• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- c++ -*- */
2 /*
3  * Copyright © 2010 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28 
29 #include <cstdio>
30 #include <cstdlib>
31 
32 extern "C" {
33 #include <hieralloc.h>
34 }
35 
36 #include "glsl_types.h"
37 #include "list.h"
38 #include "ir_visitor.h"
39 #include "ir_hierarchical_visitor.h"
40 
41 /**
42  * \defgroup IR Intermediate representation nodes
43  *
44  * @{
45  */
46 
47 /**
48  * Class tags
49  *
50  * Each concrete class derived from \c ir_instruction has a value in this
51  * enumerant.  The value for the type is stored in \c ir_instruction::ir_type
52  * by the constructor.  While using type tags is not very C++, it is extremely
53  * convenient.  For example, during debugging you can simply inspect
54  * \c ir_instruction::ir_type to find out the actual type of the object.
55  *
56  * In addition, it is possible to use a switch-statement based on \c
57  * \c ir_instruction::ir_type to select different behavior for different object
58  * types.  For functions that have only slight differences for several object
59  * types, this allows writing very straightforward, readable code.
60  */
61 enum ir_node_type {
62    /**
63     * Zero is unused so that the IR validator can detect cases where
64     * \c ir_instruction::ir_type has not been initialized.
65     */
66    ir_type_unset,
67    ir_type_variable,
68    ir_type_assignment,
69    ir_type_call,
70    ir_type_constant,
71    ir_type_dereference_array,
72    ir_type_dereference_record,
73    ir_type_dereference_variable,
74    ir_type_discard,
75    ir_type_expression,
76    ir_type_function,
77    ir_type_function_signature,
78    ir_type_if,
79    ir_type_loop,
80    ir_type_loop_jump,
81    ir_type_return,
82    ir_type_swizzle,
83    ir_type_texture,
84    ir_type_max /**< maximum ir_type enum number, for validation */
85 };
86 
87 /**
88  * Base class of all IR instructions
89  */
90 class ir_instruction : public exec_node {
91 public:
92    enum ir_node_type ir_type;
93    const struct glsl_type *type;
94 
95    /** ir_print_visitor helper for debugging. */
96    void print(void) const;
97 
98    virtual void accept(ir_visitor *) = 0;
99    virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
100    virtual ir_instruction *clone(void *mem_ctx,
101 				 struct hash_table *ht) const = 0;
102 
103    /**
104     * \name IR instruction downcast functions
105     *
106     * These functions either cast the object to a derived class or return
107     * \c NULL if the object's type does not match the specified derived class.
108     * Additional downcast functions will be added as needed.
109     */
110    /*@{*/
as_variable()111    virtual class ir_variable *          as_variable()         { return NULL; }
as_function()112    virtual class ir_function *          as_function()         { return NULL; }
as_dereference()113    virtual class ir_dereference *       as_dereference()      { return NULL; }
as_dereference_array()114    virtual class ir_dereference_array *	as_dereference_array() { return NULL; }
as_dereference_variable()115    virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
as_expression()116    virtual class ir_expression *        as_expression()       { return NULL; }
as_rvalue()117    virtual class ir_rvalue *            as_rvalue()           { return NULL; }
as_loop()118    virtual class ir_loop *              as_loop()             { return NULL; }
as_assignment()119    virtual class ir_assignment *        as_assignment()       { return NULL; }
as_call()120    virtual class ir_call *              as_call()             { return NULL; }
as_return()121    virtual class ir_return *            as_return()           { return NULL; }
as_if()122    virtual class ir_if *                as_if()               { return NULL; }
as_swizzle()123    virtual class ir_swizzle *           as_swizzle()          { return NULL; }
as_constant()124    virtual class ir_constant *          as_constant()         { return NULL; }
as_discard()125    virtual class ir_discard *           as_discard()          { return NULL; }
126    /*@}*/
127 
128 protected:
ir_instruction()129    ir_instruction()
130    {
131       ir_type = ir_type_unset;
132       type = NULL;
133    }
134 
~ir_instruction()135    virtual  ~ir_instruction() { } // GCC error about accessible nonvirtual dctor
136 
137 
138 };
139 
140 
141 class ir_rvalue : public ir_instruction {
142 public:
143    virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
144 
145    virtual ir_constant *constant_expression_value() = 0;
146 
as_rvalue()147    virtual ir_rvalue * as_rvalue()
148    {
149       return this;
150    }
151 
152    ir_rvalue *as_rvalue_to_saturate();
153 
is_lvalue()154    virtual bool is_lvalue()
155    {
156       return false;
157    }
158 
159    /**
160     * Get the variable that is ultimately referenced by an r-value
161     */
variable_referenced()162    virtual ir_variable *variable_referenced()
163    {
164       return NULL;
165    }
166 
167 
168    /**
169     * If an r-value is a reference to a whole variable, get that variable
170     *
171     * \return
172     * Pointer to a variable that is completely dereferenced by the r-value.  If
173     * the r-value is not a dereference or the dereference does not access the
174     * entire variable (i.e., it's just one array element, struct field), \c NULL
175     * is returned.
176     */
whole_variable_referenced()177    virtual ir_variable *whole_variable_referenced()
178    {
179       return NULL;
180    }
181 
182    /**
183     * Determine if an r-value has the value zero
184     *
185     * The base implementation of this function always returns \c false.  The
186     * \c ir_constant class over-rides this function to return \c true \b only
187     * for vector and scalar types that have all elements set to the value
188     * zero (or \c false for booleans).
