• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DelayedDiagnostic.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/Sema/ScopeInfo.h"
19 #include "clang/Sema/AnalysisBasedWarnings.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTMutationListener.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/EvaluatedExprVisitor.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExprObjC.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Basic/SourceManager.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/Lex/LiteralSupport.h"
36 #include "clang/Lex/Preprocessor.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/Designator.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/SemaFixItUtils.h"
43 #include "clang/Sema/Template.h"
44 #include "TreeTransform.h"
45 using namespace clang;
46 using namespace sema;
47 
48 /// \brief Determine whether the use of this declaration is valid, without
49 /// emitting diagnostics.
CanUseDecl(NamedDecl * D)50 bool Sema::CanUseDecl(NamedDecl *D) {
51   // See if this is an auto-typed variable whose initializer we are parsing.
52   if (ParsingInitForAutoVars.count(D))
53     return false;
54 
55   // See if this is a deleted function.
56   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57     if (FD->isDeleted())
58       return false;
59   }
60 
61   // See if this function is unavailable.
62   if (D->getAvailability() == AR_Unavailable &&
63       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
64     return false;
65 
66   return true;
67 }
68 
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)69 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
70   // Warn if this is used but marked unused.
71   if (D->hasAttr<UnusedAttr>()) {
72     const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
73     if (!DC->hasAttr<UnusedAttr>())
74       S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
75   }
76 }
77 
DiagnoseAvailabilityOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)78 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
79                               NamedDecl *D, SourceLocation Loc,
80                               const ObjCInterfaceDecl *UnknownObjCClass) {
81   // See if this declaration is unavailable or deprecated.
82   std::string Message;
83   AvailabilityResult Result = D->getAvailability(&Message);
84   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
85     if (Result == AR_Available) {
86       const DeclContext *DC = ECD->getDeclContext();
87       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
88         Result = TheEnumDecl->getAvailability(&Message);
89     }
90 
91   switch (Result) {
92     case AR_Available:
93     case AR_NotYetIntroduced:
94       break;
95 
96     case AR_Deprecated:
97       S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
98       break;
99 
100     case AR_Unavailable:
101       if (S.getCurContextAvailability() != AR_Unavailable) {
102         if (Message.empty()) {
103           if (!UnknownObjCClass)
104             S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
105           else
106             S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
107               << D->getDeclName();
108         }
109         else
110           S.Diag(Loc, diag::err_unavailable_message)
111             << D->getDeclName() << Message;
112           S.Diag(D->getLocation(), diag::note_unavailable_here)
113           << isa<FunctionDecl>(D) << false;
114       }
115       break;
116     }
117     return Result;
118 }
119 
120 /// \brief Emit a note explaining that this function is deleted or unavailable.
NoteDeletedFunction(FunctionDecl * Decl)121 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
122   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
123 
124   if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
125     // If the method was explicitly defaulted, point at that declaration.
126     if (!Method->isImplicit())
127       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
128 
129     // Try to diagnose why this special member function was implicitly
130     // deleted. This might fail, if that reason no longer applies.
131     CXXSpecialMember CSM = getSpecialMember(Method);
132     if (CSM != CXXInvalid)
133       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
134 
135     return;
136   }
137 
138   Diag(Decl->getLocation(), diag::note_unavailable_here)
139     << 1 << Decl->isDeleted();
140 }
141 
142 /// \brief Determine whether a FunctionDecl was ever declared with an
143 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)144 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
145   for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
146                                      E = D->redecls_end();
147        I != E; ++I) {
148     if (I->getStorageClassAsWritten() != SC_None)
149       return true;
150   }
151   return false;
152 }
153 
154 /// \brief Check whether we're in an extern inline function and referring to a
155 /// variable or function with internal linkage (C11 6.7.4p3).
156 ///
157 /// This is only a warning because we used to silently accept this code, but
158 /// in many cases it will not behave correctly. This is not enabled in C++ mode
159 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
160 /// and so while there may still be user mistakes, most of the time we can't
161 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)162 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
163                                                       const NamedDecl *D,
164                                                       SourceLocation Loc) {
165   // This is disabled under C++; there are too many ways for this to fire in
166   // contexts where the warning is a false positive, or where it is technically
167   // correct but benign.
168   if (S.getLangOpts().CPlusPlus)
169     return;
170 
171   // Check if this is an inlined function or method.
172   FunctionDecl *Current = S.getCurFunctionDecl();
173   if (!Current)
174     return;
175   if (!Current->isInlined())
176     return;
177   if (Current->getLinkage() != ExternalLinkage)
178     return;
179 
180   // Check if the decl has internal linkage.
181   if (D->getLinkage() != InternalLinkage)
182     return;
183 
184   // Downgrade from ExtWarn to Extension if
185   //  (1) the supposedly external inline function is in the main file,
186   //      and probably won't be included anywhere else.
187   //  (2) the thing we're referencing is a pure function.
188   //  (3) the thing we're referencing is another inline function.
189   // This last can give us false negatives, but it's better than warning on
190   // wrappers for simple C library functions.
191   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
192   bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
193   if (!DowngradeWarning && UsedFn)
194     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
195 
196   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
197                                : diag::warn_internal_in_extern_inline)
198     << /*IsVar=*/!UsedFn << D;
199 
200   // Suggest "static" on the inline function, if possible.
201   if (!hasAnyExplicitStorageClass(Current)) {
202     const FunctionDecl *FirstDecl = Current->getCanonicalDecl();
203     SourceLocation DeclBegin = FirstDecl->getSourceRange().getBegin();
204     S.Diag(DeclBegin, diag::note_convert_inline_to_static)
205       << Current << FixItHint::CreateInsertion(DeclBegin, "static ");
206   }
207 
208   S.Diag(D->getCanonicalDecl()->getLocation(),
209          diag::note_internal_decl_declared_here)
210     << D;
211 }
212 
213 /// \brief Determine whether the use of this declaration is valid, and
214 /// emit any corresponding diagnostics.
215 ///
216 /// This routine diagnoses various problems with referencing
217 /// declarations that can occur when using a declaration. For example,
218 /// it might warn if a deprecated or unavailable declaration is being
219 /// used, or produce an error (and return true) if a C++0x deleted
220 /// function is being used.
221 ///
222 /// \returns true if there was an error (this declaration cannot be
223 /// referenced), false otherwise.
224 ///
DiagnoseUseOfDecl(NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)225 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
226                              const ObjCInterfaceDecl *UnknownObjCClass) {
227   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
228     // If there were any diagnostics suppressed by template argument deduction,
229     // emit them now.
230     llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
231       Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
232     if (Pos != SuppressedDiagnostics.end()) {
233       SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
234       for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
235         Diag(Suppressed[I].first, Suppressed[I].second);
236 
237       // Clear out the list of suppressed diagnostics, so that we don't emit
238       // them again for this specialization. However, we don't obsolete this
239       // entry from the table, because we want to avoid ever emitting these
240       // diagnostics again.
241       Suppressed.clear();
242     }
243   }
244 
245   // See if this is an auto-typed variable whose initializer we are parsing.
246   if (ParsingInitForAutoVars.count(D)) {
247     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
248       << D->getDeclName();
249     return true;
250   }
251 
252   // See if this is a deleted function.
253   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
254     if (FD->isDeleted()) {
255       Diag(Loc, diag::err_deleted_function_use);
256       NoteDeletedFunction(FD);
257       return true;
258     }
259   }
260   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
261 
262   DiagnoseUnusedOfDecl(*this, D, Loc);
263 
264   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
265 
266   return false;
267 }
268 
269 /// \brief Retrieve the message suffix that should be added to a
270 /// diagnostic complaining about the given function being deleted or
271 /// unavailable.
getDeletedOrUnavailableSuffix(const FunctionDecl * FD)272 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
273   // FIXME: C++0x implicitly-deleted special member functions could be
274   // detected here so that we could improve diagnostics to say, e.g.,
275   // "base class 'A' had a deleted copy constructor".
276   if (FD->isDeleted())
277     return std::string();
278 
279   std::string Message;
280   if (FD->getAvailability(&Message))
281     return ": " + Message;
282 
283   return std::string();
284 }
285 
286 /// DiagnoseSentinelCalls - This routine checks whether a call or
287 /// message-send is to a declaration with the sentinel attribute, and
288 /// if so, it checks that the requirements of the sentinel are
289 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,Expr ** args,unsigned numArgs)290 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
291                                  Expr **args, unsigned numArgs) {
292   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
293   if (!attr)
294     return;
295 
296   // The number of formal parameters of the declaration.
297   unsigned numFormalParams;
298 
299   // The kind of declaration.  This is also an index into a %select in
300   // the diagnostic.
301   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
302 
303   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
304     numFormalParams = MD->param_size();
305     calleeType = CT_Method;
306   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
307     numFormalParams = FD->param_size();
308     calleeType = CT_Function;
309   } else if (isa<VarDecl>(D)) {
310     QualType type = cast<ValueDecl>(D)->getType();
311     const FunctionType *fn = 0;
312     if (const PointerType *ptr = type->getAs<PointerType>()) {
313       fn = ptr->getPointeeType()->getAs<FunctionType>();
314       if (!fn) return;
315       calleeType = CT_Function;
316     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
317       fn = ptr->getPointeeType()->castAs<FunctionType>();
318       calleeType = CT_Block;
319     } else {
320       return;
321     }
322 
323     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
324       numFormalParams = proto->getNumArgs();
325     } else {
326       numFormalParams = 0;
327     }
328   } else {
329     return;
330   }
331 
332   // "nullPos" is the number of formal parameters at the end which
333   // effectively count as part of the variadic arguments.  This is
334   // useful if you would prefer to not have *any* formal parameters,
335   // but the language forces you to have at least one.
336   unsigned nullPos = attr->getNullPos();
337   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
338   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
339 
340   // The number of arguments which should follow the sentinel.
341   unsigned numArgsAfterSentinel = attr->getSentinel();
342 
343   // If there aren't enough arguments for all the formal parameters,
344   // the sentinel, and the args after the sentinel, complain.
345   if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
346     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
347     Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
348     return;
349   }
350 
351   // Otherwise, find the sentinel expression.
352   Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
353   if (!sentinelExpr) return;
354   if (sentinelExpr->isValueDependent()) return;
355   if (Context.isSentinelNullExpr(sentinelExpr)) return;
356 
357   // Pick a reasonable string to insert.  Optimistically use 'nil' or
358   // 'NULL' if those are actually defined in the context.  Only use
359   // 'nil' for ObjC methods, where it's much more likely that the
360   // variadic arguments form a list of object pointers.
361   SourceLocation MissingNilLoc
362     = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
363   std::string NullValue;
364   if (calleeType == CT_Method &&
365       PP.getIdentifierInfo("nil")->hasMacroDefinition())
366     NullValue = "nil";
367   else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
368     NullValue = "NULL";
369   else
370     NullValue = "(void*) 0";
371 
372   if (MissingNilLoc.isInvalid())
373     Diag(Loc, diag::warn_missing_sentinel) << calleeType;
374   else
375     Diag(MissingNilLoc, diag::warn_missing_sentinel)
376       << calleeType
377       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
378   Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
379 }
380 
getExprRange(Expr * E) const381 SourceRange Sema::getExprRange(Expr *E) const {
382   return E ? E->getSourceRange() : SourceRange();
383 }
384 
385 //===----------------------------------------------------------------------===//
386 //  Standard Promotions and Conversions
387 //===----------------------------------------------------------------------===//
388 
389 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E)390 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
391   // Handle any placeholder expressions which made it here.
392   if (E->getType()->isPlaceholderType()) {
393     ExprResult result = CheckPlaceholderExpr(E);
394     if (result.isInvalid()) return ExprError();
395     E = result.take();
396   }
397 
398   QualType Ty = E->getType();
399   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
400 
401   if (Ty->isFunctionType())
402     E = ImpCastExprToType(E, Context.getPointerType(Ty),
403                           CK_FunctionToPointerDecay).take();
404   else if (Ty->isArrayType()) {
405     // In C90 mode, arrays only promote to pointers if the array expression is
406     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
407     // type 'array of type' is converted to an expression that has type 'pointer
408     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
409     // that has type 'array of type' ...".  The relevant change is "an lvalue"
410     // (C90) to "an expression" (C99).
411     //
412     // C++ 4.2p1:
413     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
414     // T" can be converted to an rvalue of type "pointer to T".
415     //
416     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
417       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
418                             CK_ArrayToPointerDecay).take();
419   }
420   return Owned(E);
421 }
422 
CheckForNullPointerDereference(Sema & S,Expr * E)423 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
424   // Check to see if we are dereferencing a null pointer.  If so,
425   // and if not volatile-qualified, this is undefined behavior that the
426   // optimizer will delete, so warn about it.  People sometimes try to use this
427   // to get a deterministic trap and are surprised by clang's behavior.  This
428   // only handles the pattern "*null", which is a very syntactic check.
429   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
430     if (UO->getOpcode() == UO_Deref &&
431         UO->getSubExpr()->IgnoreParenCasts()->
432           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
433         !UO->getType().isVolatileQualified()) {
434     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
435                           S.PDiag(diag::warn_indirection_through_null)
436                             << UO->getSubExpr()->getSourceRange());
437     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
438                         S.PDiag(diag::note_indirection_through_null));
439   }
440 }
441 
DefaultLvalueConversion(Expr * E)442 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
443   // Handle any placeholder expressions which made it here.
444   if (E->getType()->isPlaceholderType()) {
445     ExprResult result = CheckPlaceholderExpr(E);
446     if (result.isInvalid()) return ExprError();
447     E = result.take();
448   }
449 
450   // C++ [conv.lval]p1:
451   //   A glvalue of a non-function, non-array type T can be
452   //   converted to a prvalue.
453   if (!E->isGLValue()) return Owned(E);
454 
455   QualType T = E->getType();
456   assert(!T.isNull() && "r-value conversion on typeless expression?");
457 
458   // We don't want to throw lvalue-to-rvalue casts on top of
459   // expressions of certain types in C++.
460   if (getLangOpts().CPlusPlus &&
461       (E->getType() == Context.OverloadTy ||
462        T->isDependentType() ||
463        T->isRecordType()))
464     return Owned(E);
465 
466   // The C standard is actually really unclear on this point, and
467   // DR106 tells us what the result should be but not why.  It's
468   // generally best to say that void types just doesn't undergo
469   // lvalue-to-rvalue at all.  Note that expressions of unqualified
470   // 'void' type are never l-values, but qualified void can be.
471   if (T->isVoidType())
472     return Owned(E);
473 
474   CheckForNullPointerDereference(*this, E);
475 
476   // C++ [conv.lval]p1:
477   //   [...] If T is a non-class type, the type of the prvalue is the
478   //   cv-unqualified version of T. Otherwise, the type of the
479   //   rvalue is T.
480   //
481   // C99 6.3.2.1p2:
482   //   If the lvalue has qualified type, the value has the unqualified
483   //   version of the type of the lvalue; otherwise, the value has the
484   //   type of the lvalue.
485   if (T.hasQualifiers())
486     T = T.getUnqualifiedType();
487 
488   UpdateMarkingForLValueToRValue(E);
489 
490   ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
491                                                   E, 0, VK_RValue));
492 
493   // C11 6.3.2.1p2:
494   //   ... if the lvalue has atomic type, the value has the non-atomic version
495   //   of the type of the lvalue ...
496   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
497     T = Atomic->getValueType().getUnqualifiedType();
498     Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
499                                          Res.get(), 0, VK_RValue));
500   }
501 
502   return Res;
503 }
504 
DefaultFunctionArrayLvalueConversion(Expr * E)505 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
506   ExprResult Res = DefaultFunctionArrayConversion(E);
507   if (Res.isInvalid())
508     return ExprError();
509   Res = DefaultLvalueConversion(Res.take());
510   if (Res.isInvalid())
511     return ExprError();
512   return Res;
513 }
514 
515 
516 /// UsualUnaryConversions - Performs various conversions that are common to most
517 /// operators (C99 6.3). The conversions of array and function types are
518 /// sometimes suppressed. For example, the array->pointer conversion doesn't
519 /// apply if the array is an argument to the sizeof or address (&) operators.
520 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)521 ExprResult Sema::UsualUnaryConversions(Expr *E) {
522   // First, convert to an r-value.
523   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
524   if (Res.isInvalid())
525     return Owned(E);
526   E = Res.take();
527 
528   QualType Ty = E->getType();
529   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
530 
531   // Half FP is a bit different: it's a storage-only type, meaning that any
532   // "use" of it should be promoted to float.
533   if (Ty->isHalfType())
534     return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
535 
536   // Try to perform integral promotions if the object has a theoretically
537   // promotable type.
538   if (Ty->isIntegralOrUnscopedEnumerationType()) {
539     // C99 6.3.1.1p2:
540     //
541     //   The following may be used in an expression wherever an int or
542     //   unsigned int may be used:
543     //     - an object or expression with an integer type whose integer
544     //       conversion rank is less than or equal to the rank of int
545     //       and unsigned int.
546     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
547     //
548     //   If an int can represent all values of the original type, the
549     //   value is converted to an int; otherwise, it is converted to an
550     //   unsigned int. These are called the integer promotions. All
551     //   other types are unchanged by the integer promotions.
552 
553     QualType PTy = Context.isPromotableBitField(E);
554     if (!PTy.isNull()) {
555       E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
556       return Owned(E);
557     }
558     if (Ty->isPromotableIntegerType()) {
559       QualType PT = Context.getPromotedIntegerType(Ty);
560       E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
561       return Owned(E);
562     }
563   }
564   return Owned(E);
565 }
566 
567 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
568 /// do not have a prototype. Arguments that have type float are promoted to
569 /// double. All other argument types are converted by UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)570 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
571   QualType Ty = E->getType();
572   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
573 
574   ExprResult Res = UsualUnaryConversions(E);
575   if (Res.isInvalid())
576     return Owned(E);
577   E = Res.take();
578 
579   // If this is a 'float' (CVR qualified or typedef) promote to double.
580   if (Ty->isSpecificBuiltinType(BuiltinType::Float))
581     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
582 
583   // C++ performs lvalue-to-rvalue conversion as a default argument
584   // promotion, even on class types, but note:
585   //   C++11 [conv.lval]p2:
586   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
587   //     operand or a subexpression thereof the value contained in the
588   //     referenced object is not accessed. Otherwise, if the glvalue
589   //     has a class type, the conversion copy-initializes a temporary
590   //     of type T from the glvalue and the result of the conversion
591   //     is a prvalue for the temporary.
592   // FIXME: add some way to gate this entire thing for correctness in
593   // potentially potentially evaluated contexts.
594   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
595     ExprResult Temp = PerformCopyInitialization(
596                        InitializedEntity::InitializeTemporary(E->getType()),
597                                                 E->getExprLoc(),
598                                                 Owned(E));
599     if (Temp.isInvalid())
600       return ExprError();
601     E = Temp.get();
602   }
603 
604   return Owned(E);
605 }
606 
607 /// Determine the degree of POD-ness for an expression.
608 /// Incomplete types are considered POD, since this check can be performed
609 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)610 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
611   if (Ty->isIncompleteType()) {
612     if (Ty->isObjCObjectType())
613       return VAK_Invalid;
614     return VAK_Valid;
615   }
616 
617   if (Ty.isCXX98PODType(Context))
618     return VAK_Valid;
619 
620   // C++0x [expr.call]p7:
621   //   Passing a potentially-evaluated argument of class type (Clause 9)
622   //   having a non-trivial copy constructor, a non-trivial move constructor,
623   //   or a non-trivial destructor, with no corresponding parameter,
624   //   is conditionally-supported with implementation-defined semantics.
625   if (getLangOpts().CPlusPlus0x && !Ty->isDependentType())
626     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
627       if (Record->hasTrivialCopyConstructor() &&
628           Record->hasTrivialMoveConstructor() &&
629           Record->hasTrivialDestructor())
630         return VAK_ValidInCXX11;
631 
632   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
633     return VAK_Valid;
634   return VAK_Invalid;
635 }
636 
variadicArgumentPODCheck(const Expr * E,VariadicCallType CT)637 bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
638   // Don't allow one to pass an Objective-C interface to a vararg.
639   const QualType & Ty = E->getType();
640 
641   // Complain about passing non-POD types through varargs.
642   switch (isValidVarArgType(Ty)) {
643   case VAK_Valid:
644     break;
645   case VAK_ValidInCXX11:
646     DiagRuntimeBehavior(E->getLocStart(), 0,
647         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
648         << E->getType() << CT);
649     break;
650   case VAK_Invalid: {
651     if (Ty->isObjCObjectType())
652       return DiagRuntimeBehavior(E->getLocStart(), 0,
653                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
654                             << Ty << CT);
655 
656     return DiagRuntimeBehavior(E->getLocStart(), 0,
657                    PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
658                    << getLangOpts().CPlusPlus0x << Ty << CT);
659   }
660   }
661   // c++ rules are enforced elsewhere.
662   return false;
663 }
664 
665 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
666 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)667 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
668                                                   FunctionDecl *FDecl) {
669   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
670     // Strip the unbridged-cast placeholder expression off, if applicable.
671     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
672         (CT == VariadicMethod ||
673          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
674       E = stripARCUnbridgedCast(E);
675 
676     // Otherwise, do normal placeholder checking.
677     } else {
678       ExprResult ExprRes = CheckPlaceholderExpr(E);
679       if (ExprRes.isInvalid())
680         return ExprError();
681       E = ExprRes.take();
682     }
683   }
684 
685   ExprResult ExprRes = DefaultArgumentPromotion(E);
686   if (ExprRes.isInvalid())
687     return ExprError();
688   E = ExprRes.take();
689 
690   // Diagnostics regarding non-POD argument types are
691   // emitted along with format string checking in Sema::CheckFunctionCall().
692   if (isValidVarArgType(E->getType()) == VAK_Invalid) {
693     // Turn this into a trap.
694     CXXScopeSpec SS;
695     SourceLocation TemplateKWLoc;
696     UnqualifiedId Name;
697     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
698                        E->getLocStart());
699     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
700                                           Name, true, false);
701     if (TrapFn.isInvalid())
702       return ExprError();
703 
704     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
705                                     E->getLocStart(), MultiExprArg(),
706                                     E->getLocEnd());
707     if (Call.isInvalid())
708       return ExprError();
709 
710     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
711                                   Call.get(), E);
712     if (Comma.isInvalid())
713       return ExprError();
714     return Comma.get();
715   }
716 
717   if (!getLangOpts().CPlusPlus &&
718       RequireCompleteType(E->getExprLoc(), E->getType(),
719                           diag::err_call_incomplete_argument))
720     return ExprError();
721 
722   return Owned(E);
723 }
724 
725 /// \brief Converts an integer to complex float type.  Helper function of
726 /// UsualArithmeticConversions()
727 ///
728 /// \return false if the integer expression is an integer type and is
729 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)730 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
731                                                   ExprResult &ComplexExpr,
732                                                   QualType IntTy,
733                                                   QualType ComplexTy,
734                                                   bool SkipCast) {
735   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
736   if (SkipCast) return false;
737   if (IntTy->isIntegerType()) {
738     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
739     IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
740     IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
741                                   CK_FloatingRealToComplex);
742   } else {
743     assert(IntTy->isComplexIntegerType());
744     IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
745                                   CK_IntegralComplexToFloatingComplex);
746   }
747   return false;
748 }
749 
750 /// \brief Takes two complex float types and converts them to the same type.
751 /// Helper function of UsualArithmeticConversions()
752 static QualType
handleComplexFloatToComplexFloatConverstion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)753 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
754                                             ExprResult &RHS, QualType LHSType,
755                                             QualType RHSType,
756                                             bool IsCompAssign) {
757   int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
758 
759   if (order < 0) {
760     // _Complex float -> _Complex double
761     if (!IsCompAssign)
762       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
763     return RHSType;
764   }
765   if (order > 0)
766     // _Complex float -> _Complex double
767     RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
768   return LHSType;
769 }
770 
771 /// \brief Converts otherExpr to complex float and promotes complexExpr if
772 /// necessary.  Helper function of UsualArithmeticConversions()
handleOtherComplexFloatConversion(Sema & S,ExprResult & ComplexExpr,ExprResult & OtherExpr,QualType ComplexTy,QualType OtherTy,bool ConvertComplexExpr,bool ConvertOtherExpr)773 static QualType handleOtherComplexFloatConversion(Sema &S,
774                                                   ExprResult &ComplexExpr,
775                                                   ExprResult &OtherExpr,
776                                                   QualType ComplexTy,
777                                                   QualType OtherTy,
778                                                   bool ConvertComplexExpr,
779                                                   bool ConvertOtherExpr) {
780   int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
781 
782   // If just the complexExpr is complex, the otherExpr needs to be converted,
783   // and the complexExpr might need to be promoted.
784   if (order > 0) { // complexExpr is wider
785     // float -> _Complex double
786     if (ConvertOtherExpr) {
787       QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
788       OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
789       OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
790                                       CK_FloatingRealToComplex);
791     }
792     return ComplexTy;
793   }
794 
795   // otherTy is at least as wide.  Find its corresponding complex type.
796   QualType result = (order == 0 ? ComplexTy :
797                                   S.Context.getComplexType(OtherTy));
798 
799   // double -> _Complex double
800   if (ConvertOtherExpr)
801     OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
802                                     CK_FloatingRealToComplex);
803 
804   // _Complex float -> _Complex double
805   if (ConvertComplexExpr && order < 0)
806     ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
807                                       CK_FloatingComplexCast);
808 
809   return result;
810 }
811 
812 /// \brief Handle arithmetic conversion with complex types.  Helper function of
813 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)814 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
815                                              ExprResult &RHS, QualType LHSType,
816                                              QualType RHSType,
817                                              bool IsCompAssign) {
818   // if we have an integer operand, the result is the complex type.
819   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
820                                              /*skipCast*/false))
821     return LHSType;
822   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
823                                              /*skipCast*/IsCompAssign))
824     return RHSType;
825 
826   // This handles complex/complex, complex/float, or float/complex.
827   // When both operands are complex, the shorter operand is converted to the
828   // type of the longer, and that is the type of the result. This corresponds
829   // to what is done when combining two real floating-point operands.
830   // The fun begins when size promotion occur across type domains.
831   // From H&S 6.3.4: When one operand is complex and the other is a real
832   // floating-point type, the less precise type is converted, within it's
833   // real or complex domain, to the precision of the other type. For example,
834   // when combining a "long double" with a "double _Complex", the
835   // "double _Complex" is promoted to "long double _Complex".
836 
837   bool LHSComplexFloat = LHSType->isComplexType();
838   bool RHSComplexFloat = RHSType->isComplexType();
839 
840   // If both are complex, just cast to the more precise type.
841   if (LHSComplexFloat && RHSComplexFloat)
842     return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
843                                                        LHSType, RHSType,
844                                                        IsCompAssign);
845 
846   // If only one operand is complex, promote it if necessary and convert the
847   // other operand to complex.
848   if (LHSComplexFloat)
849     return handleOtherComplexFloatConversion(
850         S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
851         /*convertOtherExpr*/ true);
852 
853   assert(RHSComplexFloat);
854   return handleOtherComplexFloatConversion(
855       S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
856       /*convertOtherExpr*/ !IsCompAssign);
857 }
858 
859 /// \brief Hande arithmetic conversion from integer to float.  Helper function
860 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)861 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
862                                            ExprResult &IntExpr,
863                                            QualType FloatTy, QualType IntTy,
864                                            bool ConvertFloat, bool ConvertInt) {
865   if (IntTy->isIntegerType()) {
866     if (ConvertInt)
867       // Convert intExpr to the lhs floating point type.
868       IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
869                                     CK_IntegralToFloating);
870     return FloatTy;
871   }
872 
873   // Convert both sides to the appropriate complex float.
874   assert(IntTy->isComplexIntegerType());
875   QualType result = S.Context.getComplexType(FloatTy);
876 
877   // _Complex int -> _Complex float
878   if (ConvertInt)
879     IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
880                                   CK_IntegralComplexToFloatingComplex);
881 
882   // float -> _Complex float
883   if (ConvertFloat)
884     FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
885                                     CK_FloatingRealToComplex);
886 
887   return result;
888 }
889 
890 /// \brief Handle arithmethic conversion with floating point types.  Helper
891 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)892 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
893                                       ExprResult &RHS, QualType LHSType,
894                                       QualType RHSType, bool IsCompAssign) {
895   bool LHSFloat = LHSType->isRealFloatingType();
896   bool RHSFloat = RHSType->isRealFloatingType();
897 
898   // If we have two real floating types, convert the smaller operand
899   // to the bigger result.
900   if (LHSFloat && RHSFloat) {
901     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
902     if (order > 0) {
903       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
904       return LHSType;
905     }
906 
907     assert(order < 0 && "illegal float comparison");
908     if (!IsCompAssign)
909       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
910     return RHSType;
911   }
912 
913   if (LHSFloat)
914     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
915                                       /*convertFloat=*/!IsCompAssign,
916                                       /*convertInt=*/ true);
917   assert(RHSFloat);
918   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
919                                     /*convertInt=*/ true,
920                                     /*convertFloat=*/!IsCompAssign);
921 }
922 
923 /// \brief Handle conversions with GCC complex int extension.  Helper function
924 /// of UsualArithmeticConversions()
925 // FIXME: if the operands are (int, _Complex long), we currently
926 // don't promote the complex.  Also, signedness?
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)927 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
928                                            ExprResult &RHS, QualType LHSType,
929                                            QualType RHSType,
930                                            bool IsCompAssign) {
931   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
932   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
933 
934   if (LHSComplexInt && RHSComplexInt) {
935     int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
936                                               RHSComplexInt->getElementType());
937     assert(order && "inequal types with equal element ordering");
938     if (order > 0) {
939       // _Complex int -> _Complex long
940       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
941       return LHSType;
942     }
943 
944     if (!IsCompAssign)
945       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
946     return RHSType;
947   }
948 
949   if (LHSComplexInt) {
950     // int -> _Complex int
951     // FIXME: This needs to take integer ranks into account
952     RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
953                               CK_IntegralCast);
954     RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
955     return LHSType;
956   }
957 
958   assert(RHSComplexInt);
959   // int -> _Complex int
960   // FIXME: This needs to take integer ranks into account
961   if (!IsCompAssign) {
962     LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
963                               CK_IntegralCast);
964     LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
965   }
966   return RHSType;
967 }
968 
969 /// \brief Handle integer arithmetic conversions.  Helper function of
970 /// UsualArithmeticConversions()
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)971 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
972                                         ExprResult &RHS, QualType LHSType,
973                                         QualType RHSType, bool IsCompAssign) {
974   // The rules for this case are in C99 6.3.1.8
975   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
976   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
977   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
978   if (LHSSigned == RHSSigned) {
979     // Same signedness; use the higher-ranked type
980     if (order >= 0) {
981       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
982       return LHSType;
983     } else if (!IsCompAssign)
984       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
985     return RHSType;
986   } else if (order != (LHSSigned ? 1 : -1)) {
987     // The unsigned type has greater than or equal rank to the
988     // signed type, so use the unsigned type
989     if (RHSSigned) {
990       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
991       return LHSType;
992     } else if (!IsCompAssign)
993       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
994     return RHSType;
995   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
996     // The two types are different widths; if we are here, that
997     // means the signed type is larger than the unsigned type, so
998     // use the signed type.
999     if (LHSSigned) {
1000       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
1001       return LHSType;
1002     } else if (!IsCompAssign)
1003       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
1004     return RHSType;
1005   } else {
1006     // The signed type is higher-ranked than the unsigned type,
1007     // but isn't actually any bigger (like unsigned int and long
1008     // on most 32-bit systems).  Use the unsigned type corresponding
1009     // to the signed type.
1010     QualType result =
1011       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1012     RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
1013     if (!IsCompAssign)
1014       LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
1015     return result;
1016   }
1017 }
1018 
1019 /// UsualArithmeticConversions - Performs various conversions that are common to
1020 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1021 /// routine returns the first non-arithmetic type found. The client is
1022 /// responsible for emitting appropriate error diagnostics.
1023 /// FIXME: verify the conversion rules for "complex int" are consistent with
1024 /// GCC.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,bool IsCompAssign)1025 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1026                                           bool IsCompAssign) {
1027   if (!IsCompAssign) {
1028     LHS = UsualUnaryConversions(LHS.take());
1029     if (LHS.isInvalid())
1030       return QualType();
1031   }
1032 
1033   RHS = UsualUnaryConversions(RHS.take());
1034   if (RHS.isInvalid())
1035     return QualType();
1036 
1037   // For conversion purposes, we ignore any qualifiers.
1038   // For example, "const float" and "float" are equivalent.
1039   QualType LHSType =
1040     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1041   QualType RHSType =
1042     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1043 
1044   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1045   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1046     LHSType = AtomicLHS->getValueType();
1047 
1048   // If both types are identical, no conversion is needed.
1049   if (LHSType == RHSType)
1050     return LHSType;
1051 
1052   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1053   // The caller can deal with this (e.g. pointer + int).
1054   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1055     return QualType();
1056 
1057   // Apply unary and bitfield promotions to the LHS's type.
1058   QualType LHSUnpromotedType = LHSType;
1059   if (LHSType->isPromotableIntegerType())
1060     LHSType = Context.getPromotedIntegerType(LHSType);
1061   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1062   if (!LHSBitfieldPromoteTy.isNull())
1063     LHSType = LHSBitfieldPromoteTy;
1064   if (LHSType != LHSUnpromotedType && !IsCompAssign)
1065     LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1066 
1067   // If both types are identical, no conversion is needed.
1068   if (LHSType == RHSType)
1069     return LHSType;
1070 
1071   // At this point, we have two different arithmetic types.
1072 
1073   // Handle complex types first (C99 6.3.1.8p1).
1074   if (LHSType->isComplexType() || RHSType->isComplexType())
1075     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1076                                         IsCompAssign);
1077 
1078   // Now handle "real" floating types (i.e. float, double, long double).
1079   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1080     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1081                                  IsCompAssign);
1082 
1083   // Handle GCC complex int extension.
1084   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1085     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1086                                       IsCompAssign);
1087 
1088   // Finally, we have two differing integer types.
1089   return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
1090                                  IsCompAssign);
1091 }
1092 
1093 //===----------------------------------------------------------------------===//
1094 //  Semantic Analysis for various Expression Types
1095 //===----------------------------------------------------------------------===//
1096 
1097 
1098 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,MultiTypeArg ArgTypes,MultiExprArg ArgExprs)1099 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1100                                 SourceLocation DefaultLoc,
1101                                 SourceLocation RParenLoc,
1102                                 Expr *ControllingExpr,
1103                                 MultiTypeArg ArgTypes,
1104                                 MultiExprArg ArgExprs) {
1105   unsigned NumAssocs = ArgTypes.size();
1106   assert(NumAssocs == ArgExprs.size());
1107 
1108   ParsedType *ParsedTypes = ArgTypes.data();
1109   Expr **Exprs = ArgExprs.data();
1110 
1111   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1112   for (unsigned i = 0; i < NumAssocs; ++i) {
1113     if (ParsedTypes[i])
1114       (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1115     else
1116       Types[i] = 0;
1117   }
1118 
1119   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1120                                              ControllingExpr, Types, Exprs,
1121                                              NumAssocs);
1122   delete [] Types;
1123   return ER;
1124 }
1125 
1126 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,TypeSourceInfo ** Types,Expr ** Exprs,unsigned NumAssocs)1127 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1128                                  SourceLocation DefaultLoc,
1129                                  SourceLocation RParenLoc,
1130                                  Expr *ControllingExpr,
1131                                  TypeSourceInfo **Types,
1132                                  Expr **Exprs,
1133                                  unsigned NumAssocs) {
1134   bool TypeErrorFound = false,
1135        IsResultDependent = ControllingExpr->isTypeDependent(),
1136        ContainsUnexpandedParameterPack
1137          = ControllingExpr->containsUnexpandedParameterPack();
1138 
1139   for (unsigned i = 0; i < NumAssocs; ++i) {
1140     if (Exprs[i]->containsUnexpandedParameterPack())
1141       ContainsUnexpandedParameterPack = true;
1142 
1143     if (Types[i]) {
1144       if (Types[i]->getType()->containsUnexpandedParameterPack())
1145         ContainsUnexpandedParameterPack = true;
1146 
1147       if (Types[i]->getType()->isDependentType()) {
1148         IsResultDependent = true;
1149       } else {
1150         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1151         // complete object type other than a variably modified type."
