1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains some functions that are useful for math stuff.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
15 #define LLVM_SUPPORT_MATHEXTRAS_H
16
17 #include "llvm/Support/SwapByteOrder.h"
18
19 namespace llvm {
20
21 // NOTE: The following support functions use the _32/_64 extensions instead of
22 // type overloading so that signed and unsigned integers can be used without
23 // ambiguity.
24
25 /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
Hi_32(uint64_t Value)26 inline uint32_t Hi_32(uint64_t Value) {
27 return static_cast<uint32_t>(Value >> 32);
28 }
29
30 /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
Lo_32(uint64_t Value)31 inline uint32_t Lo_32(uint64_t Value) {
32 return static_cast<uint32_t>(Value);
33 }
34
35 /// isInt - Checks if an integer fits into the given bit width.
36 template<unsigned N>
isInt(int64_t x)37 inline bool isInt(int64_t x) {
38 return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
39 }
40 // Template specializations to get better code for common cases.
41 template<>
42 inline bool isInt<8>(int64_t x) {
43 return static_cast<int8_t>(x) == x;
44 }
45 template<>
46 inline bool isInt<16>(int64_t x) {
47 return static_cast<int16_t>(x) == x;
48 }
49 template<>
50 inline bool isInt<32>(int64_t x) {
51 return static_cast<int32_t>(x) == x;
52 }
53
54 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
55 /// left by S.
56 template<unsigned N, unsigned S>
isShiftedInt(int64_t x)57 inline bool isShiftedInt(int64_t x) {
58 return isInt<N+S>(x) && (x % (1<<S) == 0);
59 }
60
61 /// isUInt - Checks if an unsigned integer fits into the given bit width.
62 template<unsigned N>
isUInt(uint64_t x)63 inline bool isUInt(uint64_t x) {
64 return N >= 64 || x < (UINT64_C(1)<<N);
65 }
66 // Template specializations to get better code for common cases.
67 template<>
68 inline bool isUInt<8>(uint64_t x) {
69 return static_cast<uint8_t>(x) == x;
70 }
71 template<>
72 inline bool isUInt<16>(uint64_t x) {
73 return static_cast<uint16_t>(x) == x;
74 }
75 template<>
76 inline bool isUInt<32>(uint64_t x) {
77 return static_cast<uint32_t>(x) == x;
78 }
79
80 /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
81 /// left by S.
82 template<unsigned N, unsigned S>
isShiftedUInt(uint64_t x)83 inline bool isShiftedUInt(uint64_t x) {
84 return isUInt<N+S>(x) && (x % (1<<S) == 0);
85 }
86
87 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
88 /// bit width.
isUIntN(unsigned N,uint64_t x)89 inline bool isUIntN(unsigned N, uint64_t x) {
90 return x == (x & (~0ULL >> (64 - N)));
91 }
92
93 /// isIntN - Checks if an signed integer fits into the given (dynamic)
94 /// bit width.
isIntN(unsigned N,int64_t x)95 inline bool isIntN(unsigned N, int64_t x) {
96 return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
97 }
98
99 /// isMask_32 - This function returns true if the argument is a sequence of ones
100 /// starting at the least significant bit with the remainder zero (32 bit
101 /// version). Ex. isMask_32(0x0000FFFFU) == true.
isMask_32(uint32_t Value)102 inline bool isMask_32(uint32_t Value) {
103 return Value && ((Value + 1) & Value) == 0;
104 }
105
106 /// isMask_64 - This function returns true if the argument is a sequence of ones
107 /// starting at the least significant bit with the remainder zero (64 bit
108 /// version).
isMask_64(uint64_t Value)109 inline bool isMask_64(uint64_t Value) {
110 return Value && ((Value + 1) & Value) == 0;
111 }
112
113 /// isShiftedMask_32 - This function returns true if the argument contains a
114 /// sequence of ones with the remainder zero (32 bit version.)
115 /// Ex. isShiftedMask_32(0x0000FF00U) == true.
isShiftedMask_32(uint32_t Value)116 inline bool isShiftedMask_32(uint32_t Value) {
117 return isMask_32((Value - 1) | Value);
118 }
119
120 /// isShiftedMask_64 - This function returns true if the argument contains a
121 /// sequence of ones with the remainder zero (64 bit version.)
isShiftedMask_64(uint64_t Value)122 inline bool isShiftedMask_64(uint64_t Value) {
123 return isMask_64((Value - 1) | Value);
124 }
125
126 /// isPowerOf2_32 - This function returns true if the argument is a power of
127 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
isPowerOf2_32(uint32_t Value)128 inline bool isPowerOf2_32(uint32_t Value) {
129 return Value && !(Value & (Value - 1));
130 }
131
132 /// isPowerOf2_64 - This function returns true if the argument is a power of two
133 /// > 0 (64 bit edition.)
isPowerOf2_64(uint64_t Value)134 inline bool isPowerOf2_64(uint64_t Value) {
135 return Value && !(Value & (Value - int64_t(1L)));
136 }
137
138 /// ByteSwap_16 - This function returns a byte-swapped representation of the
139 /// 16-bit argument, Value.
