• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // This code is licensed under the same terms as WebM:
4 //  Software License Agreement:  http://www.webmproject.org/license/software/
5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // Author: Jyrki Alakuijala (jyrki@google.com)
9 //
10 #ifdef HAVE_CONFIG_H
11 #include "config.h"
12 #endif
13 
14 #include <math.h>
15 #include <stdio.h>
16 
17 #include "./backward_references.h"
18 #include "./histogram.h"
19 #include "../dsp/lossless.h"
20 #include "../utils/utils.h"
21 
HistogramClear(VP8LHistogram * const p)22 static void HistogramClear(VP8LHistogram* const p) {
23   memset(p->literal_, 0, sizeof(p->literal_));
24   memset(p->red_, 0, sizeof(p->red_));
25   memset(p->blue_, 0, sizeof(p->blue_));
26   memset(p->alpha_, 0, sizeof(p->alpha_));
27   memset(p->distance_, 0, sizeof(p->distance_));
28   p->bit_cost_ = 0;
29 }
30 
VP8LHistogramStoreRefs(const VP8LBackwardRefs * const refs,VP8LHistogram * const histo)31 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
32                             VP8LHistogram* const histo) {
33   int i;
34   for (i = 0; i < refs->size; ++i) {
35     VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
36   }
37 }
38 
VP8LHistogramCreate(VP8LHistogram * const p,const VP8LBackwardRefs * const refs,int palette_code_bits)39 void VP8LHistogramCreate(VP8LHistogram* const p,
40                          const VP8LBackwardRefs* const refs,
41                          int palette_code_bits) {
42   if (palette_code_bits >= 0) {
43     p->palette_code_bits_ = palette_code_bits;
44   }
45   HistogramClear(p);
46   VP8LHistogramStoreRefs(refs, p);
47 }
48 
VP8LHistogramInit(VP8LHistogram * const p,int palette_code_bits)49 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
50   p->palette_code_bits_ = palette_code_bits;
51   HistogramClear(p);
52 }
53 
VP8LAllocateHistogramSet(int size,int cache_bits)54 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
55   int i;
56   VP8LHistogramSet* set;
57   VP8LHistogram* bulk;
58   const uint64_t total_size = (uint64_t)sizeof(*set)
59                             + size * sizeof(*set->histograms)
60                             + size * sizeof(**set->histograms);
61   uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
62   if (memory == NULL) return NULL;
63 
64   set = (VP8LHistogramSet*)memory;
65   memory += sizeof(*set);
66   set->histograms = (VP8LHistogram**)memory;
67   memory += size * sizeof(*set->histograms);
68   bulk = (VP8LHistogram*)memory;
69   set->max_size = size;
70   set->size = size;
71   for (i = 0; i < size; ++i) {
72     set->histograms[i] = bulk + i;
73     VP8LHistogramInit(set->histograms[i], cache_bits);
74   }
75   return set;
76 }
77 
78 // -----------------------------------------------------------------------------
79 
VP8LHistogramAddSinglePixOrCopy(VP8LHistogram * const histo,const PixOrCopy * const v)80 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
81                                      const PixOrCopy* const v) {
82   if (PixOrCopyIsLiteral(v)) {
83     ++histo->alpha_[PixOrCopyLiteral(v, 3)];
84     ++histo->red_[PixOrCopyLiteral(v, 2)];
85     ++histo->literal_[PixOrCopyLiteral(v, 1)];
86     ++histo->blue_[PixOrCopyLiteral(v, 0)];
87   } else if (PixOrCopyIsCacheIdx(v)) {
88     int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
89     ++histo->literal_[literal_ix];
90   } else {
91     int code, extra_bits_count, extra_bits_value;
92     PrefixEncode(PixOrCopyLength(v),
93                  &code, &extra_bits_count, &extra_bits_value);
94     ++histo->literal_[256 + code];
95     PrefixEncode(PixOrCopyDistance(v),
96                  &code, &extra_bits_count, &extra_bits_value);
97     ++histo->distance_[code];
98   }
99 }
100 
101 
102 
BitsEntropy(const int * const array,int n)103 static double BitsEntropy(const int* const array, int n) {
104   double retval = 0.;
105   int sum = 0;
106   int nonzeros = 0;
107   int max_val = 0;
108   int i;
109   double mix;
110   for (i = 0; i < n; ++i) {
111     if (array[i] != 0) {
112       sum += array[i];
113       ++nonzeros;
114       retval -= VP8LFastSLog2(array[i]);
115       if (max_val < array[i]) {
116         max_val = array[i];
117       }
118     }
119   }
120   retval += VP8LFastSLog2(sum);
121 
122   if (nonzeros < 5) {
123     if (nonzeros <= 1) {
124       return 0;
125     }
126     // Two symbols, they will be 0 and 1 in a Huffman code.