1152         unsigned D = 0;
1153         if (Types[i]->getType()->isIncompleteType())
1154           D = diag::err_assoc_type_incomplete;
1155         else if (!Types[i]->getType()->isObjectType())
1156           D = diag::err_assoc_type_nonobject;
1157         else if (Types[i]->getType()->isVariablyModifiedType())
1158           D = diag::err_assoc_type_variably_modified;
1159 
1160         if (D != 0) {
1161           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1162             << Types[i]->getTypeLoc().getSourceRange()
1163             << Types[i]->getType();
1164           TypeErrorFound = true;
1165         }
1166 
1167         // C11 6.5.1.1p2 "No two generic associations in the same generic
1168         // selection shall specify compatible types."
1169         for (unsigned j = i+1; j < NumAssocs; ++j)
1170           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1171               Context.typesAreCompatible(Types[i]->getType(),
1172                                          Types[j]->getType())) {
1173             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1174                  diag::err_assoc_compatible_types)
1175               << Types[j]->getTypeLoc().getSourceRange()
1176               << Types[j]->getType()
1177               << Types[i]->getType();
1178             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1179                  diag::note_compat_assoc)
1180               << Types[i]->getTypeLoc().getSourceRange()
1181               << Types[i]->getType();
1182             TypeErrorFound = true;
1183           }
1184       }
1185     }
1186   }
1187   if (TypeErrorFound)
1188     return ExprError();
1189 
1190   // If we determined that the generic selection is result-dependent, don't
1191   // try to compute the result expression.
1192   if (IsResultDependent)
1193     return Owned(new (Context) GenericSelectionExpr(
1194                    Context, KeyLoc, ControllingExpr,
1195                    llvm::makeArrayRef(Types, NumAssocs),
1196                    llvm::makeArrayRef(Exprs, NumAssocs),
1197                    DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
1198 
1199   SmallVector<unsigned, 1> CompatIndices;
1200   unsigned DefaultIndex = -1U;
1201   for (unsigned i = 0; i < NumAssocs; ++i) {
1202     if (!Types[i])
1203       DefaultIndex = i;
1204     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1205                                         Types[i]->getType()))
1206       CompatIndices.push_back(i);
1207   }
1208 
1209   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1210   // type compatible with at most one of the types named in its generic
1211   // association list."
1212   if (CompatIndices.size() > 1) {
1213     // We strip parens here because the controlling expression is typically
1214     // parenthesized in macro definitions.
1215     ControllingExpr = ControllingExpr->IgnoreParens();
1216     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1217       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1218       << (unsigned) CompatIndices.size();
1219     for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1220          E = CompatIndices.end(); I != E; ++I) {
1221       Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1222            diag::note_compat_assoc)
1223         << Types[*I]->getTypeLoc().getSourceRange()
1224         << Types[*I]->getType();
1225     }
1226     return ExprError();
1227   }
1228 
1229   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1230   // its controlling expression shall have type compatible with exactly one of
1231   // the types named in its generic association list."
1232   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1233     // We strip parens here because the controlling expression is typically
1234     // parenthesized in macro definitions.
1235     ControllingExpr = ControllingExpr->IgnoreParens();
1236     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1237       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1238     return ExprError();
1239   }
1240 
1241   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1242   // type name that is compatible with the type of the controlling expression,
1243   // then the result expression of the generic selection is the expression
1244   // in that generic association. Otherwise, the result expression of the
1245   // generic selection is the expression in the default generic association."
1246   unsigned ResultIndex =
1247     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1248 
1249   return Owned(new (Context) GenericSelectionExpr(
1250                  Context, KeyLoc, ControllingExpr,
1251                  llvm::makeArrayRef(Types, NumAssocs),
1252                  llvm::makeArrayRef(Exprs, NumAssocs),
1253                  DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
1254                  ResultIndex));
1255 }
1256 
1257 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1258 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1259 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1260                                      unsigned Offset) {
1261   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1262                                         S.getLangOpts());
1263 }
1264 
1265 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1266 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1267 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1268                                                  IdentifierInfo *UDSuffix,
1269                                                  SourceLocation UDSuffixLoc,
1270                                                  ArrayRef<Expr*> Args,
1271                                                  SourceLocation LitEndLoc) {
1272   assert(Args.size() <= 2 && "too many arguments for literal operator");
1273 
1274   QualType ArgTy[2];
1275   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1276     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1277     if (ArgTy[ArgIdx]->isArrayType())
1278       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1279   }
1280 
1281   DeclarationName OpName =
1282     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1283   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1284   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1285 
1286   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1287   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1288                               /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1289     return ExprError();
1290 
1291   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1292 }
1293 
1294 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1295 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1296 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1297 /// multiple tokens.  However, the common case is that StringToks points to one
1298 /// string.
1299 ///
1300 ExprResult
ActOnStringLiteral(const Token * StringToks,unsigned NumStringToks,Scope * UDLScope)1301 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1302                          Scope *UDLScope) {
1303   assert(NumStringToks && "Must have at least one string!");
1304 
1305   StringLiteralParser Literal(StringToks, NumStringToks, PP);
1306   if (Literal.hadError)
1307     return ExprError();
1308 
1309   SmallVector<SourceLocation, 4> StringTokLocs;
1310   for (unsigned i = 0; i != NumStringToks; ++i)
1311     StringTokLocs.push_back(StringToks[i].getLocation());
1312 
1313   QualType StrTy = Context.CharTy;
1314   if (Literal.isWide())
1315     StrTy = Context.getWCharType();
1316   else if (Literal.isUTF16())
1317     StrTy = Context.Char16Ty;
1318   else if (Literal.isUTF32())
1319     StrTy = Context.Char32Ty;
1320   else if (Literal.isPascal())
1321     StrTy = Context.UnsignedCharTy;
1322 
1323   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1324   if (Literal.isWide())
1325     Kind = StringLiteral::Wide;
1326   else if (Literal.isUTF8())
1327     Kind = StringLiteral::UTF8;
1328   else if (Literal.isUTF16())
1329     Kind = StringLiteral::UTF16;
1330   else if (Literal.isUTF32())
1331     Kind = StringLiteral::UTF32;
1332 
1333   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1334   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1335     StrTy.addConst();
1336 
1337   // Get an array type for the string, according to C99 6.4.5.  This includes
1338   // the nul terminator character as well as the string length for pascal
1339   // strings.
1340   StrTy = Context.getConstantArrayType(StrTy,
1341                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
1342                                        ArrayType::Normal, 0);
1343 
1344   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1345   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1346                                              Kind, Literal.Pascal, StrTy,
1347                                              &StringTokLocs[0],
1348                                              StringTokLocs.size());
1349   if (Literal.getUDSuffix().empty())
1350     return Owned(Lit);
1351 
1352   // We're building a user-defined literal.
1353   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1354   SourceLocation UDSuffixLoc =
1355     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1356                    Literal.getUDSuffixOffset());
1357 
1358   // Make sure we're allowed user-defined literals here.
1359   if (!UDLScope)
1360     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1361 
1362   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1363   //   operator "" X (str, len)
1364   QualType SizeType = Context.getSizeType();
1365   llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1366   IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1367                                                   StringTokLocs[0]);
1368   Expr *Args[] = { Lit, LenArg };
1369   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1370                                         Args, StringTokLocs.back());
1371 }
1372 
1373 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1374 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1375                        SourceLocation Loc,
1376                        const CXXScopeSpec *SS) {
1377   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1378   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1379 }
1380 
1381 /// BuildDeclRefExpr - Build an expression that references a
1382 /// declaration that does not require a closure capture.
1383 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS)1384 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1385                        const DeclarationNameInfo &NameInfo,
1386                        const CXXScopeSpec *SS) {
1387   if (getLangOpts().CUDA)
1388     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1389       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1390         CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1391                            CalleeTarget = IdentifyCUDATarget(Callee);
1392         if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1393           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1394             << CalleeTarget << D->getIdentifier() << CallerTarget;
1395           Diag(D->getLocation(), diag::note_previous_decl)
1396             << D->getIdentifier();
1397           return ExprError();
1398         }
1399       }
1400 
1401   bool refersToEnclosingScope =
1402     (CurContext != D->getDeclContext() &&
1403      D->getDeclContext()->isFunctionOrMethod());
1404 
1405   DeclRefExpr *E = DeclRefExpr::Create(Context,
1406                                        SS ? SS->getWithLocInContext(Context)
1407                                               : NestedNameSpecifierLoc(),
1408                                        SourceLocation(),
1409                                        D, refersToEnclosingScope,
1410                                        NameInfo, Ty, VK);
1411 
1412   MarkDeclRefReferenced(E);
1413 
1414   // Just in case we're building an illegal pointer-to-member.
1415   FieldDecl *FD = dyn_cast<FieldDecl>(D);
1416   if (FD && FD->isBitField())
1417     E->setObjectKind(OK_BitField);
1418 
1419   return Owned(E);
1420 }
1421 
1422 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1423 /// possibly a list of template arguments.
1424 ///
1425 /// If this produces template arguments, it is permitted to call
1426 /// DecomposeTemplateName.
1427 ///
1428 /// This actually loses a lot of source location information for
1429 /// non-standard name kinds; we should consider preserving that in
1430 /// some way.
1431 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)1432 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1433                              TemplateArgumentListInfo &Buffer,
1434                              DeclarationNameInfo &NameInfo,
1435                              const TemplateArgumentListInfo *&TemplateArgs) {
1436   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1437     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1438     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1439 
1440     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1441                                        Id.TemplateId->NumArgs);
1442     translateTemplateArguments(TemplateArgsPtr, Buffer);
1443 
1444     TemplateName TName = Id.TemplateId->Template.get();
1445     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1446     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1447     TemplateArgs = &Buffer;
1448   } else {
1449     NameInfo = GetNameFromUnqualifiedId(Id);
1450     TemplateArgs = 0;
1451   }
1452 }
1453 
1454 /// Diagnose an empty lookup.
1455 ///
1456 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args)1457 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1458                                CorrectionCandidateCallback &CCC,
1459                                TemplateArgumentListInfo *ExplicitTemplateArgs,
1460                                llvm::ArrayRef<Expr *> Args) {
1461   DeclarationName Name = R.getLookupName();
1462 
1463   unsigned diagnostic = diag::err_undeclared_var_use;
1464   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1465   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1466       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1467       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1468     diagnostic = diag::err_undeclared_use;
1469     diagnostic_suggest = diag::err_undeclared_use_suggest;
1470   }
1471 
1472   // If the original lookup was an unqualified lookup, fake an
1473   // unqualified lookup.  This is useful when (for example) the
1474   // original lookup would not have found something because it was a
1475   // dependent name.
1476   DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1477     ? CurContext : 0;
1478   while (DC) {
1479     if (isa<CXXRecordDecl>(DC)) {
1480       LookupQualifiedName(R, DC);
1481 
1482       if (!R.empty()) {
1483         // Don't give errors about ambiguities in this lookup.
1484         R.suppressDiagnostics();
1485 
1486         // During a default argument instantiation the CurContext points
1487         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1488         // function parameter list, hence add an explicit check.
1489         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1490                               ActiveTemplateInstantiations.back().Kind ==
1491             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1492         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1493         bool isInstance = CurMethod &&
1494                           CurMethod->isInstance() &&
1495                           DC == CurMethod->getParent() && !isDefaultArgument;
1496 
1497 
1498         // Give a code modification hint to insert 'this->'.
1499         // TODO: fixit for inserting 'Base<T>::' in the other cases.
1500         // Actually quite difficult!
1501         if (getLangOpts().MicrosoftMode)
1502           diagnostic = diag::warn_found_via_dependent_bases_lookup;
1503         if (isInstance) {
1504           Diag(R.getNameLoc(), diagnostic) << Name
1505             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1506           UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1507               CallsUndergoingInstantiation.back()->getCallee());
1508 
1509 
1510           CXXMethodDecl *DepMethod;
1511           if (CurMethod->getTemplatedKind() ==
1512               FunctionDecl::TK_FunctionTemplateSpecialization)
1513             DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1514                 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1515           else
1516             DepMethod = cast<CXXMethodDecl>(
1517                 CurMethod->getInstantiatedFromMemberFunction());
1518           assert(DepMethod && "No template pattern found");
1519 
1520           QualType DepThisType = DepMethod->getThisType(Context);
1521           CheckCXXThisCapture(R.getNameLoc());
1522           CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1523                                      R.getNameLoc(), DepThisType, false);
1524           TemplateArgumentListInfo TList;
1525           if (ULE->hasExplicitTemplateArgs())
1526             ULE->copyTemplateArgumentsInto(TList);
1527 
1528           CXXScopeSpec SS;
1529           SS.Adopt(ULE->getQualifierLoc());
1530           CXXDependentScopeMemberExpr *DepExpr =
1531               CXXDependentScopeMemberExpr::Create(
1532                   Context, DepThis, DepThisType, true, SourceLocation(),
1533                   SS.getWithLocInContext(Context),
1534                   ULE->getTemplateKeywordLoc(), 0,
1535                   R.getLookupNameInfo(),
1536                   ULE->hasExplicitTemplateArgs() ? &TList : 0);
1537           CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1538         } else {
1539           Diag(R.getNameLoc(), diagnostic) << Name;
1540         }
1541 
1542         // Do we really want to note all of these?
1543         for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1544           Diag((*I)->getLocation(), diag::note_dependent_var_use);
1545 
1546         // Return true if we are inside a default argument instantiation
1547         // and the found name refers to an instance member function, otherwise
1548         // the function calling DiagnoseEmptyLookup will try to create an
1549         // implicit member call and this is wrong for default argument.
1550         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1551           Diag(R.getNameLoc(), diag::err_member_call_without_object);
1552           return true;
1553         }
1554 
1555         // Tell the callee to try to recover.
1556         return false;
1557       }
1558 
1559       R.clear();
1560     }
1561 
1562     // In Microsoft mode, if we are performing lookup from within a friend
1563     // function definition declared at class scope then we must set
1564     // DC to the lexical parent to be able to search into the parent
1565     // class.
1566     if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1567         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1568         DC->getLexicalParent()->isRecord())
1569       DC = DC->getLexicalParent();
1570     else
1571       DC = DC->getParent();
1572   }
1573 
1574   // We didn't find anything, so try to correct for a typo.
1575   TypoCorrection Corrected;
1576   if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1577                                     S, &SS, CCC))) {
1578     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1579     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1580     R.setLookupName(Corrected.getCorrection());
1581 
1582     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1583       if (Corrected.isOverloaded()) {
1584         OverloadCandidateSet OCS(R.getNameLoc());
1585         OverloadCandidateSet::iterator Best;
1586         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1587                                         CDEnd = Corrected.end();
1588              CD != CDEnd; ++CD) {
1589           if (FunctionTemplateDecl *FTD =
1590                    dyn_cast<FunctionTemplateDecl>(*CD))
1591             AddTemplateOverloadCandidate(
1592                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1593                 Args, OCS);
1594           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1595             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1596               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1597                                    Args, OCS);
1598         }
1599         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1600           case OR_Success:
1601             ND = Best->Function;
1602             break;
1603           default:
1604             break;
1605         }
1606       }
1607       R.addDecl(ND);
1608       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1609         if (SS.isEmpty())
1610           Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1611             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1612         else
1613           Diag(R.getNameLoc(), diag::err_no_member_suggest)
1614             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1615             << SS.getRange()
1616             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1617         if (ND)
1618           Diag(ND->getLocation(), diag::note_previous_decl)
1619             << CorrectedQuotedStr;
1620 
1621         // Tell the callee to try to recover.
1622         return false;
1623       }
1624 
1625       if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1626         // FIXME: If we ended up with a typo for a type name or
1627         // Objective-C class name, we're in trouble because the parser
1628         // is in the wrong place to recover. Suggest the typo
1629         // correction, but don't make it a fix-it since we're not going
1630         // to recover well anyway.
1631         if (SS.isEmpty())
1632           Diag(R.getNameLoc(), diagnostic_suggest)
1633             << Name << CorrectedQuotedStr;
1634         else
1635           Diag(R.getNameLoc(), diag::err_no_member_suggest)
1636             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1637             << SS.getRange();
1638 
1639         // Don't try to recover; it won't work.
1640         return true;
1641       }
1642     } else {
1643       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1644       // because we aren't able to recover.
1645       if (SS.isEmpty())
1646         Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1647       else
1648         Diag(R.getNameLoc(), diag::err_no_member_suggest)
1649         << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1650         << SS.getRange();
1651       return true;
1652     }
1653   }
1654   R.clear();
1655 
1656   // Emit a special diagnostic for failed member lookups.
1657   // FIXME: computing the declaration context might fail here (?)
1658   if (!SS.isEmpty()) {
1659     Diag(R.getNameLoc(), diag::err_no_member)
1660       << Name << computeDeclContext(SS, false)
1661       << SS.getRange();
1662     return true;
1663   }
1664 
1665   // Give up, we can't recover.
1666   Diag(R.getNameLoc(), diagnostic) << Name;
1667   return true;
1668 }
1669 
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)1670 ExprResult Sema::ActOnIdExpression(Scope *S,
1671                                    CXXScopeSpec &SS,
1672                                    SourceLocation TemplateKWLoc,
1673                                    UnqualifiedId &Id,
1674                                    bool HasTrailingLParen,
1675                                    bool IsAddressOfOperand,
1676                                    CorrectionCandidateCallback *CCC) {
1677   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1678          "cannot be direct & operand and have a trailing lparen");
1679 
1680   if (SS.isInvalid())
1681     return ExprError();
1682 
1683   TemplateArgumentListInfo TemplateArgsBuffer;
1684 
1685   // Decompose the UnqualifiedId into the following data.
1686   DeclarationNameInfo NameInfo;
1687   const TemplateArgumentListInfo *TemplateArgs;
1688   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1689 
1690   DeclarationName Name = NameInfo.getName();
1691   IdentifierInfo *II = Name.getAsIdentifierInfo();
1692   SourceLocation NameLoc = NameInfo.getLoc();
1693 
1694   // C++ [temp.dep.expr]p3:
1695   //   An id-expression is type-dependent if it contains:
1696   //     -- an identifier that was declared with a dependent type,
1697   //        (note: handled after lookup)
1698   //     -- a template-id that is dependent,
1699   //        (note: handled in BuildTemplateIdExpr)
1700   //     -- a conversion-function-id that specifies a dependent type,
1701   //     -- a nested-name-specifier that contains a class-name that
1702   //        names a dependent type.
1703   // Determine whether this is a member of an unknown specialization;
1704   // we need to handle these differently.
1705   bool DependentID = false;
1706   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1707       Name.getCXXNameType()->isDependentType()) {
1708     DependentID = true;
1709   } else if (SS.isSet()) {
1710     if (DeclContext *DC = computeDeclContext(SS, false)) {
1711       if (RequireCompleteDeclContext(SS, DC))
1712         return ExprError();
1713     } else {
1714       DependentID = true;
1715     }
1716   }
1717 
1718   if (DependentID)
1719     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1720                                       IsAddressOfOperand, TemplateArgs);
1721 
1722   // Perform the required lookup.
1723   LookupResult R(*this, NameInfo,
1724                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1725                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1726   if (TemplateArgs) {
1727     // Lookup the template name again to correctly establish the context in
1728     // which it was found. This is really unfortunate as we already did the
1729     // lookup to determine that it was a template name in the first place. If
1730     // this becomes a performance hit, we can work harder to preserve those
1731     // results until we get here but it's likely not worth it.
1732     bool MemberOfUnknownSpecialization;
1733     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1734                        MemberOfUnknownSpecialization);
1735 
1736     if (MemberOfUnknownSpecialization ||
1737         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1738       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1739                                         IsAddressOfOperand, TemplateArgs);
1740   } else {
1741     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1742     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1743 
1744     // If the result might be in a dependent base class, this is a dependent
1745     // id-expression.
1746     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1747       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1748                                         IsAddressOfOperand, TemplateArgs);
1749 
1750     // If this reference is in an Objective-C method, then we need to do
1751     // some special Objective-C lookup, too.
1752     if (IvarLookupFollowUp) {
1753       ExprResult E(LookupInObjCMethod(R, S, II, true));
1754       if (E.isInvalid())
1755         return ExprError();
1756 
1757       if (Expr *Ex = E.takeAs<Expr>())
1758         return Owned(Ex);
1759     }
1760   }
1761 
1762   if (R.isAmbiguous())
1763     return ExprError();
1764 
1765   // Determine whether this name might be a candidate for
1766   // argument-dependent lookup.
1767   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1768 
1769   if (R.empty() && !ADL) {
1770     // Otherwise, this could be an implicitly declared function reference (legal
1771     // in C90, extension in C99, forbidden in C++).
1772     if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1773       NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1774       if (D) R.addDecl(D);
1775     }
1776 
1777     // If this name wasn't predeclared and if this is not a function
1778     // call, diagnose the problem.
1779     if (R.empty()) {
1780 
1781       // In Microsoft mode, if we are inside a template class member function
1782       // and we can't resolve an identifier then assume the identifier is type
1783       // dependent. The goal is to postpone name lookup to instantiation time
1784       // to be able to search into type dependent base classes.
1785       if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1786           isa<CXXMethodDecl>(CurContext))
1787         return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1788                                           IsAddressOfOperand, TemplateArgs);
1789 
1790       CorrectionCandidateCallback DefaultValidator;
1791       if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1792         return ExprError();
1793 
1794       assert(!R.empty() &&
1795              "DiagnoseEmptyLookup returned false but added no results");
1796 
1797       // If we found an Objective-C instance variable, let
1798       // LookupInObjCMethod build the appropriate expression to
1799       // reference the ivar.
1800       if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1801         R.clear();
1802         ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1803         // In a hopelessly buggy code, Objective-C instance variable
1804         // lookup fails and no expression will be built to reference it.
1805         if (!E.isInvalid() && !E.get())
1806           return ExprError();
1807         return E;
1808       }
1809     }
1810   }
1811 
1812   // This is guaranteed from this point on.
1813   assert(!R.empty() || ADL);
1814 
1815   // Check whether this might be a C++ implicit instance member access.
1816   // C++ [class.mfct.non-static]p3:
1817   //   When an id-expression that is not part of a class member access
1818   //   syntax and not used to form a pointer to member is used in the
1819   //   body of a non-static member function of class X, if name lookup
1820   //   resolves the name in the id-expression to a non-static non-type
1821   //   member of some class C, the id-expression is transformed into a
1822   //   class member access expression using (*this) as the
1823   //   postfix-expression to the left of the . operator.
1824   //
1825   // But we don't actually need to do this for '&' operands if R
1826   // resolved to a function or overloaded function set, because the
1827   // expression is ill-formed if it actually works out to be a
1828   // non-static member function:
1829   //
1830   // C++ [expr.ref]p4:
1831   //   Otherwise, if E1.E2 refers to a non-static member function. . .
1832   //   [t]he expression can be used only as the left-hand operand of a
1833   //   member function call.
1834   //
1835   // There are other safeguards against such uses, but it's important
1836   // to get this right here so that we don't end up making a
1837   // spuriously dependent expression if we're inside a dependent
1838   // instance method.
1839   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1840     bool MightBeImplicitMember;
1841     if (!IsAddressOfOperand)
1842       MightBeImplicitMember = true;
1843     else if (!SS.isEmpty())
1844       MightBeImplicitMember = false;
1845     else if (R.isOverloadedResult())
1846       MightBeImplicitMember = false;
1847     else if (R.isUnresolvableResult())
1848       MightBeImplicitMember = true;
1849     else
1850       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1851                               isa<IndirectFieldDecl>(R.getFoundDecl());
1852 
1853     if (MightBeImplicitMember)
1854       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1855                                              R, TemplateArgs);
1856   }
1857 
1858   if (TemplateArgs || TemplateKWLoc.isValid())
1859     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1860 
1861   return BuildDeclarationNameExpr(SS, R, ADL);
1862 }
1863 
1864 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1865 /// declaration name, generally during template instantiation.
1866 /// There's a large number of things which don't need to be done along
1867 /// this path.
1868 ExprResult
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo)1869 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1870                                         const DeclarationNameInfo &NameInfo) {
1871   DeclContext *DC;
1872   if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1873     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1874                                      NameInfo, /*TemplateArgs=*/0);
1875 
1876   if (RequireCompleteDeclContext(SS, DC))
1877     return ExprError();
1878 
1879   LookupResult R(*this, NameInfo, LookupOrdinaryName);
1880   LookupQualifiedName(R, DC);
1881 
1882   if (R.isAmbiguous())
1883     return ExprError();
1884 
1885   if (R.empty()) {
1886     Diag(NameInfo.getLoc(), diag::err_no_member)
1887       << NameInfo.getName() << DC << SS.getRange();
1888     return ExprError();
1889   }
1890 
1891   return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1892 }
1893 
1894 /// LookupInObjCMethod - The parser has read a name in, and Sema has
1895 /// detected that we're currently inside an ObjC method.  Perform some
1896 /// additional lookup.
1897 ///
1898 /// Ideally, most of this would be done by lookup, but there's
1899 /// actually quite a lot of extra work involved.
1900 ///
1901 /// Returns a null sentinel to indicate trivial success.
1902 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)1903 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1904                          IdentifierInfo *II, bool AllowBuiltinCreation) {
1905   SourceLocation Loc = Lookup.getNameLoc();
1906   ObjCMethodDecl *CurMethod = getCurMethodDecl();
1907 
1908   // There are two cases to handle here.  1) scoped lookup could have failed,
1909   // in which case we should look for an ivar.  2) scoped lookup could have
1910   // found a decl, but that decl is outside the current instance method (i.e.
1911   // a global variable).  In these two cases, we do a lookup for an ivar with
1912   // this name, if the lookup sucedes, we replace it our current decl.
1913 
1914   // If we're in a class method, we don't normally want to look for
1915   // ivars.  But if we don't find anything else, and there's an
1916   // ivar, that's an error.
1917   bool IsClassMethod = CurMethod->isClassMethod();
1918 
1919   bool LookForIvars;
1920   if (Lookup.empty())
1921     LookForIvars = true;
1922   else if (IsClassMethod)
1923     LookForIvars = false;
1924   else
1925     LookForIvars = (Lookup.isSingleResult() &&
1926                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1927   ObjCInterfaceDecl *IFace = 0;
1928   if (LookForIvars) {
1929     IFace = CurMethod->getClassInterface();
1930     ObjCInterfaceDecl *ClassDeclared;
1931     ObjCIvarDecl *IV = 0;
1932     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1933       // Diagnose using an ivar in a class method.
1934       if (IsClassMethod)
1935         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1936                          << IV->getDeclName());
1937 
1938       // If we're referencing an invalid decl, just return this as a silent
1939       // error node.  The error diagnostic was already emitted on the decl.
1940       if (IV->isInvalidDecl())
1941         return ExprError();
1942 
1943       // Check if referencing a field with __attribute__((deprecated)).
1944       if (DiagnoseUseOfDecl(IV, Loc))
1945         return ExprError();
1946 
1947       // Diagnose the use of an ivar outside of the declaring class.
1948       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1949           !declaresSameEntity(ClassDeclared, IFace) &&
1950           !getLangOpts().DebuggerSupport)
1951         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1952 
1953       // FIXME: This should use a new expr for a direct reference, don't
1954       // turn this into Self->ivar, just return a BareIVarExpr or something.
1955       IdentifierInfo &II = Context.Idents.get("self");
1956       UnqualifiedId SelfName;
1957       SelfName.setIdentifier(&II, SourceLocation());
1958       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1959       CXXScopeSpec SelfScopeSpec;
1960       SourceLocation TemplateKWLoc;
1961       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
1962                                               SelfName, false, false);
1963       if (SelfExpr.isInvalid())
1964         return ExprError();
1965 
1966       SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1967       if (SelfExpr.isInvalid())
1968         return ExprError();
1969 
1970       MarkAnyDeclReferenced(Loc, IV);
1971 
1972       ObjCMethodFamily MF = CurMethod->getMethodFamily();
1973       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize)
1974         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
1975       return Owned(new (Context)
1976                    ObjCIvarRefExpr(IV, IV->getType(), Loc,
1977                                    SelfExpr.take(), true, true));
1978     }
1979   } else if (CurMethod->isInstanceMethod()) {
1980     // We should warn if a local variable hides an ivar.
1981     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
1982       ObjCInterfaceDecl *ClassDeclared;
1983       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1984         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1985             declaresSameEntity(IFace, ClassDeclared))
1986           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1987       }
1988     }
1989   } else if (Lookup.isSingleResult() &&
1990              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
1991     // If accessing a stand-alone ivar in a class method, this is an error.
1992     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
1993       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1994                        << IV->getDeclName());
1995   }
1996 
1997   if (Lookup.empty() && II && AllowBuiltinCreation) {
1998     // FIXME. Consolidate this with similar code in LookupName.
1999     if (unsigned BuiltinID = II->getBuiltinID()) {
2000       if (!(getLangOpts().CPlusPlus &&
2001             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2002         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2003                                            S, Lookup.isForRedeclaration(),
2004                                            Lookup.getNameLoc());
2005         if (D) Lookup.addDecl(D);
2006       }
2007     }
2008   }
2009   // Sentinel value saying that we didn't do anything special.
2010   return Owned((Expr*) 0);
2011 }
2012 
2013 /// \brief Cast a base object to a member's actual type.
2014 ///
2015 /// Logically this happens in three phases:
2016 ///
2017 /// * First we cast from the base type to the naming class.
2018 ///   The naming class is the class into which we were looking
2019 ///   when we found the member;  it's the qualifier type if a
2020 ///   qualifier was provided, and otherwise it's the base type.
2021 ///
2022 /// * Next we cast from the naming class to the declaring class.
2023 ///   If the member we found was brought into a class's scope by
2024 ///   a using declaration, this is that class;  otherwise it's
2025 ///   the class declaring the member.
2026 ///
2027 /// * Finally we cast from the declaring class to the "true"
2028 ///   declaring class of the member.  This conversion does not
2029 ///   obey access control.
2030 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)2031 Sema::PerformObjectMemberConversion(Expr *From,
2032                                     NestedNameSpecifier *Qualifier,
2033                                     NamedDecl *FoundDecl,
2034                                     NamedDecl *Member) {
2035   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2036   if (!RD)
2037     return Owned(From);
2038 
2039   QualType DestRecordType;
2040   QualType DestType;
2041   QualType FromRecordType;
2042   QualType FromType = From->getType();
2043   bool PointerConversions = false;
2044   if (isa<FieldDecl>(Member)) {
2045     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2046 
2047     if (FromType->getAs<PointerType>()) {
2048       DestType = Context.getPointerType(DestRecordType);
2049       FromRecordType = FromType->getPointeeType();
2050       PointerConversions = true;
2051     } else {
2052       DestType = DestRecordType;
2053       FromRecordType = FromType;
2054     }
2055   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2056     if (Method->isStatic())
2057       return Owned(From);
2058 
2059     DestType = Method->getThisType(Context);
2060     DestRecordType = DestType->getPointeeType();
2061 
2062     if (FromType->getAs<PointerType>()) {
2063       FromRecordType = FromType->getPointeeType();
2064       PointerConversions = true;
2065     } else {
2066       FromRecordType = FromType;
2067       DestType = DestRecordType;
2068     }
2069   } else {
2070     // No conversion necessary.
2071     return Owned(From);
2072   }
2073 
2074   if (DestType->isDependentType() || FromType->isDependentType())
2075     return Owned(From);
2076 
2077   // If the unqualified types are the same, no conversion is necessary.
2078   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2079     return Owned(From);
2080 
2081   SourceRange FromRange = From->getSourceRange();
2082   SourceLocation FromLoc = FromRange.getBegin();
2083 
2084   ExprValueKind VK = From->getValueKind();
2085 
2086   // C++ [class.member.lookup]p8:
2087   //   [...] Ambiguities can often be resolved by qualifying a name with its
2088   //   class name.
2089   //
2090   // If the member was a qualified name and the qualified referred to a
2091   // specific base subobject type, we'll cast to that intermediate type
2092   // first and then to the object in which the member is declared. That allows
2093   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2094   //
2095   //   class Base { public: int x; };
2096   //   class Derived1 : public Base { };
2097   //   class Derived2 : public Base { };
2098   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2099   //
2100   //   void VeryDerived::f() {
2101   //     x = 17; // error: ambiguous base subobjects
2102   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2103   //   }
2104   if (Qualifier) {
2105     QualType QType = QualType(Qualifier->getAsType(), 0);
2106     assert(!QType.isNull() && "lookup done with dependent qualifier?");
2107     assert(QType->isRecordType() && "lookup done with non-record type");
2108 
2109     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2110 
2111     // In C++98, the qualifier type doesn't actually have to be a base
2112     // type of the object type, in which case we just ignore it.
2113     // Otherwise build the appropriate casts.
2114     if (IsDerivedFrom(FromRecordType, QRecordType)) {
2115       CXXCastPath BasePath;
2116       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2117                                        FromLoc, FromRange, &BasePath))
2118         return ExprError();
2119 
2120       if (PointerConversions)
2121         QType = Context.getPointerType(QType);
2122       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2123                                VK, &BasePath).take();
2124 
2125       FromType = QType;
2126       FromRecordType = QRecordType;
2127 
2128       // If the qualifier type was the same as the destination type,
2129       // we're done.
2130       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2131         return Owned(From);
2132     }
2133   }
2134 
2135   bool IgnoreAccess = false;
2136 
2137   // If we actually found the member through a using declaration, cast
2138   // down to the using declaration's type.
2139   //
2140   // Pointer equality is fine here because only one declaration of a
2141   // class ever has member declarations.
2142   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2143     assert(isa<UsingShadowDecl>(FoundDecl));
2144     QualType URecordType = Context.getTypeDeclType(
2145                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2146 
2147     // We only need to do this if the naming-class to declaring-class
2148     // conversion is non-trivial.
2149     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2150       assert(IsDerivedFrom(FromRecordType, URecordType));
2151       CXXCastPath BasePath;
2152       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2153                                        FromLoc, FromRange, &BasePath))
2154         return ExprError();
2155 
2156       QualType UType = URecordType;
2157       if (PointerConversions)
2158         UType = Context.getPointerType(UType);
2159       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2160                                VK, &BasePath).take();
2161       FromType = UType;
2162       FromRecordType = URecordType;
2163     }
2164 
2165     // We don't do access control for the conversion from the
2166     // declaring class to the true declaring class.