189     *
190     * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
191     */
192    virtual bool is_zero() const;
193 
194    /**
195     * Determine if an r-value has the value one
196     *
197     * The base implementation of this function always returns \c false.  The
198     * \c ir_constant class over-rides this function to return \c true \b only
199     * for vector and scalar types that have all elements set to the value
200     * one (or \c true for booleans).
201     *
202     * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
203     */
204    virtual bool is_one() const;
205 
206    /**
207     * Determine if an r-value has the value negative one
208     *
209     * The base implementation of this function always returns \c false.  The
210     * \c ir_constant class over-rides this function to return \c true \b only
211     * for vector and scalar types that have all elements set to the value
212     * negative one.  For boolean times, the result is always \c false.
213     *
214     * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
215     */
216    virtual bool is_negative_one() const;
217 
218 protected:
219    ir_rvalue();
220 };
221 
222 
223 /**
224  * Variable storage classes
225  */
226 enum ir_variable_mode {
227    ir_var_auto = 0,     /**< Function local variables and globals. */
228    ir_var_uniform,      /**< Variable declared as a uniform. */
229    ir_var_in,
230    ir_var_out,
231    ir_var_inout,
232    ir_var_temporary	/**< Temporary variable generated during compilation. */
233 };
234 
235 enum ir_variable_interpolation {
236    ir_var_smooth = 0,
237    ir_var_flat,
238    ir_var_noperspective
239 };
240 
241 
242 class ir_variable : public ir_instruction {
243 public:
244    ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
245 
246    virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
247 
as_variable()248    virtual ir_variable *as_variable()
249    {
250       return this;
251    }
252 
accept(ir_visitor * v)253    virtual void accept(ir_visitor *v)
254    {
255       v->visit(this);
256    }
257 
258    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
259 
260 
261    /**
262     * Get the string value for the interpolation qualifier
263     *
264     * \return The string that would be used in a shader to specify \c
265     * mode will be returned.
266     *
267     * This function should only be used on a shader input or output variable.
268     */
269    const char *interpolation_string() const;
270 
271    /**
272     * Calculate the number of slots required to hold this variable
273     *
274     * This is used to determine how many uniform or varying locations a variable
275     * occupies.  The count is in units of floating point components.
276     */
277    unsigned component_slots() const;
278 
279    /**
280     * Delcared name of the variable
281     */
282    const char *name;
283 
284    /**
285     * Highest element accessed with a constant expression array index
286     *
287     * Not used for non-array variables.
288     */
289    unsigned max_array_access;
290 
291    /**
292     * Is the variable read-only?
293     *
294     * This is set for variables declared as \c const, shader inputs,
295     * and uniforms.
296     */
297    unsigned read_only:1;
298    unsigned centroid:1;
299    unsigned invariant:1;
300 
301    /**
302     * Storage class of the variable.
303     *
304     * \sa ir_variable_mode
305     */
306    unsigned mode:3;
307 
308    /**
309     * Interpolation mode for shader inputs / outputs
310     *
311     * \sa ir_variable_interpolation
312     */
313    unsigned interpolation:2;
314 
315    /**
316     * Flag that the whole array is assignable
317     *
318     * In GLSL 1.20 and later whole arrays are assignable (and comparable for
319     * equality).  This flag enables this behavior.
320     */
321    unsigned array_lvalue:1;
322 
323    /**
324     * \name ARB_fragment_coord_conventions
325     * @{
326     */
327    unsigned origin_upper_left:1;
328    unsigned pixel_center_integer:1;
329    /*@}*/
330 
331    /**
332     * Was the location explicitly set in the shader?
333     *
334     * If the location is explicitly set in the shader, it \b cannot be changed
335     * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
336     * no effect).
337     */
338    unsigned explicit_location:1;
339 
340    /**
341     * Storage location of the base of this variable
342     *
343     * The precise meaning of this field depends on the nature of the variable.
344     *
345     *   - Vertex shader input: one of the values from \c gl_vert_attrib.
346     *   - Vertex shader output: one of the values from \c gl_vert_result.
347     *   - Fragment shader input: one of the values from \c gl_frag_attrib.
348     *   - Fragment shader output: one of the values from \c gl_frag_result.
349     *   - Uniforms: Per-stage uniform slot number.
350     *   - Other: This field is not currently used.
351     *
352     * If the variable is a uniform, shader input, or shader output, and the
353     * slot has not been assigned, the value will be -1.
354     */
355    int location;
356 
357    /**
358     * Emit a warning if this variable is accessed.
359     */
360    const char *warn_extension;
361 
362    /**
363     * Value assigned in the initializer of a variable declared "const"
364     */
365    ir_constant *constant_value;
366 };
367 
368 
369 /*@{*/
370 /**
371  * The representation of a function instance; may be the full definition or
372  * simply a prototype.
373  */
374 class ir_function_signature : public ir_instruction {
375    /* An ir_function_signature will be part of the list of signatures in
376     * an ir_function.
377     */
378 public:
379    ir_function_signature(const glsl_type *return_type);
380 
381    virtual ir_function_signature *clone(void *mem_ctx,
382 					struct hash_table *ht) const;
383    ir_function_signature *clone_prototype(void *mem_ctx,
384 					  struct hash_table *ht) const;
385 
accept(ir_visitor * v)386    virtual void accept(ir_visitor *v)
387    {
388       v->visit(this);
389    }
390 
391    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
392 
393    /**
394     * Get the name of the function for which this is a signature
395     */
396    const char *function_name() const;
397 
398    /**
399     * Get a handle to the function for which this is a signature
400     *
401     * There is no setter function, this function returns a \c const pointer,
402     * and \c ir_function_signature::_function is private for a reason.  The
403     * only way to make a connection between a function and function signature
404     * is via \c ir_function::add_signature.  This helps ensure that certain
405     * invariants (i.e., a function signature is in the list of signatures for
406     * its \c _function) are met.