127     // Let's mix in a bit of entropy to favor good clustering when
128     // distributions of these are combined.
129     if (nonzeros == 2) {
130       return 0.99 * sum + 0.01 * retval;
131     }
132     // No matter what the entropy says, we cannot be better than min_limit
133     // with Huffman coding. I am mixing a bit of entropy into the
134     // min_limit since it produces much better (~0.5 %) compression results
135     // perhaps because of better entropy clustering.
136     if (nonzeros == 3) {
137       mix = 0.95;
138     } else {
139       mix = 0.7;  // nonzeros == 4.
140     }
141   } else {
142     mix = 0.627;
143   }
144 
145   {
146     double min_limit = 2 * sum - max_val;
147     min_limit = mix * min_limit + (1.0 - mix) * retval;
148     return (retval < min_limit) ? min_limit : retval;
149   }
150 }
151 
VP8LHistogramEstimateBitsBulk(const VP8LHistogram * const p)152 double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
153   double retval = BitsEntropy(&p->literal_[0], VP8LHistogramNumCodes(p))
154                 + BitsEntropy(&p->red_[0], 256)
155                 + BitsEntropy(&p->blue_[0], 256)
156                 + BitsEntropy(&p->alpha_[0], 256)
157                 + BitsEntropy(&p->distance_[0], NUM_DISTANCE_CODES);
158   // Compute the extra bits cost.
159   int i;
160   for (i = 2; i < NUM_LENGTH_CODES - 2; ++i) {
161     retval +=
162         (i >> 1) * p->literal_[256 + i + 2];
163   }
164   for (i = 2; i < NUM_DISTANCE_CODES - 2; ++i) {
165     retval += (i >> 1) * p->distance_[i + 2];
166   }
167   return retval;
168 }
169 
170 
171 // Returns the cost encode the rle-encoded entropy code.
172 // The constants in this function are experimental.
HuffmanCost(const int * const population,int length)173 static double HuffmanCost(const int* const population, int length) {
174   // Small bias because Huffman code length is typically not stored in
175   // full length.
176   static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
177   static const double kSmallBias = 9.1;
178   double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
179   int streak = 0;
180   int i = 0;
181   for (; i < length - 1; ++i) {
182     ++streak;
183     if (population[i] == population[i + 1]) {
184       continue;
185     }
186  last_streak_hack:
187     // population[i] points now to the symbol in the streak of same values.
188     if (streak > 3) {
189       if (population[i] == 0) {
190         retval += 1.5625 + 0.234375 * streak;
191       } else {
192         retval += 2.578125 + 0.703125 * streak;
193       }
194     } else {
195       if (population[i] == 0) {
196         retval += 1.796875 * streak;
197       } else {
198         retval += 3.28125 * streak;
199       }
200     }
201     streak = 0;
202   }
203   if (i == length - 1) {
204     ++streak;
205     goto last_streak_hack;
206   }
207   return retval;
208 }
209 
210 // Estimates the Huffman dictionary + other block overhead size.