ByteSwap_16(uint16_t Value)140 inline uint16_t ByteSwap_16(uint16_t Value) {
141 return sys::SwapByteOrder_16(Value);
142 }
143
144 /// ByteSwap_32 - This function returns a byte-swapped representation of the
145 /// 32-bit argument, Value.
ByteSwap_32(uint32_t Value)146 inline uint32_t ByteSwap_32(uint32_t Value) {
147 return sys::SwapByteOrder_32(Value);
148 }
149
150 /// ByteSwap_64 - This function returns a byte-swapped representation of the
151 /// 64-bit argument, Value.
ByteSwap_64(uint64_t Value)152 inline uint64_t ByteSwap_64(uint64_t Value) {
153 return sys::SwapByteOrder_64(Value);
154 }
155
156 /// CountLeadingZeros_32 - this function performs the platform optimal form of
157 /// counting the number of zeros from the most significant bit to the first one
158 /// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
159 /// Returns 32 if the word is zero.
CountLeadingZeros_32(uint32_t Value)160 inline unsigned CountLeadingZeros_32(uint32_t Value) {
161 unsigned Count; // result
162 #if __GNUC__ >= 4
163 // PowerPC is defined for __builtin_clz(0)
164 #if !defined(__ppc__) && !defined(__ppc64__)
165 if (!Value) return 32;
166 #endif
167 Count = __builtin_clz(Value);
168 #else
169 if (!Value) return 32;
170 Count = 0;
171 // bisection method for count leading zeros
172 for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
173 uint32_t Tmp = Value >> Shift;
174 if (Tmp) {
175 Value = Tmp;
176 } else {
177 Count |= Shift;
178 }
179 }
180 #endif
181 return Count;
182 }
183
184 /// CountLeadingOnes_32 - this function performs the operation of
185 /// counting the number of ones from the most significant bit to the first zero
186 /// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
187 /// Returns 32 if the word is all ones.
CountLeadingOnes_32(uint32_t Value)188 inline unsigned CountLeadingOnes_32(uint32_t Value) {
189 return CountLeadingZeros_32(~Value);
190 }
191
192 /// CountLeadingZeros_64 - This function performs the platform optimal form
193 /// of counting the number of zeros from the most significant bit to the first
194 /// one bit (64 bit edition.)
195 /// Returns 64 if the word is zero.
CountLeadingZeros_64(uint64_t Value)196 inline unsigned CountLeadingZeros_64(uint64_t Value) {
197 unsigned Count; // result
198 #if __GNUC__ >= 4
199 // PowerPC is defined for __builtin_clzll(0)
200 #if !defined(__ppc__) && !defined(__ppc64__)
201 if (!Value) return 64;
202 #endif
203 Count = __builtin_clzll(Value);
204 #else
205 if (sizeof(long) == sizeof(int64_t)) {
206 if (!Value) return 64;
207 Count = 0;
208 // bisection method for count leading zeros
209 for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) {
210 uint64_t Tmp = Value >> Shift;
211 if (Tmp) {
212 Value = Tmp;
213 } else {
214 Count |= Shift;
215 }
216 }
217 } else {
218 // get hi portion
219 uint32_t Hi = Hi_32(Value);
220
221 // if some bits in hi portion
222 if (Hi) {
223 // leading zeros in hi portion plus all bits in lo portion
224 Count = CountLeadingZeros_32(Hi);
225 } else {
226 // get lo portion
227 uint32_t Lo = Lo_32(Value);
228 // same as 32 bit value
229 Count = CountLeadingZeros_32(Lo)+32;
230 }
231 }
232 #endif
233 return Count;
234 }
235
236 /// CountLeadingOnes_64 - This function performs the operation
237 /// of counting the number of ones from the most significant bit to the first
238 /// zero bit (64 bit edition.)
239 /// Returns 64 if the word is all ones.
CountLeadingOnes_64(uint64_t Value)240 inline unsigned CountLeadingOnes_64(uint64_t Value) {
241 return CountLeadingZeros_64(~Value);
242 }
243
244 /// CountTrailingZeros_32 - this function performs the platform optimal form of
245 /// counting the number of zeros from the least significant bit to the first one
246 /// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
247 /// Returns 32 if the word is zero.
