176 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
11177 DeclarationNameInfo &SuffixInfo,
11178 ArrayRef<Expr*> Args,
11179 SourceLocation LitEndLoc,
11180 TemplateArgumentListInfo *TemplateArgs) {
11181 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
11182
11183 OverloadCandidateSet CandidateSet(UDSuffixLoc);
11184 AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
11185 TemplateArgs);
11186
11187 bool HadMultipleCandidates = (CandidateSet.size() > 1);
11188
11189 // Perform overload resolution. This will usually be trivial, but might need
11190 // to perform substitutions for a literal operator template.
11191 OverloadCandidateSet::iterator Best;
11192 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
11193 case OR_Success:
11194 case OR_Deleted:
11195 break;
11196
11197 case OR_No_Viable_Function:
11198 Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
11199 << R.getLookupName();
11200 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11201 return ExprError();
11202
11203 case OR_Ambiguous:
11204 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
11205 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11206 return ExprError();
11207 }
11208
11209 FunctionDecl *FD = Best->Function;
11210 MarkFunctionReferenced(UDSuffixLoc, FD);
11211 DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc);
11212
11213 ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates,
11214 SuffixInfo.getLoc(),
11215 SuffixInfo.getInfo());
11216 if (Fn.isInvalid())
11217 return true;
11218
11219 // Check the argument types. This should almost always be a no-op, except
11220 // that array-to-pointer decay is applied to string literals.
11221 Expr *ConvArgs[2];
11222 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
11223 ExprResult InputInit = PerformCopyInitialization(
11224 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
11225 SourceLocation(), Args[ArgIdx]);
11226 if (InputInit.isInvalid())
11227 return true;
11228 ConvArgs[ArgIdx] = InputInit.take();
11229 }
11230
11231 QualType ResultTy = FD->getResultType();
11232 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11233 ResultTy = ResultTy.getNonLValueExprType(Context);
11234
11235 UserDefinedLiteral *UDL =
11236 new (Context) UserDefinedLiteral(Context, Fn.take(),
11237 llvm::makeArrayRef(ConvArgs, Args.size()),
11238 ResultTy, VK, LitEndLoc, UDSuffixLoc);
11239
11240 if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
11241 return ExprError();
11242
11243 if (CheckFunctionCall(FD, UDL, NULL))
11244 return ExprError();
11245
11246 return MaybeBindToTemporary(UDL);
11247 }
11248
11249 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
11250 /// given LookupResult is non-empty, it is assumed to describe a member which
11251 /// will be invoked. Otherwise, the function will be found via argument
11252 /// dependent lookup.
11253 /// CallExpr is set to a valid expression and FRS_Success returned on success,
11254 /// otherwise CallExpr is set to ExprError() and some non-success value
11255 /// is returned.
11256 Sema::ForRangeStatus
BuildForRangeBeginEndCall(Scope * S,SourceLocation Loc,SourceLocation RangeLoc,VarDecl * Decl,BeginEndFunction BEF,const DeclarationNameInfo & NameInfo,LookupResult & MemberLookup,OverloadCandidateSet * CandidateSet,Expr * Range,ExprResult * CallExpr)11257 Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
11258 SourceLocation RangeLoc, VarDecl *Decl,
11259 BeginEndFunction BEF,
11260 const DeclarationNameInfo &NameInfo,
11261 LookupResult &MemberLookup,
11262 OverloadCandidateSet *CandidateSet,
11263 Expr *Range, ExprResult *CallExpr) {
11264 CandidateSet->clear();
11265 if (!MemberLookup.empty()) {
11266 ExprResult MemberRef =
11267 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
11268 /*IsPtr=*/false, CXXScopeSpec(),
11269 /*TemplateKWLoc=*/SourceLocation(),
11270 /*FirstQualifierInScope=*/0,
11271 MemberLookup,
11272 /*TemplateArgs=*/0);
11273 if (MemberRef.isInvalid()) {
11274 *CallExpr = ExprError();
11275 Diag(Range->getLocStart(), diag::note_in_for_range)
11276 << RangeLoc << BEF << Range->getType();
11277 return FRS_DiagnosticIssued;
11278 }
11279 *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(), Loc, 0);
11280 if (CallExpr->isInvalid()) {
11281 *CallExpr = ExprError();
11282 Diag(Range->getLocStart(), diag::note_in_for_range)
11283 << RangeLoc << BEF << Range->getType();
11284 return FRS_DiagnosticIssued;
11285 }
11286 } else {
11287 UnresolvedSet<0> FoundNames;
11288 // C++11 [stmt.ranged]p1: For the purposes of this name lookup, namespace
11289 // std is an associated namespace.