407     *
408     * \sa ir_function::add_signature
409     */
function()410    inline const class ir_function *function() const
411    {
412       return this->_function;
413    }
414 
415    /**
416     * Check whether the qualifiers match between this signature's parameters
417     * and the supplied parameter list.  If not, returns the name of the first
418     * parameter with mismatched qualifiers (for use in error messages).
419     */
420    const char *qualifiers_match(exec_list *params);
421 
422    /**
423     * Replace the current parameter list with the given one.  This is useful
424     * if the current information came from a prototype, and either has invalid
425     * or missing parameter names.
426     */
427    void replace_parameters(exec_list *new_params);
428 
429    /**
430     * Function return type.
431     *
432     * \note This discards the optional precision qualifier.
433     */
434    const struct glsl_type *return_type;
435 
436    /**
437     * List of ir_variable of function parameters.
438     *
439     * This represents the storage.  The paramaters passed in a particular
440     * call will be in ir_call::actual_paramaters.
441     */
442    struct exec_list parameters;
443 
444    /** Whether or not this function has a body (which may be empty). */
445    unsigned is_defined:1;
446 
447    /** Whether or not this function signature is a built-in. */
448    unsigned is_builtin:1;
449 
450    /** Body of instructions in the function. */
451    struct exec_list body;
452 
453 private:
454    /** Function of which this signature is one overload. */
455    class ir_function *_function;
456 
457    friend class ir_function;
458 };
459 
460 
461 /**
462  * Header for tracking multiple overloaded functions with the same name.
463  * Contains a list of ir_function_signatures representing each of the
464  * actual functions.
465  */
466 class ir_function : public ir_instruction {
467 public:
468    ir_function(const char *name);
469 
470    virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
471 
as_function()472    virtual ir_function *as_function()
473    {
474       return this;
475    }
476 
accept(ir_visitor * v)477    virtual void accept(ir_visitor *v)
478    {
479       v->visit(this);
480    }
481 
482    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
483 
add_signature(ir_function_signature * sig)484    void add_signature(ir_function_signature *sig)
485    {
486       sig->_function = this;
487       this->signatures.push_tail(sig);
488    }
489 
490    /**
491     * Get an iterator for the set of function signatures
492     */
iterator()493    exec_list_iterator iterator()
494    {
495       return signatures.iterator();
496    }
497 
498    /**
499     * Find a signature that matches a set of actual parameters, taking implicit
500     * conversions into account.
501     */
502    ir_function_signature *matching_signature(const exec_list *actual_param);
503 
504    /**
505     * Find a signature that exactly matches a set of actual parameters without
506     * any implicit type conversions.
507     */
508    ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
509 
510    /**
511     * Name of the function.
512     */
513    const char *name;
514 
515    /** Whether or not this function has a signature that isn't a built-in. */
516    bool has_user_signature();
517 
518    /**
519     * List of ir_function_signature for each overloaded function with this name.
520     */
521    struct exec_list signatures;
522 };
523 
function_name()524 inline const char *ir_function_signature::function_name() const
525 {
526    return this->_function->name;
527 }
528 /*@}*/
529 
530 
531 /**
532  * IR instruction representing high-level if-statements
533  */
534 class ir_if : public ir_instruction {
535 public:
ir_if(ir_rvalue * condition)536    ir_if(ir_rvalue *condition)
537       : condition(condition)
538    {
539       ir_type = ir_type_if;
540    }
541 
542    virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
543 
as_if()544    virtual ir_if *as_if()
545    {
546       return this;
547    }
548 
accept(ir_visitor * v)549    virtual void accept(ir_visitor *v)
550    {
551       v->visit(this);
552    }
553 
554    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
555 
556    ir_rvalue *condition;
557    /** List of ir_instruction for the body of the then branch */
558    exec_list  then_instructions;
559    /** List of ir_instruction for the body of the else branch */
560    exec_list  else_instructions;
561 };
562 
563 
564 /**
565  * IR instruction representing a high-level loop structure.
566  */
567 class ir_loop : public ir_instruction {
568 public:
569    ir_loop();
570 
571    virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
572 
accept(ir_visitor * v)573    virtual void accept(ir_visitor *v)
574    {
575       v->visit(this);
576    }
577 
578    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
579 
as_loop()580    virtual ir_loop *as_loop()
581    {
582       return this;
583    }
584 
585    /**
586     * Get an iterator for the instructions of the loop body
587     */
iterator()588    exec_list_iterator iterator()
589    {
590       return body_instructions.iterator();
591    }
592 
593    /** List of ir_instruction that make up the body of the loop. */
594    exec_list body_instructions;
595 
596    /**
597     * \name Loop counter and controls
598     *
599     * Represents a loop like a FORTRAN \c do-loop.
600     *
601     * \note
602     * If \c from and \c to are the same value, the loop will execute once.
603     */
604    /*@{*/
605    ir_rvalue *from;             /** Value of the loop counter on the first
606 				 * iteration of the loop.
607 				 */
608    ir_rvalue *to;               /** Value of the loop counter on the last
609 				 * iteration of the loop.