HistogramEstimateBitsHeader(const VP8LHistogram * const p)211 static double HistogramEstimateBitsHeader(const VP8LHistogram* const p) {
212   return HuffmanCost(&p->alpha_[0], 256) +
213          HuffmanCost(&p->red_[0], 256) +
214          HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) +
215          HuffmanCost(&p->blue_[0], 256) +
216          HuffmanCost(&p->distance_[0], NUM_DISTANCE_CODES);
217 }
218 
VP8LHistogramEstimateBits(const VP8LHistogram * const p)219 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
220   return HistogramEstimateBitsHeader(p) + VP8LHistogramEstimateBitsBulk(p);
221 }
222 
HistogramBuildImage(int xsize,int histo_bits,const VP8LBackwardRefs * const backward_refs,VP8LHistogramSet * const image)223 static void HistogramBuildImage(int xsize, int histo_bits,
224                                 const VP8LBackwardRefs* const backward_refs,
225                                 VP8LHistogramSet* const image) {
226   int i;
227   int x = 0, y = 0;
228   const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
229   VP8LHistogram** const histograms = image->histograms;
230   assert(histo_bits > 0);
231   for (i = 0; i < backward_refs->size; ++i) {
232     const PixOrCopy* const v = &backward_refs->refs[i];
233     const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
234     VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
235     x += PixOrCopyLength(v);
236     while (x >= xsize) {
237       x -= xsize;
238       ++y;
239     }
240   }
241 }
242 
MyRand(uint32_t * seed)243 static uint32_t MyRand(uint32_t *seed) {
244   *seed *= 16807U;
245   if (*seed == 0) {
246     *seed = 1;
247   }
248   return *seed;
249 }
250 
HistogramCombine(const VP8LHistogramSet * const in,VP8LHistogramSet * const out,int num_pairs)251 static int HistogramCombine(const VP8LHistogramSet* const in,
252                             VP8LHistogramSet* const out, int num_pairs) {
253   int ok = 0;
254   int i, iter;
255   uint32_t seed = 0;
256   int tries_with_no_success = 0;
257   const int min_cluster_size = 2;
258   int out_size = in->size;
259   const int outer_iters = in->size * 3;
260   VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
261   VP8LHistogram* cur_combo = histos + 0;    // trial merged histogram
262   VP8LHistogram* best_combo = histos + 1;   // best merged histogram so far
263   if (histos == NULL) goto End;
264 
265   // Copy histograms from in[] to out[].
266   assert(in->size <= out->size);
267   for (i = 0; i < in->size; ++i) {
268     in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
269     *out->histograms[i] = *in->histograms[i];
270   }
271 
272   // Collapse similar histograms in 'out'.
273   for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
274     // We pick the best pair to be combined out of 'inner_iters' pairs.
275     double best_cost_diff = 0.;
276     int best_idx1 = 0, best_idx2 = 1;
277     int j;
278     seed += iter;
279     for (j = 0; j < num_pairs; ++j) {
280       double curr_cost_diff;
281       // Choose two histograms at random and try to combine them.
282       const uint32_t idx1 = MyRand(&seed) % out_size;
283       const uint32_t tmp = ((j & 7) + 1) % (out_size - 1);
284       const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
285       const uint32_t idx2 = (idx1 + diff + 1) % out_size;
286       if (idx1 == idx2) {
287         continue;
288       }
289       *cur_combo = *out->histograms[idx1];
290       VP8LHistogramAdd(cur_combo, out->histograms[idx2]);
291       cur_combo->bit_cost_ = VP8LHistogramEstimateBits(cur_combo);
292       // Calculate cost reduction on combining.
293       curr_cost_diff = cur_combo->bit_cost_
294                      - out->histograms[idx1]->bit_cost_
295                      - out->histograms[idx2]->bit_cost_;
296       if (best_cost_diff > curr_cost_diff) {    // found a better pair?
297         {     // swap cur/best combo histograms
298           VP8LHistogram* const tmp_histo = cur_combo;
299           cur_combo = best_combo;
300           best_combo = tmp_histo;
301         }
302         best_cost_diff = curr_cost_diff;
303         best_idx1 = idx1;
304         best_idx2 = idx2;
305       }
306     }
307 
308     if (best_cost_diff < 0.0) {
309       *out->histograms[best_idx1] = *best_combo;
310       // swap best_idx2 slot with last one (which is now unused)
311       --out_size;
312       if (best_idx2 != out_size) {
313         out->histograms[best_idx2] = out->histograms[out_size];
314         out->histograms[out_size] = NULL;   // just for sanity check.