2167     IgnoreAccess = true;
2168   }
2169 
2170   CXXCastPath BasePath;
2171   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2172                                    FromLoc, FromRange, &BasePath,
2173                                    IgnoreAccess))
2174     return ExprError();
2175 
2176   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2177                            VK, &BasePath);
2178 }
2179 
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)2180 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2181                                       const LookupResult &R,
2182                                       bool HasTrailingLParen) {
2183   // Only when used directly as the postfix-expression of a call.
2184   if (!HasTrailingLParen)
2185     return false;
2186 
2187   // Never if a scope specifier was provided.
2188   if (SS.isSet())
2189     return false;
2190 
2191   // Only in C++ or ObjC++.
2192   if (!getLangOpts().CPlusPlus)
2193     return false;
2194 
2195   // Turn off ADL when we find certain kinds of declarations during
2196   // normal lookup:
2197   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2198     NamedDecl *D = *I;
2199 
2200     // C++0x [basic.lookup.argdep]p3:
2201     //     -- a declaration of a class member
2202     // Since using decls preserve this property, we check this on the
2203     // original decl.
2204     if (D->isCXXClassMember())
2205       return false;
2206 
2207     // C++0x [basic.lookup.argdep]p3:
2208     //     -- a block-scope function declaration that is not a
2209     //        using-declaration
2210     // NOTE: we also trigger this for function templates (in fact, we
2211     // don't check the decl type at all, since all other decl types
2212     // turn off ADL anyway).
2213     if (isa<UsingShadowDecl>(D))
2214       D = cast<UsingShadowDecl>(D)->getTargetDecl();
2215     else if (D->getDeclContext()->isFunctionOrMethod())
2216       return false;
2217 
2218     // C++0x [basic.lookup.argdep]p3:
2219     //     -- a declaration that is neither a function or a function
2220     //        template
2221     // And also for builtin functions.
2222     if (isa<FunctionDecl>(D)) {
2223       FunctionDecl *FDecl = cast<FunctionDecl>(D);
2224 
2225       // But also builtin functions.
2226       if (FDecl->getBuiltinID() && FDecl->isImplicit())
2227         return false;
2228     } else if (!isa<FunctionTemplateDecl>(D))
2229       return false;
2230   }
2231 
2232   return true;
2233 }
2234 
2235 
2236 /// Diagnoses obvious problems with the use of the given declaration
2237 /// as an expression.  This is only actually called for lookups that
2238 /// were not overloaded, and it doesn't promise that the declaration
2239 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)2240 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2241   if (isa<TypedefNameDecl>(D)) {
2242     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2243     return true;
2244   }
2245 
2246   if (isa<ObjCInterfaceDecl>(D)) {
2247     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2248     return true;
2249   }
2250 
2251   if (isa<NamespaceDecl>(D)) {
2252     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2253     return true;
2254   }
2255 
2256   return false;
2257 }
2258 
2259 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL)2260 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2261                                LookupResult &R,
2262                                bool NeedsADL) {
2263   // If this is a single, fully-resolved result and we don't need ADL,
2264   // just build an ordinary singleton decl ref.
2265   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2266     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2267                                     R.getFoundDecl());
2268 
2269   // We only need to check the declaration if there's exactly one
2270   // result, because in the overloaded case the results can only be
2271   // functions and function templates.
2272   if (R.isSingleResult() &&
2273       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2274     return ExprError();
2275 
2276   // Otherwise, just build an unresolved lookup expression.  Suppress
2277   // any lookup-related diagnostics; we'll hash these out later, when
2278   // we've picked a target.
2279   R.suppressDiagnostics();
2280 
2281   UnresolvedLookupExpr *ULE
2282     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2283                                    SS.getWithLocInContext(Context),
2284                                    R.getLookupNameInfo(),
2285                                    NeedsADL, R.isOverloadedResult(),
2286                                    R.begin(), R.end());
2287 
2288   return Owned(ULE);
2289 }
2290 
2291 /// \brief Complete semantic analysis for a reference to the given declaration.
2292 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D)2293 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2294                                const DeclarationNameInfo &NameInfo,
2295                                NamedDecl *D) {
2296   assert(D && "Cannot refer to a NULL declaration");
2297   assert(!isa<FunctionTemplateDecl>(D) &&
2298          "Cannot refer unambiguously to a function template");
2299 
2300   SourceLocation Loc = NameInfo.getLoc();
2301   if (CheckDeclInExpr(*this, Loc, D))
2302     return ExprError();
2303 
2304   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2305     // Specifically diagnose references to class templates that are missing
2306     // a template argument list.
2307     Diag(Loc, diag::err_template_decl_ref)
2308       << Template << SS.getRange();
2309     Diag(Template->getLocation(), diag::note_template_decl_here);
2310     return ExprError();
2311   }
2312 
2313   // Make sure that we're referring to a value.
2314   ValueDecl *VD = dyn_cast<ValueDecl>(D);
2315   if (!VD) {
2316     Diag(Loc, diag::err_ref_non_value)
2317       << D << SS.getRange();
2318     Diag(D->getLocation(), diag::note_declared_at);
2319     return ExprError();
2320   }
2321 
2322   // Check whether this declaration can be used. Note that we suppress
2323   // this check when we're going to perform argument-dependent lookup
2324   // on this function name, because this might not be the function
2325   // that overload resolution actually selects.
2326   if (DiagnoseUseOfDecl(VD, Loc))
2327     return ExprError();
2328 
2329   // Only create DeclRefExpr's for valid Decl's.
2330   if (VD->isInvalidDecl())
2331     return ExprError();
2332 
2333   // Handle members of anonymous structs and unions.  If we got here,
2334   // and the reference is to a class member indirect field, then this
2335   // must be the subject of a pointer-to-member expression.
2336   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2337     if (!indirectField->isCXXClassMember())
2338       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2339                                                       indirectField);
2340 
2341   {
2342     QualType type = VD->getType();
2343     ExprValueKind valueKind = VK_RValue;
2344 
2345     switch (D->getKind()) {
2346     // Ignore all the non-ValueDecl kinds.
2347 #define ABSTRACT_DECL(kind)
2348 #define VALUE(type, base)
2349 #define DECL(type, base) \
2350     case Decl::type:
2351 #include "clang/AST/DeclNodes.inc"
2352       llvm_unreachable("invalid value decl kind");
2353 
2354     // These shouldn't make it here.
2355     case Decl::ObjCAtDefsField:
2356     case Decl::ObjCIvar:
2357       llvm_unreachable("forming non-member reference to ivar?");
2358 
2359     // Enum constants are always r-values and never references.
2360     // Unresolved using declarations are dependent.
2361     case Decl::EnumConstant:
2362     case Decl::UnresolvedUsingValue:
2363       valueKind = VK_RValue;
2364       break;
2365 
2366     // Fields and indirect fields that got here must be for
2367     // pointer-to-member expressions; we just call them l-values for
2368     // internal consistency, because this subexpression doesn't really
2369     // exist in the high-level semantics.
2370     case Decl::Field:
2371     case Decl::IndirectField:
2372       assert(getLangOpts().CPlusPlus &&
2373              "building reference to field in C?");
2374 
2375       // These can't have reference type in well-formed programs, but
2376       // for internal consistency we do this anyway.
2377       type = type.getNonReferenceType();
2378       valueKind = VK_LValue;
2379       break;
2380 
2381     // Non-type template parameters are either l-values or r-values
2382     // depending on the type.
2383     case Decl::NonTypeTemplateParm: {
2384       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2385         type = reftype->getPointeeType();
2386         valueKind = VK_LValue; // even if the parameter is an r-value reference
2387         break;
2388       }
2389 
2390       // For non-references, we need to strip qualifiers just in case
2391       // the template parameter was declared as 'const int' or whatever.
2392       valueKind = VK_RValue;
2393       type = type.getUnqualifiedType();
2394       break;
2395     }
2396 
2397     case Decl::Var:
2398       // In C, "extern void blah;" is valid and is an r-value.
2399       if (!getLangOpts().CPlusPlus &&
2400           !type.hasQualifiers() &&
2401           type->isVoidType()) {
2402         valueKind = VK_RValue;
2403         break;
2404       }
2405       // fallthrough
2406 
2407     case Decl::ImplicitParam:
2408     case Decl::ParmVar: {
2409       // These are always l-values.
2410       valueKind = VK_LValue;
2411       type = type.getNonReferenceType();
2412 
2413       // FIXME: Does the addition of const really only apply in
2414       // potentially-evaluated contexts? Since the variable isn't actually
2415       // captured in an unevaluated context, it seems that the answer is no.
2416       if (!isUnevaluatedContext()) {
2417         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2418         if (!CapturedType.isNull())
2419           type = CapturedType;
2420       }
2421 
2422       break;
2423     }
2424 
2425     case Decl::Function: {
2426       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2427         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2428           type = Context.BuiltinFnTy;
2429           valueKind = VK_RValue;
2430           break;
2431         }
2432       }
2433 
2434       const FunctionType *fty = type->castAs<FunctionType>();
2435 
2436       // If we're referring to a function with an __unknown_anytype
2437       // result type, make the entire expression __unknown_anytype.
2438       if (fty->getResultType() == Context.UnknownAnyTy) {
2439         type = Context.UnknownAnyTy;
2440         valueKind = VK_RValue;
2441         break;
2442       }
2443 
2444       // Functions are l-values in C++.
2445       if (getLangOpts().CPlusPlus) {
2446         valueKind = VK_LValue;
2447         break;
2448       }
2449 
2450       // C99 DR 316 says that, if a function type comes from a
2451       // function definition (without a prototype), that type is only
2452       // used for checking compatibility. Therefore, when referencing
2453       // the function, we pretend that we don't have the full function
2454       // type.
2455       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2456           isa<FunctionProtoType>(fty))
2457         type = Context.getFunctionNoProtoType(fty->getResultType(),
2458                                               fty->getExtInfo());
2459 
2460       // Functions are r-values in C.
2461       valueKind = VK_RValue;
2462       break;
2463     }
2464 
2465     case Decl::CXXMethod:
2466       // If we're referring to a method with an __unknown_anytype
2467       // result type, make the entire expression __unknown_anytype.
2468       // This should only be possible with a type written directly.
2469       if (const FunctionProtoType *proto
2470             = dyn_cast<FunctionProtoType>(VD->getType()))
2471         if (proto->getResultType() == Context.UnknownAnyTy) {
2472           type = Context.UnknownAnyTy;
2473           valueKind = VK_RValue;
2474           break;
2475         }
2476 
2477       // C++ methods are l-values if static, r-values if non-static.
2478       if (cast<CXXMethodDecl>(VD)->isStatic()) {
2479         valueKind = VK_LValue;
2480         break;
2481       }
2482       // fallthrough
2483 
2484     case Decl::CXXConversion:
2485     case Decl::CXXDestructor:
2486     case Decl::CXXConstructor:
2487       valueKind = VK_RValue;
2488       break;
2489     }
2490 
2491     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2492   }
2493 }
2494 
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)2495 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2496   PredefinedExpr::IdentType IT;
2497 
2498   switch (Kind) {
2499   default: llvm_unreachable("Unknown simple primary expr!");
2500   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2501   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2502   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2503   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2504   }
2505 
2506   // Pre-defined identifiers are of type char[x], where x is the length of the
2507   // string.
2508 
2509   Decl *currentDecl = getCurFunctionOrMethodDecl();
2510   if (!currentDecl && getCurBlock())
2511     currentDecl = getCurBlock()->TheDecl;
2512   if (!currentDecl) {
2513     Diag(Loc, diag::ext_predef_outside_function);
2514     currentDecl = Context.getTranslationUnitDecl();
2515   }
2516 
2517   QualType ResTy;
2518   if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2519     ResTy = Context.DependentTy;
2520   } else {
2521     unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2522 
2523     llvm::APInt LengthI(32, Length + 1);
2524     if (IT == PredefinedExpr::LFunction)
2525       ResTy = Context.WCharTy.withConst();
2526     else
2527       ResTy = Context.CharTy.withConst();
2528     ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2529   }
2530   return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2531 }
2532 
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)2533 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2534   SmallString<16> CharBuffer;
2535   bool Invalid = false;
2536   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2537   if (Invalid)
2538     return ExprError();
2539 
2540   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2541                             PP, Tok.getKind());
2542   if (Literal.hadError())
2543     return ExprError();
2544 
2545   QualType Ty;
2546   if (Literal.isWide())
2547     Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2548   else if (Literal.isUTF16())
2549     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2550   else if (Literal.isUTF32())
2551     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2552   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2553     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2554   else
2555     Ty = Context.CharTy;  // 'x' -> char in C++
2556 
2557   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2558   if (Literal.isWide())
2559     Kind = CharacterLiteral::Wide;
2560   else if (Literal.isUTF16())
2561     Kind = CharacterLiteral::UTF16;
2562   else if (Literal.isUTF32())
2563     Kind = CharacterLiteral::UTF32;
2564 
2565   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2566                                              Tok.getLocation());
2567 
2568   if (Literal.getUDSuffix().empty())
2569     return Owned(Lit);
2570 
2571   // We're building a user-defined literal.
2572   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2573   SourceLocation UDSuffixLoc =
2574     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2575 
2576   // Make sure we're allowed user-defined literals here.
2577   if (!UDLScope)
2578     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2579 
2580   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2581   //   operator "" X (ch)
2582   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2583                                         llvm::makeArrayRef(&Lit, 1),
2584                                         Tok.getLocation());
2585 }
2586 
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)2587 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2588   unsigned IntSize = Context.getTargetInfo().getIntWidth();
2589   return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2590                                       Context.IntTy, Loc));
2591 }
2592 
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)2593 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2594                                   QualType Ty, SourceLocation Loc) {
2595   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2596 
2597   using llvm::APFloat;
2598   APFloat Val(Format);
2599 
2600   APFloat::opStatus result = Literal.GetFloatValue(Val);
2601 
2602   // Overflow is always an error, but underflow is only an error if
2603   // we underflowed to zero (APFloat reports denormals as underflow).
2604   if ((result & APFloat::opOverflow) ||
2605       ((result & APFloat::opUnderflow) && Val.isZero())) {
2606     unsigned diagnostic;
2607     SmallString<20> buffer;
2608     if (result & APFloat::opOverflow) {
2609       diagnostic = diag::warn_float_overflow;
2610       APFloat::getLargest(Format).toString(buffer);
2611     } else {
2612       diagnostic = diag::warn_float_underflow;
2613       APFloat::getSmallest(Format).toString(buffer);
2614     }
2615 
2616     S.Diag(Loc, diagnostic)
2617       << Ty
2618       << StringRef(buffer.data(), buffer.size());
2619   }
2620 
2621   bool isExact = (result == APFloat::opOK);
2622   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2623 }
2624 
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)2625 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2626   // Fast path for a single digit (which is quite common).  A single digit
2627   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2628   if (Tok.getLength() == 1) {
2629     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2630     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2631   }
2632 
2633   SmallString<512> IntegerBuffer;
2634   // Add padding so that NumericLiteralParser can overread by one character.
2635   IntegerBuffer.resize(Tok.getLength()+1);
2636   const char *ThisTokBegin = &IntegerBuffer[0];
2637 
2638   // Get the spelling of the token, which eliminates trigraphs, etc.
2639   bool Invalid = false;
2640   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2641   if (Invalid)
2642     return ExprError();
2643 
2644   NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2645                                Tok.getLocation(), PP);
2646   if (Literal.hadError)
2647     return ExprError();
2648 
2649   if (Literal.hasUDSuffix()) {
2650     // We're building a user-defined literal.
2651     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2652     SourceLocation UDSuffixLoc =
2653       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2654 
2655     // Make sure we're allowed user-defined literals here.
2656     if (!UDLScope)
2657       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2658 
2659     QualType CookedTy;
2660     if (Literal.isFloatingLiteral()) {
2661       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2662       // long double, the literal is treated as a call of the form
2663       //   operator "" X (f L)
2664       CookedTy = Context.LongDoubleTy;
2665     } else {
2666       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2667       // unsigned long long, the literal is treated as a call of the form
2668       //   operator "" X (n ULL)
2669       CookedTy = Context.UnsignedLongLongTy;
2670     }
2671 
2672     DeclarationName OpName =
2673       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2674     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2675     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2676 
2677     // Perform literal operator lookup to determine if we're building a raw
2678     // literal or a cooked one.
2679     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2680     switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2681                                   /*AllowRawAndTemplate*/true)) {
2682     case LOLR_Error:
2683       return ExprError();
2684 
2685     case LOLR_Cooked: {
2686       Expr *Lit;
2687       if (Literal.isFloatingLiteral()) {
2688         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2689       } else {
2690         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2691         if (Literal.GetIntegerValue(ResultVal))
2692           Diag(Tok.getLocation(), diag::warn_integer_too_large);
2693         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2694                                      Tok.getLocation());
2695       }
2696       return BuildLiteralOperatorCall(R, OpNameInfo,
2697                                       llvm::makeArrayRef(&Lit, 1),
2698                                       Tok.getLocation());
2699     }
2700 
2701     case LOLR_Raw: {
2702       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2703       // literal is treated as a call of the form
2704       //   operator "" X ("n")
2705       SourceLocation TokLoc = Tok.getLocation();
2706       unsigned Length = Literal.getUDSuffixOffset();
2707       QualType StrTy = Context.getConstantArrayType(
2708           Context.CharTy, llvm::APInt(32, Length + 1),
2709           ArrayType::Normal, 0);
2710       Expr *Lit = StringLiteral::Create(
2711           Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
2712           /*Pascal*/false, StrTy, &TokLoc, 1);
2713       return BuildLiteralOperatorCall(R, OpNameInfo,
2714                                       llvm::makeArrayRef(&Lit, 1), TokLoc);
2715     }
2716 
2717     case LOLR_Template:
2718       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2719       // template), L is treated as a call fo the form
2720       //   operator "" X <'c1', 'c2', ... 'ck'>()
2721       // where n is the source character sequence c1 c2 ... ck.
2722       TemplateArgumentListInfo ExplicitArgs;
2723       unsigned CharBits = Context.getIntWidth(Context.CharTy);
2724       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2725       llvm::APSInt Value(CharBits, CharIsUnsigned);
2726       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2727         Value = ThisTokBegin[I];
2728         TemplateArgument Arg(Context, Value, Context.CharTy);
2729         TemplateArgumentLocInfo ArgInfo;
2730         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2731       }
2732       return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2733                                       Tok.getLocation(), &ExplicitArgs);
2734     }
2735 
2736     llvm_unreachable("unexpected literal operator lookup result");
2737   }
2738 
2739   Expr *Res;
2740 
2741   if (Literal.isFloatingLiteral()) {
2742     QualType Ty;
2743     if (Literal.isFloat)
2744       Ty = Context.FloatTy;
2745     else if (!Literal.isLong)
2746       Ty = Context.DoubleTy;
2747     else
2748       Ty = Context.LongDoubleTy;
2749 
2750     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2751 
2752     if (Ty == Context.DoubleTy) {
2753       if (getLangOpts().SinglePrecisionConstants) {
2754         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2755       } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2756         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2757         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2758       }
2759     }
2760   } else if (!Literal.isIntegerLiteral()) {
2761     return ExprError();
2762   } else {
2763     QualType Ty;
2764 
2765     // long long is a C99 feature.
2766     if (!getLangOpts().C99 && Literal.isLongLong)
2767       Diag(Tok.getLocation(),
2768            getLangOpts().CPlusPlus0x ?
2769              diag::warn_cxx98_compat_longlong : diag::ext_longlong);
2770 
2771     // Get the value in the widest-possible width.
2772     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
2773     // The microsoft literal suffix extensions support 128-bit literals, which
2774     // may be wider than [u]intmax_t.
2775     if (Literal.isMicrosoftInteger && MaxWidth < 128)
2776       MaxWidth = 128;
2777     llvm::APInt ResultVal(MaxWidth, 0);
2778 
2779     if (Literal.GetIntegerValue(ResultVal)) {
2780       // If this value didn't fit into uintmax_t, warn and force to ull.
2781       Diag(Tok.getLocation(), diag::warn_integer_too_large);
2782       Ty = Context.UnsignedLongLongTy;
2783       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2784              "long long is not intmax_t?");
2785     } else {
2786       // If this value fits into a ULL, try to figure out what else it fits into
2787       // according to the rules of C99 6.4.4.1p5.
2788 
2789       // Octal, Hexadecimal, and integers with a U suffix are allowed to
2790       // be an unsigned int.
2791       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2792 
2793       // Check from smallest to largest, picking the smallest type we can.
2794       unsigned Width = 0;
2795       if (!Literal.isLong && !Literal.isLongLong) {
2796         // Are int/unsigned possibilities?
2797         unsigned IntSize = Context.getTargetInfo().getIntWidth();
2798 
2799         // Does it fit in a unsigned int?
2800         if (ResultVal.isIntN(IntSize)) {
2801           // Does it fit in a signed int?
2802           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2803             Ty = Context.IntTy;
2804           else if (AllowUnsigned)
2805             Ty = Context.UnsignedIntTy;
2806           Width = IntSize;
2807         }
2808       }
2809 
2810       // Are long/unsigned long possibilities?
2811       if (Ty.isNull() && !Literal.isLongLong) {
2812         unsigned LongSize = Context.getTargetInfo().getLongWidth();
2813 
2814         // Does it fit in a unsigned long?
2815         if (ResultVal.isIntN(LongSize)) {
2816           // Does it fit in a signed long?
2817           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2818             Ty = Context.LongTy;
2819           else if (AllowUnsigned)
2820             Ty = Context.UnsignedLongTy;
2821           Width = LongSize;
2822         }
2823       }
2824 
2825       // Check long long if needed.
2826       if (Ty.isNull()) {
2827         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2828 
2829         // Does it fit in a unsigned long long?
2830         if (ResultVal.isIntN(LongLongSize)) {
2831           // Does it fit in a signed long long?
2832           // To be compatible with MSVC, hex integer literals ending with the
2833           // LL or i64 suffix are always signed in Microsoft mode.
2834           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2835               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2836             Ty = Context.LongLongTy;
2837           else if (AllowUnsigned)
2838             Ty = Context.UnsignedLongLongTy;
2839           Width = LongLongSize;
2840         }
2841       }
2842 
2843       // If it doesn't fit in unsigned long long, and we're using Microsoft
2844       // extensions, then its a 128-bit integer literal.
2845       if (Ty.isNull() && Literal.isMicrosoftInteger) {
2846         if (Literal.isUnsigned)
2847           Ty = Context.UnsignedInt128Ty;
2848         else
2849           Ty = Context.Int128Ty;
2850         Width = 128;
2851       }
2852 
2853       // If we still couldn't decide a type, we probably have something that
2854       // does not fit in a signed long long, but has no U suffix.
2855       if (Ty.isNull()) {
2856         Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2857         Ty = Context.UnsignedLongLongTy;
2858         Width = Context.getTargetInfo().getLongLongWidth();
2859       }
2860 
2861       if (ResultVal.getBitWidth() != Width)
2862         ResultVal = ResultVal.trunc(Width);
2863     }
2864     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2865   }
2866 
2867   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2868   if (Literal.isImaginary)
2869     Res = new (Context) ImaginaryLiteral(Res,
2870                                         Context.getComplexType(Res->getType()));
2871 
2872   return Owned(Res);
2873 }
2874 
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)2875 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2876   assert((E != 0) && "ActOnParenExpr() missing expr");
2877   return Owned(new (Context) ParenExpr(L, R, E));
2878 }
2879 
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)2880 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2881                                          SourceLocation Loc,
2882                                          SourceRange ArgRange) {
2883   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2884   // scalar or vector data type argument..."
2885   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2886   // type (C99 6.2.5p18) or void.
2887   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2888     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2889       << T << ArgRange;
2890     return true;
2891   }
2892 
2893   assert((T->isVoidType() || !T->isIncompleteType()) &&
2894          "Scalar types should always be complete");
2895   return false;
2896 }
2897 
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)2898 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2899                                            SourceLocation Loc,
2900                                            SourceRange ArgRange,
2901                                            UnaryExprOrTypeTrait TraitKind) {
2902   // C99 6.5.3.4p1:
2903   if (T->isFunctionType()) {
2904     // alignof(function) is allowed as an extension.
2905     if (TraitKind == UETT_SizeOf)
2906       S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2907     return false;
2908   }
2909 
2910   // Allow sizeof(void)/alignof(void) as an extension.
2911   if (T->isVoidType()) {
2912     S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2913     return false;
2914   }
2915 
2916   return true;
2917 }
2918 
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)2919 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2920                                              SourceLocation Loc,
2921                                              SourceRange ArgRange,
2922                                              UnaryExprOrTypeTrait TraitKind) {
2923   // Reject sizeof(interface) and sizeof(interface<proto>) if the
2924   // runtime doesn't allow it.
2925   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
2926     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2927       << T << (TraitKind == UETT_SizeOf)
2928       << ArgRange;
2929     return true;
2930   }
2931 
2932   return false;
2933 }
2934 
2935 /// \brief Check the constrains on expression operands to unary type expression
2936 /// and type traits.
2937 ///
2938 /// Completes any types necessary and validates the constraints on the operand
2939 /// expression. The logic mostly mirrors the type-based overload, but may modify
2940 /// the expression as it completes the type for that expression through template
2941 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)2942 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
2943                                             UnaryExprOrTypeTrait ExprKind) {
2944   QualType ExprTy = E->getType();
2945 
2946   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2947   //   the result is the size of the referenced type."
2948   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2949   //   result shall be the alignment of the referenced type."
2950   if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2951     ExprTy = Ref->getPointeeType();
2952 
2953   if (ExprKind == UETT_VecStep)
2954     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
2955                                         E->getSourceRange());
2956 
2957   // Whitelist some types as extensions
2958   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
2959                                       E->getSourceRange(), ExprKind))
2960     return false;
2961 
2962   if (RequireCompleteExprType(E,
2963                               diag::err_sizeof_alignof_incomplete_type,
2964                               ExprKind, E->getSourceRange()))
2965     return true;
2966 
2967   // Completeing the expression's type may have changed it.
2968   ExprTy = E->getType();
2969   if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2970     ExprTy = Ref->getPointeeType();
2971 
2972   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
2973                                        E->getSourceRange(), ExprKind))
2974     return true;
2975 
2976   if (ExprKind == UETT_SizeOf) {
2977     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
2978       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2979         QualType OType = PVD->getOriginalType();
2980         QualType Type = PVD->getType();
2981         if (Type->isPointerType() && OType->isArrayType()) {
2982           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
2983             << Type << OType;
2984           Diag(PVD->getLocation(), diag::note_declared_at);
2985         }
2986       }
2987     }
2988   }
2989 
2990   return false;
2991 }
2992 
2993 /// \brief Check the constraints on operands to unary expression and type
2994 /// traits.
2995 ///
2996 /// This will complete any types necessary, and validate the various constraints
2997 /// on those operands.
2998 ///
2999 /// The UsualUnaryConversions() function is *not* called by this routine.
3000 /// C99 6.3.2.1p[2-4] all state:
3001 ///   Except when it is the operand of the sizeof operator ...
3002 ///
3003 /// C++ [expr.sizeof]p4
3004 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3005 ///   standard conversions are not applied to the operand of sizeof.
3006 ///
3007 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)3008 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3009                                             SourceLocation OpLoc,
3010                                             SourceRange ExprRange,
3011                                             UnaryExprOrTypeTrait ExprKind) {
3012   if (ExprType->isDependentType())
3013     return false;
3014 
3015   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3016   //   the result is the size of the referenced type."
3017   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3018   //   result shall be the alignment of the referenced type."
3019   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3020     ExprType = Ref->getPointeeType();
3021 
3022   if (ExprKind == UETT_VecStep)
3023     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3024 
3025   // Whitelist some types as extensions
3026   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3027                                       ExprKind))
3028     return false;
3029 
3030   if (RequireCompleteType(OpLoc, ExprType,
3031                           diag::err_sizeof_alignof_incomplete_type,
3032                           ExprKind, ExprRange))
3033     return true;
3034 
3035   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3036                                        ExprKind))
3037     return true;
3038 
3039   return false;
3040 }
3041 
CheckAlignOfExpr(Sema & S,Expr * E)3042 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3043   E = E->IgnoreParens();
3044 
3045   // alignof decl is always ok.
3046   if (isa<DeclRefExpr>(E))
3047     return false;
3048 
3049   // Cannot know anything else if the expression is dependent.
3050   if (E->isTypeDependent())
3051     return false;
3052 
3053   if (E->getBitField()) {
3054     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3055        << 1 << E->getSourceRange();
3056     return true;
3057   }
3058 
3059   // Alignment of a field access is always okay, so long as it isn't a
3060   // bit-field.
3061   if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
3062     if (isa<FieldDecl>(ME->getMemberDecl()))
3063       return false;
3064 
3065   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3066 }
3067 
CheckVecStepExpr(Expr * E)3068 bool Sema::CheckVecStepExpr(Expr *E) {
3069   E = E->IgnoreParens();
3070 
3071   // Cannot know anything else if the expression is dependent.
3072   if (E->isTypeDependent())
3073     return false;
3074 
3075   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3076 }
3077 
3078 /// \brief Build a sizeof or alignof expression given a type operand.
3079 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)3080 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3081                                      SourceLocation OpLoc,
3082                                      UnaryExprOrTypeTrait ExprKind,
3083                                      SourceRange R) {
3084   if (!TInfo)
3085     return ExprError();
3086 
3087   QualType T = TInfo->getType();
3088 
3089   if (!T->isDependentType() &&
3090       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3091     return ExprError();
3092 
3093   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3094   return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3095                                                       Context.getSizeType(),
3096                                                       OpLoc, R.getEnd()));
3097 }
3098 
3099 /// \brief Build a sizeof or alignof expression given an expression
3100 /// operand.
3101 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)3102 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3103                                      UnaryExprOrTypeTrait ExprKind) {
3104   ExprResult PE = CheckPlaceholderExpr(E);
3105   if (PE.isInvalid())
3106     return ExprError();
3107 
3108   E = PE.get();
3109 
3110   // Verify that the operand is valid.
3111   bool isInvalid = false;
3112   if (E->isTypeDependent()) {
3113     // Delay type-checking for type-dependent expressions.
3114   } else if (ExprKind == UETT_AlignOf) {
3115     isInvalid = CheckAlignOfExpr(*this, E);
3116   } else if (ExprKind == UETT_VecStep) {
3117     isInvalid = CheckVecStepExpr(E);
3118   } else if (E->getBitField()) {  // C99 6.5.3.4p1.
3119     Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3120     isInvalid = true;
3121   } else {
3122     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3123   }
3124 
3125   if (isInvalid)
3126     return ExprError();
3127 
3128   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3129     PE = TranformToPotentiallyEvaluated(E);
3130     if (PE.isInvalid()) return ExprError();
3131     E = PE.take();
3132   }
3133 
3134   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3135   return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3136       ExprKind, E, Context.getSizeType(), OpLoc,
3137       E->getSourceRange().getEnd()));
3138 }
3139 
3140 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3141 /// expr and the same for @c alignof and @c __alignof
3142 /// Note that the ArgRange is invalid if isType is false.
3143 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,const SourceRange & ArgRange)3144 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3145                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
3146                                     void *TyOrEx, const SourceRange &ArgRange) {
3147   // If error parsing type, ignore.
3148   if (TyOrEx == 0) return ExprError();
3149 
3150   if (IsType) {
3151     TypeSourceInfo *TInfo;
3152     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3153     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3154   }
3155 
3156   Expr *ArgEx = (Expr *)TyOrEx;
3157   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3158   return Result;
3159 }
3160 
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)3161 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3162                                      bool IsReal) {
3163   if (V.get()->isTypeDependent())
3164     return S.Context.DependentTy;
3165 
3166   // _Real and _Imag are only l-values for normal l-values.
3167   if (V.get()->getObjectKind() != OK_Ordinary) {
3168     V = S.DefaultLvalueConversion(V.take());
3169     if (V.isInvalid())
3170       return QualType();
3171   }
3172 
3173   // These operators return the element type of a complex type.
3174   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3175     return CT->getElementType();
3176 
3177   // Otherwise they pass through real integer and floating point types here.
3178   if (V.get()->getType()->isArithmeticType())
3179     return V.get()->getType();
3180 
3181   // Test for placeholders.
3182   ExprResult PR = S.CheckPlaceholderExpr(V.get());
3183   if (PR.isInvalid()) return QualType();
3184   if (PR.get() != V.get()) {
3185     V = PR;
3186     return CheckRealImagOperand(S, V, Loc, IsReal);
3187   }
3188 
3189   // Reject anything else.
3190   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3191     << (IsReal ? "__real" : "__imag");
3192   return QualType();
3193 }
3194 
3195 
3196 
3197 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)3198 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3199                           tok::TokenKind Kind, Expr *Input) {
3200   UnaryOperatorKind Opc;
3201   switch (Kind) {
3202   default: llvm_unreachable("Unknown unary op!");
3203   case tok::plusplus:   Opc = UO_PostInc; break;
3204   case tok::minusminus: Opc = UO_PostDec; break;
3205   }
3206 
3207   // Since this might is a postfix expression, get rid of ParenListExprs.
3208   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3209   if (Result.isInvalid()) return ExprError();
3210   Input = Result.take();
3211 
3212   return BuildUnaryOp(S, OpLoc, Opc, Input);
3213 }
3214 
3215 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3216 ///
3217 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)3218 static bool checkArithmeticOnObjCPointer(Sema &S,
3219                                          SourceLocation opLoc,
3220                                          Expr *op) {
3221   assert(op->getType()->isObjCObjectPointerType());
3222   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
3223     return false;
3224 
3225   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3226     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3227     << op->getSourceRange();
3228   return true;
3229 }
3230 
3231 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3232 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3233                               Expr *Idx, SourceLocation RLoc) {
3234   // Since this might be a postfix expression, get rid of ParenListExprs.
3235   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3236   if (Result.isInvalid()) return ExprError();
3237   Base = Result.take();
3238 
3239   Expr *LHSExp = Base, *RHSExp = Idx;
3240 
3241   if (getLangOpts().CPlusPlus &&
3242       (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3243     return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3244                                                   Context.DependentTy,
3245                                                   VK_LValue, OK_Ordinary,
3246                                                   RLoc));
3247   }
3248 
3249   if (getLangOpts().CPlusPlus &&
3250       (LHSExp->getType()->isRecordType() ||
3251        LHSExp->getType()->isEnumeralType() ||
3252        RHSExp->getType()->isRecordType() ||
3253        RHSExp->getType()->isEnumeralType()) &&
3254       !LHSExp->getType()->isObjCObjectPointerType()) {
3255     return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3256   }
3257 
3258   return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3259 }
3260 
3261 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3262 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3263                                       Expr *Idx, SourceLocation RLoc) {
3264   Expr *LHSExp = Base;
3265   Expr *RHSExp = Idx;
3266 
3267   // Perform default conversions.
3268   if (!LHSExp->getType()->getAs<VectorType>()) {
3269     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3270     if (Result.isInvalid())
3271       return ExprError();
3272     LHSExp = Result.take();
3273   }
3274   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3275   if (Result.isInvalid())
3276     return ExprError();
3277   RHSExp = Result.take();
3278 
3279   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3280   ExprValueKind VK = VK_LValue;
3281   ExprObjectKind OK = OK_Ordinary;
3282 
3283   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3284   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3285   // in the subscript position. As a result, we need to derive the array base
3286   // and index from the expression types.