610 				 */
611    ir_rvalue *increment;
612    ir_variable *counter;
613 
614    /**
615     * Comparison operation in the loop terminator.
616     *
617     * If any of the loop control fields are non-\c NULL, this field must be
618     * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
619     * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
620     */
621    int cmp;
622    /*@}*/
623 };
624 
625 
626 class ir_assignment : public ir_instruction {
627 public:
628    ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
629 
630    /**
631     * Construct an assignment with an explicit write mask
632     *
633     * \note
634     * Since a write mask is supplied, the LHS must already be a bare
635     * \c ir_dereference.  The cannot be any swizzles in the LHS.
636     */
637    ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
638 		 unsigned write_mask);
639 
640    virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
641 
642    virtual ir_constant *constant_expression_value();
643 
accept(ir_visitor * v)644    virtual void accept(ir_visitor *v)
645    {
646       v->visit(this);
647    }
648 
649    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
650 
as_assignment()651    virtual ir_assignment * as_assignment()
652    {
653       return this;
654    }
655 
656    /**
657     * Get a whole variable written by an assignment
658     *
659     * If the LHS of the assignment writes a whole variable, the variable is
660     * returned.  Otherwise \c NULL is returned.  Examples of whole-variable
661     * assignment are:
662     *
663     *  - Assigning to a scalar
664     *  - Assigning to all components of a vector
665     *  - Whole array (or matrix) assignment
666     *  - Whole structure assignment
667     */
668    ir_variable *whole_variable_written();
669 
670    /**
671     * Set the LHS of an assignment
672     */
673    void set_lhs(ir_rvalue *lhs);
674 
675    /**
676     * Left-hand side of the assignment.
677     *
678     * This should be treated as read only.  If you need to set the LHS of an
679     * assignment, use \c ir_assignment::set_lhs.
680     */
681    ir_dereference *lhs;
682 
683    /**
684     * Value being assigned
685     */
686    ir_rvalue *rhs;
687 
688    /**
689     * Optional condition for the assignment.
690     */
691    ir_rvalue *condition;
692 
693 
694    /**
695     * Component mask written
696     *
697     * For non-vector types in the LHS, this field will be zero.  For vector
698     * types, a bit will be set for each component that is written.  Note that
699     * for \c vec2 and \c vec3 types only the lower bits will ever be set.
700     *
701     * A partially-set write mask means that each enabled channel gets
702     * the value from a consecutive channel of the rhs.  For example,
703     * to write just .xyw of gl_FrontColor with color:
704     *
705     * (assign (constant bool (1)) (xyw)
706     *     (var_ref gl_FragColor)
707     *     (swiz xyw (var_ref color)))
708     */
709    unsigned write_mask:4;
710 };
711 
712 /* Update ir_expression::num_operands() and operator_strs when
713  * updating this list.
714  */
715 enum ir_expression_operation {
716    ir_unop_bit_not,
717    ir_unop_logic_not,
718    ir_unop_neg,
719    ir_unop_abs,
720    ir_unop_sign,
721    ir_unop_rcp,
722    ir_unop_rsq,
723    ir_unop_sqrt,
724    ir_unop_exp,      /**< Log base e on gentype */
725    ir_unop_log,	     /**< Natural log on gentype */
726    ir_unop_exp2,
727    ir_unop_log2,
728    ir_unop_f2i,      /**< Float-to-integer conversion. */
729    ir_unop_i2f,      /**< Integer-to-float conversion. */
730    ir_unop_f2b,      /**< Float-to-boolean conversion */
731    ir_unop_b2f,      /**< Boolean-to-float conversion */
732    ir_unop_i2b,      /**< int-to-boolean conversion */
733    ir_unop_b2i,      /**< Boolean-to-int conversion */
734    ir_unop_u2f,      /**< Unsigned-to-float conversion. */
735    ir_unop_any,
736 
737    /**
738     * \name Unary floating-point rounding operations.
739     */
740    /*@{*/
741    ir_unop_trunc,
742    ir_unop_ceil,
743    ir_unop_floor,
744    ir_unop_fract,
745    ir_unop_round_even,
746    /*@}*/
747 
748    /**
749     * \name Trigonometric operations.
750     */
751    /*@{*/
752    ir_unop_sin,
753    ir_unop_cos,
754    ir_unop_sin_reduced,    /**< Reduced range sin. [-pi, pi] */
755    ir_unop_cos_reduced,    /**< Reduced range cos. [-pi, pi] */
756    /*@}*/
757 
758    /**
759     * \name Partial derivatives.
760     */
761    /*@{*/
762    ir_unop_dFdx,
763    ir_unop_dFdy,
764    /*@}*/
765 
766    ir_unop_noise,
767 
768    /**
769     * A sentinel marking the last of the unary operations.
770     */
771    ir_last_unop = ir_unop_noise,
772 
773    ir_binop_add,
774    ir_binop_sub,
775    ir_binop_mul,
776    ir_binop_div,
777 
778    /**
779     * Takes one of two combinations of arguments:
780     *
781     * - mod(vecN, vecN)
782     * - mod(vecN, float)
783     *
784     * Does not take integer types.
785     */
786    ir_binop_mod,
787 
788    /**
789     * \name Binary comparison operators which return a boolean vector.
790     * The type of both operands must be equal.
791     */
792    /*@{*/
793    ir_binop_less,
794    ir_binop_greater,
795    ir_binop_lequal,
796    ir_binop_gequal,
797    ir_binop_equal,
798    ir_binop_nequal,
799    /**
800     * Returns single boolean for whether all components of operands[0]
801     * equal the components of operands[1].