11290 UnresolvedLookupExpr *Fn =
11291 UnresolvedLookupExpr::Create(Context, /*NamingClass=*/0,
11292 NestedNameSpecifierLoc(), NameInfo,
11293 /*NeedsADL=*/true, /*Overloaded=*/false,
11294 FoundNames.begin(), FoundNames.end(),
11295 /*LookInStdNamespace=*/true);
11296
11297 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, &Range, 1, Loc,
11298 CandidateSet, CallExpr);
11299 if (CandidateSet->empty() || CandidateSetError) {
11300 *CallExpr = ExprError();
11301 return FRS_NoViableFunction;
11302 }
11303 OverloadCandidateSet::iterator Best;
11304 OverloadingResult OverloadResult =
11305 CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
11306
11307 if (OverloadResult == OR_No_Viable_Function) {
11308 *CallExpr = ExprError();
11309 return FRS_NoViableFunction;
11310 }
11311 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, &Range, 1,
11312 Loc, 0, CandidateSet, &Best,
11313 OverloadResult,
11314 /*AllowTypoCorrection=*/false);
11315 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
11316 *CallExpr = ExprError();
11317 Diag(Range->getLocStart(), diag::note_in_for_range)
11318 << RangeLoc << BEF << Range->getType();
11319 return FRS_DiagnosticIssued;
11320 }
11321 }
11322 return FRS_Success;
11323 }
11324
11325
11326 /// FixOverloadedFunctionReference - E is an expression that refers to
11327 /// a C++ overloaded function (possibly with some parentheses and
11328 /// perhaps a '&' around it). We have resolved the overloaded function
11329 /// to the function declaration Fn, so patch up the expression E to
11330 /// refer (possibly indirectly) to Fn. Returns the new expr.
FixOverloadedFunctionReference(Expr * E,DeclAccessPair Found,FunctionDecl * Fn)11331 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
11332 FunctionDecl *Fn) {
11333 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
11334 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
11335 Found, Fn);
11336 if (SubExpr == PE->getSubExpr())
11337 return PE;
11338
11339 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
11340 }
11341
11342 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11343 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
11344 Found, Fn);
11345 assert(Context.hasSameType(ICE->getSubExpr()->getType(),
11346 SubExpr->getType()) &&
11347 "Implicit cast type cannot be determined from overload");
11348 assert(ICE->path_empty() && "fixing up hierarchy conversion?");
11349 if (SubExpr == ICE->getSubExpr())
11350 return ICE;
11351
11352 return ImplicitCastExpr::Create(Context, ICE->getType(),
11353 ICE->getCastKind(),
11354 SubExpr, 0,
11355 ICE->getValueKind());
11356 }
11357
11358 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
11359 assert(UnOp->getOpcode() == UO_AddrOf &&
11360 "Can only take the address of an overloaded function");
11361 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11362 if (Method->isStatic()) {
11363 // Do nothing: static member functions aren't any different
11364 // from non-member functions.
11365 } else {
11366 // Fix the sub expression, which really has to be an
11367 // UnresolvedLookupExpr holding an overloaded member function
11368 // or template.
