• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENTYPES_H
15 #define CLANG_CODEGEN_CODEGENTYPES_H
16 
17 #include "CGCall.h"
18 #include "clang/AST/GlobalDecl.h"
19 #include "llvm/Module.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include <vector>
22 
23 namespace llvm {
24   class FunctionType;
25   class Module;
26   class TargetData;
27   class Type;
28   class LLVMContext;
29   class StructType;
30 }
31 
32 namespace clang {
33   class ABIInfo;
34   class ASTContext;
35   template <typename> class CanQual;
36   class CXXConstructorDecl;
37   class CXXDestructorDecl;
38   class CXXMethodDecl;
39   class CodeGenOptions;
40   class FieldDecl;
41   class FunctionProtoType;
42   class ObjCInterfaceDecl;
43   class ObjCIvarDecl;
44   class PointerType;
45   class QualType;
46   class RecordDecl;
47   class TagDecl;
48   class TargetInfo;
49   class Type;
50   typedef CanQual<Type> CanQualType;
51 
52 namespace CodeGen {
53   class CGCXXABI;
54   class CGRecordLayout;
55   class CodeGenModule;
56   class RequiredArgs;
57 
58 /// CodeGenTypes - This class organizes the cross-module state that is used
59 /// while lowering AST types to LLVM types.
60 class CodeGenTypes {
61   // Some of this stuff should probably be left on the CGM.
62   ASTContext &Context;
63   const TargetInfo &Target;
64   llvm::Module &TheModule;
65   const llvm::TargetData &TheTargetData;
66   const ABIInfo &TheABIInfo;
67   CGCXXABI &TheCXXABI;
68   const CodeGenOptions &CodeGenOpts;
69   CodeGenModule &CGM;
70 
71   /// The opaque type map for Objective-C interfaces. All direct
72   /// manipulation is done by the runtime interfaces, which are
73   /// responsible for coercing to the appropriate type; these opaque
74   /// types are never refined.
75   llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
76 
77   /// CGRecordLayouts - This maps llvm struct type with corresponding
78   /// record layout info.
79   llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
80 
81   /// RecordDeclTypes - This contains the LLVM IR type for any converted
82   /// RecordDecl.
83   llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
84 
85   /// FunctionInfos - Hold memoized CGFunctionInfo results.
86   llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
87 
88   /// RecordsBeingLaidOut - This set keeps track of records that we're currently
89   /// converting to an IR type.  For example, when converting:
90   /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
91   /// types will be in this set.
92   llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
93 
94   llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
95 
96   /// SkippedLayout - True if we didn't layout a function due to a being inside
97   /// a recursive struct conversion, set this to true.
98   bool SkippedLayout;
99 
100   SmallVector<const RecordDecl *, 8> DeferredRecords;
101 
102 private:
103   /// TypeCache - This map keeps cache of llvm::Types
104   /// and maps llvm::Types to corresponding clang::Type.
105   llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
106 
107 public:
108   CodeGenTypes(CodeGenModule &CGM);
109   ~CodeGenTypes();
110 
getTargetData()111   const llvm::TargetData &getTargetData() const { return TheTargetData; }
getTarget()112   const TargetInfo &getTarget() const { return Target; }
getContext()113   ASTContext &getContext() const { return Context; }
getABIInfo()114   const ABIInfo &getABIInfo() const { return TheABIInfo; }
getCodeGenOpts()115   const CodeGenOptions &getCodeGenOpts() const { return CodeGenOpts; }
getCXXABI()116   CGCXXABI &getCXXABI() const { return TheCXXABI; }
getLLVMContext()117   llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
118 
119   /// ConvertType - Convert type T into a llvm::Type.
120   llvm::Type *ConvertType(QualType T);
121 
122   /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
123   /// ConvertType in that it is used to convert to the memory representation for
124   /// a type.  For example, the scalar representation for _Bool is i1, but the
125   /// memory representation is usually i8 or i32, depending on the target.
126   llvm::Type *ConvertTypeForMem(QualType T);
127 
128   /// GetFunctionType - Get the LLVM function type for \arg Info.
129   llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
130 
131   llvm::FunctionType *GetFunctionType(GlobalDecl GD);
132 
133   /// isFuncTypeConvertible - Utility to check whether a function type can
134   /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
135   /// type).
136   bool isFuncTypeConvertible(const FunctionType *FT);
137   bool isFuncTypeArgumentConvertible(QualType Ty);
138 
139   /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
140   /// given a CXXMethodDecl. If the method to has an incomplete return type,
141   /// and/or incomplete argument types, this will return the opaque type.