802     */
803    ir_binop_all_equal,
804    /**
805     * Returns single boolean for whether any component of operands[0]
806     * is not equal to the corresponding component of operands[1].
807     */
808    ir_binop_any_nequal,
809    /*@}*/
810 
811    /**
812     * \name Bit-wise binary operations.
813     */
814    /*@{*/
815    ir_binop_lshift,
816    ir_binop_rshift,
817    ir_binop_bit_and,
818    ir_binop_bit_xor,
819    ir_binop_bit_or,
820    /*@}*/
821 
822    ir_binop_logic_and,
823    ir_binop_logic_xor,
824    ir_binop_logic_or,
825 
826    ir_binop_dot,
827    ir_binop_min,
828    ir_binop_max,
829 
830    ir_binop_pow,
831 
832    /**
833     * A sentinel marking the last of the binary operations.
834     */
835    ir_last_binop = ir_binop_pow,
836 
837    ir_quadop_vector,
838 
839    /**
840     * A sentinel marking the last of all operations.
841     */
842    ir_last_opcode = ir_last_binop
843 };
844 
845 class ir_expression : public ir_rvalue {
846 public:
847    /**
848     * Constructor for unary operation expressions
849     */
850    ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
851    ir_expression(int op, ir_rvalue *);
852 
853    /**
854     * Constructor for binary operation expressions
855     */
856    ir_expression(int op, const struct glsl_type *type,
857 		 ir_rvalue *, ir_rvalue *);
858    ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
859 
860    /**
861     * Constructor for quad operator expressions
862     */
863    ir_expression(int op, const struct glsl_type *type,
864 		 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
865 
as_expression()866    virtual ir_expression *as_expression()
867    {
868       return this;
869    }
870 
871    virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
872 
873    /**
874     * Attempt to constant-fold the expression
875     *
876     * If the expression cannot be constant folded, this method will return
877     * \c NULL.
878     */
879    virtual ir_constant *constant_expression_value();
880 
881    /**
882     * Determine the number of operands used by an expression
883     */
884    static unsigned int get_num_operands(ir_expression_operation);
885 
886    /**
887     * Determine the number of operands used by an expression
888     */
get_num_operands()889    unsigned int get_num_operands() const
890    {
891       return (this->operation == ir_quadop_vector)
892 	 ? this->type->vector_elements : get_num_operands(operation);
893    }
894 
895    /**
896     * Return a string representing this expression's operator.
897     */
898    const char *operator_string();
899 
900    /**
901     * Return a string representing this expression's operator.
902     */
903    static const char *operator_string(ir_expression_operation);
904 
905 
906    /**
907     * Do a reverse-lookup to translate the given string into an operator.
908     */
909    static ir_expression_operation get_operator(const char *);
910 
accept(ir_visitor * v)911    virtual void accept(ir_visitor *v)
912    {
913       v->visit(this);
914    }
915 
916    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
917 
918    ir_expression_operation operation;
919    ir_rvalue *operands[4];
920 };
921 
922 
923 /**
924  * IR instruction representing a function call
925  */
926 class ir_call : public ir_rvalue {
927 public:
ir_call(ir_function_signature * callee,exec_list * actual_parameters)928    ir_call(ir_function_signature *callee, exec_list *actual_parameters)
929       : callee(callee)
930    {
931       ir_type = ir_type_call;
932       assert(callee->return_type != NULL);
933       type = callee->return_type;
934       actual_parameters->move_nodes_to(& this->actual_parameters);
935    }
936 
937    virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
938 
939    virtual ir_constant *constant_expression_value();
940 
as_call()941    virtual ir_call *as_call()
942    {
943       return this;
944    }
945 
accept(ir_visitor * v)946    virtual void accept(ir_visitor *v)
947    {
948       v->visit(this);
949    }
950 
951    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
952 
953    /**
954     * Get a generic ir_call object when an error occurs
955     *
956     * Any allocation will be performed with 'ctx' as hieralloc owner.
957     */
958    static ir_call *get_error_instruction(void *ctx);
959 
960    /**
961     * Get an iterator for the set of acutal parameters
962     */
iterator()963    exec_list_iterator iterator()
964    {
965       return actual_parameters.iterator();
966    }
967 
968    /**
969     * Get the name of the function being called.
970     */
callee_name()971    const char *callee_name() const
972    {
973       return callee->function_name();
974    }
975 
976    /**
977     * Get the function signature bound to this function call
978     */
get_callee()979    ir_function_signature *get_callee()
980    {
981       return callee;
982    }
983 
984    /**
985     * Set the function call target
986     */
987    void set_callee(ir_function_signature *sig);
988 
989    /**
990     * Generates an inline version of the function before @ir,
991     * returning the return value of the function.
992     */
993    ir_rvalue *generate_inline(ir_instruction *ir);
994 
995    /* List of ir_rvalue of paramaters passed in this call. */
996    exec_list actual_parameters;
997 
998 private:
ir_call()999    ir_call()
1000       : callee(NULL)
1001    {
1002       this->ir_type = ir_type_call;
1003    }
1004 
1005    ir_function_signature *callee;
1006 };
1007 
1008 
1009 /**
1010  * \name Jump-like IR instructions.
1011  *
1012  * These include \c break, \c continue, \c return, and \c discard.