CountTrailingZeros_32(uint32_t Value)248 inline unsigned CountTrailingZeros_32(uint32_t Value) {
249 #if __GNUC__ >= 4
250 return Value ? __builtin_ctz(Value) : 32;
251 #else
252 static const unsigned Mod37BitPosition[] = {
253 32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
254 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
255 5, 20, 8, 19, 18
256 };
257 return Mod37BitPosition[(-Value & Value) % 37];
258 #endif
259 }
260
261 /// CountTrailingOnes_32 - this function performs the operation of
262 /// counting the number of ones from the least significant bit to the first zero
263 /// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
264 /// Returns 32 if the word is all ones.
CountTrailingOnes_32(uint32_t Value)265 inline unsigned CountTrailingOnes_32(uint32_t Value) {
266 return CountTrailingZeros_32(~Value);
267 }
268
269 /// CountTrailingZeros_64 - This function performs the platform optimal form
270 /// of counting the number of zeros from the least significant bit to the first
271 /// one bit (64 bit edition.)
272 /// Returns 64 if the word is zero.
CountTrailingZeros_64(uint64_t Value)273 inline unsigned CountTrailingZeros_64(uint64_t Value) {
274 #if __GNUC__ >= 4
275 return Value ? __builtin_ctzll(Value) : 64;
276 #else
277 static const unsigned Mod67Position[] = {
278 64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
279 4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
280 47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
281 29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
282 7, 48, 35, 6, 34, 33, 0
283 };
284 return Mod67Position[(-Value & Value) % 67];
285 #endif
286 }
287
288 /// CountTrailingOnes_64 - This function performs the operation
289 /// of counting the number of ones from the least significant bit to the first
290 /// zero bit (64 bit edition.)
291 /// Returns 64 if the word is all ones.
CountTrailingOnes_64(uint64_t Value)292 inline unsigned CountTrailingOnes_64(uint64_t Value) {
293 return CountTrailingZeros_64(~Value);
294 }
295
296 /// CountPopulation_32 - this function counts the number of set bits in a value.
297 /// Ex. CountPopulation(0xF000F000) = 8
298 /// Returns 0 if the word is zero.
CountPopulation_32(uint32_t Value)299 inline unsigned CountPopulation_32(uint32_t Value) {
300 #if __GNUC__ >= 4
301 return __builtin_popcount(Value);
302 #else
303 uint32_t v = Value - ((Value >> 1) & 0x55555555);
304 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
305 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
306 #endif
307 }
308
309 /// CountPopulation_64 - this function counts the number of set bits in a value,
310 /// (64 bit edition.)
CountPopulation_64(uint64_t Value)311 inline unsigned CountPopulation_64(uint64_t Value) {
312 #if __GNUC__ >= 4
313 return __builtin_popcountll(Value);
314 #else
315 uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
316 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
317 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
318 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
319 #endif
320 }
321
322 /// Log2_32 - This function returns the floor log base 2 of the specified value,
323 /// -1 if the value is zero. (32 bit edition.)
324 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
Log2_32(uint32_t Value)325 inline unsigned Log2_32(uint32_t Value) {
326 return 31 - CountLeadingZeros_32(Value);
327 }
328
329 /// Log2_64 - This function returns the floor log base 2 of the specified value,
330 /// -1 if the value is zero. (64 bit edition.)
Log2_64(uint64_t Value)331 inline unsigned Log2_64(uint64_t Value) {
332 return 63 - CountLeadingZeros_64(Value);
333 }
334
335 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
336 /// value, 32 if the value is zero. (32 bit edition).
337 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
Log2_32_Ceil(uint32_t Value)338 inline unsigned Log2_32_Ceil(uint32_t Value) {
339 return 32-CountLeadingZeros_32(Value-1);
340 }
341
342 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
343 /// value, 64 if the value is zero. (64 bit edition.)
Log2_64_Ceil(uint64_t Value)344 inline unsigned Log2_64_Ceil(uint64_t Value) {
345 return 64-CountLeadingZeros_64(Value-1);
346 }
347
348 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
349 /// values using Euclid's algorithm.
GreatestCommonDivisor64(uint64_t A,uint64_t B)350 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
351 while (B) {
352 uint64_t T = B;
353 B = A % B;
354 A = T;
355 }
356 return A;
357 }
358
359 /// BitsToDouble - This function takes a 64-bit integer and returns the bit
360 /// equivalent double.
BitsToDouble(uint64_t Bits)361 inline double BitsToDouble(uint64_t Bits) {
362 union {
363 uint64_t L;
364 double D;
365 } T;
366 T.L = Bits;
367 return T.D;
368 }
369
370 /// BitsToFloat - This function takes a 32-bit integer and returns the bit
371 /// equivalent float.