11369 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11370 Found, Fn);
11371 if (SubExpr == UnOp->getSubExpr())
11372 return UnOp;
11373
11374 assert(isa<DeclRefExpr>(SubExpr)
11375 && "fixed to something other than a decl ref");
11376 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
11377 && "fixed to a member ref with no nested name qualifier");
11378
11379 // We have taken the address of a pointer to member
11380 // function. Perform the computation here so that we get the
11381 // appropriate pointer to member type.
11382 QualType ClassType
11383 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
11384 QualType MemPtrType
11385 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
11386
11387 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
11388 VK_RValue, OK_Ordinary,
11389 UnOp->getOperatorLoc());
11390 }
11391 }
11392 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11393 Found, Fn);
11394 if (SubExpr == UnOp->getSubExpr())
11395 return UnOp;
11396
11397 return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
11398 Context.getPointerType(SubExpr->getType()),
11399 VK_RValue, OK_Ordinary,
11400 UnOp->getOperatorLoc());
11401 }
11402
11403 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11404 // FIXME: avoid copy.
11405 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11406 if (ULE->hasExplicitTemplateArgs()) {
11407 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
11408 TemplateArgs = &TemplateArgsBuffer;
11409 }
11410
11411 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11412 ULE->getQualifierLoc(),
11413 ULE->getTemplateKeywordLoc(),
11414 Fn,
11415 /*enclosing*/ false, // FIXME?
11416 ULE->getNameLoc(),
11417 Fn->getType(),
11418 VK_LValue,
11419 Found.getDecl(),
11420 TemplateArgs);
11421 MarkDeclRefReferenced(DRE);
11422 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
11423 return DRE;
11424 }
11425
11426 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
11427 // FIXME: avoid copy.
11428 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11429 if (MemExpr->hasExplicitTemplateArgs()) {
11430 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11431 TemplateArgs = &TemplateArgsBuffer;
11432 }
11433
11434 Expr *Base;
11435
11436 // If we're filling in a static method where we used to have an
11437 // implicit member access, rewrite to a simple decl ref.
11438 if (MemExpr->isImplicitAccess()) {
11439 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11440 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11441 MemExpr->getQualifierLoc(),
11442 MemExpr->getTemplateKeywordLoc(),
11443 Fn,
11444 /*enclosing*/ false,
11445 MemExpr->getMemberLoc(),
11446 Fn->getType(),
11447 VK_LValue,
11448 Found.getDecl(),
11449 TemplateArgs);
11450 MarkDeclRefReferenced(DRE);
11451 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
11452 return DRE;
11453 } else {
11454 SourceLocation Loc = MemExpr->getMemberLoc();
11455 if (MemExpr->getQualifier())
11456 Loc = MemExpr->getQualifierLoc().getBeginLoc();
11457 CheckCXXThisCapture(Loc);
11458 Base = new (Context) CXXThisExpr(Loc,
11459 MemExpr->getBaseType(),
11460 /*isImplicit=*/true);
11461 }
11462 } else
11463 Base = MemExpr->getBase();
11464
11465 ExprValueKind valueKind;
11466 QualType type;
11467 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11468 valueKind = VK_LValue;
11469 type = Fn->getType();
11470 } else {
11471 valueKind = VK_RValue;
11472 type = Context.BoundMemberTy;
11473 }
11474
11475 MemberExpr *ME = MemberExpr::Create(Context, Base,
11476 MemExpr->isArrow(),
11477 MemExpr->getQualifierLoc(),
11478 MemExpr->getTemplateKeywordLoc(),
11479 Fn,
11480 Found,
11481 MemExpr->getMemberNameInfo(),
11482 TemplateArgs,
11483 type, valueKind, OK_Ordinary);
11484 ME->setHadMultipleCandidates(true);
11485 return ME;
11486 }
11487
11488 llvm_unreachable("Invalid reference to overloaded function");
11489 }
11490
FixOverloadedFunctionReference(ExprResult E,DeclAccessPair Found,FunctionDecl * Fn)11491 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
11492 DeclAccessPair Found,
11493 FunctionDecl *Fn) {
11494 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
11495 }
11496
11497 } // end namespace clang
11498