3287   Expr *BaseExpr, *IndexExpr;
3288   QualType ResultType;
3289   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3290     BaseExpr = LHSExp;
3291     IndexExpr = RHSExp;
3292     ResultType = Context.DependentTy;
3293   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3294     BaseExpr = LHSExp;
3295     IndexExpr = RHSExp;
3296     ResultType = PTy->getPointeeType();
3297   } else if (const ObjCObjectPointerType *PTy =
3298                LHSTy->getAs<ObjCObjectPointerType>()) {
3299     BaseExpr = LHSExp;
3300     IndexExpr = RHSExp;
3301 
3302     // Use custom logic if this should be the pseudo-object subscript
3303     // expression.
3304     if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
3305       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3306 
3307     ResultType = PTy->getPointeeType();
3308     if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3309       Diag(LLoc, diag::err_subscript_nonfragile_interface)
3310         << ResultType << BaseExpr->getSourceRange();
3311       return ExprError();
3312     }
3313   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3314      // Handle the uncommon case of "123[Ptr]".
3315     BaseExpr = RHSExp;
3316     IndexExpr = LHSExp;
3317     ResultType = PTy->getPointeeType();
3318   } else if (const ObjCObjectPointerType *PTy =
3319                RHSTy->getAs<ObjCObjectPointerType>()) {
3320      // Handle the uncommon case of "123[Ptr]".
3321     BaseExpr = RHSExp;
3322     IndexExpr = LHSExp;
3323     ResultType = PTy->getPointeeType();
3324     if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3325       Diag(LLoc, diag::err_subscript_nonfragile_interface)
3326         << ResultType << BaseExpr->getSourceRange();
3327       return ExprError();
3328     }
3329   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3330     BaseExpr = LHSExp;    // vectors: V[123]
3331     IndexExpr = RHSExp;
3332     VK = LHSExp->getValueKind();
3333     if (VK != VK_RValue)
3334       OK = OK_VectorComponent;
3335 
3336     // FIXME: need to deal with const...
3337     ResultType = VTy->getElementType();
3338   } else if (LHSTy->isArrayType()) {
3339     // If we see an array that wasn't promoted by
3340     // DefaultFunctionArrayLvalueConversion, it must be an array that
3341     // wasn't promoted because of the C90 rule that doesn't
3342     // allow promoting non-lvalue arrays.  Warn, then
3343     // force the promotion here.
3344     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3345         LHSExp->getSourceRange();
3346     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3347                                CK_ArrayToPointerDecay).take();
3348     LHSTy = LHSExp->getType();
3349 
3350     BaseExpr = LHSExp;
3351     IndexExpr = RHSExp;
3352     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3353   } else if (RHSTy->isArrayType()) {
3354     // Same as previous, except for 123[f().a] case
3355     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3356         RHSExp->getSourceRange();
3357     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3358                                CK_ArrayToPointerDecay).take();
3359     RHSTy = RHSExp->getType();
3360 
3361     BaseExpr = RHSExp;
3362     IndexExpr = LHSExp;
3363     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3364   } else {
3365     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3366        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3367   }
3368   // C99 6.5.2.1p1
3369   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3370     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3371                      << IndexExpr->getSourceRange());
3372 
3373   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3374        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3375          && !IndexExpr->isTypeDependent())
3376     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3377 
3378   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3379   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3380   // type. Note that Functions are not objects, and that (in C99 parlance)
3381   // incomplete types are not object types.
3382   if (ResultType->isFunctionType()) {
3383     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3384       << ResultType << BaseExpr->getSourceRange();
3385     return ExprError();
3386   }
3387 
3388   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3389     // GNU extension: subscripting on pointer to void
3390     Diag(LLoc, diag::ext_gnu_subscript_void_type)
3391       << BaseExpr->getSourceRange();
3392 
3393     // C forbids expressions of unqualified void type from being l-values.
3394     // See IsCForbiddenLValueType.
3395     if (!ResultType.hasQualifiers()) VK = VK_RValue;
3396   } else if (!ResultType->isDependentType() &&
3397       RequireCompleteType(LLoc, ResultType,
3398                           diag::err_subscript_incomplete_type, BaseExpr))
3399     return ExprError();
3400 
3401   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3402          !ResultType.isCForbiddenLValueType());
3403 
3404   return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3405                                                 ResultType, VK, OK, RLoc));
3406 }
3407 
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)3408 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3409                                         FunctionDecl *FD,
3410                                         ParmVarDecl *Param) {
3411   if (Param->hasUnparsedDefaultArg()) {
3412     Diag(CallLoc,
3413          diag::err_use_of_default_argument_to_function_declared_later) <<
3414       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3415     Diag(UnparsedDefaultArgLocs[Param],
3416          diag::note_default_argument_declared_here);
3417     return ExprError();
3418   }
3419 
3420   if (Param->hasUninstantiatedDefaultArg()) {
3421     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3422 
3423     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3424                                                  Param);
3425 
3426     // Instantiate the expression.
3427     MultiLevelTemplateArgumentList ArgList
3428       = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3429 
3430     std::pair<const TemplateArgument *, unsigned> Innermost
3431       = ArgList.getInnermost();
3432     InstantiatingTemplate Inst(*this, CallLoc, Param,
3433                                ArrayRef<TemplateArgument>(Innermost.first,
3434                                                           Innermost.second));
3435     if (Inst)
3436       return ExprError();
3437 
3438     ExprResult Result;
3439     {
3440       // C++ [dcl.fct.default]p5:
3441       //   The names in the [default argument] expression are bound, and
3442       //   the semantic constraints are checked, at the point where the
3443       //   default argument expression appears.
3444       ContextRAII SavedContext(*this, FD);
3445       LocalInstantiationScope Local(*this);
3446       Result = SubstExpr(UninstExpr, ArgList);
3447     }
3448     if (Result.isInvalid())
3449       return ExprError();
3450 
3451     // Check the expression as an initializer for the parameter.
3452     InitializedEntity Entity
3453       = InitializedEntity::InitializeParameter(Context, Param);
3454     InitializationKind Kind
3455       = InitializationKind::CreateCopy(Param->getLocation(),
3456              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3457     Expr *ResultE = Result.takeAs<Expr>();
3458 
3459     InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3460     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
3461     if (Result.isInvalid())
3462       return ExprError();
3463 
3464     Expr *Arg = Result.takeAs<Expr>();
3465     CheckImplicitConversions(Arg, Param->getOuterLocStart());
3466     // Build the default argument expression.
3467     return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3468   }
3469 
3470   // If the default expression creates temporaries, we need to
3471   // push them to the current stack of expression temporaries so they'll
3472   // be properly destroyed.
3473   // FIXME: We should really be rebuilding the default argument with new
3474   // bound temporaries; see the comment in PR5810.
3475   // We don't need to do that with block decls, though, because
3476   // blocks in default argument expression can never capture anything.
3477   if (isa<ExprWithCleanups>(Param->getInit())) {
3478     // Set the "needs cleanups" bit regardless of whether there are
3479     // any explicit objects.
3480     ExprNeedsCleanups = true;
3481 
3482     // Append all the objects to the cleanup list.  Right now, this
3483     // should always be a no-op, because blocks in default argument
3484     // expressions should never be able to capture anything.
3485     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3486            "default argument expression has capturing blocks?");
3487   }
3488 
3489   // We already type-checked the argument, so we know it works.
3490   // Just mark all of the declarations in this potentially-evaluated expression
3491   // as being "referenced".
3492   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3493                                    /*SkipLocalVariables=*/true);
3494   return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3495 }
3496 
3497 
3498 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)3499 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3500                           Expr *Fn) {
3501   if (Proto && Proto->isVariadic()) {
3502     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3503       return VariadicConstructor;
3504     else if (Fn && Fn->getType()->isBlockPointerType())
3505       return VariadicBlock;
3506     else if (FDecl) {
3507       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3508         if (Method->isInstance())
3509           return VariadicMethod;
3510     }
3511     return VariadicFunction;
3512   }
3513   return VariadicDoesNotApply;
3514 }
3515 
3516 /// ConvertArgumentsForCall - Converts the arguments specified in
3517 /// Args/NumArgs to the parameter types of the function FDecl with
3518 /// function prototype Proto. Call is the call expression itself, and
3519 /// Fn is the function expression. For a C++ member function, this
3520 /// routine does not attempt to convert the object argument. Returns
3521 /// true if the call is ill-formed.
3522 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,bool IsExecConfig)3523 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3524                               FunctionDecl *FDecl,
3525                               const FunctionProtoType *Proto,
3526                               Expr **Args, unsigned NumArgs,
3527                               SourceLocation RParenLoc,
3528                               bool IsExecConfig) {
3529   // Bail out early if calling a builtin with custom typechecking.
3530   // We don't need to do this in the
3531   if (FDecl)
3532     if (unsigned ID = FDecl->getBuiltinID())
3533       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3534         return false;
3535 
3536   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3537   // assignment, to the types of the corresponding parameter, ...
3538   unsigned NumArgsInProto = Proto->getNumArgs();
3539   bool Invalid = false;
3540   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3541   unsigned FnKind = Fn->getType()->isBlockPointerType()
3542                        ? 1 /* block */
3543                        : (IsExecConfig ? 3 /* kernel function (exec config) */
3544                                        : 0 /* function */);
3545 
3546   // If too few arguments are available (and we don't have default
3547   // arguments for the remaining parameters), don't make the call.
3548   if (NumArgs < NumArgsInProto) {
3549     if (NumArgs < MinArgs) {
3550       if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3551         Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3552                           ? diag::err_typecheck_call_too_few_args_one
3553                           : diag::err_typecheck_call_too_few_args_at_least_one)
3554           << FnKind
3555           << FDecl->getParamDecl(0) << Fn->getSourceRange();
3556       else
3557         Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3558                           ? diag::err_typecheck_call_too_few_args
3559                           : diag::err_typecheck_call_too_few_args_at_least)
3560           << FnKind
3561           << MinArgs << NumArgs << Fn->getSourceRange();
3562 
3563       // Emit the location of the prototype.
3564       if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3565         Diag(FDecl->getLocStart(), diag::note_callee_decl)
3566           << FDecl;
3567 
3568       return true;
3569     }
3570     Call->setNumArgs(Context, NumArgsInProto);
3571   }
3572 
3573   // If too many are passed and not variadic, error on the extras and drop
3574   // them.
3575   if (NumArgs > NumArgsInProto) {
3576     if (!Proto->isVariadic()) {
3577       if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3578         Diag(Args[NumArgsInProto]->getLocStart(),
3579              MinArgs == NumArgsInProto
3580                ? diag::err_typecheck_call_too_many_args_one
3581                : diag::err_typecheck_call_too_many_args_at_most_one)
3582           << FnKind
3583           << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
3584           << SourceRange(Args[NumArgsInProto]->getLocStart(),
3585                          Args[NumArgs-1]->getLocEnd());
3586       else
3587         Diag(Args[NumArgsInProto]->getLocStart(),
3588              MinArgs == NumArgsInProto
3589                ? diag::err_typecheck_call_too_many_args
3590                : diag::err_typecheck_call_too_many_args_at_most)
3591           << FnKind
3592           << NumArgsInProto << NumArgs << Fn->getSourceRange()
3593           << SourceRange(Args[NumArgsInProto]->getLocStart(),
3594                          Args[NumArgs-1]->getLocEnd());
3595 
3596       // Emit the location of the prototype.
3597       if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3598         Diag(FDecl->getLocStart(), diag::note_callee_decl)
3599           << FDecl;
3600 
3601       // This deletes the extra arguments.
3602       Call->setNumArgs(Context, NumArgsInProto);
3603       return true;
3604     }
3605   }
3606   SmallVector<Expr *, 8> AllArgs;
3607   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
3608 
3609   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3610                                    Proto, 0, Args, NumArgs, AllArgs, CallType);
3611   if (Invalid)
3612     return true;
3613   unsigned TotalNumArgs = AllArgs.size();
3614   for (unsigned i = 0; i < TotalNumArgs; ++i)
3615     Call->setArg(i, AllArgs[i]);
3616 
3617   return false;
3618 }
3619 
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstProtoArg,Expr ** Args,unsigned NumArgs,SmallVector<Expr *,8> & AllArgs,VariadicCallType CallType,bool AllowExplicit)3620 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3621                                   FunctionDecl *FDecl,
3622                                   const FunctionProtoType *Proto,
3623                                   unsigned FirstProtoArg,
3624                                   Expr **Args, unsigned NumArgs,
3625                                   SmallVector<Expr *, 8> &AllArgs,
3626                                   VariadicCallType CallType,
3627                                   bool AllowExplicit) {
3628   unsigned NumArgsInProto = Proto->getNumArgs();
3629   unsigned NumArgsToCheck = NumArgs;
3630   bool Invalid = false;
3631   if (NumArgs != NumArgsInProto)
3632     // Use default arguments for missing arguments
3633     NumArgsToCheck = NumArgsInProto;
3634   unsigned ArgIx = 0;
3635   // Continue to check argument types (even if we have too few/many args).
3636   for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3637     QualType ProtoArgType = Proto->getArgType(i);
3638 
3639     Expr *Arg;
3640     ParmVarDecl *Param;
3641     if (ArgIx < NumArgs) {
3642       Arg = Args[ArgIx++];
3643 
3644       if (RequireCompleteType(Arg->getLocStart(),
3645                               ProtoArgType,
3646                               diag::err_call_incomplete_argument, Arg))
3647         return true;
3648 
3649       // Pass the argument
3650       Param = 0;
3651       if (FDecl && i < FDecl->getNumParams())
3652         Param = FDecl->getParamDecl(i);
3653 
3654       // Strip the unbridged-cast placeholder expression off, if applicable.
3655       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3656           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3657           (!Param || !Param->hasAttr<CFConsumedAttr>()))
3658         Arg = stripARCUnbridgedCast(Arg);
3659 
3660       InitializedEntity Entity =
3661         Param? InitializedEntity::InitializeParameter(Context, Param)
3662              : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3663                                                       Proto->isArgConsumed(i));
3664       ExprResult ArgE = PerformCopyInitialization(Entity,
3665                                                   SourceLocation(),
3666                                                   Owned(Arg),
3667                                                   /*TopLevelOfInitList=*/false,
3668                                                   AllowExplicit);
3669       if (ArgE.isInvalid())
3670         return true;
3671 
3672       Arg = ArgE.takeAs<Expr>();
3673     } else {
3674       Param = FDecl->getParamDecl(i);
3675 
3676       ExprResult ArgExpr =
3677         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3678       if (ArgExpr.isInvalid())
3679         return true;
3680 
3681       Arg = ArgExpr.takeAs<Expr>();
3682     }
3683 
3684     // Check for array bounds violations for each argument to the call. This
3685     // check only triggers warnings when the argument isn't a more complex Expr
3686     // with its own checking, such as a BinaryOperator.
3687     CheckArrayAccess(Arg);
3688 
3689     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3690     CheckStaticArrayArgument(CallLoc, Param, Arg);
3691 
3692     AllArgs.push_back(Arg);
3693   }
3694 
3695   // If this is a variadic call, handle args passed through "...".
3696   if (CallType != VariadicDoesNotApply) {
3697     // Assume that extern "C" functions with variadic arguments that
3698     // return __unknown_anytype aren't *really* variadic.
3699     if (Proto->getResultType() == Context.UnknownAnyTy &&
3700         FDecl && FDecl->isExternC()) {
3701       for (unsigned i = ArgIx; i != NumArgs; ++i) {
3702         ExprResult arg;
3703         if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3704           arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3705         else
3706           arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3707         Invalid |= arg.isInvalid();
3708         AllArgs.push_back(arg.take());
3709       }
3710 
3711     // Otherwise do argument promotion, (C99 6.5.2.2p7).
3712     } else {
3713       for (unsigned i = ArgIx; i != NumArgs; ++i) {
3714         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3715                                                           FDecl);
3716         Invalid |= Arg.isInvalid();
3717         AllArgs.push_back(Arg.take());
3718       }
3719     }
3720 
3721     // Check for array bounds violations.
3722     for (unsigned i = ArgIx; i != NumArgs; ++i)
3723       CheckArrayAccess(Args[i]);
3724   }
3725   return Invalid;
3726 }
3727 
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)3728 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3729   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3730   if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3731     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3732       << ATL->getLocalSourceRange();
3733 }
3734 
3735 /// CheckStaticArrayArgument - If the given argument corresponds to a static
3736 /// array parameter, check that it is non-null, and that if it is formed by
3737 /// array-to-pointer decay, the underlying array is sufficiently large.
3738 ///
3739 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3740 /// array type derivation, then for each call to the function, the value of the
3741 /// corresponding actual argument shall provide access to the first element of
3742 /// an array with at least as many elements as specified by the size expression.
3743 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)3744 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3745                                ParmVarDecl *Param,
3746                                const Expr *ArgExpr) {
3747   // Static array parameters are not supported in C++.
3748   if (!Param || getLangOpts().CPlusPlus)
3749     return;
3750 
3751   QualType OrigTy = Param->getOriginalType();
3752 
3753   const ArrayType *AT = Context.getAsArrayType(OrigTy);
3754   if (!AT || AT->getSizeModifier() != ArrayType::Static)
3755     return;
3756 
3757   if (ArgExpr->isNullPointerConstant(Context,
3758                                      Expr::NPC_NeverValueDependent)) {
3759     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3760     DiagnoseCalleeStaticArrayParam(*this, Param);
3761     return;
3762   }
3763 
3764   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3765   if (!CAT)
3766     return;
3767 
3768   const ConstantArrayType *ArgCAT =
3769     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3770   if (!ArgCAT)
3771     return;
3772 
3773   if (ArgCAT->getSize().ult(CAT->getSize())) {
3774     Diag(CallLoc, diag::warn_static_array_too_small)
3775       << ArgExpr->getSourceRange()
3776       << (unsigned) ArgCAT->getSize().getZExtValue()
3777       << (unsigned) CAT->getSize().getZExtValue();
3778     DiagnoseCalleeStaticArrayParam(*this, Param);
3779   }
3780 }
3781 
3782 /// Given a function expression of unknown-any type, try to rebuild it
3783 /// to have a function type.
3784 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3785 
3786 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3787 /// This provides the location of the left/right parens and a list of comma
3788 /// locations.
3789 ExprResult
ActOnCallExpr(Scope * S,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig)3790 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3791                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
3792                     Expr *ExecConfig, bool IsExecConfig) {
3793   // Since this might be a postfix expression, get rid of ParenListExprs.
3794   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3795   if (Result.isInvalid()) return ExprError();
3796   Fn = Result.take();
3797 
3798   if (getLangOpts().CPlusPlus) {
3799     // If this is a pseudo-destructor expression, build the call immediately.
3800     if (isa<CXXPseudoDestructorExpr>(Fn)) {
3801       if (!ArgExprs.empty()) {
3802         // Pseudo-destructor calls should not have any arguments.
3803         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3804           << FixItHint::CreateRemoval(
3805                                     SourceRange(ArgExprs[0]->getLocStart(),
3806                                                 ArgExprs.back()->getLocEnd()));
3807       }
3808 
3809       return Owned(new (Context) CallExpr(Context, Fn, MultiExprArg(),
3810                                           Context.VoidTy, VK_RValue,
3811                                           RParenLoc));
3812     }
3813 
3814     // Determine whether this is a dependent call inside a C++ template,
3815     // in which case we won't do any semantic analysis now.
3816     // FIXME: Will need to cache the results of name lookup (including ADL) in
3817     // Fn.
3818     bool Dependent = false;
3819     if (Fn->isTypeDependent())
3820       Dependent = true;
3821     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
3822       Dependent = true;
3823 
3824     if (Dependent) {
3825       if (ExecConfig) {
3826         return Owned(new (Context) CUDAKernelCallExpr(
3827             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
3828             Context.DependentTy, VK_RValue, RParenLoc));
3829       } else {
3830         return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
3831                                             Context.DependentTy, VK_RValue,
3832                                             RParenLoc));
3833       }
3834     }
3835 
3836     // Determine whether this is a call to an object (C++ [over.call.object]).
3837     if (Fn->getType()->isRecordType())
3838       return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
3839                                                 ArgExprs.data(),
3840                                                 ArgExprs.size(), RParenLoc));
3841 
3842     if (Fn->getType() == Context.UnknownAnyTy) {
3843       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3844       if (result.isInvalid()) return ExprError();
3845       Fn = result.take();
3846     }
3847 
3848     if (Fn->getType() == Context.BoundMemberTy) {
3849       return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
3850                                        ArgExprs.size(), RParenLoc);
3851     }
3852   }
3853 
3854   // Check for overloaded calls.  This can happen even in C due to extensions.
3855   if (Fn->getType() == Context.OverloadTy) {
3856     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3857 
3858     // We aren't supposed to apply this logic for if there's an '&' involved.
3859     if (!find.HasFormOfMemberPointer) {
3860       OverloadExpr *ovl = find.Expression;
3861       if (isa<UnresolvedLookupExpr>(ovl)) {
3862         UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3863         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs.data(),
3864                                        ArgExprs.size(), RParenLoc, ExecConfig);
3865       } else {
3866         return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
3867                                          ArgExprs.size(), RParenLoc);
3868       }
3869     }
3870   }
3871 
3872   // If we're directly calling a function, get the appropriate declaration.
3873   if (Fn->getType() == Context.UnknownAnyTy) {
3874     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3875     if (result.isInvalid()) return ExprError();
3876     Fn = result.take();
3877   }
3878 
3879   Expr *NakedFn = Fn->IgnoreParens();
3880 
3881   NamedDecl *NDecl = 0;
3882   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3883     if (UnOp->getOpcode() == UO_AddrOf)
3884       NakedFn = UnOp->getSubExpr()->IgnoreParens();
3885 
3886   if (isa<DeclRefExpr>(NakedFn))
3887     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3888   else if (isa<MemberExpr>(NakedFn))
3889     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3890 
3891   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs.data(),
3892                                ArgExprs.size(), RParenLoc, ExecConfig,
3893                                IsExecConfig);
3894 }
3895 
3896 ExprResult
ActOnCUDAExecConfigExpr(Scope * S,SourceLocation LLLLoc,MultiExprArg ExecConfig,SourceLocation GGGLoc)3897 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3898                               MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3899   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3900   if (!ConfigDecl)
3901     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3902                           << "cudaConfigureCall");
3903   QualType ConfigQTy = ConfigDecl->getType();
3904 
3905   DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3906       ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
3907   MarkFunctionReferenced(LLLLoc, ConfigDecl);
3908 
3909   return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3910                        /*IsExecConfig=*/true);
3911 }
3912 
3913 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3914 ///
3915 /// __builtin_astype( value, dst type )
3916 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)3917 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3918                                  SourceLocation BuiltinLoc,
3919                                  SourceLocation RParenLoc) {
3920   ExprValueKind VK = VK_RValue;
3921   ExprObjectKind OK = OK_Ordinary;
3922   QualType DstTy = GetTypeFromParser(ParsedDestTy);
3923   QualType SrcTy = E->getType();
3924   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3925     return ExprError(Diag(BuiltinLoc,
3926                           diag::err_invalid_astype_of_different_size)
3927                      << DstTy
3928                      << SrcTy
3929                      << E->getSourceRange());
3930   return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
3931                RParenLoc));
3932 }
3933 
3934 /// BuildResolvedCallExpr - Build a call to a resolved expression,
3935 /// i.e. an expression not of \p OverloadTy.  The expression should
3936 /// unary-convert to an expression of function-pointer or
3937 /// block-pointer type.
3938 ///
3939 /// \param NDecl the declaration being called, if available
3940 ExprResult
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig)3941 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3942                             SourceLocation LParenLoc,
3943                             Expr **Args, unsigned NumArgs,
3944                             SourceLocation RParenLoc,
3945                             Expr *Config, bool IsExecConfig) {
3946   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3947   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3948 
3949   // Promote the function operand.
3950   // We special-case function promotion here because we only allow promoting
3951   // builtin functions to function pointers in the callee of a call.
3952   ExprResult Result;
3953   if (BuiltinID &&
3954       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
3955     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
3956                                CK_BuiltinFnToFnPtr).take();
3957   } else {
3958     Result = UsualUnaryConversions(Fn);
3959   }
3960   if (Result.isInvalid())
3961     return ExprError();
3962   Fn = Result.take();
3963 
3964   // Make the call expr early, before semantic checks.  This guarantees cleanup
3965   // of arguments and function on error.
3966   CallExpr *TheCall;
3967   if (Config)
3968     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3969                                                cast<CallExpr>(Config),
3970                                                llvm::makeArrayRef(Args,NumArgs),
3971                                                Context.BoolTy,
3972                                                VK_RValue,
3973                                                RParenLoc);
3974   else
3975     TheCall = new (Context) CallExpr(Context, Fn,
3976                                      llvm::makeArrayRef(Args, NumArgs),
3977                                      Context.BoolTy,
3978                                      VK_RValue,
3979                                      RParenLoc);
3980 
3981   // Bail out early if calling a builtin with custom typechecking.
3982   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3983     return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3984 
3985  retry:
3986   const FunctionType *FuncT;
3987   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3988     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3989     // have type pointer to function".
3990     FuncT = PT->getPointeeType()->getAs<FunctionType>();
3991     if (FuncT == 0)
3992       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3993                          << Fn->getType() << Fn->getSourceRange());
3994   } else if (const BlockPointerType *BPT =
3995                Fn->getType()->getAs<BlockPointerType>()) {
3996     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3997   } else {
3998     // Handle calls to expressions of unknown-any type.
3999     if (Fn->getType() == Context.UnknownAnyTy) {
4000       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4001       if (rewrite.isInvalid()) return ExprError();
4002       Fn = rewrite.take();
4003       TheCall->setCallee(Fn);
4004       goto retry;
4005     }
4006 
4007     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4008       << Fn->getType() << Fn->getSourceRange());
4009   }
4010 
4011   if (getLangOpts().CUDA) {
4012     if (Config) {
4013       // CUDA: Kernel calls must be to global functions
4014       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4015         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4016             << FDecl->getName() << Fn->getSourceRange());
4017 
4018       // CUDA: Kernel function must have 'void' return type
4019       if (!FuncT->getResultType()->isVoidType())
4020         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4021             << Fn->getType() << Fn->getSourceRange());
4022     } else {
4023       // CUDA: Calls to global functions must be configured
4024       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4025         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4026             << FDecl->getName() << Fn->getSourceRange());
4027     }
4028   }
4029 
4030   // Check for a valid return type
4031   if (CheckCallReturnType(FuncT->getResultType(),
4032                           Fn->getLocStart(), TheCall,
4033                           FDecl))
4034     return ExprError();
4035 
4036   // We know the result type of the call, set it.
4037   TheCall->setType(FuncT->getCallResultType(Context));
4038   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4039 
4040   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4041   if (Proto) {
4042     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
4043                                 RParenLoc, IsExecConfig))
4044       return ExprError();
4045   } else {
4046     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4047 
4048     if (FDecl) {
4049       // Check if we have too few/too many template arguments, based
4050       // on our knowledge of the function definition.
4051       const FunctionDecl *Def = 0;
4052       if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4053         Proto = Def->getType()->getAs<FunctionProtoType>();
4054         if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4055           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4056             << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4057       }
4058 
4059       // If the function we're calling isn't a function prototype, but we have
4060       // a function prototype from a prior declaratiom, use that prototype.
4061       if (!FDecl->hasPrototype())
4062         Proto = FDecl->getType()->getAs<FunctionProtoType>();
4063     }
4064 
4065     // Promote the arguments (C99 6.5.2.2p6).
4066     for (unsigned i = 0; i != NumArgs; i++) {
4067       Expr *Arg = Args[i];
4068 
4069       if (Proto && i < Proto->getNumArgs()) {
4070         InitializedEntity Entity
4071           = InitializedEntity::InitializeParameter(Context,
4072                                                    Proto->getArgType(i),
4073                                                    Proto->isArgConsumed(i));
4074         ExprResult ArgE = PerformCopyInitialization(Entity,
4075                                                     SourceLocation(),
4076                                                     Owned(Arg));
4077         if (ArgE.isInvalid())
4078           return true;
4079 
4080         Arg = ArgE.takeAs<Expr>();
4081 
4082       } else {
4083         ExprResult ArgE = DefaultArgumentPromotion(Arg);
4084 
4085         if (ArgE.isInvalid())
4086           return true;
4087 
4088         Arg = ArgE.takeAs<Expr>();
4089       }
4090 
4091       if (RequireCompleteType(Arg->getLocStart(),
4092                               Arg->getType(),
4093                               diag::err_call_incomplete_argument, Arg))
4094         return ExprError();
4095 
4096       TheCall->setArg(i, Arg);
4097     }
4098   }
4099 
4100   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4101     if (!Method->isStatic())
4102       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4103         << Fn->getSourceRange());
4104 
4105   // Check for sentinels
4106   if (NDecl)
4107     DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4108 
4109   // Do special checking on direct calls to functions.
4110   if (FDecl) {
4111     if (CheckFunctionCall(FDecl, TheCall, Proto))
4112       return ExprError();
4113 
4114     if (BuiltinID)
4115       return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4116   } else if (NDecl) {
4117     if (CheckBlockCall(NDecl, TheCall, Proto))
4118       return ExprError();
4119   }
4120 
4121   return MaybeBindToTemporary(TheCall);
4122 }
4123 
4124 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)4125 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4126                            SourceLocation RParenLoc, Expr *InitExpr) {
4127   assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4128   // FIXME: put back this assert when initializers are worked out.
4129   //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4130 
4131   TypeSourceInfo *TInfo;
4132   QualType literalType = GetTypeFromParser(Ty, &TInfo);
4133   if (!TInfo)
4134     TInfo = Context.getTrivialTypeSourceInfo(literalType);
4135 
4136   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4137 }
4138 
4139 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)4140 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4141                                SourceLocation RParenLoc, Expr *LiteralExpr) {
4142   QualType literalType = TInfo->getType();
4143 
4144   if (literalType->isArrayType()) {
4145     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4146           diag::err_illegal_decl_array_incomplete_type,
4147           SourceRange(LParenLoc,
4148                       LiteralExpr->getSourceRange().getEnd())))
4149       return ExprError();
4150     if (literalType->isVariableArrayType())
4151       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4152         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4153   } else if (!literalType->isDependentType() &&
4154              RequireCompleteType(LParenLoc, literalType,
4155                diag::err_typecheck_decl_incomplete_type,
4156                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4157     return ExprError();
4158 
4159   InitializedEntity Entity
4160     = InitializedEntity::InitializeTemporary(literalType);
4161   InitializationKind Kind
4162     = InitializationKind::CreateCStyleCast(LParenLoc,
4163                                            SourceRange(LParenLoc, RParenLoc),
4164                                            /*InitList=*/true);
4165   InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
4166   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4167                                       &literalType);
4168   if (Result.isInvalid())
4169     return ExprError();
4170   LiteralExpr = Result.get();
4171 
4172   bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4173   if (isFileScope) { // 6.5.2.5p3
4174     if (CheckForConstantInitializer(LiteralExpr, literalType))
4175       return ExprError();
4176   }
4177 
4178   // In C, compound literals are l-values for some reason.
4179   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4180 
4181   return MaybeBindToTemporary(
4182            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4183                                              VK, LiteralExpr, isFileScope));
4184 }
4185 
4186 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)4187 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4188                     SourceLocation RBraceLoc) {
4189   // Immediately handle non-overload placeholders.  Overloads can be
4190   // resolved contextually, but everything else here can't.
4191   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4192     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4193       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4194 
4195       // Ignore failures; dropping the entire initializer list because
4196       // of one failure would be terrible for indexing/etc.
4197       if (result.isInvalid()) continue;
4198 
4199       InitArgList[I] = result.take();
4200     }
4201   }
4202 
4203   // Semantic analysis for initializers is done by ActOnDeclarator() and
4204   // CheckInitializer() - it requires knowledge of the object being intialized.
4205 
4206   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4207                                                RBraceLoc);
4208   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4209   return Owned(E);
4210 }
4211 
4212 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(Sema & S,ExprResult & E)4213 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4214   assert(E.get()->getType()->isBlockPointerType());
4215   assert(E.get()->isRValue());
4216 
4217   // Only do this in an r-value context.
4218   if (!S.getLangOpts().ObjCAutoRefCount) return;
4219 
4220   E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4221                                CK_ARCExtendBlockObject, E.get(),
4222                                /*base path*/ 0, VK_RValue);
4223   S.ExprNeedsCleanups = true;
4224 }
4225 
4226 /// Prepare a conversion of the given expression to an ObjC object
4227 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)4228 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4229   QualType type = E.get()->getType();
4230   if (type->isObjCObjectPointerType()) {
4231     return CK_BitCast;
4232   } else if (type->isBlockPointerType()) {
4233     maybeExtendBlockObject(*this, E);
4234     return CK_BlockPointerToObjCPointerCast;
4235   } else {
4236     assert(type->isPointerType());
4237     return CK_CPointerToObjCPointerCast;
4238   }
4239 }
4240 
4241 /// Prepares for a scalar cast, performing all the necessary stages
4242 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)4243 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4244   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4245   // Also, callers should have filtered out the invalid cases with
4246   // pointers.  Everything else should be possible.