1013  */
1014 /*@{*/
1015 class ir_jump : public ir_instruction {
1016 protected:
ir_jump()1017    ir_jump()
1018    {
1019       ir_type = ir_type_unset;
1020    }
1021 };
1022 
1023 class ir_return : public ir_jump {
1024 public:
ir_return()1025    ir_return()
1026       : value(NULL)
1027    {
1028       this->ir_type = ir_type_return;
1029    }
1030 
ir_return(ir_rvalue * value)1031    ir_return(ir_rvalue *value)
1032       : value(value)
1033    {
1034       this->ir_type = ir_type_return;
1035    }
1036 
1037    virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1038 
as_return()1039    virtual ir_return *as_return()
1040    {
1041       return this;
1042    }
1043 
get_value()1044    ir_rvalue *get_value() const
1045    {
1046       return value;
1047    }
1048 
accept(ir_visitor * v)1049    virtual void accept(ir_visitor *v)
1050    {
1051       v->visit(this);
1052    }
1053 
1054    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1055 
1056    ir_rvalue *value;
1057 };
1058 
1059 
1060 /**
1061  * Jump instructions used inside loops
1062  *
1063  * These include \c break and \c continue.  The \c break within a loop is
1064  * different from the \c break within a switch-statement.
1065  *
1066  * \sa ir_switch_jump
1067  */
1068 class ir_loop_jump : public ir_jump {
1069 public:
1070    enum jump_mode {
1071       jump_break,
1072       jump_continue
1073    };
1074 
ir_loop_jump(jump_mode mode)1075    ir_loop_jump(jump_mode mode)
1076    {
1077       this->ir_type = ir_type_loop_jump;
1078       this->mode = mode;
1079       this->loop = loop;
1080    }
1081 
1082    virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1083 
accept(ir_visitor * v)1084    virtual void accept(ir_visitor *v)
1085    {
1086       v->visit(this);
1087    }
1088 
1089    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1090 
is_break()1091    bool is_break() const
1092    {
1093       return mode == jump_break;
1094    }
1095 
is_continue()1096    bool is_continue() const
1097    {
1098       return mode == jump_continue;
1099    }
1100 
1101    /** Mode selector for the jump instruction. */
1102    enum jump_mode mode;
1103 private:
1104    /** Loop containing this break instruction. */
1105    ir_loop *loop;
1106 };
1107 
1108 /**
1109  * IR instruction representing discard statements.
1110  */
1111 class ir_discard : public ir_jump {
1112 public:
ir_discard()1113    ir_discard()
1114    {
1115       this->ir_type = ir_type_discard;
1116       this->condition = NULL;
1117    }
1118 
ir_discard(ir_rvalue * cond)1119    ir_discard(ir_rvalue *cond)
1120    {
1121       this->ir_type = ir_type_discard;
1122       this->condition = cond;
1123    }
1124 
1125    virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1126 
accept(ir_visitor * v)1127    virtual void accept(ir_visitor *v)
1128    {
1129       v->visit(this);
1130    }
1131 
1132    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1133 
as_discard()1134    virtual ir_discard *as_discard()
1135    {
1136       return this;
1137    }
1138 
1139    ir_rvalue *condition;
1140 };
1141 /*@}*/
1142 
1143 
1144 /**
1145  * Texture sampling opcodes used in ir_texture
1146  */
1147 enum ir_texture_opcode {
1148    ir_tex,		/**< Regular texture look-up */
1149    ir_txb,		/**< Texture look-up with LOD bias */
1150    ir_txl,		/**< Texture look-up with explicit LOD */
1151    ir_txd,		/**< Texture look-up with partial derivatvies */
1152    ir_txf		/**< Texel fetch with explicit LOD */
1153 };
1154 
1155 
1156 /**
1157  * IR instruction to sample a texture
1158  *
1159  * The specific form of the IR instruction depends on the \c mode value
1160  * selected from \c ir_texture_opcodes.  In the printed IR, these will
1161  * appear as:
1162  *
1163  *                              Texel offset
1164  *                              |       Projection divisor
1165  *                              |       |   Shadow comparitor
1166  *                              |       |   |
1167  *                              v       v   v
1168  * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1169  * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1170  * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1171  * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1172  * (txf (sampler) (coordinate) (0 0 0)         (lod))
1173  */
1174 class ir_texture : public ir_rvalue {
1175 public:
ir_texture(enum ir_texture_opcode op)1176    ir_texture(enum ir_texture_opcode op)
1177       : op(op), projector(NULL), shadow_comparitor(NULL)
1178    {
1179       this->ir_type = ir_type_texture;
1180    }
1181 
1182    virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1183 
1184    virtual ir_constant *constant_expression_value();
1185 
accept(ir_visitor * v)1186    virtual void accept(ir_visitor *v)
1187    {
1188       v->visit(this);
1189    }
1190 
1191    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1192 
1193    /**
1194     * Return a string representing the ir_texture_opcode.
1195     */
1196    const char *opcode_string();
1197 
1198    /** Set the sampler and infer the type. */
1199    void set_sampler(ir_dereference *sampler);
1200 
1201    /**
1202     * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1203     */
1204    static ir_texture_opcode get_opcode(const char *);
1205 
1206    enum ir_texture_opcode op;
1207 
1208    /** Sampler to use for the texture access. */
1209    ir_dereference *sampler;
1210 
1211    /** Texture coordinate to sample */
1212    ir_rvalue *coordinate;
1213 
1214    /**
1215     * Value used for projective divide.
1216     *
1217     * If there is no projective divide (the common case), this will be
1218     * \c NULL.  Optimization passes should check for this to point to a constant
1219     * of 1.0 and replace that with \c NULL.