142   llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
143 
144   const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
145 
146   /// UpdateCompletedType - When we find the full definition for a TagDecl,
147   /// replace the 'opaque' type we previously made for it if applicable.
148   void UpdateCompletedType(const TagDecl *TD);
149 
150   /// getNullaryFunctionInfo - Get the function info for a void()
151   /// function with standard CC.
152   const CGFunctionInfo &arrangeNullaryFunction();
153 
154   // The arrangement methods are split into three families:
155   //   - those meant to drive the signature and prologue/epilogue
156   //     of a function declaration or definition,
157   //   - those meant for the computation of the LLVM type for an abstract
158   //     appearance of a function, and
159   //   - those meant for performing the IR-generation of a call.
160   // They differ mainly in how they deal with optional (i.e. variadic)
161   // arguments, as well as unprototyped functions.
162   //
163   // Key points:
164   // - The CGFunctionInfo for emitting a specific call site must include
165   //   entries for the optional arguments.
166   // - The function type used at the call site must reflect the formal
167   //   signature of the declaration being called, or else the call will
168   //   go awry.
169   // - For the most part, unprototyped functions are called by casting to
170   //   a formal signature inferred from the specific argument types used
171   //   at the call-site.  However, some targets (e.g. x86-64) screw with
172   //   this for compatibility reasons.
173 
174   const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
175   const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
176   const CGFunctionInfo &arrangeFunctionDeclaration(QualType ResTy,
177                                                    const FunctionArgList &Args,
178                                              const FunctionType::ExtInfo &Info,
179                                                    bool isVariadic);
180 
181   const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
182   const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
183                                                         QualType receiverType);
184 
185   const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
186   const CGFunctionInfo &arrangeCXXConstructorDeclaration(
187                                                     const CXXConstructorDecl *D,
188                                                     CXXCtorType Type);
189   const CGFunctionInfo &arrangeCXXDestructor(const CXXDestructorDecl *D,
190                                              CXXDtorType Type);
191 
192   const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
193                                                 const FunctionType *Ty);
194   const CGFunctionInfo &arrangeFreeFunctionCall(QualType ResTy,
195                                                 const CallArgList &args,
196                                                 FunctionType::ExtInfo info,
197                                                 RequiredArgs required);
198 
199   const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
200                                              const FunctionProtoType *type,
201                                              RequiredArgs required);
202 
203   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
204   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
205   const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
206                                              const FunctionProtoType *FTP);
207 
208   /// "Arrange" the LLVM information for a call or type with the given
209   /// signature.  This is largely an internal method; other clients
210   /// should use one of the above routines, which ultimately defer to
211   /// this.
212   ///
213   /// \param argTypes - must all actually be canonical as params
214   const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
215                                                 ArrayRef<CanQualType> argTypes,
216                                                 FunctionType::ExtInfo info,
217                                                 RequiredArgs args);
218 
219   /// \brief Compute a new LLVM record layout object for the given record.
220   CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
221                                       llvm::StructType *Ty);
222 
223   /// addRecordTypeName - Compute a name from the given record decl with an
224   /// optional suffix and name the given LLVM type using it.
225   void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
226                          StringRef suffix);
227 
228 
229 public:  // These are internal details of CGT that shouldn't be used externally.
230   /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
231   llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
232 
233   /// GetExpandedTypes - Expand the type \arg Ty into the LLVM
234   /// argument types it would be passed as on the provided vector \arg
235   /// ArgTys. See ABIArgInfo::Expand.
236   void GetExpandedTypes(QualType type,
237                         SmallVectorImpl<llvm::Type*> &expanded);
238 
239   /// IsZeroInitializable - Return whether a type can be
240   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
241   bool isZeroInitializable(QualType T);
242 
243   /// IsZeroInitializable - Return whether a record type can be
244   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
245   bool isZeroInitializable(const CXXRecordDecl *RD);
246 
247   bool isRecordLayoutComplete(const Type *Ty) const;
noRecordsBeingLaidOut()248   bool noRecordsBeingLaidOut() const {
249     return RecordsBeingLaidOut.empty();
250   }
isRecordBeingLaidOut(const Type * Ty)251   bool isRecordBeingLaidOut(const Type *Ty) const {
252     return RecordsBeingLaidOut.count(Ty);
253   }
254 
255 };
256 
257 }  // end namespace CodeGen
258 }  // end namespace clang
259 
260 #endif
261