4247 
4248   QualType SrcTy = Src.get()->getType();
4249   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4250     return CK_NoOp;
4251 
4252   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4253   case Type::STK_MemberPointer:
4254     llvm_unreachable("member pointer type in C");
4255 
4256   case Type::STK_CPointer:
4257   case Type::STK_BlockPointer:
4258   case Type::STK_ObjCObjectPointer:
4259     switch (DestTy->getScalarTypeKind()) {
4260     case Type::STK_CPointer:
4261       return CK_BitCast;
4262     case Type::STK_BlockPointer:
4263       return (SrcKind == Type::STK_BlockPointer
4264                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4265     case Type::STK_ObjCObjectPointer:
4266       if (SrcKind == Type::STK_ObjCObjectPointer)
4267         return CK_BitCast;
4268       if (SrcKind == Type::STK_CPointer)
4269         return CK_CPointerToObjCPointerCast;
4270       maybeExtendBlockObject(*this, Src);
4271       return CK_BlockPointerToObjCPointerCast;
4272     case Type::STK_Bool:
4273       return CK_PointerToBoolean;
4274     case Type::STK_Integral:
4275       return CK_PointerToIntegral;
4276     case Type::STK_Floating:
4277     case Type::STK_FloatingComplex:
4278     case Type::STK_IntegralComplex:
4279     case Type::STK_MemberPointer:
4280       llvm_unreachable("illegal cast from pointer");
4281     }
4282     llvm_unreachable("Should have returned before this");
4283 
4284   case Type::STK_Bool: // casting from bool is like casting from an integer
4285   case Type::STK_Integral:
4286     switch (DestTy->getScalarTypeKind()) {
4287     case Type::STK_CPointer:
4288     case Type::STK_ObjCObjectPointer:
4289     case Type::STK_BlockPointer:
4290       if (Src.get()->isNullPointerConstant(Context,
4291                                            Expr::NPC_ValueDependentIsNull))
4292         return CK_NullToPointer;
4293       return CK_IntegralToPointer;
4294     case Type::STK_Bool:
4295       return CK_IntegralToBoolean;
4296     case Type::STK_Integral:
4297       return CK_IntegralCast;
4298     case Type::STK_Floating:
4299       return CK_IntegralToFloating;
4300     case Type::STK_IntegralComplex:
4301       Src = ImpCastExprToType(Src.take(),
4302                               DestTy->castAs<ComplexType>()->getElementType(),
4303                               CK_IntegralCast);
4304       return CK_IntegralRealToComplex;
4305     case Type::STK_FloatingComplex:
4306       Src = ImpCastExprToType(Src.take(),
4307                               DestTy->castAs<ComplexType>()->getElementType(),
4308                               CK_IntegralToFloating);
4309       return CK_FloatingRealToComplex;
4310     case Type::STK_MemberPointer:
4311       llvm_unreachable("member pointer type in C");
4312     }
4313     llvm_unreachable("Should have returned before this");
4314 
4315   case Type::STK_Floating:
4316     switch (DestTy->getScalarTypeKind()) {
4317     case Type::STK_Floating:
4318       return CK_FloatingCast;
4319     case Type::STK_Bool:
4320       return CK_FloatingToBoolean;
4321     case Type::STK_Integral:
4322       return CK_FloatingToIntegral;
4323     case Type::STK_FloatingComplex:
4324       Src = ImpCastExprToType(Src.take(),
4325                               DestTy->castAs<ComplexType>()->getElementType(),
4326                               CK_FloatingCast);
4327       return CK_FloatingRealToComplex;
4328     case Type::STK_IntegralComplex:
4329       Src = ImpCastExprToType(Src.take(),
4330                               DestTy->castAs<ComplexType>()->getElementType(),
4331                               CK_FloatingToIntegral);
4332       return CK_IntegralRealToComplex;
4333     case Type::STK_CPointer:
4334     case Type::STK_ObjCObjectPointer:
4335     case Type::STK_BlockPointer:
4336       llvm_unreachable("valid float->pointer cast?");
4337     case Type::STK_MemberPointer:
4338       llvm_unreachable("member pointer type in C");
4339     }
4340     llvm_unreachable("Should have returned before this");
4341 
4342   case Type::STK_FloatingComplex:
4343     switch (DestTy->getScalarTypeKind()) {
4344     case Type::STK_FloatingComplex:
4345       return CK_FloatingComplexCast;
4346     case Type::STK_IntegralComplex:
4347       return CK_FloatingComplexToIntegralComplex;
4348     case Type::STK_Floating: {
4349       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4350       if (Context.hasSameType(ET, DestTy))
4351         return CK_FloatingComplexToReal;
4352       Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4353       return CK_FloatingCast;
4354     }
4355     case Type::STK_Bool:
4356       return CK_FloatingComplexToBoolean;
4357     case Type::STK_Integral:
4358       Src = ImpCastExprToType(Src.take(),
4359                               SrcTy->castAs<ComplexType>()->getElementType(),
4360                               CK_FloatingComplexToReal);
4361       return CK_FloatingToIntegral;
4362     case Type::STK_CPointer:
4363     case Type::STK_ObjCObjectPointer:
4364     case Type::STK_BlockPointer:
4365       llvm_unreachable("valid complex float->pointer cast?");
4366     case Type::STK_MemberPointer:
4367       llvm_unreachable("member pointer type in C");
4368     }
4369     llvm_unreachable("Should have returned before this");
4370 
4371   case Type::STK_IntegralComplex:
4372     switch (DestTy->getScalarTypeKind()) {
4373     case Type::STK_FloatingComplex:
4374       return CK_IntegralComplexToFloatingComplex;
4375     case Type::STK_IntegralComplex:
4376       return CK_IntegralComplexCast;
4377     case Type::STK_Integral: {
4378       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4379       if (Context.hasSameType(ET, DestTy))
4380         return CK_IntegralComplexToReal;
4381       Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4382       return CK_IntegralCast;
4383     }
4384     case Type::STK_Bool:
4385       return CK_IntegralComplexToBoolean;
4386     case Type::STK_Floating:
4387       Src = ImpCastExprToType(Src.take(),
4388                               SrcTy->castAs<ComplexType>()->getElementType(),
4389                               CK_IntegralComplexToReal);
4390       return CK_IntegralToFloating;
4391     case Type::STK_CPointer:
4392     case Type::STK_ObjCObjectPointer:
4393     case Type::STK_BlockPointer:
4394       llvm_unreachable("valid complex int->pointer cast?");
4395     case Type::STK_MemberPointer:
4396       llvm_unreachable("member pointer type in C");
4397     }
4398     llvm_unreachable("Should have returned before this");
4399   }
4400 
4401   llvm_unreachable("Unhandled scalar cast");
4402 }
4403 
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)4404 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4405                            CastKind &Kind) {
4406   assert(VectorTy->isVectorType() && "Not a vector type!");
4407 
4408   if (Ty->isVectorType() || Ty->isIntegerType()) {
4409     if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4410       return Diag(R.getBegin(),
4411                   Ty->isVectorType() ?
4412                   diag::err_invalid_conversion_between_vectors :
4413                   diag::err_invalid_conversion_between_vector_and_integer)
4414         << VectorTy << Ty << R;
4415   } else
4416     return Diag(R.getBegin(),
4417                 diag::err_invalid_conversion_between_vector_and_scalar)
4418       << VectorTy << Ty << R;
4419 
4420   Kind = CK_BitCast;
4421   return false;
4422 }
4423 
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)4424 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4425                                     Expr *CastExpr, CastKind &Kind) {
4426   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4427 
4428   QualType SrcTy = CastExpr->getType();
4429 
4430   // If SrcTy is a VectorType, the total size must match to explicitly cast to
4431   // an ExtVectorType.
4432   // In OpenCL, casts between vectors of different types are not allowed.
4433   // (See OpenCL 6.2).
4434   if (SrcTy->isVectorType()) {
4435     if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4436         || (getLangOpts().OpenCL &&
4437             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4438       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4439         << DestTy << SrcTy << R;
4440       return ExprError();
4441     }
4442     Kind = CK_BitCast;
4443     return Owned(CastExpr);
4444   }
4445 
4446   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4447   // conversion will take place first from scalar to elt type, and then
4448   // splat from elt type to vector.
4449   if (SrcTy->isPointerType())
4450     return Diag(R.getBegin(),
4451                 diag::err_invalid_conversion_between_vector_and_scalar)
4452       << DestTy << SrcTy << R;
4453 
4454   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4455   ExprResult CastExprRes = Owned(CastExpr);
4456   CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4457   if (CastExprRes.isInvalid())
4458     return ExprError();
4459   CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4460 
4461   Kind = CK_VectorSplat;
4462   return Owned(CastExpr);
4463 }
4464 
4465 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)4466 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4467                     Declarator &D, ParsedType &Ty,
4468                     SourceLocation RParenLoc, Expr *CastExpr) {
4469   assert(!D.isInvalidType() && (CastExpr != 0) &&
4470          "ActOnCastExpr(): missing type or expr");
4471 
4472   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4473   if (D.isInvalidType())
4474     return ExprError();
4475 
4476   if (getLangOpts().CPlusPlus) {
4477     // Check that there are no default arguments (C++ only).
4478     CheckExtraCXXDefaultArguments(D);
4479   }
4480 
4481   checkUnusedDeclAttributes(D);
4482 
4483   QualType castType = castTInfo->getType();
4484   Ty = CreateParsedType(castType, castTInfo);
4485 
4486   bool isVectorLiteral = false;
4487 
4488   // Check for an altivec or OpenCL literal,
4489   // i.e. all the elements are integer constants.
4490   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4491   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4492   if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4493        && castType->isVectorType() && (PE || PLE)) {
4494     if (PLE && PLE->getNumExprs() == 0) {
4495       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4496       return ExprError();
4497     }
4498     if (PE || PLE->getNumExprs() == 1) {
4499       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4500       if (!E->getType()->isVectorType())
4501         isVectorLiteral = true;
4502     }
4503     else
4504       isVectorLiteral = true;
4505   }
4506 
4507   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4508   // then handle it as such.
4509   if (isVectorLiteral)
4510     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4511 
4512   // If the Expr being casted is a ParenListExpr, handle it specially.
4513   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4514   // sequence of BinOp comma operators.
4515   if (isa<ParenListExpr>(CastExpr)) {
4516     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4517     if (Result.isInvalid()) return ExprError();
4518     CastExpr = Result.take();
4519   }
4520 
4521   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4522 }
4523 
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)4524 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4525                                     SourceLocation RParenLoc, Expr *E,
4526                                     TypeSourceInfo *TInfo) {
4527   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4528          "Expected paren or paren list expression");
4529 
4530   Expr **exprs;
4531   unsigned numExprs;
4532   Expr *subExpr;
4533   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4534     exprs = PE->getExprs();
4535     numExprs = PE->getNumExprs();
4536   } else {
4537     subExpr = cast<ParenExpr>(E)->getSubExpr();
4538     exprs = &subExpr;
4539     numExprs = 1;
4540   }
4541 
4542   QualType Ty = TInfo->getType();
4543   assert(Ty->isVectorType() && "Expected vector type");
4544 
4545   SmallVector<Expr *, 8> initExprs;
4546   const VectorType *VTy = Ty->getAs<VectorType>();
4547   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4548 
4549   // '(...)' form of vector initialization in AltiVec: the number of
4550   // initializers must be one or must match the size of the vector.
4551   // If a single value is specified in the initializer then it will be
4552   // replicated to all the components of the vector
4553   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4554     // The number of initializers must be one or must match the size of the
4555     // vector. If a single value is specified in the initializer then it will
4556     // be replicated to all the components of the vector
4557     if (numExprs == 1) {
4558       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4559       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4560       if (Literal.isInvalid())
4561         return ExprError();
4562       Literal = ImpCastExprToType(Literal.take(), ElemTy,
4563                                   PrepareScalarCast(Literal, ElemTy));
4564       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4565     }
4566     else if (numExprs < numElems) {
4567       Diag(E->getExprLoc(),
4568            diag::err_incorrect_number_of_vector_initializers);
4569       return ExprError();
4570     }
4571     else
4572       initExprs.append(exprs, exprs + numExprs);
4573   }
4574   else {
4575     // For OpenCL, when the number of initializers is a single value,
4576     // it will be replicated to all components of the vector.
4577     if (getLangOpts().OpenCL &&
4578         VTy->getVectorKind() == VectorType::GenericVector &&
4579         numExprs == 1) {
4580         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4581         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4582         if (Literal.isInvalid())
4583           return ExprError();
4584         Literal = ImpCastExprToType(Literal.take(), ElemTy,
4585                                     PrepareScalarCast(Literal, ElemTy));
4586         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4587     }
4588 
4589     initExprs.append(exprs, exprs + numExprs);
4590   }
4591   // FIXME: This means that pretty-printing the final AST will produce curly
4592   // braces instead of the original commas.
4593   InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4594                                                    initExprs, RParenLoc);
4595   initE->setType(Ty);
4596   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4597 }
4598 
4599 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4600 /// the ParenListExpr into a sequence of comma binary operators.
4601 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)4602 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4603   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4604   if (!E)
4605     return Owned(OrigExpr);
4606 
4607   ExprResult Result(E->getExpr(0));
4608 
4609   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4610     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4611                         E->getExpr(i));
4612 
4613   if (Result.isInvalid()) return ExprError();
4614 
4615   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4616 }
4617 
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)4618 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4619                                     SourceLocation R,
4620                                     MultiExprArg Val) {
4621   assert(Val.data() != 0 && "ActOnParenOrParenListExpr() missing expr list");
4622   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
4623   return Owned(expr);
4624 }
4625 
4626 /// \brief Emit a specialized diagnostic when one expression is a null pointer
4627 /// constant and the other is not a pointer.  Returns true if a diagnostic is
4628 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)4629 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4630                                       SourceLocation QuestionLoc) {
4631   Expr *NullExpr = LHSExpr;
4632   Expr *NonPointerExpr = RHSExpr;
4633   Expr::NullPointerConstantKind NullKind =
4634       NullExpr->isNullPointerConstant(Context,
4635                                       Expr::NPC_ValueDependentIsNotNull);
4636 
4637   if (NullKind == Expr::NPCK_NotNull) {
4638     NullExpr = RHSExpr;
4639     NonPointerExpr = LHSExpr;
4640     NullKind =
4641         NullExpr->isNullPointerConstant(Context,
4642                                         Expr::NPC_ValueDependentIsNotNull);
4643   }
4644 
4645   if (NullKind == Expr::NPCK_NotNull)
4646     return false;
4647 
4648   if (NullKind == Expr::NPCK_ZeroExpression)
4649     return false;
4650 
4651   if (NullKind == Expr::NPCK_ZeroLiteral) {
4652     // In this case, check to make sure that we got here from a "NULL"
4653     // string in the source code.
4654     NullExpr = NullExpr->IgnoreParenImpCasts();
4655     SourceLocation loc = NullExpr->getExprLoc();
4656     if (!findMacroSpelling(loc, "NULL"))
4657       return false;
4658   }
4659 
4660   int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4661   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4662       << NonPointerExpr->getType() << DiagType
4663       << NonPointerExpr->getSourceRange();
4664   return true;
4665 }
4666 
4667 /// \brief Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond)4668 static bool checkCondition(Sema &S, Expr *Cond) {
4669   QualType CondTy = Cond->getType();
4670 
4671   // C99 6.5.15p2
4672   if (CondTy->isScalarType()) return false;
4673 
4674   // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4675   if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4676     return false;
4677 
4678   // Emit the proper error message.
4679   S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4680                               diag::err_typecheck_cond_expect_scalar :
4681                               diag::err_typecheck_cond_expect_scalar_or_vector)
4682     << CondTy;
4683   return true;
4684 }
4685 
4686 /// \brief Return false if the two expressions can be converted to a vector,
4687 /// true otherwise
checkConditionalConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy)4688 static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4689                                                     ExprResult &RHS,
4690                                                     QualType CondTy) {
4691   // Both operands should be of scalar type.
4692   if (!LHS.get()->getType()->isScalarType()) {
4693     S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4694       << CondTy;
4695     return true;
4696   }
4697   if (!RHS.get()->getType()->isScalarType()) {
4698     S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4699       << CondTy;
4700     return true;
4701   }
4702 
4703   // Implicity convert these scalars to the type of the condition.
4704   LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4705   RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4706   return false;
4707 }
4708 
4709 /// \brief Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)4710 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4711                                          ExprResult &RHS) {
4712     Expr *LHSExpr = LHS.get();
4713     Expr *RHSExpr = RHS.get();
4714 
4715     if (!LHSExpr->getType()->isVoidType())
4716       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4717         << RHSExpr->getSourceRange();
4718     if (!RHSExpr->getType()->isVoidType())
4719       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4720         << LHSExpr->getSourceRange();
4721     LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4722     RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4723     return S.Context.VoidTy;
4724 }
4725 
4726 /// \brief Return false if the NullExpr can be promoted to PointerTy,
4727 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)4728 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4729                                         QualType PointerTy) {
4730   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4731       !NullExpr.get()->isNullPointerConstant(S.Context,
4732                                             Expr::NPC_ValueDependentIsNull))
4733     return true;
4734 
4735   NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4736   return false;
4737 }
4738 
4739 /// \brief Checks compatibility between two pointers and return the resulting
4740 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4741 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4742                                                      ExprResult &RHS,
4743                                                      SourceLocation Loc) {
4744   QualType LHSTy = LHS.get()->getType();
4745   QualType RHSTy = RHS.get()->getType();
4746 
4747   if (S.Context.hasSameType(LHSTy, RHSTy)) {
4748     // Two identical pointers types are always compatible.
4749     return LHSTy;
4750   }
4751 
4752   QualType lhptee, rhptee;
4753 
4754   // Get the pointee types.
4755   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4756     lhptee = LHSBTy->getPointeeType();
4757     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4758   } else {
4759     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4760     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4761   }
4762 
4763   // C99 6.5.15p6: If both operands are pointers to compatible types or to
4764   // differently qualified versions of compatible types, the result type is
4765   // a pointer to an appropriately qualified version of the composite
4766   // type.
4767 
4768   // Only CVR-qualifiers exist in the standard, and the differently-qualified
4769   // clause doesn't make sense for our extensions. E.g. address space 2 should
4770   // be incompatible with address space 3: they may live on different devices or
4771   // anything.
4772   Qualifiers lhQual = lhptee.getQualifiers();
4773   Qualifiers rhQual = rhptee.getQualifiers();
4774 
4775   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4776   lhQual.removeCVRQualifiers();
4777   rhQual.removeCVRQualifiers();
4778 
4779   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4780   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4781 
4782   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4783 
4784   if (CompositeTy.isNull()) {
4785     S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4786       << LHSTy << RHSTy << LHS.get()->getSourceRange()
4787       << RHS.get()->getSourceRange();
4788     // In this situation, we assume void* type. No especially good
4789     // reason, but this is what gcc does, and we do have to pick
4790     // to get a consistent AST.
4791     QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4792     LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4793     RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4794     return incompatTy;
4795   }
4796 
4797   // The pointer types are compatible.
4798   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4799   ResultTy = S.Context.getPointerType(ResultTy);
4800 
4801   LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4802   RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4803   return ResultTy;
4804 }
4805 
4806 /// \brief Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4807 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4808                                                           ExprResult &LHS,
4809                                                           ExprResult &RHS,
4810                                                           SourceLocation Loc) {
4811   QualType LHSTy = LHS.get()->getType();
4812   QualType RHSTy = RHS.get()->getType();
4813 
4814   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4815     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4816       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4817       LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4818       RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4819       return destType;
4820     }
4821     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4822       << LHSTy << RHSTy << LHS.get()->getSourceRange()
4823       << RHS.get()->getSourceRange();
4824     return QualType();
4825   }
4826 
4827   // We have 2 block pointer types.
4828   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4829 }
4830 
4831 /// \brief Return the resulting type when the operands are both pointers.
4832 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4833 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4834                                             ExprResult &RHS,
4835                                             SourceLocation Loc) {
4836   // get the pointer types
4837   QualType LHSTy = LHS.get()->getType();
4838   QualType RHSTy = RHS.get()->getType();
4839 
4840   // get the "pointed to" types
4841   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4842   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4843 
4844   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4845   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4846     // Figure out necessary qualifiers (C99 6.5.15p6)
4847     QualType destPointee
4848       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4849     QualType destType = S.Context.getPointerType(destPointee);
4850     // Add qualifiers if necessary.
4851     LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4852     // Promote to void*.
4853     RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4854     return destType;
4855   }
4856   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4857     QualType destPointee
4858       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4859     QualType destType = S.Context.getPointerType(destPointee);
4860     // Add qualifiers if necessary.
4861     RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4862     // Promote to void*.
4863     LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4864     return destType;
4865   }
4866 
4867   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4868 }
4869 
4870 /// \brief Return false if the first expression is not an integer and the second
4871 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)4872 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4873                                         Expr* PointerExpr, SourceLocation Loc,
4874                                         bool IsIntFirstExpr) {
4875   if (!PointerExpr->getType()->isPointerType() ||
4876       !Int.get()->getType()->isIntegerType())
4877     return false;
4878 
4879   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4880   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4881 
4882   S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4883     << Expr1->getType() << Expr2->getType()
4884     << Expr1->getSourceRange() << Expr2->getSourceRange();
4885   Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4886                             CK_IntegralToPointer);
4887   return true;
4888 }
4889 
4890 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4891 /// In that case, LHS = cond.
4892 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4893 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4894                                         ExprResult &RHS, ExprValueKind &VK,
4895                                         ExprObjectKind &OK,
4896                                         SourceLocation QuestionLoc) {
4897 
4898   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4899   if (!LHSResult.isUsable()) return QualType();
4900   LHS = LHSResult;
4901 
4902   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4903   if (!RHSResult.isUsable()) return QualType();
4904   RHS = RHSResult;
4905 
4906   // C++ is sufficiently different to merit its own checker.
4907   if (getLangOpts().CPlusPlus)
4908     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4909 
4910   VK = VK_RValue;
4911   OK = OK_Ordinary;
4912 
4913   Cond = UsualUnaryConversions(Cond.take());
4914   if (Cond.isInvalid())
4915     return QualType();
4916   LHS = UsualUnaryConversions(LHS.take());
4917   if (LHS.isInvalid())
4918     return QualType();
4919   RHS = UsualUnaryConversions(RHS.take());
4920   if (RHS.isInvalid())
4921     return QualType();
4922 
4923   QualType CondTy = Cond.get()->getType();
4924   QualType LHSTy = LHS.get()->getType();
4925   QualType RHSTy = RHS.get()->getType();
4926 
4927   // first, check the condition.
4928   if (checkCondition(*this, Cond.get()))
4929     return QualType();
4930 
4931   // Now check the two expressions.
4932   if (LHSTy->isVectorType() || RHSTy->isVectorType())
4933     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4934 
4935   // OpenCL: If the condition is a vector, and both operands are scalar,
4936   // attempt to implicity convert them to the vector type to act like the
4937   // built in select.
4938   if (getLangOpts().OpenCL && CondTy->isVectorType())
4939     if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4940       return QualType();
4941 
4942   // If both operands have arithmetic type, do the usual arithmetic conversions
4943   // to find a common type: C99 6.5.15p3,5.
4944   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4945     UsualArithmeticConversions(LHS, RHS);
4946     if (LHS.isInvalid() || RHS.isInvalid())
4947       return QualType();
4948     return LHS.get()->getType();
4949   }
4950 
4951   // If both operands are the same structure or union type, the result is that
4952   // type.
4953   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4954     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4955       if (LHSRT->getDecl() == RHSRT->getDecl())
4956         // "If both the operands have structure or union type, the result has
4957         // that type."  This implies that CV qualifiers are dropped.
4958         return LHSTy.getUnqualifiedType();
4959     // FIXME: Type of conditional expression must be complete in C mode.
4960   }
4961 
4962   // C99 6.5.15p5: "If both operands have void type, the result has void type."
4963   // The following || allows only one side to be void (a GCC-ism).
4964   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4965     return checkConditionalVoidType(*this, LHS, RHS);
4966   }
4967 
4968   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4969   // the type of the other operand."
4970   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4971   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4972 
4973   // All objective-c pointer type analysis is done here.
4974   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4975                                                         QuestionLoc);
4976   if (LHS.isInvalid() || RHS.isInvalid())
4977     return QualType();
4978   if (!compositeType.isNull())
4979     return compositeType;
4980 
4981 
4982   // Handle block pointer types.
4983   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4984     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4985                                                      QuestionLoc);
4986 
4987   // Check constraints for C object pointers types (C99 6.5.15p3,6).
4988   if (LHSTy->isPointerType() && RHSTy->isPointerType())
4989     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4990                                                        QuestionLoc);
4991 
4992   // GCC compatibility: soften pointer/integer mismatch.  Note that
4993   // null pointers have been filtered out by this point.
4994   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4995       /*isIntFirstExpr=*/true))
4996     return RHSTy;
4997   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4998       /*isIntFirstExpr=*/false))
4999     return LHSTy;
5000 
5001   // Emit a better diagnostic if one of the expressions is a null pointer
5002   // constant and the other is not a pointer type. In this case, the user most
5003   // likely forgot to take the address of the other expression.
5004   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5005     return QualType();
5006 
5007   // Otherwise, the operands are not compatible.
5008   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5009     << LHSTy << RHSTy << LHS.get()->getSourceRange()
5010     << RHS.get()->getSourceRange();
5011   return QualType();
5012 }
5013 
5014 /// FindCompositeObjCPointerType - Helper method to find composite type of
5015 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)5016 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5017                                             SourceLocation QuestionLoc) {
5018   QualType LHSTy = LHS.get()->getType();
5019   QualType RHSTy = RHS.get()->getType();
5020 
5021   // Handle things like Class and struct objc_class*.  Here we case the result
5022   // to the pseudo-builtin, because that will be implicitly cast back to the
5023   // redefinition type if an attempt is made to access its fields.
5024   if (LHSTy->isObjCClassType() &&
5025       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5026     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5027     return LHSTy;
5028   }
5029   if (RHSTy->isObjCClassType() &&
5030       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5031     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5032     return RHSTy;
5033   }
5034   // And the same for struct objc_object* / id
5035   if (LHSTy->isObjCIdType() &&
5036       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5037     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5038     return LHSTy;
5039   }
5040   if (RHSTy->isObjCIdType() &&
5041       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5042     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5043     return RHSTy;
5044   }
5045   // And the same for struct objc_selector* / SEL
5046   if (Context.isObjCSelType(LHSTy) &&
5047       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5048     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5049     return LHSTy;
5050   }
5051   if (Context.isObjCSelType(RHSTy) &&
5052       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5053     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5054     return RHSTy;
5055   }
5056   // Check constraints for Objective-C object pointers types.
5057   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5058 
5059     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5060       // Two identical object pointer types are always compatible.
5061       return LHSTy;
5062     }
5063     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5064     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5065     QualType compositeType = LHSTy;
5066 
5067     // If both operands are interfaces and either operand can be
5068     // assigned to the other, use that type as the composite
5069     // type. This allows
5070     //   xxx ? (A*) a : (B*) b
5071     // where B is a subclass of A.
5072     //
5073     // Additionally, as for assignment, if either type is 'id'
5074     // allow silent coercion. Finally, if the types are
5075     // incompatible then make sure to use 'id' as the composite
5076     // type so the result is acceptable for sending messages to.
5077 
5078     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5079     // It could return the composite type.
5080     if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5081       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5082     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5083       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5084     } else if ((LHSTy->isObjCQualifiedIdType() ||
5085                 RHSTy->isObjCQualifiedIdType()) &&
5086                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5087       // Need to handle "id<xx>" explicitly.
5088       // GCC allows qualified id and any Objective-C type to devolve to
5089       // id. Currently localizing to here until clear this should be
5090       // part of ObjCQualifiedIdTypesAreCompatible.
5091       compositeType = Context.getObjCIdType();
5092     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5093       compositeType = Context.getObjCIdType();
5094     } else if (!(compositeType =
5095                  Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5096       ;
5097     else {
5098       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5099       << LHSTy << RHSTy
5100       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5101       QualType incompatTy = Context.getObjCIdType();
5102       LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5103       RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5104       return incompatTy;
5105     }
5106     // The object pointer types are compatible.
5107     LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5108     RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5109     return compositeType;
5110   }
5111   // Check Objective-C object pointer types and 'void *'
5112   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5113     if (getLangOpts().ObjCAutoRefCount) {
5114       // ARC forbids the implicit conversion of object pointers to 'void *',
5115       // so these types are not compatible.
5116       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5117           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5118       LHS = RHS = true;
5119       return QualType();
5120     }
5121     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5122     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5123     QualType destPointee
5124     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5125     QualType destType = Context.getPointerType(destPointee);
5126     // Add qualifiers if necessary.
5127     LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5128     // Promote to void*.
5129     RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5130     return destType;
5131   }
5132   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5133     if (getLangOpts().ObjCAutoRefCount) {
5134       // ARC forbids the implicit conversion of object pointers to 'void *',
5135       // so these types are not compatible.
5136       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5137           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5138       LHS = RHS = true;
5139       return QualType();
5140     }
5141     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5142     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5143     QualType destPointee
5144     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5145     QualType destType = Context.getPointerType(destPointee);
5146     // Add qualifiers if necessary.
5147     RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5148     // Promote to void*.
5149     LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5150     return destType;
5151   }
5152   return QualType();
5153 }
5154 
5155 /// SuggestParentheses - Emit a note with a fixit hint that wraps
5156 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)5157 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5158                                const PartialDiagnostic &Note,
5159                                SourceRange ParenRange) {
5160   SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5161   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5162       EndLoc.isValid()) {
5163     Self.Diag(Loc, Note)
5164       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5165       << FixItHint::CreateInsertion(EndLoc, ")");
5166   } else {
5167     // We can't display the parentheses, so just show the bare note.
5168     Self.Diag(Loc, Note) << ParenRange;
5169   }
5170 }
5171 
IsArithmeticOp(BinaryOperatorKind Opc)5172 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5173   return Opc >= BO_Mul && Opc <= BO_Shr;
5174 }
5175 
5176 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5177 /// expression, either using a built-in or overloaded operator,
5178 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5179 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)5180 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5181                                    Expr **RHSExprs) {
5182   // Don't strip parenthesis: we should not warn if E is in parenthesis.
5183   E = E->IgnoreImpCasts();
5184   E = E->IgnoreConversionOperator();
5185   E = E->IgnoreImpCasts();
5186 
5187   // Built-in binary operator.
5188   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5189     if (IsArithmeticOp(OP->getOpcode())) {
5190       *Opcode = OP->getOpcode();
5191       *RHSExprs = OP->getRHS();
5192       return true;
5193     }
5194   }
5195 
5196   // Overloaded operator.
5197   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5198     if (Call->getNumArgs() != 2)
5199       return false;
5200 
5201     // Make sure this is really a binary operator that is safe to pass into
5202     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5203     OverloadedOperatorKind OO = Call->getOperator();
5204     if (OO < OO_Plus || OO > OO_Arrow)
5205       return false;
5206 
5207     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5208     if (IsArithmeticOp(OpKind)) {
5209       *Opcode = OpKind;
5210       *RHSExprs = Call->getArg(1);
5211       return true;
5212     }
5213   }
5214 
5215   return false;
5216 }
5217 
IsLogicOp(BinaryOperatorKind Opc)5218 static bool IsLogicOp(BinaryOperatorKind Opc) {
5219   return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5220 }
5221 
5222 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5223 /// or is a logical expression such as (x==y) which has int type, but is
5224 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)5225 static bool ExprLooksBoolean(Expr *E) {
5226   E = E->IgnoreParenImpCasts();
5227 
5228   if (E->getType()->isBooleanType())
5229     return true;
5230   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5231     return IsLogicOp(OP->getOpcode());
5232   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5233     return OP->getOpcode() == UO_LNot;
5234 
5235   return false;
5236 }
5237 
5238 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5239 /// and binary operator are mixed in a way that suggests the programmer assumed
5240 /// the conditional operator has higher precedence, for example:
5241 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)5242 static void DiagnoseConditionalPrecedence(Sema &Self,
5243                                           SourceLocation OpLoc,
5244                                           Expr *Condition,
5245                                           Expr *LHSExpr,
5246                                           Expr *RHSExpr) {
5247   BinaryOperatorKind CondOpcode;
5248   Expr *CondRHS;
5249 
5250   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5251     return;
5252   if (!ExprLooksBoolean(CondRHS))
5253     return;
5254 
5255   // The condition is an arithmetic binary expression, with a right-
5256   // hand side that looks boolean, so warn.
5257 
5258   Self.Diag(OpLoc, diag::warn_precedence_conditional)
5259       << Condition->getSourceRange()
5260       << BinaryOperator::getOpcodeStr(CondOpcode);
5261 
5262   SuggestParentheses(Self, OpLoc,
5263     Self.PDiag(diag::note_precedence_conditional_silence)
5264       << BinaryOperator::getOpcodeStr(CondOpcode),
5265     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5266 
5267   SuggestParentheses(Self, OpLoc,
5268     Self.PDiag(diag::note_precedence_conditional_first),
5269     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5270 }
5271 
5272 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5273 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)5274 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5275                                     SourceLocation ColonLoc,
5276                                     Expr *CondExpr, Expr *LHSExpr,
5277                                     Expr *RHSExpr) {
5278   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5279   // was the condition.
5280   OpaqueValueExpr *opaqueValue = 0;
5281   Expr *commonExpr = 0;
5282   if (LHSExpr == 0) {
5283     commonExpr = CondExpr;
5284 
5285     // We usually want to apply unary conversions *before* saving, except
5286     // in the special case of a C++ l-value conditional.
5287     if (!(getLangOpts().CPlusPlus
5288           && !commonExpr->isTypeDependent()
5289           && commonExpr->getValueKind() == RHSExpr->getValueKind()
5290           && commonExpr->isGLValue()
5291           && commonExpr->isOrdinaryOrBitFieldObject()
5292           && RHSExpr->isOrdinaryOrBitFieldObject()
5293           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5294       ExprResult commonRes = UsualUnaryConversions(commonExpr);
5295       if (commonRes.isInvalid())
5296         return ExprError();
5297       commonExpr = commonRes.take();
5298     }
5299 
5300     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5301                                                 commonExpr->getType(),
5302                                                 commonExpr->getValueKind(),
5303                                                 commonExpr->getObjectKind(),
5304                                                 commonExpr);
5305     LHSExpr = CondExpr = opaqueValue;
5306   }
5307 
5308   ExprValueKind VK = VK_RValue;
5309   ExprObjectKind OK = OK_Ordinary;
5310   ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5311   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5312                                              VK, OK, QuestionLoc);
5313   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5314       RHS.isInvalid())
5315     return ExprError();
5316 
5317   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5318                                 RHS.get());
5319 
5320   if (!commonExpr)
5321     return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5322                                                    LHS.take(), ColonLoc,
5323                                                    RHS.take(), result, VK, OK));
5324 
5325   return Owned(new (Context)
5326     BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5327                               RHS.take(), QuestionLoc, ColonLoc, result, VK,
5328                               OK));
5329 }
5330 
5331 // checkPointerTypesForAssignment - This is a very tricky routine (despite
5332 // being closely modeled after the C99 spec:-). The odd characteristic of this
5333 // routine is it effectively iqnores the qualifiers on the top level pointee.
5334 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5335 // FIXME: add a couple examples in this comment.
5336 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5337 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5338   assert(LHSType.isCanonical() && "LHS not canonicalized!");
5339   assert(RHSType.isCanonical() && "RHS not canonicalized!");
5340 
5341   // get the "pointed to" type (ignoring qualifiers at the top level)
5342   const Type *lhptee, *rhptee;
5343   Qualifiers lhq, rhq;
5344   llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5345   llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5346 
5347   Sema::AssignConvertType ConvTy = Sema::Compatible;
5348 
5349   // C99 6.5.16.1p1: This following citation is common to constraints
5350   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5351   // qualifiers of the type *pointed to* by the right;
5352   Qualifiers lq;
5353 
5354   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5355   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5356       lhq.compatiblyIncludesObjCLifetime(rhq)) {
5357     // Ignore lifetime for further calculation.
5358     lhq.removeObjCLifetime();
5359     rhq.removeObjCLifetime();
5360   }
5361 
5362   if (!lhq.compatiblyIncludes(rhq)) {
5363     // Treat address-space mismatches as fatal.  TODO: address subspaces
5364     if (lhq.getAddressSpace() != rhq.getAddressSpace())
5365       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5366 
5367     // It's okay to add or remove GC or lifetime qualifiers when converting to
5368     // and from void*.
5369     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5370                         .compatiblyIncludes(
5371                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
5372              && (lhptee->isVoidType() || rhptee->isVoidType()))
5373       ; // keep old
5374 
5375     // Treat lifetime mismatches as fatal.
5376     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5377       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5378 
5379     // For GCC compatibility, other qualifier mismatches are treated
5380     // as still compatible in C.
5381     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5382   }
5383 
5384   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5385   // incomplete type and the other is a pointer to a qualified or unqualified
5386   // version of void...
5387   if (lhptee->isVoidType()) {
5388     if (rhptee->isIncompleteOrObjectType())
5389       return ConvTy;
5390 
5391     // As an extension, we allow cast to/from void* to function pointer.
5392     assert(rhptee->isFunctionType());
5393     return Sema::FunctionVoidPointer;
5394   }
5395 
5396   if (rhptee->isVoidType()) {
5397     if (lhptee->isIncompleteOrObjectType())
5398       return ConvTy;
5399 
5400     // As an extension, we allow cast to/from void* to function pointer.
5401     assert(lhptee->isFunctionType());
5402     return Sema::FunctionVoidPointer;
5403   }
5404 
5405   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5406   // unqualified versions of compatible types, ...
5407   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5408   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5409     // Check if the pointee types are compatible ignoring the sign.
5410     // We explicitly check for char so that we catch "char" vs
5411     // "unsigned char" on systems where "char" is unsigned.