1220     */
1221    ir_rvalue *projector;
1222 
1223    /**
1224     * Coordinate used for comparison on shadow look-ups.
1225     *
1226     * If there is no shadow comparison, this will be \c NULL.  For the
1227     * \c ir_txf opcode, this *must* be \c NULL.
1228     */
1229    ir_rvalue *shadow_comparitor;
1230 
1231    /** Explicit texel offsets. */
1232    signed char offsets[3];
1233 
1234    union {
1235       ir_rvalue *lod;		/**< Floating point LOD */
1236       ir_rvalue *bias;		/**< Floating point LOD bias */
1237       struct {
1238 	 ir_rvalue *dPdx;	/**< Partial derivative of coordinate wrt X */
1239 	 ir_rvalue *dPdy;	/**< Partial derivative of coordinate wrt Y */
1240       } grad;
1241    } lod_info;
1242 };
1243 
1244 
1245 struct ir_swizzle_mask {
1246    unsigned x:2;
1247    unsigned y:2;
1248    unsigned z:2;
1249    unsigned w:2;
1250 
1251    /**
1252     * Number of components in the swizzle.
1253     */
1254    unsigned num_components:3;
1255 
1256    /**
1257     * Does the swizzle contain duplicate components?
1258     *
1259     * L-value swizzles cannot contain duplicate components.
1260     */
1261    unsigned has_duplicates:1;
1262 };
1263 
1264 
1265 class ir_swizzle : public ir_rvalue {
1266 public:
1267    ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1268               unsigned count);
1269 
1270    ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1271 
1272    ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1273 
1274    virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1275 
1276    virtual ir_constant *constant_expression_value();
1277 
as_swizzle()1278    virtual ir_swizzle *as_swizzle()
1279    {
1280       return this;
1281    }
1282 
1283    /**
1284     * Construct an ir_swizzle from the textual representation.  Can fail.
1285     */
1286    static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1287 
accept(ir_visitor * v)1288    virtual void accept(ir_visitor *v)
1289    {
1290       v->visit(this);
1291    }
1292 
1293    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1294 
is_lvalue()1295    bool is_lvalue()
1296    {
1297       return val->is_lvalue() && !mask.has_duplicates;
1298    }
1299 
1300    /**
1301     * Get the variable that is ultimately referenced by an r-value
1302     */
1303    virtual ir_variable *variable_referenced();
1304 
1305    ir_rvalue *val;
1306    ir_swizzle_mask mask;
1307 
1308 private:
1309    /**
1310     * Initialize the mask component of a swizzle
1311     *
1312     * This is used by the \c ir_swizzle constructors.
1313     */
1314    void init_mask(const unsigned *components, unsigned count);
1315 };
1316 
1317 
1318 class ir_dereference : public ir_rvalue {
1319 public:
1320    virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1321 
as_dereference()1322    virtual ir_dereference *as_dereference()
1323    {
1324       return this;
1325    }
1326 
1327    bool is_lvalue();
1328 
1329    /**
1330     * Get the variable that is ultimately referenced by an r-value
1331     */
1332    virtual ir_variable *variable_referenced() = 0;
1333 };
1334 
1335 
1336 class ir_dereference_variable : public ir_dereference {
1337 public:
1338    ir_dereference_variable(ir_variable *var);
1339 
1340    virtual ir_dereference_variable *clone(void *mem_ctx,
1341 					  struct hash_table *) const;
1342 
1343    virtual ir_constant *constant_expression_value();
1344 
as_dereference_variable()1345    virtual ir_dereference_variable *as_dereference_variable()
1346    {
1347       return this;
1348    }
1349 
1350    /**
1351     * Get the variable that is ultimately referenced by an r-value
1352     */
variable_referenced()1353    virtual ir_variable *variable_referenced()
1354    {
1355       return this->var;
1356    }
1357 
whole_variable_referenced()1358    virtual ir_variable *whole_variable_referenced()
1359    {
1360       /* ir_dereference_variable objects always dereference the entire
1361        * variable.  However, if this dereference is dereferenced by anything
1362        * else, the complete deferefernce chain is not a whole-variable
1363        * dereference.  This method should only be called on the top most
1364        * ir_rvalue in a dereference chain.
1365        */
1366       return this->var;
1367    }
1368 
accept(ir_visitor * v)1369    virtual void accept(ir_visitor *v)
1370    {
1371       v->visit(this);
1372    }
1373 
1374    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1375 
1376    /**
1377     * Object being dereferenced.