BitsToFloat(uint32_t Bits)372 inline float BitsToFloat(uint32_t Bits) {
373 union {
374 uint32_t I;
375 float F;
376 } T;
377 T.I = Bits;
378 return T.F;
379 }
380
381 /// DoubleToBits - This function takes a double and returns the bit
382 /// equivalent 64-bit integer. Note that copying doubles around
383 /// changes the bits of NaNs on some hosts, notably x86, so this
384 /// routine cannot be used if these bits are needed.
DoubleToBits(double Double)385 inline uint64_t DoubleToBits(double Double) {
386 union {
387 uint64_t L;
388 double D;
389 } T;
390 T.D = Double;
391 return T.L;
392 }
393
394 /// FloatToBits - This function takes a float and returns the bit
395 /// equivalent 32-bit integer. Note that copying floats around
396 /// changes the bits of NaNs on some hosts, notably x86, so this
397 /// routine cannot be used if these bits are needed.
FloatToBits(float Float)398 inline uint32_t FloatToBits(float Float) {
399 union {
400 uint32_t I;
401 float F;
402 } T;
403 T.F = Float;
404 return T.I;
405 }
406
407 /// Platform-independent wrappers for the C99 isnan() function.
408 int IsNAN(float f);
409 int IsNAN(double d);
410
411 /// Platform-independent wrappers for the C99 isinf() function.
412 int IsInf(float f);
413 int IsInf(double d);
414
415 /// MinAlign - A and B are either alignments or offsets. Return the minimum
416 /// alignment that may be assumed after adding the two together.
MinAlign(uint64_t A,uint64_t B)417 inline uint64_t MinAlign(uint64_t A, uint64_t B) {
418 // The largest power of 2 that divides both A and B.
419 return (A | B) & -(A | B);
420 }
421
422 /// NextPowerOf2 - Returns the next power of two (in 64-bits)
423 /// that is strictly greater than A. Returns zero on overflow.
NextPowerOf2(uint64_t A)424 inline uint64_t NextPowerOf2(uint64_t A) {
425 A |= (A >> 1);
426 A |= (A >> 2);
427 A |= (A >> 4);
428 A |= (A >> 8);
429 A |= (A >> 16);
430 A |= (A >> 32);
431 return A + 1;
432 }
433
434 /// RoundUpToAlignment - Returns the next integer (mod 2**64) that is
435 /// greater than or equal to \arg Value and is a multiple of \arg
436 /// Align. Align must be non-zero.
437 ///
438 /// Examples:
439 /// RoundUpToAlignment(5, 8) = 8
440 /// RoundUpToAlignment(17, 8) = 24
441 /// RoundUpToAlignment(~0LL, 8) = 0
RoundUpToAlignment(uint64_t Value,uint64_t Align)442 inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
443 return ((Value + Align - 1) / Align) * Align;
444 }
445
446 /// OffsetToAlignment - Return the offset to the next integer (mod 2**64) that
447 /// is greater than or equal to \arg Value and is a multiple of \arg
448 /// Align. Align must be non-zero.
OffsetToAlignment(uint64_t Value,uint64_t Align)449 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
450 return RoundUpToAlignment(Value, Align) - Value;
451 }
452
453 /// abs64 - absolute value of a 64-bit int. Not all environments support
454 /// "abs" on whatever their name for the 64-bit int type is. The absolute
455 /// value of the largest negative number is undefined, as with "abs".
abs64(int64_t x)456 inline int64_t abs64(int64_t x) {
457 return (x < 0) ? -x : x;
458 }
459
460 /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
461 /// Usage int32_t r = SignExtend32<5>(x);
SignExtend32(uint32_t x)462 template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
463 return int32_t(x << (32 - B)) >> (32 - B);
464 }
465
466 /// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
467 /// Requires 0 < B <= 32.
SignExtend32(uint32_t X,unsigned B)468 inline int32_t SignExtend32(uint32_t X, unsigned B) {
469 return int32_t(X << (32 - B)) >> (32 - B);
470 }
471
472 /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
473 /// Usage int64_t r = SignExtend64<5>(x);
SignExtend64(uint64_t x)474 template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
475 return int64_t(x << (64 - B)) >> (64 - B);
476 }
477
478 /// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
479 /// Requires 0 < B <= 64.
SignExtend64(uint64_t X,unsigned B)480 inline int64_t SignExtend64(uint64_t X, unsigned B) {
481 return int64_t(X << (64 - B)) >> (64 - B);
482 }
483
484 } // End llvm namespace
485
486 #endif
487