5412     if (lhptee->isCharType())
5413       ltrans = S.Context.UnsignedCharTy;
5414     else if (lhptee->hasSignedIntegerRepresentation())
5415       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5416 
5417     if (rhptee->isCharType())
5418       rtrans = S.Context.UnsignedCharTy;
5419     else if (rhptee->hasSignedIntegerRepresentation())
5420       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5421 
5422     if (ltrans == rtrans) {
5423       // Types are compatible ignoring the sign. Qualifier incompatibility
5424       // takes priority over sign incompatibility because the sign
5425       // warning can be disabled.
5426       if (ConvTy != Sema::Compatible)
5427         return ConvTy;
5428 
5429       return Sema::IncompatiblePointerSign;
5430     }
5431 
5432     // If we are a multi-level pointer, it's possible that our issue is simply
5433     // one of qualification - e.g. char ** -> const char ** is not allowed. If
5434     // the eventual target type is the same and the pointers have the same
5435     // level of indirection, this must be the issue.
5436     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5437       do {
5438         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5439         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5440       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5441 
5442       if (lhptee == rhptee)
5443         return Sema::IncompatibleNestedPointerQualifiers;
5444     }
5445 
5446     // General pointer incompatibility takes priority over qualifiers.
5447     return Sema::IncompatiblePointer;
5448   }
5449   if (!S.getLangOpts().CPlusPlus &&
5450       S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5451     return Sema::IncompatiblePointer;
5452   return ConvTy;
5453 }
5454 
5455 /// checkBlockPointerTypesForAssignment - This routine determines whether two
5456 /// block pointer types are compatible or whether a block and normal pointer
5457 /// are compatible. It is more restrict than comparing two function pointer
5458 // types.
5459 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5460 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5461                                     QualType RHSType) {
5462   assert(LHSType.isCanonical() && "LHS not canonicalized!");
5463   assert(RHSType.isCanonical() && "RHS not canonicalized!");
5464 
5465   QualType lhptee, rhptee;
5466 
5467   // get the "pointed to" type (ignoring qualifiers at the top level)
5468   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5469   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5470 
5471   // In C++, the types have to match exactly.
5472   if (S.getLangOpts().CPlusPlus)
5473     return Sema::IncompatibleBlockPointer;
5474 
5475   Sema::AssignConvertType ConvTy = Sema::Compatible;
5476 
5477   // For blocks we enforce that qualifiers are identical.
5478   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5479     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5480 
5481   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5482     return Sema::IncompatibleBlockPointer;
5483 
5484   return ConvTy;
5485 }
5486 
5487 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5488 /// for assignment compatibility.
5489 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5490 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5491                                    QualType RHSType) {
5492   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5493   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5494 
5495   if (LHSType->isObjCBuiltinType()) {
5496     // Class is not compatible with ObjC object pointers.
5497     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5498         !RHSType->isObjCQualifiedClassType())
5499       return Sema::IncompatiblePointer;
5500     return Sema::Compatible;
5501   }
5502   if (RHSType->isObjCBuiltinType()) {
5503     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5504         !LHSType->isObjCQualifiedClassType())
5505       return Sema::IncompatiblePointer;
5506     return Sema::Compatible;
5507   }
5508   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5509   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5510 
5511   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5512       // make an exception for id<P>
5513       !LHSType->isObjCQualifiedIdType())
5514     return Sema::CompatiblePointerDiscardsQualifiers;
5515 
5516   if (S.Context.typesAreCompatible(LHSType, RHSType))
5517     return Sema::Compatible;
5518   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5519     return Sema::IncompatibleObjCQualifiedId;
5520   return Sema::IncompatiblePointer;
5521 }
5522 
5523 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)5524 Sema::CheckAssignmentConstraints(SourceLocation Loc,
5525                                  QualType LHSType, QualType RHSType) {
5526   // Fake up an opaque expression.  We don't actually care about what
5527   // cast operations are required, so if CheckAssignmentConstraints
5528   // adds casts to this they'll be wasted, but fortunately that doesn't
5529   // usually happen on valid code.
5530   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5531   ExprResult RHSPtr = &RHSExpr;
5532   CastKind K = CK_Invalid;
5533 
5534   return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5535 }
5536 
5537 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5538 /// has code to accommodate several GCC extensions when type checking
5539 /// pointers. Here are some objectionable examples that GCC considers warnings:
5540 ///
5541 ///  int a, *pint;
5542 ///  short *pshort;
5543 ///  struct foo *pfoo;
5544 ///
5545 ///  pint = pshort; // warning: assignment from incompatible pointer type
5546 ///  a = pint; // warning: assignment makes integer from pointer without a cast
5547 ///  pint = a; // warning: assignment makes pointer from integer without a cast
5548 ///  pint = pfoo; // warning: assignment from incompatible pointer type
5549 ///
5550 /// As a result, the code for dealing with pointers is more complex than the
5551 /// C99 spec dictates.
5552 ///
5553 /// Sets 'Kind' for any result kind except Incompatible.
5554 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind)5555 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5556                                  CastKind &Kind) {
5557   QualType RHSType = RHS.get()->getType();
5558   QualType OrigLHSType = LHSType;
5559 
5560   // Get canonical types.  We're not formatting these types, just comparing
5561   // them.
5562   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5563   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5564 
5565 
5566   // Common case: no conversion required.
5567   if (LHSType == RHSType) {
5568     Kind = CK_NoOp;
5569     return Compatible;
5570   }
5571 
5572   // If we have an atomic type, try a non-atomic assignment, then just add an
5573   // atomic qualification step.
5574   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5575     Sema::AssignConvertType result =
5576       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
5577     if (result != Compatible)
5578       return result;
5579     if (Kind != CK_NoOp)
5580       RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
5581     Kind = CK_NonAtomicToAtomic;
5582     return Compatible;
5583   }
5584 
5585   // If the left-hand side is a reference type, then we are in a
5586   // (rare!) case where we've allowed the use of references in C,
5587   // e.g., as a parameter type in a built-in function. In this case,
5588   // just make sure that the type referenced is compatible with the
5589   // right-hand side type. The caller is responsible for adjusting
5590   // LHSType so that the resulting expression does not have reference
5591   // type.
5592   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5593     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5594       Kind = CK_LValueBitCast;
5595       return Compatible;
5596     }
5597     return Incompatible;
5598   }
5599 
5600   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5601   // to the same ExtVector type.
5602   if (LHSType->isExtVectorType()) {
5603     if (RHSType->isExtVectorType())
5604       return Incompatible;
5605     if (RHSType->isArithmeticType()) {
5606       // CK_VectorSplat does T -> vector T, so first cast to the
5607       // element type.
5608       QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5609       if (elType != RHSType) {
5610         Kind = PrepareScalarCast(RHS, elType);
5611         RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5612       }
5613       Kind = CK_VectorSplat;
5614       return Compatible;
5615     }
5616   }
5617 
5618   // Conversions to or from vector type.
5619   if (LHSType->isVectorType() || RHSType->isVectorType()) {
5620     if (LHSType->isVectorType() && RHSType->isVectorType()) {
5621       // Allow assignments of an AltiVec vector type to an equivalent GCC
5622       // vector type and vice versa
5623       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5624         Kind = CK_BitCast;
5625         return Compatible;
5626       }
5627 
5628       // If we are allowing lax vector conversions, and LHS and RHS are both
5629       // vectors, the total size only needs to be the same. This is a bitcast;
5630       // no bits are changed but the result type is different.
5631       if (getLangOpts().LaxVectorConversions &&
5632           (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5633         Kind = CK_BitCast;
5634         return IncompatibleVectors;
5635       }
5636     }
5637     return Incompatible;
5638   }
5639 
5640   // Arithmetic conversions.
5641   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5642       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5643     Kind = PrepareScalarCast(RHS, LHSType);
5644     return Compatible;
5645   }
5646 
5647   // Conversions to normal pointers.
5648   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5649     // U* -> T*
5650     if (isa<PointerType>(RHSType)) {
5651       Kind = CK_BitCast;
5652       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5653     }
5654 
5655     // int -> T*
5656     if (RHSType->isIntegerType()) {
5657       Kind = CK_IntegralToPointer; // FIXME: null?
5658       return IntToPointer;
5659     }
5660 
5661     // C pointers are not compatible with ObjC object pointers,
5662     // with two exceptions:
5663     if (isa<ObjCObjectPointerType>(RHSType)) {
5664       //  - conversions to void*
5665       if (LHSPointer->getPointeeType()->isVoidType()) {
5666         Kind = CK_BitCast;
5667         return Compatible;
5668       }
5669 
5670       //  - conversions from 'Class' to the redefinition type
5671       if (RHSType->isObjCClassType() &&
5672           Context.hasSameType(LHSType,
5673                               Context.getObjCClassRedefinitionType())) {
5674         Kind = CK_BitCast;
5675         return Compatible;
5676       }
5677 
5678       Kind = CK_BitCast;
5679       return IncompatiblePointer;
5680     }
5681 
5682     // U^ -> void*
5683     if (RHSType->getAs<BlockPointerType>()) {
5684       if (LHSPointer->getPointeeType()->isVoidType()) {
5685         Kind = CK_BitCast;
5686         return Compatible;
5687       }
5688     }
5689 
5690     return Incompatible;
5691   }
5692 
5693   // Conversions to block pointers.
5694   if (isa<BlockPointerType>(LHSType)) {
5695     // U^ -> T^
5696     if (RHSType->isBlockPointerType()) {
5697       Kind = CK_BitCast;
5698       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5699     }
5700 
5701     // int or null -> T^
5702     if (RHSType->isIntegerType()) {
5703       Kind = CK_IntegralToPointer; // FIXME: null
5704       return IntToBlockPointer;
5705     }
5706 
5707     // id -> T^
5708     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5709       Kind = CK_AnyPointerToBlockPointerCast;
5710       return Compatible;
5711     }
5712 
5713     // void* -> T^
5714     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5715       if (RHSPT->getPointeeType()->isVoidType()) {
5716         Kind = CK_AnyPointerToBlockPointerCast;
5717         return Compatible;
5718       }
5719 
5720     return Incompatible;
5721   }
5722 
5723   // Conversions to Objective-C pointers.
5724   if (isa<ObjCObjectPointerType>(LHSType)) {
5725     // A* -> B*
5726     if (RHSType->isObjCObjectPointerType()) {
5727       Kind = CK_BitCast;
5728       Sema::AssignConvertType result =
5729         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5730       if (getLangOpts().ObjCAutoRefCount &&
5731           result == Compatible &&
5732           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5733         result = IncompatibleObjCWeakRef;
5734       return result;
5735     }
5736 
5737     // int or null -> A*
5738     if (RHSType->isIntegerType()) {
5739       Kind = CK_IntegralToPointer; // FIXME: null
5740       return IntToPointer;
5741     }
5742 
5743     // In general, C pointers are not compatible with ObjC object pointers,
5744     // with two exceptions:
5745     if (isa<PointerType>(RHSType)) {
5746       Kind = CK_CPointerToObjCPointerCast;
5747 
5748       //  - conversions from 'void*'
5749       if (RHSType->isVoidPointerType()) {
5750         return Compatible;
5751       }
5752 
5753       //  - conversions to 'Class' from its redefinition type
5754       if (LHSType->isObjCClassType() &&
5755           Context.hasSameType(RHSType,
5756                               Context.getObjCClassRedefinitionType())) {
5757         return Compatible;
5758       }
5759 
5760       return IncompatiblePointer;
5761     }
5762 
5763     // T^ -> A*
5764     if (RHSType->isBlockPointerType()) {
5765       maybeExtendBlockObject(*this, RHS);
5766       Kind = CK_BlockPointerToObjCPointerCast;
5767       return Compatible;
5768     }
5769 
5770     return Incompatible;
5771   }
5772 
5773   // Conversions from pointers that are not covered by the above.
5774   if (isa<PointerType>(RHSType)) {
5775     // T* -> _Bool
5776     if (LHSType == Context.BoolTy) {
5777       Kind = CK_PointerToBoolean;
5778       return Compatible;
5779     }
5780 
5781     // T* -> int
5782     if (LHSType->isIntegerType()) {
5783       Kind = CK_PointerToIntegral;
5784       return PointerToInt;
5785     }
5786 
5787     return Incompatible;
5788   }
5789 
5790   // Conversions from Objective-C pointers that are not covered by the above.
5791   if (isa<ObjCObjectPointerType>(RHSType)) {
5792     // T* -> _Bool
5793     if (LHSType == Context.BoolTy) {
5794       Kind = CK_PointerToBoolean;
5795       return Compatible;
5796     }
5797 
5798     // T* -> int
5799     if (LHSType->isIntegerType()) {
5800       Kind = CK_PointerToIntegral;
5801       return PointerToInt;
5802     }
5803 
5804     return Incompatible;
5805   }
5806 
5807   // struct A -> struct B
5808   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5809     if (Context.typesAreCompatible(LHSType, RHSType)) {
5810       Kind = CK_NoOp;
5811       return Compatible;
5812     }
5813   }
5814 
5815   return Incompatible;
5816 }
5817 
5818 /// \brief Constructs a transparent union from an expression that is
5819 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)5820 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5821                                       ExprResult &EResult, QualType UnionType,
5822                                       FieldDecl *Field) {
5823   // Build an initializer list that designates the appropriate member
5824   // of the transparent union.
5825   Expr *E = EResult.take();
5826   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5827                                                    E, SourceLocation());
5828   Initializer->setType(UnionType);
5829   Initializer->setInitializedFieldInUnion(Field);
5830 
5831   // Build a compound literal constructing a value of the transparent
5832   // union type from this initializer list.
5833   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5834   EResult = S.Owned(
5835     new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5836                                 VK_RValue, Initializer, false));
5837 }
5838 
5839 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)5840 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5841                                                ExprResult &RHS) {
5842   QualType RHSType = RHS.get()->getType();
5843 
5844   // If the ArgType is a Union type, we want to handle a potential
5845   // transparent_union GCC extension.
5846   const RecordType *UT = ArgType->getAsUnionType();
5847   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5848     return Incompatible;
5849 
5850   // The field to initialize within the transparent union.
5851   RecordDecl *UD = UT->getDecl();
5852   FieldDecl *InitField = 0;
5853   // It's compatible if the expression matches any of the fields.
5854   for (RecordDecl::field_iterator it = UD->field_begin(),
5855          itend = UD->field_end();
5856        it != itend; ++it) {
5857     if (it->getType()->isPointerType()) {
5858       // If the transparent union contains a pointer type, we allow:
5859       // 1) void pointer
5860       // 2) null pointer constant
5861       if (RHSType->isPointerType())
5862         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5863           RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5864           InitField = *it;
5865           break;
5866         }
5867 
5868       if (RHS.get()->isNullPointerConstant(Context,
5869                                            Expr::NPC_ValueDependentIsNull)) {
5870         RHS = ImpCastExprToType(RHS.take(), it->getType(),
5871                                 CK_NullToPointer);
5872         InitField = *it;
5873         break;
5874       }
5875     }
5876 
5877     CastKind Kind = CK_Invalid;
5878     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5879           == Compatible) {
5880       RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5881       InitField = *it;
5882       break;
5883     }
5884   }
5885 
5886   if (!InitField)
5887     return Incompatible;
5888 
5889   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5890   return Compatible;
5891 }
5892 
5893 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & RHS,bool Diagnose)5894 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5895                                        bool Diagnose) {
5896   if (getLangOpts().CPlusPlus) {
5897     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5898       // C++ 5.17p3: If the left operand is not of class type, the
5899       // expression is implicitly converted (C++ 4) to the
5900       // cv-unqualified type of the left operand.
5901       ExprResult Res;
5902       if (Diagnose) {
5903         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5904                                         AA_Assigning);
5905       } else {
5906         ImplicitConversionSequence ICS =
5907             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5908                                   /*SuppressUserConversions=*/false,
5909                                   /*AllowExplicit=*/false,
5910                                   /*InOverloadResolution=*/false,
5911                                   /*CStyle=*/false,
5912                                   /*AllowObjCWritebackConversion=*/false);
5913         if (ICS.isFailure())
5914           return Incompatible;
5915         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5916                                         ICS, AA_Assigning);
5917       }
5918       if (Res.isInvalid())
5919         return Incompatible;
5920       Sema::AssignConvertType result = Compatible;
5921       if (getLangOpts().ObjCAutoRefCount &&
5922           !CheckObjCARCUnavailableWeakConversion(LHSType,
5923                                                  RHS.get()->getType()))
5924         result = IncompatibleObjCWeakRef;
5925       RHS = Res;
5926       return result;
5927     }
5928 
5929     // FIXME: Currently, we fall through and treat C++ classes like C
5930     // structures.
5931     // FIXME: We also fall through for atomics; not sure what should
5932     // happen there, though.
5933   }
5934 
5935   // C99 6.5.16.1p1: the left operand is a pointer and the right is
5936   // a null pointer constant.
5937   if ((LHSType->isPointerType() ||
5938        LHSType->isObjCObjectPointerType() ||
5939        LHSType->isBlockPointerType())
5940       && RHS.get()->isNullPointerConstant(Context,
5941                                           Expr::NPC_ValueDependentIsNull)) {
5942     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5943     return Compatible;
5944   }
5945 
5946   // This check seems unnatural, however it is necessary to ensure the proper
5947   // conversion of functions/arrays. If the conversion were done for all
5948   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5949   // expressions that suppress this implicit conversion (&, sizeof).
5950   //
5951   // Suppress this for references: C++ 8.5.3p5.
5952   if (!LHSType->isReferenceType()) {
5953     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5954     if (RHS.isInvalid())
5955       return Incompatible;
5956   }
5957 
5958   CastKind Kind = CK_Invalid;
5959   Sema::AssignConvertType result =
5960     CheckAssignmentConstraints(LHSType, RHS, Kind);
5961 
5962   // C99 6.5.16.1p2: The value of the right operand is converted to the
5963   // type of the assignment expression.
5964   // CheckAssignmentConstraints allows the left-hand side to be a reference,
5965   // so that we can use references in built-in functions even in C.
5966   // The getNonReferenceType() call makes sure that the resulting expression
5967   // does not have reference type.
5968   if (result != Incompatible && RHS.get()->getType() != LHSType)
5969     RHS = ImpCastExprToType(RHS.take(),
5970                             LHSType.getNonLValueExprType(Context), Kind);
5971   return result;
5972 }
5973 
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)5974 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5975                                ExprResult &RHS) {
5976   Diag(Loc, diag::err_typecheck_invalid_operands)
5977     << LHS.get()->getType() << RHS.get()->getType()
5978     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5979   return QualType();
5980 }
5981 
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)5982 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5983                                    SourceLocation Loc, bool IsCompAssign) {
5984   if (!IsCompAssign) {
5985     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
5986     if (LHS.isInvalid())
5987       return QualType();
5988   }
5989   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5990   if (RHS.isInvalid())
5991     return QualType();
5992 
5993   // For conversion purposes, we ignore any qualifiers.
5994   // For example, "const float" and "float" are equivalent.
5995   QualType LHSType =
5996     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5997   QualType RHSType =
5998     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5999 
6000   // If the vector types are identical, return.
6001   if (LHSType == RHSType)
6002     return LHSType;
6003 
6004   // Handle the case of equivalent AltiVec and GCC vector types
6005   if (LHSType->isVectorType() && RHSType->isVectorType() &&
6006       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6007     if (LHSType->isExtVectorType()) {
6008       RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6009       return LHSType;
6010     }
6011 
6012     if (!IsCompAssign)
6013       LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6014     return RHSType;
6015   }
6016 
6017   if (getLangOpts().LaxVectorConversions &&
6018       Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6019     // If we are allowing lax vector conversions, and LHS and RHS are both
6020     // vectors, the total size only needs to be the same. This is a
6021     // bitcast; no bits are changed but the result type is different.
6022     // FIXME: Should we really be allowing this?
6023     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6024     return LHSType;
6025   }
6026 
6027   // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6028   // swap back (so that we don't reverse the inputs to a subtract, for instance.
6029   bool swapped = false;
6030   if (RHSType->isExtVectorType() && !IsCompAssign) {
6031     swapped = true;
6032     std::swap(RHS, LHS);
6033     std::swap(RHSType, LHSType);
6034   }
6035 
6036   // Handle the case of an ext vector and scalar.
6037   if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6038     QualType EltTy = LV->getElementType();
6039     if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6040       int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6041       if (order > 0)
6042         RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6043       if (order >= 0) {
6044         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6045         if (swapped) std::swap(RHS, LHS);
6046         return LHSType;
6047       }
6048     }
6049     if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
6050         RHSType->isRealFloatingType()) {
6051       int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6052       if (order > 0)
6053         RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6054       if (order >= 0) {
6055         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6056         if (swapped) std::swap(RHS, LHS);
6057         return LHSType;
6058       }
6059     }
6060   }
6061 
6062   // Vectors of different size or scalar and non-ext-vector are errors.
6063   if (swapped) std::swap(RHS, LHS);
6064   Diag(Loc, diag::err_typecheck_vector_not_convertable)
6065     << LHS.get()->getType() << RHS.get()->getType()
6066     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6067   return QualType();
6068 }
6069 
6070 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
6071 // expression.  These are mainly cases where the null pointer is used as an
6072 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)6073 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6074                                 SourceLocation Loc, bool IsCompare) {
6075   // The canonical way to check for a GNU null is with isNullPointerConstant,
6076   // but we use a bit of a hack here for speed; this is a relatively
6077   // hot path, and isNullPointerConstant is slow.
6078   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6079   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6080 
6081   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6082 
6083   // Avoid analyzing cases where the result will either be invalid (and
6084   // diagnosed as such) or entirely valid and not something to warn about.
6085   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6086       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6087     return;
6088 
6089   // Comparison operations would not make sense with a null pointer no matter
6090   // what the other expression is.
6091   if (!IsCompare) {
6092     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6093         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6094         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6095     return;
6096   }
6097 
6098   // The rest of the operations only make sense with a null pointer
6099   // if the other expression is a pointer.
6100   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6101       NonNullType->canDecayToPointerType())
6102     return;
6103 
6104   S.Diag(Loc, diag::warn_null_in_comparison_operation)
6105       << LHSNull /* LHS is NULL */ << NonNullType
6106       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6107 }
6108 
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)6109 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6110                                            SourceLocation Loc,
6111                                            bool IsCompAssign, bool IsDiv) {
6112   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6113 
6114   if (LHS.get()->getType()->isVectorType() ||
6115       RHS.get()->getType()->isVectorType())
6116     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6117 
6118   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6119   if (LHS.isInvalid() || RHS.isInvalid())
6120     return QualType();
6121 
6122 
6123   if (compType.isNull() || !compType->isArithmeticType())
6124     return InvalidOperands(Loc, LHS, RHS);
6125 
6126   // Check for division by zero.
6127   if (IsDiv &&
6128       RHS.get()->isNullPointerConstant(Context,
6129                                        Expr::NPC_ValueDependentIsNotNull))
6130     DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
6131                                           << RHS.get()->getSourceRange());
6132 
6133   return compType;
6134 }
6135 
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)6136 QualType Sema::CheckRemainderOperands(
6137   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6138   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6139 
6140   if (LHS.get()->getType()->isVectorType() ||
6141       RHS.get()->getType()->isVectorType()) {
6142     if (LHS.get()->getType()->hasIntegerRepresentation() &&
6143         RHS.get()->getType()->hasIntegerRepresentation())
6144       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6145     return InvalidOperands(Loc, LHS, RHS);
6146   }
6147 
6148   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6149   if (LHS.isInvalid() || RHS.isInvalid())
6150     return QualType();
6151 
6152   if (compType.isNull() || !compType->isIntegerType())
6153     return InvalidOperands(Loc, LHS, RHS);
6154 
6155   // Check for remainder by zero.
6156   if (RHS.get()->isNullPointerConstant(Context,
6157                                        Expr::NPC_ValueDependentIsNotNull))
6158     DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
6159                                  << RHS.get()->getSourceRange());
6160 
6161   return compType;
6162 }
6163 
6164 /// \brief Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6165 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6166                                                 Expr *LHSExpr, Expr *RHSExpr) {
6167   S.Diag(Loc, S.getLangOpts().CPlusPlus
6168                 ? diag::err_typecheck_pointer_arith_void_type
6169                 : diag::ext_gnu_void_ptr)
6170     << 1 /* two pointers */ << LHSExpr->getSourceRange()
6171                             << RHSExpr->getSourceRange();
6172 }
6173 
6174 /// \brief Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6175 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6176                                             Expr *Pointer) {
6177   S.Diag(Loc, S.getLangOpts().CPlusPlus
6178                 ? diag::err_typecheck_pointer_arith_void_type
6179                 : diag::ext_gnu_void_ptr)
6180     << 0 /* one pointer */ << Pointer->getSourceRange();
6181 }
6182 
6183 /// \brief Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)6184 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6185                                                     Expr *LHS, Expr *RHS) {
6186   assert(LHS->getType()->isAnyPointerType());
6187   assert(RHS->getType()->isAnyPointerType());
6188   S.Diag(Loc, S.getLangOpts().CPlusPlus
6189                 ? diag::err_typecheck_pointer_arith_function_type
6190                 : diag::ext_gnu_ptr_func_arith)
6191     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6192     // We only show the second type if it differs from the first.
6193     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6194                                                    RHS->getType())
6195     << RHS->getType()->getPointeeType()
6196     << LHS->getSourceRange() << RHS->getSourceRange();
6197 }
6198 
6199 /// \brief Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6200 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6201                                                 Expr *Pointer) {
6202   assert(Pointer->getType()->isAnyPointerType());
6203   S.Diag(Loc, S.getLangOpts().CPlusPlus
6204                 ? diag::err_typecheck_pointer_arith_function_type
6205                 : diag::ext_gnu_ptr_func_arith)
6206     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6207     << 0 /* one pointer, so only one type */
6208     << Pointer->getSourceRange();
6209 }
6210 
6211 /// \brief Emit error if Operand is incomplete pointer type
6212 ///
6213 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)6214 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6215                                                  Expr *Operand) {
6216   assert(Operand->getType()->isAnyPointerType() &&
6217          !Operand->getType()->isDependentType());
6218   QualType PointeeTy = Operand->getType()->getPointeeType();
6219   return S.RequireCompleteType(Loc, PointeeTy,
6220                                diag::err_typecheck_arithmetic_incomplete_type,
6221                                PointeeTy, Operand->getSourceRange());
6222 }
6223 
6224 /// \brief Check the validity of an arithmetic pointer operand.
6225 ///
6226 /// If the operand has pointer type, this code will check for pointer types
6227 /// which are invalid in arithmetic operations. These will be diagnosed
6228 /// appropriately, including whether or not the use is supported as an
6229 /// extension.
6230 ///
6231 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)6232 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6233                                             Expr *Operand) {
6234   if (!Operand->getType()->isAnyPointerType()) return true;
6235 
6236   QualType PointeeTy = Operand->getType()->getPointeeType();
6237   if (PointeeTy->isVoidType()) {
6238     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6239     return !S.getLangOpts().CPlusPlus;
6240   }
6241   if (PointeeTy->isFunctionType()) {
6242     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6243     return !S.getLangOpts().CPlusPlus;
6244   }
6245 
6246   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6247 
6248   return true;
6249 }
6250 
6251 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6252 /// operands.
6253 ///
6254 /// This routine will diagnose any invalid arithmetic on pointer operands much
6255 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
6256 /// for emitting a single diagnostic even for operations where both LHS and RHS
6257 /// are (potentially problematic) pointers.
6258 ///
6259 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6260 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6261                                                 Expr *LHSExpr, Expr *RHSExpr) {
6262   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6263   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6264   if (!isLHSPointer && !isRHSPointer) return true;
6265 
6266   QualType LHSPointeeTy, RHSPointeeTy;
6267   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6268   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6269 
6270   // Check for arithmetic on pointers to incomplete types.
6271   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6272   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6273   if (isLHSVoidPtr || isRHSVoidPtr) {
6274     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6275     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6276     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6277 
6278     return !S.getLangOpts().CPlusPlus;
6279   }
6280 
6281   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6282   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6283   if (isLHSFuncPtr || isRHSFuncPtr) {
6284     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6285     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6286                                                                 RHSExpr);
6287     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6288 
6289     return !S.getLangOpts().CPlusPlus;
6290   }
6291 
6292   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6293     return false;
6294   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6295     return false;
6296 
6297   return true;
6298 }
6299 
6300 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6301 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)6302 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6303                                   Expr *LHSExpr, Expr *RHSExpr) {
6304   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6305   Expr* IndexExpr = RHSExpr;
6306   if (!StrExpr) {
6307     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6308     IndexExpr = LHSExpr;
6309   }
6310 
6311   bool IsStringPlusInt = StrExpr &&
6312       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6313   if (!IsStringPlusInt)
6314     return;
6315 
6316   llvm::APSInt index;
6317   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6318     unsigned StrLenWithNull = StrExpr->getLength() + 1;
6319     if (index.isNonNegative() &&
6320         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6321                               index.isUnsigned()))
6322       return;
6323   }
6324 
6325   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6326   Self.Diag(OpLoc, diag::warn_string_plus_int)
6327       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6328 
6329   // Only print a fixit for "str" + int, not for int + "str".
6330   if (IndexExpr == RHSExpr) {
6331     SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6332     Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6333         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6334         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6335         << FixItHint::CreateInsertion(EndLoc, "]");
6336   } else
6337     Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6338 }
6339 
6340 /// \brief Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6341 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6342                                            Expr *LHSExpr, Expr *RHSExpr) {
6343   assert(LHSExpr->getType()->isAnyPointerType());
6344   assert(RHSExpr->getType()->isAnyPointerType());
6345   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6346     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6347     << RHSExpr->getSourceRange();
6348 }
6349 
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType * CompLHSTy)6350 QualType Sema::CheckAdditionOperands( // C99 6.5.6
6351     ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6352     QualType* CompLHSTy) {
6353   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6354 
6355   if (LHS.get()->getType()->isVectorType() ||
6356       RHS.get()->getType()->isVectorType()) {
6357     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6358     if (CompLHSTy) *CompLHSTy = compType;
6359     return compType;
6360   }
6361 
6362   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6363   if (LHS.isInvalid() || RHS.isInvalid())
6364     return QualType();
6365 
6366   // Diagnose "string literal" '+' int.
6367   if (Opc == BO_Add)
6368     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6369 
6370   // handle the common case first (both operands are arithmetic).
6371   if (!compType.isNull() && compType->isArithmeticType()) {
6372     if (CompLHSTy) *CompLHSTy = compType;
6373     return compType;
6374   }
6375 
6376   // Type-checking.  Ultimately the pointer's going to be in PExp;
6377   // note that we bias towards the LHS being the pointer.
6378   Expr *PExp = LHS.get(), *IExp = RHS.get();
6379 
6380   bool isObjCPointer;
6381   if (PExp->getType()->isPointerType()) {
6382     isObjCPointer = false;
6383   } else if (PExp->getType()->isObjCObjectPointerType()) {
6384     isObjCPointer = true;
6385   } else {
6386     std::swap(PExp, IExp);
6387     if (PExp->getType()->isPointerType()) {
6388       isObjCPointer = false;
6389     } else if (PExp->getType()->isObjCObjectPointerType()) {
6390       isObjCPointer = true;
6391     } else {
6392       return InvalidOperands(Loc, LHS, RHS);
6393     }
6394   }
6395   assert(PExp->getType()->isAnyPointerType());
6396 
6397   if (!IExp->getType()->isIntegerType())
6398     return InvalidOperands(Loc, LHS, RHS);
6399 
6400   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6401     return QualType();
6402 
6403   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
6404     return QualType();
6405 
6406   // Check array bounds for pointer arithemtic
6407   CheckArrayAccess(PExp, IExp);
6408 
6409   if (CompLHSTy) {
6410     QualType LHSTy = Context.isPromotableBitField(LHS.get());
6411     if (LHSTy.isNull()) {
6412       LHSTy = LHS.get()->getType();
6413       if (LHSTy->isPromotableIntegerType())
6414         LHSTy = Context.getPromotedIntegerType(LHSTy);
6415     }
6416     *CompLHSTy = LHSTy;
6417   }
6418 
6419   return PExp->getType();
6420 }
6421 
6422 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)6423 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6424                                         SourceLocation Loc,
6425                                         QualType* CompLHSTy) {
6426   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6427 
6428   if (LHS.get()->getType()->isVectorType() ||
6429       RHS.get()->getType()->isVectorType()) {
6430     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6431     if (CompLHSTy) *CompLHSTy = compType;
6432     return compType;
6433   }
6434 
6435   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6436   if (LHS.isInvalid() || RHS.isInvalid())
6437     return QualType();
6438 
6439   // Enforce type constraints: C99 6.5.6p3.
6440 
6441   // Handle the common case first (both operands are arithmetic).
6442   if (!compType.isNull() && compType->isArithmeticType()) {
6443     if (CompLHSTy) *CompLHSTy = compType;
6444     return compType;
6445   }
6446 
6447   // Either ptr - int   or   ptr - ptr.
6448   if (LHS.get()->getType()->isAnyPointerType()) {
6449     QualType lpointee = LHS.get()->getType()->getPointeeType();
6450 
6451     // Diagnose bad cases where we step over interface counts.
6452     if (LHS.get()->getType()->isObjCObjectPointerType() &&
6453         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
6454       return QualType();
6455 
6456     // The result type of a pointer-int computation is the pointer type.
6457     if (RHS.get()->getType()->isIntegerType()) {
6458       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6459         return QualType();
6460 
6461       // Check array bounds for pointer arithemtic
6462       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6463                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6464 
6465       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6466       return LHS.get()->getType();
6467     }
6468 
6469     // Handle pointer-pointer subtractions.
6470     if (const PointerType *RHSPTy
6471           = RHS.get()->getType()->getAs<PointerType>()) {
6472       QualType rpointee = RHSPTy->getPointeeType();
6473 
6474       if (getLangOpts().CPlusPlus) {
6475         // Pointee types must be the same: C++ [expr.add]
6476         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6477           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6478         }
6479       } else {
6480         // Pointee types must be compatible C99 6.5.6p3
6481         if (!Context.typesAreCompatible(
6482                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
6483                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6484           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6485           return QualType();
6486         }
6487       }
6488 
6489       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6490                                                LHS.get(), RHS.get()))
6491         return QualType();
6492 
6493       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6494       return Context.getPointerDiffType();
6495     }
6496   }
6497 
6498   return InvalidOperands(Loc, LHS, RHS);
6499 }
6500 
isScopedEnumerationType(QualType T)6501 static bool isScopedEnumerationType(QualType T) {
6502   if (const EnumType *ET = dyn_cast<EnumType>(T))
6503     return ET->getDecl()->isScoped();
6504   return false;
6505 }
6506 
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType LHSType)6507 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6508                                    SourceLocation Loc, unsigned Opc,
6509                                    QualType LHSType) {
6510   llvm::APSInt Right;
6511   // Check right/shifter operand
6512   if (RHS.get()->isValueDependent() ||
6513       !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6514     return;
6515 
6516   if (Right.isNegative()) {
6517     S.DiagRuntimeBehavior(Loc, RHS.get(),
6518                           S.PDiag(diag::warn_shift_negative)
6519                             << RHS.get()->getSourceRange());
6520     return;
6521   }
6522   llvm::APInt LeftBits(Right.getBitWidth(),
6523                        S.Context.getTypeSize(LHS.get()->getType()));
6524   if (Right.uge(LeftBits)) {
6525     S.DiagRuntimeBehavior(Loc, RHS.get(),
6526                           S.PDiag(diag::warn_shift_gt_typewidth)
6527                             << RHS.get()->getSourceRange());
6528     return;
6529   }
6530   if (Opc != BO_Shl)
6531     return;
6532 
6533   // When left shifting an ICE which is signed, we can check for overflow which
6534   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6535   // integers have defined behavior modulo one more than the maximum value
6536   // representable in the result type, so never warn for those.