315       }
316       tries_with_no_success = 0;
317     }
318     if (++tries_with_no_success >= 50) {
319       break;
320     }
321   }
322   out->size = out_size;
323   ok = 1;
324 
325  End:
326   free(histos);
327   return ok;
328 }
329 
330 // -----------------------------------------------------------------------------
331 // Histogram refinement
332 
333 // What is the bit cost of moving square_histogram from
334 // cur_symbol to candidate_symbol.
335 // TODO(skal): we don't really need to copy the histogram and Add(). Instead
336 // we just need VP8LDualHistogramEstimateBits(A, B) estimation function.
HistogramDistance(const VP8LHistogram * const square_histogram,const VP8LHistogram * const candidate)337 static double HistogramDistance(const VP8LHistogram* const square_histogram,
338                                 const VP8LHistogram* const candidate) {
339   const double previous_bit_cost = candidate->bit_cost_;
340   double new_bit_cost;
341   VP8LHistogram modified_histo;
342   modified_histo = *candidate;
343   VP8LHistogramAdd(&modified_histo, square_histogram);
344   new_bit_cost = VP8LHistogramEstimateBits(&modified_histo);
345 
346   return new_bit_cost - previous_bit_cost;
347 }
348 
349 // Find the best 'out' histogram for each of the 'in' histograms.
350 // Note: we assume that out[]->bit_cost_ is already up-to-date.
HistogramRemap(const VP8LHistogramSet * const in,const VP8LHistogramSet * const out,uint16_t * const symbols)351 static void HistogramRemap(const VP8LHistogramSet* const in,
352                            const VP8LHistogramSet* const out,
353                            uint16_t* const symbols) {
354   int i;
355   for (i = 0; i < in->size; ++i) {
356     int best_out = 0;
357     double best_bits = HistogramDistance(in->histograms[i], out->histograms[0]);
358     int k;
359     for (k = 1; k < out->size; ++k) {
360       const double cur_bits =
361           HistogramDistance(in->histograms[i], out->histograms[k]);
362       if (cur_bits < best_bits) {
363         best_bits = cur_bits;
364         best_out = k;
365       }
366     }
367     symbols[i] = best_out;
368   }
369 
370   // Recompute each out based on raw and symbols.
371   for (i = 0; i < out->size; ++i) {
372     HistogramClear(out->histograms[i]);
373   }
374   for (i = 0; i < in->size; ++i) {
375     VP8LHistogramAdd(out->histograms[symbols[i]], in->histograms[i]);
376   }
377 }
378 
VP8LGetHistoImageSymbols(int xsize,int ysize,const VP8LBackwardRefs * const refs,int quality,int histo_bits,int cache_bits,VP8LHistogramSet * const image_in,uint16_t * const histogram_symbols)379 int VP8LGetHistoImageSymbols(int xsize, int ysize,
380                              const VP8LBackwardRefs* const refs,
381                              int quality, int histo_bits, int cache_bits,
382                              VP8LHistogramSet* const image_in,
383                              uint16_t* const histogram_symbols) {
384   int ok = 0;
385   const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
386   const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
387   const int num_histo_pairs = 10 + quality / 2;  // For HistogramCombine().
388   const int histo_image_raw_size = histo_xsize * histo_ysize;
389   VP8LHistogramSet* const image_out =
390       VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
391   if (image_out == NULL) return 0;
392 
393   // Build histogram image.
394   HistogramBuildImage(xsize, histo_bits, refs, image_out);
395   // Collapse similar histograms.
396   if (!HistogramCombine(image_out, image_in, num_histo_pairs)) {
397     goto Error;
398   }
399   // Find the optimal map from original histograms to the final ones.
400   HistogramRemap(image_out, image_in, histogram_symbols);
401   ok = 1;
402 
403 Error:
404   free(image_out);
405   return ok;
406 }
407