1378     */
1379    ir_variable *var;
1380 };
1381 
1382 
1383 class ir_dereference_array : public ir_dereference {
1384 public:
1385    ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1386 
1387    ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1388 
1389    virtual ir_dereference_array *clone(void *mem_ctx,
1390 				       struct hash_table *) const;
1391 
1392    virtual ir_constant *constant_expression_value();
1393 
as_dereference_array()1394    virtual ir_dereference_array *as_dereference_array()
1395    {
1396       return this;
1397    }
1398 
1399    /**
1400     * Get the variable that is ultimately referenced by an r-value
1401     */
variable_referenced()1402    virtual ir_variable *variable_referenced()
1403    {
1404       return this->array->variable_referenced();
1405    }
1406 
accept(ir_visitor * v)1407    virtual void accept(ir_visitor *v)
1408    {
1409       v->visit(this);
1410    }
1411 
1412    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1413 
1414    ir_rvalue *array;
1415    ir_rvalue *array_index;
1416 
1417 private:
1418    void set_array(ir_rvalue *value);
1419 };
1420 
1421 
1422 class ir_dereference_record : public ir_dereference {
1423 public:
1424    ir_dereference_record(ir_rvalue *value, const char *field);
1425 
1426    ir_dereference_record(ir_variable *var, const char *field);
1427 
1428    virtual ir_dereference_record *clone(void *mem_ctx,
1429 					struct hash_table *) const;
1430 
1431    virtual ir_constant *constant_expression_value();
1432 
1433    /**
1434     * Get the variable that is ultimately referenced by an r-value
1435     */
variable_referenced()1436    virtual ir_variable *variable_referenced()
1437    {
1438       return this->record->variable_referenced();
1439    }
1440 
accept(ir_visitor * v)1441    virtual void accept(ir_visitor *v)
1442    {
1443       v->visit(this);
1444    }
1445 
1446    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1447 
1448    ir_rvalue *record;
1449    const char *field;
1450 };
1451 
1452 
1453 /**
1454  * Data stored in an ir_constant
1455  */
1456 union ir_constant_data {
1457       unsigned u[16];
1458       int i[16];
1459       float f[16];
1460       bool b[16];
1461 };
1462 
1463 
1464 class ir_constant : public ir_rvalue {
1465 public:
1466    ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1467    ir_constant(bool b);
1468    ir_constant(unsigned int u);
1469    ir_constant(int i);
1470    ir_constant(float f);
1471 
1472    /**
1473     * Construct an ir_constant from a list of ir_constant values
1474     */
1475    ir_constant(const struct glsl_type *type, exec_list *values);
1476 
1477    /**
1478     * Construct an ir_constant from a scalar component of another ir_constant
1479     *
1480     * The new \c ir_constant inherits the type of the component from the
1481     * source constant.
1482     *
1483     * \note
1484     * In the case of a matrix constant, the new constant is a scalar, \b not
1485     * a vector.
1486     */
1487    ir_constant(const ir_constant *c, unsigned i);
1488 
1489    /**
1490     * Return a new ir_constant of the specified type containing all zeros.
1491     */
1492    static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1493 
1494    virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1495 
1496    virtual ir_constant *constant_expression_value();
1497 
as_constant()1498    virtual ir_constant *as_constant()
1499    {
1500       return this;
1501    }
1502 
accept(ir_visitor * v)1503    virtual void accept(ir_visitor *v)
1504    {
1505       v->visit(this);
1506    }
1507 
1508    virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1509 
1510    /**
1511     * Get a particular component of a constant as a specific type
1512     *
1513     * This is useful, for example, to get a value from an integer constant
1514     * as a float or bool.  This appears frequently when constructors are
1515     * called with all constant parameters.
1516     */
1517    /*@{*/
1518    bool get_bool_component(unsigned i) const;
1519    float get_float_component(unsigned i) const;
1520    int get_int_component(unsigned i) const;
1521    unsigned get_uint_component(unsigned i) const;
1522    /*@}*/
1523 
1524    ir_constant *get_array_element(unsigned i) const;
1525 
1526    ir_constant *get_record_field(const char *name);
1527 
1528    /**
1529     * Determine whether a constant has the same value as another constant
1530     *
1531     * \sa ir_constant::is_zero, ir_constant::is_one,
1532     * ir_constant::is_negative_one
1533     */
1534    bool has_value(const ir_constant *) const;
1535 
1536    virtual bool is_zero() const;
1537    virtual bool is_one() const;
1538    virtual bool is_negative_one() const;
1539 
1540    /**
1541     * Value of the constant.
1542     *
1543     * The field used to back the values supplied by the constant is determined
1544     * by the type associated with the \c ir_instruction.  Constants may be
1545     * scalars, vectors, or matrices.
1546     */
1547    union ir_constant_data value;
1548 
1549    /* Array elements */
1550    ir_constant **array_elements;
1551 
1552    /* Structure fields */
1553    exec_list components;
1554 
1555 private:
1556    /**
1557     * Parameterless constructor only used by the clone method
1558     */
1559    ir_constant(void);
1560 };
1561 
1562 /*@}*/
1563 
1564 /**
1565  * Apply a visitor to each IR node in a list
1566  */
1567 void
1568 visit_exec_list(exec_list *list, ir_visitor *visitor);
1569 
1570 /**
1571  * Validate invariants on each IR node in a list
1572  */
1573 void validate_ir_tree(exec_list *instructions);
1574 
1575 /**
1576  * Make a clone of each IR instruction in a list
1577  *
1578  * \param in   List of IR instructions that are to be cloned
1579  * \param out  List to hold the cloned instructions
1580  */
1581 void
1582 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1583 
1584 extern void
1585 _mesa_glsl_initialize_variables(exec_list *instructions,
1586 				struct _mesa_glsl_parse_state *state);
1587 
1588 extern void
1589 _mesa_glsl_initialize_functions(exec_list *instructions,
1590 				struct _mesa_glsl_parse_state *state);
1591 
1592 extern void
1593 _mesa_glsl_release_functions(void);
1594 
1595 extern void
1596 reparent_ir(exec_list *list, void *mem_ctx);
1597 
1598 struct glsl_symbol_table;
1599 
1600 extern void
1601 import_prototypes(const exec_list *source, exec_list *dest,
1602 		  struct glsl_symbol_table *symbols, void *mem_ctx);
1603 
1604 extern bool
1605 ir_has_call(ir_instruction *ir);
1606 
1607 extern void
1608 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1609 
1610 #endif /* IR_H */
1611