6537   llvm::APSInt Left;
6538   if (LHS.get()->isValueDependent() ||
6539       !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6540       LHSType->hasUnsignedIntegerRepresentation())
6541     return;
6542   llvm::APInt ResultBits =
6543       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6544   if (LeftBits.uge(ResultBits))
6545     return;
6546   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6547   Result = Result.shl(Right);
6548 
6549   // Print the bit representation of the signed integer as an unsigned
6550   // hexadecimal number.
6551   SmallString<40> HexResult;
6552   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6553 
6554   // If we are only missing a sign bit, this is less likely to result in actual
6555   // bugs -- if the result is cast back to an unsigned type, it will have the
6556   // expected value. Thus we place this behind a different warning that can be
6557   // turned off separately if needed.
6558   if (LeftBits == ResultBits - 1) {
6559     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6560         << HexResult.str() << LHSType
6561         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6562     return;
6563   }
6564 
6565   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6566     << HexResult.str() << Result.getMinSignedBits() << LHSType
6567     << Left.getBitWidth() << LHS.get()->getSourceRange()
6568     << RHS.get()->getSourceRange();
6569 }
6570 
6571 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,bool IsCompAssign)6572 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6573                                   SourceLocation Loc, unsigned Opc,
6574                                   bool IsCompAssign) {
6575   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6576 
6577   // C99 6.5.7p2: Each of the operands shall have integer type.
6578   if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6579       !RHS.get()->getType()->hasIntegerRepresentation())
6580     return InvalidOperands(Loc, LHS, RHS);
6581 
6582   // C++0x: Don't allow scoped enums. FIXME: Use something better than
6583   // hasIntegerRepresentation() above instead of this.
6584   if (isScopedEnumerationType(LHS.get()->getType()) ||
6585       isScopedEnumerationType(RHS.get()->getType())) {
6586     return InvalidOperands(Loc, LHS, RHS);
6587   }
6588 
6589   // Vector shifts promote their scalar inputs to vector type.
6590   if (LHS.get()->getType()->isVectorType() ||
6591       RHS.get()->getType()->isVectorType())
6592     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6593 
6594   // Shifts don't perform usual arithmetic conversions, they just do integer
6595   // promotions on each operand. C99 6.5.7p3
6596 
6597   // For the LHS, do usual unary conversions, but then reset them away
6598   // if this is a compound assignment.
6599   ExprResult OldLHS = LHS;
6600   LHS = UsualUnaryConversions(LHS.take());
6601   if (LHS.isInvalid())
6602     return QualType();
6603   QualType LHSType = LHS.get()->getType();
6604   if (IsCompAssign) LHS = OldLHS;
6605 
6606   // The RHS is simpler.
6607   RHS = UsualUnaryConversions(RHS.take());
6608   if (RHS.isInvalid())
6609     return QualType();
6610 
6611   // Sanity-check shift operands
6612   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6613 
6614   // "The type of the result is that of the promoted left operand."
6615   return LHSType;
6616 }
6617 
IsWithinTemplateSpecialization(Decl * D)6618 static bool IsWithinTemplateSpecialization(Decl *D) {
6619   if (DeclContext *DC = D->getDeclContext()) {
6620     if (isa<ClassTemplateSpecializationDecl>(DC))
6621       return true;
6622     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6623       return FD->isFunctionTemplateSpecialization();
6624   }
6625   return false;
6626 }
6627 
6628 /// If two different enums are compared, raise a warning.
checkEnumComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6629 static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6630                                 ExprResult &RHS) {
6631   QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6632   QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6633 
6634   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6635   if (!LHSEnumType)
6636     return;
6637   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6638   if (!RHSEnumType)
6639     return;
6640 
6641   // Ignore anonymous enums.
6642   if (!LHSEnumType->getDecl()->getIdentifier())
6643     return;
6644   if (!RHSEnumType->getDecl()->getIdentifier())
6645     return;
6646 
6647   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6648     return;
6649 
6650   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6651       << LHSStrippedType << RHSStrippedType
6652       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6653 }
6654 
6655 /// \brief Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6656 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6657                                               ExprResult &LHS, ExprResult &RHS,
6658                                               bool IsError) {
6659   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6660                       : diag::ext_typecheck_comparison_of_distinct_pointers)
6661     << LHS.get()->getType() << RHS.get()->getType()
6662     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6663 }
6664 
6665 /// \brief Returns false if the pointers are converted to a composite type,
6666 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6667 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6668                                            ExprResult &LHS, ExprResult &RHS) {
6669   // C++ [expr.rel]p2:
6670   //   [...] Pointer conversions (4.10) and qualification
6671   //   conversions (4.4) are performed on pointer operands (or on
6672   //   a pointer operand and a null pointer constant) to bring
6673   //   them to their composite pointer type. [...]
6674   //
6675   // C++ [expr.eq]p1 uses the same notion for (in)equality
6676   // comparisons of pointers.
6677 
6678   // C++ [expr.eq]p2:
6679   //   In addition, pointers to members can be compared, or a pointer to
6680   //   member and a null pointer constant. Pointer to member conversions
6681   //   (4.11) and qualification conversions (4.4) are performed to bring
6682   //   them to a common type. If one operand is a null pointer constant,
6683   //   the common type is the type of the other operand. Otherwise, the
6684   //   common type is a pointer to member type similar (4.4) to the type
6685   //   of one of the operands, with a cv-qualification signature (4.4)
6686   //   that is the union of the cv-qualification signatures of the operand
6687   //   types.
6688 
6689   QualType LHSType = LHS.get()->getType();
6690   QualType RHSType = RHS.get()->getType();
6691   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6692          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6693 
6694   bool NonStandardCompositeType = false;
6695   bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6696   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6697   if (T.isNull()) {
6698     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6699     return true;
6700   }
6701 
6702   if (NonStandardCompositeType)
6703     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6704       << LHSType << RHSType << T << LHS.get()->getSourceRange()
6705       << RHS.get()->getSourceRange();
6706 
6707   LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6708   RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6709   return false;
6710 }
6711 
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6712 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6713                                                     ExprResult &LHS,
6714                                                     ExprResult &RHS,
6715                                                     bool IsError) {
6716   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6717                       : diag::ext_typecheck_comparison_of_fptr_to_void)
6718     << LHS.get()->getType() << RHS.get()->getType()
6719     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6720 }
6721 
isObjCObjectLiteral(ExprResult & E)6722 static bool isObjCObjectLiteral(ExprResult &E) {
6723   switch (E.get()->getStmtClass()) {
6724   case Stmt::ObjCArrayLiteralClass:
6725   case Stmt::ObjCDictionaryLiteralClass:
6726   case Stmt::ObjCStringLiteralClass:
6727   case Stmt::ObjCBoxedExprClass:
6728     return true;
6729   default:
6730     // Note that ObjCBoolLiteral is NOT an object literal!
6731     return false;
6732   }
6733 }
6734 
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)6735 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
6736   // Get the LHS object's interface type.
6737   QualType Type = LHS->getType();
6738   QualType InterfaceType;
6739   if (const ObjCObjectPointerType *PTy = Type->getAs<ObjCObjectPointerType>()) {
6740     InterfaceType = PTy->getPointeeType();
6741     if (const ObjCObjectType *iQFaceTy =
6742         InterfaceType->getAsObjCQualifiedInterfaceType())
6743       InterfaceType = iQFaceTy->getBaseType();
6744   } else {
6745     // If this is not actually an Objective-C object, bail out.
6746     return false;
6747   }
6748 
6749   // If the RHS isn't an Objective-C object, bail out.
6750   if (!RHS->getType()->isObjCObjectPointerType())
6751     return false;
6752 
6753   // Try to find the -isEqual: method.
6754   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
6755   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
6756                                                       InterfaceType,
6757                                                       /*instance=*/true);
6758   if (!Method) {
6759     if (Type->isObjCIdType()) {
6760       // For 'id', just check the global pool.
6761       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
6762                                                   /*receiverId=*/true,
6763                                                   /*warn=*/false);
6764     } else {
6765       // Check protocols.
6766       Method = S.LookupMethodInQualifiedType(IsEqualSel,
6767                                              cast<ObjCObjectPointerType>(Type),
6768                                              /*instance=*/true);
6769     }
6770   }
6771 
6772   if (!Method)
6773     return false;
6774 
6775   QualType T = Method->param_begin()[0]->getType();
6776   if (!T->isObjCObjectPointerType())
6777     return false;
6778 
6779   QualType R = Method->getResultType();
6780   if (!R->isScalarType())
6781     return false;
6782 
6783   return true;
6784 }
6785 
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)6786 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
6787                                           ExprResult &LHS, ExprResult &RHS,
6788                                           BinaryOperator::Opcode Opc){
6789   Expr *Literal;
6790   Expr *Other;
6791   if (isObjCObjectLiteral(LHS)) {
6792     Literal = LHS.get();
6793     Other = RHS.get();
6794   } else {
6795     Literal = RHS.get();
6796     Other = LHS.get();
6797   }
6798 
6799   // Don't warn on comparisons against nil.
6800   Other = Other->IgnoreParenCasts();
6801   if (Other->isNullPointerConstant(S.getASTContext(),
6802                                    Expr::NPC_ValueDependentIsNotNull))
6803     return;
6804 
6805   // This should be kept in sync with warn_objc_literal_comparison.
6806   // LK_String should always be last, since it has its own warning flag.
6807   enum {
6808     LK_Array,
6809     LK_Dictionary,
6810     LK_Numeric,
6811     LK_Boxed,
6812     LK_String
6813   } LiteralKind;
6814 
6815   switch (Literal->getStmtClass()) {
6816   case Stmt::ObjCStringLiteralClass:
6817     // "string literal"
6818     LiteralKind = LK_String;
6819     break;
6820   case Stmt::ObjCArrayLiteralClass:
6821     // "array literal"
6822     LiteralKind = LK_Array;
6823     break;
6824   case Stmt::ObjCDictionaryLiteralClass:
6825     // "dictionary literal"
6826     LiteralKind = LK_Dictionary;
6827     break;
6828   case Stmt::ObjCBoxedExprClass: {
6829     Expr *Inner = cast<ObjCBoxedExpr>(Literal)->getSubExpr();
6830     switch (Inner->getStmtClass()) {
6831     case Stmt::IntegerLiteralClass:
6832     case Stmt::FloatingLiteralClass:
6833     case Stmt::CharacterLiteralClass:
6834     case Stmt::ObjCBoolLiteralExprClass:
6835     case Stmt::CXXBoolLiteralExprClass:
6836       // "numeric literal"
6837       LiteralKind = LK_Numeric;
6838       break;
6839     case Stmt::ImplicitCastExprClass: {
6840       CastKind CK = cast<CastExpr>(Inner)->getCastKind();
6841       // Boolean literals can be represented by implicit casts.
6842       if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) {
6843         LiteralKind = LK_Numeric;
6844         break;
6845       }
6846       // FALLTHROUGH
6847     }
6848     default:
6849       // "boxed expression"
6850       LiteralKind = LK_Boxed;
6851       break;
6852     }
6853     break;
6854   }
6855   default:
6856     llvm_unreachable("Unknown Objective-C object literal kind");
6857   }
6858 
6859   if (LiteralKind == LK_String)
6860     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
6861       << Literal->getSourceRange();
6862   else
6863     S.Diag(Loc, diag::warn_objc_literal_comparison)
6864       << LiteralKind << Literal->getSourceRange();
6865 
6866   if (BinaryOperator::isEqualityOp(Opc) &&
6867       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
6868     SourceLocation Start = LHS.get()->getLocStart();
6869     SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
6870     SourceRange OpRange(Loc, S.PP.getLocForEndOfToken(Loc));
6871 
6872     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
6873       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
6874       << FixItHint::CreateReplacement(OpRange, "isEqual:")
6875       << FixItHint::CreateInsertion(End, "]");
6876   }
6877 }
6878 
6879 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned OpaqueOpc,bool IsRelational)6880 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6881                                     SourceLocation Loc, unsigned OpaqueOpc,
6882                                     bool IsRelational) {
6883   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6884 
6885   BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6886 
6887   // Handle vector comparisons separately.
6888   if (LHS.get()->getType()->isVectorType() ||
6889       RHS.get()->getType()->isVectorType())
6890     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6891 
6892   QualType LHSType = LHS.get()->getType();
6893   QualType RHSType = RHS.get()->getType();
6894 
6895   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6896   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6897 
6898   checkEnumComparison(*this, Loc, LHS, RHS);
6899 
6900   if (!LHSType->hasFloatingRepresentation() &&
6901       !(LHSType->isBlockPointerType() && IsRelational) &&
6902       !LHS.get()->getLocStart().isMacroID() &&
6903       !RHS.get()->getLocStart().isMacroID()) {
6904     // For non-floating point types, check for self-comparisons of the form
6905     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6906     // often indicate logic errors in the program.
6907     //
6908     // NOTE: Don't warn about comparison expressions resulting from macro
6909     // expansion. Also don't warn about comparisons which are only self
6910     // comparisons within a template specialization. The warnings should catch
6911     // obvious cases in the definition of the template anyways. The idea is to
6912     // warn when the typed comparison operator will always evaluate to the same
6913     // result.
6914     if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6915       if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6916         if (DRL->getDecl() == DRR->getDecl() &&
6917             !IsWithinTemplateSpecialization(DRL->getDecl())) {
6918           DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6919                               << 0 // self-
6920                               << (Opc == BO_EQ
6921                                   || Opc == BO_LE
6922                                   || Opc == BO_GE));
6923         } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6924                    !DRL->getDecl()->getType()->isReferenceType() &&
6925                    !DRR->getDecl()->getType()->isReferenceType()) {
6926             // what is it always going to eval to?
6927             char always_evals_to;
6928             switch(Opc) {
6929             case BO_EQ: // e.g. array1 == array2
6930               always_evals_to = 0; // false
6931               break;
6932             case BO_NE: // e.g. array1 != array2
6933               always_evals_to = 1; // true
6934               break;
6935             default:
6936               // best we can say is 'a constant'
6937               always_evals_to = 2; // e.g. array1 <= array2
6938               break;
6939             }
6940             DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6941                                 << 1 // array
6942                                 << always_evals_to);
6943         }
6944       }
6945     }
6946 
6947     if (isa<CastExpr>(LHSStripped))
6948       LHSStripped = LHSStripped->IgnoreParenCasts();
6949     if (isa<CastExpr>(RHSStripped))
6950       RHSStripped = RHSStripped->IgnoreParenCasts();
6951 
6952     // Warn about comparisons against a string constant (unless the other
6953     // operand is null), the user probably wants strcmp.
6954     Expr *literalString = 0;
6955     Expr *literalStringStripped = 0;
6956     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6957         !RHSStripped->isNullPointerConstant(Context,
6958                                             Expr::NPC_ValueDependentIsNull)) {
6959       literalString = LHS.get();
6960       literalStringStripped = LHSStripped;
6961     } else if ((isa<StringLiteral>(RHSStripped) ||
6962                 isa<ObjCEncodeExpr>(RHSStripped)) &&
6963                !LHSStripped->isNullPointerConstant(Context,
6964                                             Expr::NPC_ValueDependentIsNull)) {
6965       literalString = RHS.get();
6966       literalStringStripped = RHSStripped;
6967     }
6968 
6969     if (literalString) {
6970       std::string resultComparison;
6971       switch (Opc) {
6972       case BO_LT: resultComparison = ") < 0"; break;
6973       case BO_GT: resultComparison = ") > 0"; break;
6974       case BO_LE: resultComparison = ") <= 0"; break;
6975       case BO_GE: resultComparison = ") >= 0"; break;
6976       case BO_EQ: resultComparison = ") == 0"; break;
6977       case BO_NE: resultComparison = ") != 0"; break;
6978       default: llvm_unreachable("Invalid comparison operator");
6979       }
6980 
6981       DiagRuntimeBehavior(Loc, 0,
6982         PDiag(diag::warn_stringcompare)
6983           << isa<ObjCEncodeExpr>(literalStringStripped)
6984           << literalString->getSourceRange());
6985     }
6986   }
6987 
6988   // C99 6.5.8p3 / C99 6.5.9p4
6989   if (LHS.get()->getType()->isArithmeticType() &&
6990       RHS.get()->getType()->isArithmeticType()) {
6991     UsualArithmeticConversions(LHS, RHS);
6992     if (LHS.isInvalid() || RHS.isInvalid())
6993       return QualType();
6994   }
6995   else {
6996     LHS = UsualUnaryConversions(LHS.take());
6997     if (LHS.isInvalid())
6998       return QualType();
6999 
7000     RHS = UsualUnaryConversions(RHS.take());
7001     if (RHS.isInvalid())
7002       return QualType();
7003   }
7004 
7005   LHSType = LHS.get()->getType();
7006   RHSType = RHS.get()->getType();
7007 
7008   // The result of comparisons is 'bool' in C++, 'int' in C.
7009   QualType ResultTy = Context.getLogicalOperationType();
7010 
7011   if (IsRelational) {
7012     if (LHSType->isRealType() && RHSType->isRealType())
7013       return ResultTy;
7014   } else {
7015     // Check for comparisons of floating point operands using != and ==.
7016     if (LHSType->hasFloatingRepresentation())
7017       CheckFloatComparison(Loc, LHS.get(), RHS.get());
7018 
7019     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7020       return ResultTy;
7021   }
7022 
7023   bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7024                                               Expr::NPC_ValueDependentIsNull);
7025   bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7026                                               Expr::NPC_ValueDependentIsNull);
7027 
7028   // All of the following pointer-related warnings are GCC extensions, except
7029   // when handling null pointer constants.
7030   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7031     QualType LCanPointeeTy =
7032       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7033     QualType RCanPointeeTy =
7034       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7035 
7036     if (getLangOpts().CPlusPlus) {
7037       if (LCanPointeeTy == RCanPointeeTy)
7038         return ResultTy;
7039       if (!IsRelational &&
7040           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7041         // Valid unless comparison between non-null pointer and function pointer
7042         // This is a gcc extension compatibility comparison.
7043         // In a SFINAE context, we treat this as a hard error to maintain
7044         // conformance with the C++ standard.
7045         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7046             && !LHSIsNull && !RHSIsNull) {
7047           diagnoseFunctionPointerToVoidComparison(
7048               *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
7049 
7050           if (isSFINAEContext())
7051             return QualType();
7052 
7053           RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7054           return ResultTy;
7055         }
7056       }
7057 
7058       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7059         return QualType();
7060       else
7061         return ResultTy;
7062     }
7063     // C99 6.5.9p2 and C99 6.5.8p2
7064     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7065                                    RCanPointeeTy.getUnqualifiedType())) {
7066       // Valid unless a relational comparison of function pointers
7067       if (IsRelational && LCanPointeeTy->isFunctionType()) {
7068         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7069           << LHSType << RHSType << LHS.get()->getSourceRange()
7070           << RHS.get()->getSourceRange();
7071       }
7072     } else if (!IsRelational &&
7073                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7074       // Valid unless comparison between non-null pointer and function pointer
7075       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7076           && !LHSIsNull && !RHSIsNull)
7077         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7078                                                 /*isError*/false);
7079     } else {
7080       // Invalid
7081       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7082     }
7083     if (LCanPointeeTy != RCanPointeeTy) {
7084       if (LHSIsNull && !RHSIsNull)
7085         LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7086       else
7087         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7088     }
7089     return ResultTy;
7090   }
7091 
7092   if (getLangOpts().CPlusPlus) {
7093     // Comparison of nullptr_t with itself.
7094     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7095       return ResultTy;
7096 
7097     // Comparison of pointers with null pointer constants and equality
7098     // comparisons of member pointers to null pointer constants.
7099     if (RHSIsNull &&
7100         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7101          (!IsRelational &&
7102           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7103       RHS = ImpCastExprToType(RHS.take(), LHSType,
7104                         LHSType->isMemberPointerType()
7105                           ? CK_NullToMemberPointer
7106                           : CK_NullToPointer);
7107       return ResultTy;
7108     }
7109     if (LHSIsNull &&
7110         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7111          (!IsRelational &&
7112           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7113       LHS = ImpCastExprToType(LHS.take(), RHSType,
7114                         RHSType->isMemberPointerType()
7115                           ? CK_NullToMemberPointer
7116                           : CK_NullToPointer);
7117       return ResultTy;
7118     }
7119 
7120     // Comparison of member pointers.
7121     if (!IsRelational &&
7122         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7123       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7124         return QualType();
7125       else
7126         return ResultTy;
7127     }
7128 
7129     // Handle scoped enumeration types specifically, since they don't promote
7130     // to integers.
7131     if (LHS.get()->getType()->isEnumeralType() &&
7132         Context.hasSameUnqualifiedType(LHS.get()->getType(),
7133                                        RHS.get()->getType()))
7134       return ResultTy;
7135   }
7136 
7137   // Handle block pointer types.
7138   if (!IsRelational && LHSType->isBlockPointerType() &&
7139       RHSType->isBlockPointerType()) {
7140     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7141     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7142 
7143     if (!LHSIsNull && !RHSIsNull &&
7144         !Context.typesAreCompatible(lpointee, rpointee)) {
7145       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7146         << LHSType << RHSType << LHS.get()->getSourceRange()
7147         << RHS.get()->getSourceRange();
7148     }
7149     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7150     return ResultTy;
7151   }
7152 
7153   // Allow block pointers to be compared with null pointer constants.
7154   if (!IsRelational
7155       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7156           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7157     if (!LHSIsNull && !RHSIsNull) {
7158       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7159              ->getPointeeType()->isVoidType())
7160             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7161                 ->getPointeeType()->isVoidType())))
7162         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7163           << LHSType << RHSType << LHS.get()->getSourceRange()
7164           << RHS.get()->getSourceRange();
7165     }
7166     if (LHSIsNull && !RHSIsNull)
7167       LHS = ImpCastExprToType(LHS.take(), RHSType,
7168                               RHSType->isPointerType() ? CK_BitCast
7169                                 : CK_AnyPointerToBlockPointerCast);
7170     else
7171       RHS = ImpCastExprToType(RHS.take(), LHSType,
7172                               LHSType->isPointerType() ? CK_BitCast
7173                                 : CK_AnyPointerToBlockPointerCast);
7174     return ResultTy;
7175   }
7176 
7177   if (LHSType->isObjCObjectPointerType() ||
7178       RHSType->isObjCObjectPointerType()) {
7179     const PointerType *LPT = LHSType->getAs<PointerType>();
7180     const PointerType *RPT = RHSType->getAs<PointerType>();
7181     if (LPT || RPT) {
7182       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7183       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7184 
7185       if (!LPtrToVoid && !RPtrToVoid &&
7186           !Context.typesAreCompatible(LHSType, RHSType)) {
7187         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7188                                           /*isError*/false);
7189       }
7190       if (LHSIsNull && !RHSIsNull)
7191         LHS = ImpCastExprToType(LHS.take(), RHSType,
7192                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7193       else
7194         RHS = ImpCastExprToType(RHS.take(), LHSType,
7195                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7196       return ResultTy;
7197     }
7198     if (LHSType->isObjCObjectPointerType() &&
7199         RHSType->isObjCObjectPointerType()) {
7200       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7201         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7202                                           /*isError*/false);
7203       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7204         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7205 
7206       if (LHSIsNull && !RHSIsNull)
7207         LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7208       else
7209         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7210       return ResultTy;
7211     }
7212   }
7213   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7214       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7215     unsigned DiagID = 0;
7216     bool isError = false;
7217     if ((LHSIsNull && LHSType->isIntegerType()) ||
7218         (RHSIsNull && RHSType->isIntegerType())) {
7219       if (IsRelational && !getLangOpts().CPlusPlus)
7220         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7221     } else if (IsRelational && !getLangOpts().CPlusPlus)
7222       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7223     else if (getLangOpts().CPlusPlus) {
7224       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7225       isError = true;
7226     } else
7227       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7228 
7229     if (DiagID) {
7230       Diag(Loc, DiagID)
7231         << LHSType << RHSType << LHS.get()->getSourceRange()
7232         << RHS.get()->getSourceRange();
7233       if (isError)
7234         return QualType();
7235     }
7236 
7237     if (LHSType->isIntegerType())
7238       LHS = ImpCastExprToType(LHS.take(), RHSType,
7239                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7240     else
7241       RHS = ImpCastExprToType(RHS.take(), LHSType,
7242                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7243     return ResultTy;
7244   }
7245 
7246   // Handle block pointers.
7247   if (!IsRelational && RHSIsNull
7248       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
7249     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
7250     return ResultTy;
7251   }
7252   if (!IsRelational && LHSIsNull
7253       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
7254     LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
7255     return ResultTy;
7256   }
7257 
7258   return InvalidOperands(Loc, LHS, RHS);
7259 }
7260 
7261 
7262 // Return a signed type that is of identical size and number of elements.
7263 // For floating point vectors, return an integer type of identical size
7264 // and number of elements.
GetSignedVectorType(QualType V)7265 QualType Sema::GetSignedVectorType(QualType V) {
7266   const VectorType *VTy = V->getAs<VectorType>();
7267   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7268   if (TypeSize == Context.getTypeSize(Context.CharTy))
7269     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
7270   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
7271     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
7272   else if (TypeSize == Context.getTypeSize(Context.IntTy))
7273     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7274   else if (TypeSize == Context.getTypeSize(Context.LongTy))
7275     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7276   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7277          "Unhandled vector element size in vector compare");
7278   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7279 }
7280 
7281 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
7282 /// operates on extended vector types.  Instead of producing an IntTy result,
7283 /// like a scalar comparison, a vector comparison produces a vector of integer
7284 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsRelational)7285 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
7286                                           SourceLocation Loc,
7287                                           bool IsRelational) {
7288   // Check to make sure we're operating on vectors of the same type and width,
7289   // Allowing one side to be a scalar of element type.
7290   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
7291   if (vType.isNull())
7292     return vType;
7293 
7294   QualType LHSType = LHS.get()->getType();
7295 
7296   // If AltiVec, the comparison results in a numeric type, i.e.
7297   // bool for C++, int for C
7298   if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7299     return Context.getLogicalOperationType();
7300 
7301   // For non-floating point types, check for self-comparisons of the form
7302   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7303   // often indicate logic errors in the program.
7304   if (!LHSType->hasFloatingRepresentation()) {
7305     if (DeclRefExpr* DRL
7306           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7307       if (DeclRefExpr* DRR
7308             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7309         if (DRL->getDecl() == DRR->getDecl())
7310           DiagRuntimeBehavior(Loc, 0,
7311                               PDiag(diag::warn_comparison_always)
7312                                 << 0 // self-
7313                                 << 2 // "a constant"
7314                               );
7315   }
7316 
7317   // Check for comparisons of floating point operands using != and ==.
7318   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7319     assert (RHS.get()->getType()->hasFloatingRepresentation());
7320     CheckFloatComparison(Loc, LHS.get(), RHS.get());
7321   }
7322 
7323   // Return a signed type for the vector.
7324   return GetSignedVectorType(LHSType);
7325 }
7326 
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7327 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7328                                           SourceLocation Loc) {
7329   // Ensure that either both operands are of the same vector type, or
7330   // one operand is of a vector type and the other is of its element type.
7331   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7332   if (vType.isNull() || vType->isFloatingType())
7333     return InvalidOperands(Loc, LHS, RHS);
7334 
7335   return GetSignedVectorType(LHS.get()->getType());
7336 }
7337 
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)7338 inline QualType Sema::CheckBitwiseOperands(
7339   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7340   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7341 
7342   if (LHS.get()->getType()->isVectorType() ||
7343       RHS.get()->getType()->isVectorType()) {
7344     if (LHS.get()->getType()->hasIntegerRepresentation() &&
7345         RHS.get()->getType()->hasIntegerRepresentation())
7346       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7347 
7348     return InvalidOperands(Loc, LHS, RHS);
7349   }
7350 
7351   ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7352   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7353                                                  IsCompAssign);
7354   if (LHSResult.isInvalid() || RHSResult.isInvalid())
7355     return QualType();
7356   LHS = LHSResult.take();
7357   RHS = RHSResult.take();
7358 
7359   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
7360     return compType;
7361   return InvalidOperands(Loc, LHS, RHS);
7362 }
7363 
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc)7364 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7365   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7366 
7367   // Check vector operands differently.
7368   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7369     return CheckVectorLogicalOperands(LHS, RHS, Loc);
7370 
7371   // Diagnose cases where the user write a logical and/or but probably meant a
7372   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7373   // is a constant.
7374   if (LHS.get()->getType()->isIntegerType() &&
7375       !LHS.get()->getType()->isBooleanType() &&
7376       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7377       // Don't warn in macros or template instantiations.
7378       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7379     // If the RHS can be constant folded, and if it constant folds to something
7380     // that isn't 0 or 1 (which indicate a potential logical operation that
7381     // happened to fold to true/false) then warn.
7382     // Parens on the RHS are ignored.
7383     llvm::APSInt Result;
7384     if (RHS.get()->EvaluateAsInt(Result, Context))
7385       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7386           (Result != 0 && Result != 1)) {
7387         Diag(Loc, diag::warn_logical_instead_of_bitwise)
7388           << RHS.get()->getSourceRange()
7389           << (Opc == BO_LAnd ? "&&" : "||");
7390         // Suggest replacing the logical operator with the bitwise version
7391         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7392             << (Opc == BO_LAnd ? "&" : "|")
7393             << FixItHint::CreateReplacement(SourceRange(
7394                 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7395                                                 getLangOpts())),
7396                                             Opc == BO_LAnd ? "&" : "|");
7397         if (Opc == BO_LAnd)
7398           // Suggest replacing "Foo() && kNonZero" with "Foo()"
7399           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7400               << FixItHint::CreateRemoval(
7401                   SourceRange(
7402                       Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7403                                                  0, getSourceManager(),
7404                                                  getLangOpts()),
7405                       RHS.get()->getLocEnd()));
7406       }
7407   }
7408 
7409   if (!Context.getLangOpts().CPlusPlus) {
7410     LHS = UsualUnaryConversions(LHS.take());
7411     if (LHS.isInvalid())
7412       return QualType();
7413 
7414     RHS = UsualUnaryConversions(RHS.take());
7415     if (RHS.isInvalid())
7416       return QualType();
7417 
7418     if (!LHS.get()->getType()->isScalarType() ||
7419         !RHS.get()->getType()->isScalarType())
7420       return InvalidOperands(Loc, LHS, RHS);
7421 
7422     return Context.IntTy;
7423   }
7424 
7425   // The following is safe because we only use this method for
7426   // non-overloadable operands.
7427 
7428   // C++ [expr.log.and]p1
7429   // C++ [expr.log.or]p1
7430   // The operands are both contextually converted to type bool.
7431   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7432   if (LHSRes.isInvalid())
7433     return InvalidOperands(Loc, LHS, RHS);
7434   LHS = LHSRes;
7435 
7436   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7437   if (RHSRes.isInvalid())
7438     return InvalidOperands(Loc, LHS, RHS);
7439   RHS = RHSRes;
7440 
7441   // C++ [expr.log.and]p2
7442   // C++ [expr.log.or]p2
7443   // The result is a bool.
7444   return Context.BoolTy;
7445 }
7446 
7447 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7448 /// is a read-only property; return true if so. A readonly property expression
7449 /// depends on various declarations and thus must be treated specially.
7450 ///
IsReadonlyProperty(Expr * E,Sema & S)7451 static bool IsReadonlyProperty(Expr *E, Sema &S) {
7452   const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7453   if (!PropExpr) return false;
7454   if (PropExpr->isImplicitProperty()) return false;
7455 
7456   ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7457   QualType BaseType = PropExpr->isSuperReceiver() ?
7458                             PropExpr->getSuperReceiverType() :
7459                             PropExpr->getBase()->getType();
7460 
7461   if (const ObjCObjectPointerType *OPT =
7462       BaseType->getAsObjCInterfacePointerType())
7463     if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7464       if (S.isPropertyReadonly(PDecl, IFace))
7465         return true;
7466   return false;
7467 }
7468 
IsReadonlyMessage(Expr * E,Sema & S)7469 static bool IsReadonlyMessage(Expr *E, Sema &S) {
7470   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7471   if (!ME) return false;
7472   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7473   ObjCMessageExpr *Base =
7474     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7475   if (!Base) return false;
7476   return Base->getMethodDecl() != 0;
7477 }
7478 
7479 /// Is the given expression (which must be 'const') a reference to a
7480 /// variable which was originally non-const, but which has become
7481 /// 'const' due to being captured within a block?
7482 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)7483 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7484   assert(E->isLValue() && E->getType().isConstQualified());
7485   E = E->IgnoreParens();
7486 
7487   // Must be a reference to a declaration from an enclosing scope.
7488   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7489   if (!DRE) return NCCK_None;
7490   if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7491 
7492   // The declaration must be a variable which is not declared 'const'.
7493   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7494   if (!var) return NCCK_None;
7495   if (var->getType().isConstQualified()) return NCCK_None;
7496   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7497 
7498   // Decide whether the first capture was for a block or a lambda.
7499   DeclContext *DC = S.CurContext;
7500   while (DC->getParent() != var->getDeclContext())
7501     DC = DC->getParent();
7502   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7503 }
7504 
7505 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7506 /// emit an error and return true.  If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)7507 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7508   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7509   SourceLocation OrigLoc = Loc;
7510   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7511                                                               &Loc);
7512   if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7513     IsLV = Expr::MLV_ReadonlyProperty;
7514   else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7515     IsLV = Expr::MLV_InvalidMessageExpression;
7516   if (IsLV == Expr::MLV_Valid)
7517     return false;
7518 
7519   unsigned Diag = 0;
7520   bool NeedType = false;
7521   switch (IsLV) { // C99 6.5.16p2
7522   case Expr::MLV_ConstQualified:
7523     Diag = diag::err_typecheck_assign_const;
7524 
7525     // Use a specialized diagnostic when we're assigning to an object
7526     // from an enclosing function or block.
7527     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7528       if (NCCK == NCCK_Block)
7529         Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7530       else
7531         Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7532       break;
7533     }
7534 
7535     // In ARC, use some specialized diagnostics for occasions where we
7536     // infer 'const'.  These are always pseudo-strong variables.
7537     if (S.getLangOpts().ObjCAutoRefCount) {
7538       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7539       if (declRef && isa<VarDecl>(declRef->getDecl())) {
7540         VarDecl *var = cast<VarDecl>(declRef->getDecl());
7541 
7542         // Use the normal diagnostic if it's pseudo-__strong but the
7543         // user actually wrote 'const'.
7544         if (var->isARCPseudoStrong() &&
7545             (!var->getTypeSourceInfo() ||
7546              !var->getTypeSourceInfo()->getType().isConstQualified())) {
7547           // There are two pseudo-strong cases:
7548           //  - self
7549           ObjCMethodDecl *method = S.getCurMethodDecl();
7550           if (method && var == method->getSelfDecl())
7551             Diag = method->isClassMethod()
7552               ? diag::err_typecheck_arc_assign_self_class_method
7553               : diag::err_typecheck_arc_assign_self;
7554 
7555           //  - fast enumeration variables
7556           else
7557             Diag = diag::err_typecheck_arr_assign_enumeration;
7558 
7559           SourceRange Assign;
7560           if (Loc != OrigLoc)
7561             Assign = SourceRange(OrigLoc, OrigLoc);
7562           S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7563           // We need to preserve the AST regardless, so migration tool
7564           // can do its job.
7565           return false;
7566         }
7567       }
7568     }
7569 
7570     break;
7571   case Expr::MLV_ArrayType:
7572   case Expr::MLV_ArrayTemporary:
7573     Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7574     NeedType = true;
7575     break;
7576   case Expr::MLV_NotObjectType:
7577     Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7578     NeedType = true;
7579     break;
7580   case Expr::MLV_LValueCast:
7581     Diag = diag::err_typecheck_lvalue_casts_not_supported;
7582     break;
7583   case Expr::MLV_Valid:
7584     llvm_unreachable("did not take early return for MLV_Valid");
7585   case Expr::MLV_InvalidExpression:
7586   case Expr::MLV_MemberFunction:
7587   case Expr::MLV_ClassTemporary:
7588     Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7589     break;
7590   case Expr::MLV_IncompleteType:
7591   case Expr::MLV_IncompleteVoidType:
7592     return S.RequireCompleteType(Loc, E->getType(),
7593              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
7594   case Expr::MLV_DuplicateVectorComponents:
7595     Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7596     break;
7597   case Expr::MLV_ReadonlyProperty:
7598   case Expr::MLV_NoSetterProperty:
7599     llvm_unreachable("readonly properties should be processed differently");
7600   case Expr::MLV_InvalidMessageExpression:
7601     Diag = diag::error_readonly_message_assignment;
7602     break;
7603   case Expr::MLV_SubObjCPropertySetting:
7604     Diag = diag::error_no_subobject_property_setting;
7605     break;
7606   }
7607 
7608   SourceRange Assign;
7609   if (Loc != OrigLoc)
7610     Assign = SourceRange(OrigLoc, OrigLoc);
7611   if (NeedType)
7612     S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7613   else
7614     S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7615   return true;
7616 }
7617 
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)7618 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
7619                                          SourceLocation Loc,
7620                                          Sema &Sema) {
7621   // C / C++ fields
7622   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
7623   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
7624   if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
7625     if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
7626       Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
7627   }
7628 
7629   // Objective-C instance variables
7630   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
7631   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
7632   if (OL && OR && OL->getDecl() == OR->getDecl()) {
7633     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
7634     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
7635     if (RL && RR && RL->getDecl() == RR->getDecl())
7636       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
7637   }
7638 }
7639 
7640 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)7641 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7642                                        SourceLocation Loc,
7643                                        QualType CompoundType) {
7644   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7645 
7646   // Verify that LHS is a modifiable lvalue, and emit error if not.
7647   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7648     return QualType();
7649 
7650   QualType LHSType = LHSExpr->getType();
7651   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7652                                              CompoundType;
7653   AssignConvertType ConvTy;
7654   if (CompoundType.isNull()) {
7655     Expr *RHSCheck = RHS.get();
7656 
7657     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
7658 
7659     QualType LHSTy(LHSType);
7660     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7661     if (RHS.isInvalid())
7662       return QualType();
7663     // Special case of NSObject attributes on c-style pointer types.
7664     if (ConvTy == IncompatiblePointer &&
7665         ((Context.isObjCNSObjectType(LHSType) &&
7666           RHSType->isObjCObjectPointerType()) ||
7667          (Context.isObjCNSObjectType(RHSType) &&
7668           LHSType->isObjCObjectPointerType())))
7669       ConvTy = Compatible;
7670 
7671     if (ConvTy == Compatible &&
7672         LHSType->isObjCObjectType())
7673         Diag(Loc, diag::err_objc_object_assignment)
7674           << LHSType;
7675 
7676     // If the RHS is a unary plus or minus, check to see if they = and + are
7677     // right next to each other.  If so, the user may have typo'd "x =+ 4"
7678     // instead of "x += 4".
7679     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7680       RHSCheck = ICE->getSubExpr();
7681     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7682       if ((UO->getOpcode() == UO_Plus ||
7683            UO->getOpcode() == UO_Minus) &&
7684           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7685           // Only if the two operators are exactly adjacent.
7686           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7687           // And there is a space or other character before the subexpr of the
7688           // unary +/-.  We don't want to warn on "x=-1".
7689           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7690           UO->getSubExpr()->getLocStart().isFileID()) {
7691         Diag(Loc, diag::warn_not_compound_assign)
7692           << (UO->getOpcode() == UO_Plus ? "+" : "-")
7693           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7694       }
7695     }
7696 
7697     if (ConvTy == Compatible) {
7698       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7699         checkRetainCycles(LHSExpr, RHS.get());
7700       else if (getLangOpts().ObjCAutoRefCount)
7701         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7702     }
7703   } else {
7704     // Compound assignment "x += y"
7705     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7706   }
7707 
7708   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7709                                RHS.get(), AA_Assigning))
7710     return QualType();
7711 
7712   CheckForNullPointerDereference(*this, LHSExpr);
7713 
7714   // C99 6.5.16p3: The type of an assignment expression is the type of the
7715   // left operand unless the left operand has qualified type, in which case
7716   // it is the unqualified version of the type of the left operand.
7717   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7718   // is converted to the type of the assignment expression (above).
7719   // C++ 5.17p1: the type of the assignment expression is that of its left
7720   // operand.
7721   return (getLangOpts().CPlusPlus
7722           ? LHSType : LHSType.getUnqualifiedType());
7723 }
7724 
7725 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7726 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7727                                    SourceLocation Loc) {
7728   LHS = S.CheckPlaceholderExpr(LHS.take());
7729   RHS = S.CheckPlaceholderExpr(RHS.take());
7730   if (LHS.isInvalid() || RHS.isInvalid())
7731     return QualType();
7732 
7733   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7734   // operands, but not unary promotions.
7735   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7736 
7737   // So we treat the LHS as a ignored value, and in C++ we allow the
7738   // containing site to determine what should be done with the RHS.
7739   LHS = S.IgnoredValueConversions(LHS.take());
7740   if (LHS.isInvalid())
7741     return QualType();
7742 
7743   S.DiagnoseUnusedExprResult(LHS.get());
7744 
7745   if (!S.getLangOpts().CPlusPlus) {
7746     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7747     if (RHS.isInvalid())
7748       return QualType();
7749     if (!RHS.get()->getType()->isVoidType())
7750       S.RequireCompleteType(Loc, RHS.get()->getType(),
7751                             diag::err_incomplete_type);
7752   }
7753 
7754   return RHS.get()->getType();
7755 }
7756 
7757 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7758 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)7759 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7760                                                ExprValueKind &VK,
7761                                                SourceLocation OpLoc,
7762                                                bool IsInc, bool IsPrefix) {
7763   if (Op->isTypeDependent())
7764     return S.Context.DependentTy;
7765 
7766   QualType ResType = Op->getType();
7767   // Atomic types can be used for increment / decrement where the non-atomic
7768   // versions can, so ignore the _Atomic() specifier for the purpose of
7769   // checking.
7770   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7771     ResType = ResAtomicType->getValueType();
7772 
7773   assert(!ResType.isNull() && "no type for increment/decrement expression");
7774 
7775   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7776     // Decrement of bool is not allowed.
7777     if (!IsInc) {
7778       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7779       return QualType();
7780     }
7781     // Increment of bool sets it to true, but is deprecated.
7782     S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7783   } else if (ResType->isRealType()) {
7784     // OK!
7785   } else if (ResType->isPointerType()) {
7786     // C99 6.5.2.4p2, 6.5.6p2
7787     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7788       return QualType();
7789   } else if (ResType->isObjCObjectPointerType()) {
7790     // On modern runtimes, ObjC pointer arithmetic is forbidden.
7791     // Otherwise, we just need a complete type.
7792     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
7793         checkArithmeticOnObjCPointer(S, OpLoc, Op))
7794       return QualType();
7795   } else if (ResType->isAnyComplexType()) {
7796     // C99 does not support ++/-- on complex types, we allow as an extension.
7797     S.Diag(OpLoc, diag::ext_integer_increment_complex)
7798       << ResType << Op->getSourceRange();
7799   } else if (ResType->isPlaceholderType()) {
7800     ExprResult PR = S.CheckPlaceholderExpr(Op);
7801     if (PR.isInvalid()) return QualType();
7802     return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7803                                           IsInc, IsPrefix);
7804   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7805     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7806   } else {
7807     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7808       << ResType << int(IsInc) << Op->getSourceRange();
7809     return QualType();
7810   }
7811   // At this point, we know we have a real, complex or pointer type.
7812   // Now make sure the operand is a modifiable lvalue.
7813   if (CheckForModifiableLvalue(Op, OpLoc, S))
7814     return QualType();
7815   // In C++, a prefix increment is the same type as the operand. Otherwise
7816   // (in C or with postfix), the increment is the unqualified type of the
7817   // operand.
7818   if (IsPrefix && S.getLangOpts().CPlusPlus) {
7819     VK = VK_LValue;
7820     return ResType;
7821   } else {
7822     VK = VK_RValue;
7823     return ResType.getUnqualifiedType();
7824   }
7825 }
7826 
7827 
7828 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7829 /// This routine allows us to typecheck complex/recursive expressions
7830 /// where the declaration is needed for type checking. We only need to
7831 /// handle cases when the expression references a function designator
7832 /// or is an lvalue. Here are some examples:
7833 ///  - &(x) => x
7834 ///  - &*****f => f for f a function designator.
7835 ///  - &s.xx => s
7836 ///  - &s.zz[1].yy -> s, if zz is an array
7837 ///  - *(x + 1) -> x, if x is an array
7838 ///  - &"123"[2] -> 0
7839 ///  - & __real__ x -> x
getPrimaryDecl(Expr * E)7840 static ValueDecl *getPrimaryDecl(Expr *E) {
7841   switch (E->getStmtClass()) {
7842   case Stmt::DeclRefExprClass:
7843     return cast<DeclRefExpr>(E)->getDecl();
7844   case Stmt::MemberExprClass:
7845     // If this is an arrow operator, the address is an offset from
7846     // the base's value, so the object the base refers to is
7847     // irrelevant.
7848     if (cast<MemberExpr>(E)->isArrow())
7849       return 0;
7850     // Otherwise, the expression refers to a part of the base
7851     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7852   case Stmt::ArraySubscriptExprClass: {
7853     // FIXME: This code shouldn't be necessary!  We should catch the implicit
7854     // promotion of register arrays earlier.
7855     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7856     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7857       if (ICE->getSubExpr()->getType()->isArrayType())
7858         return getPrimaryDecl(ICE->getSubExpr());
7859     }
7860     return 0;
7861   }
7862   case Stmt::UnaryOperatorClass: {
7863     UnaryOperator *UO = cast<UnaryOperator>(E);
7864 
7865     switch(UO->getOpcode()) {
7866     case UO_Real:
7867     case UO_Imag:
7868     case UO_Extension:
7869       return getPrimaryDecl(UO->getSubExpr());
7870     default:
7871       return 0;
7872     }
7873   }
7874   case Stmt::ParenExprClass:
7875     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7876   case Stmt::ImplicitCastExprClass:
7877     // If the result of an implicit cast is an l-value, we care about
7878     // the sub-expression; otherwise, the result here doesn't matter.
7879     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7880   default:
7881     return 0;
7882   }
7883 }
7884 
7885 namespace {
7886   enum {
7887     AO_Bit_Field = 0,
7888     AO_Vector_Element = 1,
7889     AO_Property_Expansion = 2,
7890     AO_Register_Variable = 3,
7891     AO_No_Error = 4
7892   };
7893 }
7894 /// \brief Diagnose invalid operand for address of operations.
7895 ///
7896 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)7897 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7898                                          Expr *E, unsigned Type) {
7899   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7900 }
7901 
7902 /// CheckAddressOfOperand - The operand of & must be either a function
7903 /// designator or an lvalue designating an object. If it is an lvalue, the
7904 /// object cannot be declared with storage class register or be a bit field.
7905 /// Note: The usual conversions are *not* applied to the operand of the &
7906 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7907 /// In C++, the operand might be an overloaded function name, in which case
7908 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(Sema & S,ExprResult & OrigOp,SourceLocation OpLoc)7909 static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
7910                                       SourceLocation OpLoc) {
7911   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
7912     if (PTy->getKind() == BuiltinType::Overload) {
7913       if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
7914         S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7915           << OrigOp.get()->getSourceRange();
7916         return QualType();
7917       }
7918 
7919       return S.Context.OverloadTy;
7920     }
7921 
7922     if (PTy->getKind() == BuiltinType::UnknownAny)
7923       return S.Context.UnknownAnyTy;
7924 
7925     if (PTy->getKind() == BuiltinType::BoundMember) {
7926       S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7927         << OrigOp.get()->getSourceRange();
7928       return QualType();
7929     }
7930 
7931     OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
7932     if (OrigOp.isInvalid()) return QualType();
7933   }
7934 
7935   if (OrigOp.get()->isTypeDependent())
7936     return S.Context.DependentTy;
7937 
7938   assert(!OrigOp.get()->getType()->isPlaceholderType());
7939 
7940   // Make sure to ignore parentheses in subsequent checks
7941   Expr *op = OrigOp.get()->IgnoreParens();
7942 
7943   if (S.getLangOpts().C99) {
7944     // Implement C99-only parts of addressof rules.
7945     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7946       if (uOp->getOpcode() == UO_Deref)
7947         // Per C99 6.5.3.2, the address of a deref always returns a valid result
7948         // (assuming the deref expression is valid).
7949         return uOp->getSubExpr()->getType();
7950     }
7951     // Technically, there should be a check for array subscript
7952     // expressions here, but the result of one is always an lvalue anyway.
7953   }
7954   ValueDecl *dcl = getPrimaryDecl(op);
7955   Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7956   unsigned AddressOfError = AO_No_Error;
7957 
7958   if (lval == Expr::LV_ClassTemporary) {
7959     bool sfinae = S.isSFINAEContext();
7960     S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7961                          : diag::ext_typecheck_addrof_class_temporary)
7962       << op->getType() << op->getSourceRange();
7963     if (sfinae)
7964       return QualType();
7965   } else if (isa<ObjCSelectorExpr>(op)) {
7966     return S.Context.getPointerType(op->getType());
7967   } else if (lval == Expr::LV_MemberFunction) {
7968     // If it's an instance method, make a member pointer.
7969     // The expression must have exactly the form &A::foo.
7970 
7971     // If the underlying expression isn't a decl ref, give up.
7972     if (!isa<DeclRefExpr>(op)) {
7973       S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7974         << OrigOp.get()->getSourceRange();
7975       return QualType();
7976     }
7977     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7978     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7979 
7980     // The id-expression was parenthesized.
7981     if (OrigOp.get() != DRE) {
7982       S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7983         << OrigOp.get()->getSourceRange();
7984 
7985     // The method was named without a qualifier.
7986     } else if (!DRE->getQualifier()) {
7987       S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7988         << op->getSourceRange();
7989     }
7990 
7991     return S.Context.getMemberPointerType(op->getType(),
7992               S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7993   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7994     // C99 6.5.3.2p1
7995     // The operand must be either an l-value or a function designator
7996     if (!op->getType()->isFunctionType()) {
7997       // Use a special diagnostic for loads from property references.
7998       if (isa<PseudoObjectExpr>(op)) {
7999         AddressOfError = AO_Property_Expansion;
8000       } else {
8001         // FIXME: emit more specific diag...
8002         S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8003           << op->getSourceRange();
8004         return QualType();
8005       }
8006     }
8007   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8008     // The operand cannot be a bit-field
8009     AddressOfError = AO_Bit_Field;
8010   } else if (op->getObjectKind() == OK_VectorComponent) {
8011     // The operand cannot be an element of a vector
8012     AddressOfError = AO_Vector_Element;
8013   } else if (dcl) { // C99 6.5.3.2p1
8014     // We have an lvalue with a decl. Make sure the decl is not declared
8015     // with the register storage-class specifier.
8016     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8017       // in C++ it is not error to take address of a register
8018       // variable (c++03 7.1.1P3)
8019       if (vd->getStorageClass() == SC_Register &&
8020           !S.getLangOpts().CPlusPlus) {
8021         AddressOfError = AO_Register_Variable;
8022       }
8023     } else if (isa<FunctionTemplateDecl>(dcl)) {
8024       return S.Context.OverloadTy;
8025     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8026       // Okay: we can take the address of a field.
8027       // Could be a pointer to member, though, if there is an explicit
8028       // scope qualifier for the class.
8029       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8030         DeclContext *Ctx = dcl->getDeclContext();
8031         if (Ctx && Ctx->isRecord()) {
8032           if (dcl->getType()->isReferenceType()) {
8033             S.Diag(OpLoc,
8034                    diag::err_cannot_form_pointer_to_member_of_reference_type)
8035               << dcl->getDeclName() << dcl->getType();
8036             return QualType();
8037           }
8038 
8039           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8040             Ctx = Ctx->getParent();
8041           return S.Context.getMemberPointerType(op->getType(),
8042                 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8043         }
8044       }
8045     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8046       llvm_unreachable("Unknown/unexpected decl type");
8047   }
8048 
8049   if (AddressOfError != AO_No_Error) {
8050     diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
8051     return QualType();
8052   }
8053 
8054   if (lval == Expr::LV_IncompleteVoidType) {
8055     // Taking the address of a void variable is technically illegal, but we
8056     // allow it in cases which are otherwise valid.
8057     // Example: "extern void x; void* y = &x;".
8058     S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8059   }
8060 
8061   // If the operand has type "type", the result has type "pointer to type".
8062   if (op->getType()->isObjCObjectType())
8063     return S.Context.getObjCObjectPointerType(op->getType());
8064   return S.Context.getPointerType(op->getType());
8065 }
8066 
8067 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)8068 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8069                                         SourceLocation OpLoc) {
8070   if (Op->isTypeDependent())
8071     return S.Context.DependentTy;
8072 
8073   ExprResult ConvResult = S.UsualUnaryConversions(Op);
8074   if (ConvResult.isInvalid())
8075     return QualType();
8076   Op = ConvResult.take();
8077   QualType OpTy = Op->getType();
8078   QualType Result;
8079 
8080   if (isa<CXXReinterpretCastExpr>(Op)) {
8081     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8082     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8083                                      Op->getSourceRange());
8084   }
8085 
8086   // Note that per both C89 and C99, indirection is always legal, even if OpTy
8087   // is an incomplete type or void.  It would be possible to warn about
8088   // dereferencing a void pointer, but it's completely well-defined, and such a
8089   // warning is unlikely to catch any mistakes.
8090   if (const PointerType *PT = OpTy->getAs<PointerType>())
8091     Result = PT->getPointeeType();
8092   else if (const ObjCObjectPointerType *OPT =
8093              OpTy->getAs<ObjCObjectPointerType>())
8094     Result = OPT->getPointeeType();
8095   else {
8096     ExprResult PR = S.CheckPlaceholderExpr(Op);
8097     if (PR.isInvalid()) return QualType();
8098     if (PR.take() != Op)
8099       return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8100   }
8101 
8102   if (Result.isNull()) {
8103     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8104       << OpTy << Op->getSourceRange();
8105     return QualType();
8106   }
8107 
8108   // Dereferences are usually l-values...
8109   VK = VK_LValue;
8110 
8111   // ...except that certain expressions are never l-values in C.
8112   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8113     VK = VK_RValue;
8114 
8115   return Result;
8116 }
8117 
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)8118 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8119   tok::TokenKind Kind) {
8120   BinaryOperatorKind Opc;
8121   switch (Kind) {
8122   default: llvm_unreachable("Unknown binop!");
8123   case tok::periodstar:           Opc = BO_PtrMemD; break;
8124   case tok::arrowstar:            Opc = BO_PtrMemI; break;
8125   case tok::star:                 Opc = BO_Mul; break;
8126   case tok::slash:                Opc = BO_Div; break;
8127   case tok::percent:              Opc = BO_Rem; break;
8128   case tok::plus:                 Opc = BO_Add; break;
8129   case tok::minus:                Opc = BO_Sub; break;
8130   case tok::lessless:             Opc = BO_Shl; break;
8131   case tok::greatergreater:       Opc = BO_Shr; break;
8132   case tok::lessequal:            Opc = BO_LE; break;
8133   case tok::less:                 Opc = BO_LT; break;
8134   case tok::greaterequal:         Opc = BO_GE; break;
8135   case tok::greater:              Opc = BO_GT; break;
8136   case tok::exclaimequal:         Opc = BO_NE; break;
8137   case tok::equalequal:           Opc = BO_EQ; break;
8138   case tok::amp:                  Opc = BO_And; break;
8139   case tok::caret:                Opc = BO_Xor; break;
8140   case tok::pipe:                 Opc = BO_Or; break;
8141   case tok::ampamp:               Opc = BO_LAnd; break;
8142   case tok::pipepipe:             Opc = BO_LOr; break;
8143   case tok::equal:                Opc = BO_Assign; break;
8144   case tok::starequal:            Opc = BO_MulAssign; break;
8145   case tok::slashequal:           Opc = BO_DivAssign; break;
8146   case tok::percentequal:         Opc = BO_RemAssign; break;
8147   case tok::plusequal:            Opc = BO_AddAssign; break;
8148   case tok::minusequal:           Opc = BO_SubAssign; break;
8149   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
8150   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
8151   case tok::ampequal:             Opc = BO_AndAssign; break;
8152   case tok::caretequal:           Opc = BO_XorAssign; break;
8153   case tok::pipeequal:            Opc = BO_OrAssign; break;
8154   case tok::comma:                Opc = BO_Comma; break;
8155   }
8156   return Opc;
8157 }
8158 
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)8159 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8160   tok::TokenKind Kind) {
8161   UnaryOperatorKind Opc;
8162   switch (Kind) {
8163   default: llvm_unreachable("Unknown unary op!");
8164   case tok::plusplus:     Opc = UO_PreInc; break;
8165   case tok::minusminus:   Opc = UO_PreDec; break;
8166   case tok::amp:          Opc = UO_AddrOf; break;
8167   case tok::star:         Opc = UO_Deref; break;
8168   case tok::plus:         Opc = UO_Plus; break;
8169   case tok::minus:        Opc = UO_Minus; break;
8170   case tok::tilde:        Opc = UO_Not; break;
8171   case tok::exclaim:      Opc = UO_LNot; break;
8172   case tok::kw___real:    Opc = UO_Real; break;
8173   case tok::kw___imag:    Opc = UO_Imag; break;
8174   case tok::kw___extension__: Opc = UO_Extension; break;
8175   }
8176   return Opc;
8177 }
8178 
8179 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8180 /// This warning is only emitted for builtin assignment operations. It is also
8181 /// suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc)8182 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8183                                    SourceLocation OpLoc) {
8184   if (!S.ActiveTemplateInstantiations.empty())
8185     return;
8186   if (OpLoc.isInvalid() || OpLoc.isMacroID())
8187     return;
8188   LHSExpr = LHSExpr->IgnoreParenImpCasts();
8189   RHSExpr = RHSExpr->IgnoreParenImpCasts();
8190   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8191   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8192   if (!LHSDeclRef || !RHSDeclRef ||
8193       LHSDeclRef->getLocation().isMacroID() ||
8194       RHSDeclRef->getLocation().isMacroID())
8195     return;
8196   const ValueDecl *LHSDecl =
8197     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8198   const ValueDecl *RHSDecl =
8199     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8200   if (LHSDecl != RHSDecl)
8201     return;
8202   if (LHSDecl->getType().isVolatileQualified())
8203     return;
8204   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
8205     if (RefTy->getPointeeType().isVolatileQualified())
8206       return;
8207 
8208   S.Diag(OpLoc, diag::warn_self_assignment)
8209       << LHSDeclRef->getType()
8210       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8211 }
8212 
8213 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
8214 /// operator @p Opc at location @c TokLoc. This routine only supports
8215 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8216 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8217                                     BinaryOperatorKind Opc,
8218                                     Expr *LHSExpr, Expr *RHSExpr) {
8219   if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
8220     // The syntax only allows initializer lists on the RHS of assignment,
8221     // so we don't need to worry about accepting invalid code for
8222     // non-assignment operators.
8223     // C++11 5.17p9:
8224     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
8225     //   of x = {} is x = T().
8226     InitializationKind Kind =
8227         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
8228     InitializedEntity Entity =
8229         InitializedEntity::InitializeTemporary(LHSExpr->getType());
8230     InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
8231     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
8232     if (Init.isInvalid())
8233       return Init;
8234     RHSExpr = Init.take();
8235   }
8236 
8237   ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
8238   QualType ResultTy;     // Result type of the binary operator.
8239   // The following two variables are used for compound assignment operators
8240   QualType CompLHSTy;    // Type of LHS after promotions for computation
8241   QualType CompResultTy; // Type of computation result
8242   ExprValueKind VK = VK_RValue;
8243   ExprObjectKind OK = OK_Ordinary;
8244 
8245   switch (Opc) {
8246   case BO_Assign:
8247     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
8248     if (getLangOpts().CPlusPlus &&
8249         LHS.get()->getObjectKind() != OK_ObjCProperty) {
8250       VK = LHS.get()->getValueKind();
8251       OK = LHS.get()->getObjectKind();
8252     }
8253     if (!ResultTy.isNull())
8254       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
8255     break;
8256   case BO_PtrMemD:
8257   case BO_PtrMemI:
8258     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
8259                                             Opc == BO_PtrMemI);
8260     break;
8261   case BO_Mul:
8262   case BO_Div:
8263     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
8264                                            Opc == BO_Div);
8265     break;
8266   case BO_Rem:
8267     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
8268     break;
8269   case BO_Add:
8270     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
8271     break;
8272   case BO_Sub:
8273     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
8274     break;
8275   case BO_Shl:
8276   case BO_Shr:
8277     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
8278     break;
8279   case BO_LE:
8280   case BO_LT:
8281   case BO_GE:
8282   case BO_GT:
8283     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
8284     break;
8285   case BO_EQ:
8286   case BO_NE:
8287     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
8288     break;
8289   case BO_And:
8290   case BO_Xor:
8291   case BO_Or:
8292     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
8293     break;
8294   case BO_LAnd:
8295   case BO_LOr:
8296     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
8297     break;
8298   case BO_MulAssign:
8299   case BO_DivAssign:
8300     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
8301                                                Opc == BO_DivAssign);
8302     CompLHSTy = CompResultTy;
8303     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8304       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8305     break;
8306   case BO_RemAssign:
8307     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
8308     CompLHSTy = CompResultTy;
8309     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8310       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8311     break;
8312   case BO_AddAssign:
8313     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
8314     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8315       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8316     break;
8317   case BO_SubAssign:
8318     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
8319     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8320       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8321     break;
8322   case BO_ShlAssign:
8323   case BO_ShrAssign:
8324     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
8325     CompLHSTy = CompResultTy;
8326     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8327       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8328     break;
8329   case BO_AndAssign:
8330   case BO_XorAssign:
8331   case BO_OrAssign:
8332     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8333     CompLHSTy = CompResultTy;
8334     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8335       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8336     break;
8337   case BO_Comma:
8338     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8339     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
8340       VK = RHS.get()->getValueKind();
8341       OK = RHS.get()->getObjectKind();
8342     }
8343     break;
8344   }
8345   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8346     return ExprError();
8347 
8348   // Check for array bounds violations for both sides of the BinaryOperator
8349   CheckArrayAccess(LHS.get());
8350   CheckArrayAccess(RHS.get());
8351 
8352   if (CompResultTy.isNull())
8353     return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8354                                               ResultTy, VK, OK, OpLoc));
8355   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8356       OK_ObjCProperty) {
8357     VK = VK_LValue;
8358     OK = LHS.get()->getObjectKind();
8359   }
8360   return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8361                                                     ResultTy, VK, OK, CompLHSTy,
8362                                                     CompResultTy, OpLoc));
8363 }
8364 
8365 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8366 /// operators are mixed in a way that suggests that the programmer forgot that
8367 /// comparison operators have higher precedence. The most typical example of
8368 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8369 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8370                                       SourceLocation OpLoc, Expr *LHSExpr,
8371                                       Expr *RHSExpr) {
8372   typedef BinaryOperator BinOp;
8373   BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
8374                 RHSopc = static_cast<BinOp::Opcode>(-1);
8375   if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
8376     LHSopc = BO->getOpcode();
8377   if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
8378     RHSopc = BO->getOpcode();
8379 
8380   // Subs are not binary operators.
8381   if (LHSopc == -1 && RHSopc == -1)
8382     return;
8383 
8384   // Bitwise operations are sometimes used as eager logical ops.
8385   // Don't diagnose this.
8386   if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
8387       (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
8388     return;
8389 
8390   bool isLeftComp = BinOp::isComparisonOp(LHSopc);
8391   bool isRightComp = BinOp::isComparisonOp(RHSopc);
8392   if (!isLeftComp && !isRightComp) return;
8393 
8394   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8395                                                    OpLoc)
8396                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
8397   std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
8398                                  : BinOp::getOpcodeStr(RHSopc);
8399   SourceRange ParensRange = isLeftComp ?
8400       SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
8401                   RHSExpr->getLocEnd())
8402     : SourceRange(LHSExpr->getLocStart(),
8403                   cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
8404 
8405   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8406     << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
8407   SuggestParentheses(Self, OpLoc,
8408     Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
8409     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
8410   SuggestParentheses(Self, OpLoc,
8411     Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
8412     ParensRange);
8413 }
8414 
8415 /// \brief It accepts a '&' expr that is inside a '|' one.
8416 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8417 /// in parentheses.
8418 static void
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8419 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8420                                        BinaryOperator *Bop) {
8421   assert(Bop->getOpcode() == BO_And);
8422   Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8423       << Bop->getSourceRange() << OpLoc;
8424   SuggestParentheses(Self, Bop->getOperatorLoc(),
8425     Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
8426     Bop->getSourceRange());
8427 }
8428 
8429 /// \brief It accepts a '&&' expr that is inside a '||' one.
8430 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8431 /// in parentheses.
8432 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8433 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8434                                        BinaryOperator *Bop) {
8435   assert(Bop->getOpcode() == BO_LAnd);
8436   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8437       << Bop->getSourceRange() << OpLoc;
8438   SuggestParentheses(Self, Bop->getOperatorLoc(),
8439     Self.PDiag(diag::note_logical_and_in_logical_or_silence),
8440     Bop->getSourceRange());
8441 }
8442 
8443 /// \brief Returns true if the given expression can be evaluated as a constant
8444 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)8445 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8446   bool Res;
8447   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8448 }
8449 
8450 /// \brief Returns true if the given expression can be evaluated as a constant
8451 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)8452 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8453   bool Res;
8454   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8455 }
8456 
8457 /// \brief Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8458 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8459                                              Expr *LHSExpr, Expr *RHSExpr) {
8460   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8461     if (Bop->getOpcode() == BO_LAnd) {
8462       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8463       if (EvaluatesAsFalse(S, RHSExpr))
8464         return;
8465       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8466       if (!EvaluatesAsTrue(S, Bop->getLHS()))
8467         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8468     } else if (Bop->getOpcode() == BO_LOr) {
8469       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8470         // If it's "a || b && 1 || c" we didn't warn earlier for
8471         // "a || b && 1", but warn now.
8472         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8473           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8474       }
8475     }
8476   }
8477 }
8478 
8479 /// \brief Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8480 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8481                                              Expr *LHSExpr, Expr *RHSExpr) {
8482   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8483     if (Bop->getOpcode() == BO_LAnd) {
8484       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8485       if (EvaluatesAsFalse(S, LHSExpr))
8486         return;
8487       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8488       if (!EvaluatesAsTrue(S, Bop->getRHS()))
8489         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8490     }
8491   }
8492 }
8493 
8494 /// \brief Look for '&' in the left or right hand of a '|' expr.
DiagnoseBitwiseAndInBitwiseOr(Sema & S,SourceLocation OpLoc,Expr * OrArg)8495 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8496                                              Expr *OrArg) {
8497   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8498     if (Bop->getOpcode() == BO_And)
8499       return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8500   }
8501 }
8502 
8503 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8504 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8505 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8506                                     SourceLocation OpLoc, Expr *LHSExpr,
8507                                     Expr *RHSExpr){
8508   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8509   if (BinaryOperator::isBitwiseOp(Opc))
8510     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8511 
8512   // Diagnose "arg1 & arg2 | arg3"
8513   if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8514     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8515     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8516   }
8517 
8518   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8519   // We don't warn for 'assert(a || b && "bad")' since this is safe.
8520   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8521     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8522     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8523   }
8524 }
8525 
8526 // Binary Operators.  'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)8527 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8528                             tok::TokenKind Kind,
8529                             Expr *LHSExpr, Expr *RHSExpr) {
8530   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8531   assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8532   assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8533 
8534   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8535   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8536 
8537   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8538 }
8539 
8540 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)8541 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8542                                        BinaryOperatorKind Opc,
8543                                        Expr *LHS, Expr *RHS) {
8544   // Find all of the overloaded operators visible from this
8545   // point. We perform both an operator-name lookup from the local
8546   // scope and an argument-dependent lookup based on the types of
8547   // the arguments.
8548   UnresolvedSet<16> Functions;
8549   OverloadedOperatorKind OverOp
8550     = BinaryOperator::getOverloadedOperator(Opc);
8551   if (Sc && OverOp != OO_None)
8552     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8553                                    RHS->getType(), Functions);
8554 
8555   // Build the (potentially-overloaded, potentially-dependent)
8556   // binary operation.
8557   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8558 }
8559 
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8560 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8561                             BinaryOperatorKind Opc,
8562                             Expr *LHSExpr, Expr *RHSExpr) {
8563   // We want to end up calling one of checkPseudoObjectAssignment
8564   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8565   // both expressions are overloadable or either is type-dependent),
8566   // or CreateBuiltinBinOp (in any other case).  We also want to get
8567   // any placeholder types out of the way.
8568 
8569   // Handle pseudo-objects in the LHS.
8570   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8571     // Assignments with a pseudo-object l-value need special analysis.
8572     if (pty->getKind() == BuiltinType::PseudoObject &&
8573         BinaryOperator::isAssignmentOp(Opc))
8574       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8575 
8576     // Don't resolve overloads if the other type is overloadable.
8577     if (pty->getKind() == BuiltinType::Overload) {
8578       // We can't actually test that if we still have a placeholder,
8579       // though.  Fortunately, none of the exceptions we see in that
8580       // code below are valid when the LHS is an overload set.  Note
8581       // that an overload set can be dependently-typed, but it never
8582       // instantiates to having an overloadable type.
8583       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8584       if (resolvedRHS.isInvalid()) return ExprError();
8585       RHSExpr = resolvedRHS.take();
8586 
8587       if (RHSExpr->isTypeDependent() ||
8588           RHSExpr->getType()->isOverloadableType())
8589         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8590     }
8591 
8592     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8593     if (LHS.isInvalid()) return ExprError();
8594     LHSExpr = LHS.take();
8595   }
8596 
8597   // Handle pseudo-objects in the RHS.
8598   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8599     // An overload in the RHS can potentially be resolved by the type
8600     // being assigned to.
8601     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8602       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8603         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8604 
8605       if (LHSExpr->getType()->isOverloadableType())
8606         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8607 
8608       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8609     }
8610 
8611     // Don't resolve overloads if the other type is overloadable.
8612     if (pty->getKind() == BuiltinType::Overload &&
8613         LHSExpr->getType()->isOverloadableType())
8614       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8615 
8616     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8617     if (!resolvedRHS.isUsable()) return ExprError();
8618     RHSExpr = resolvedRHS.take();
8619   }
8620 
8621   if (getLangOpts().CPlusPlus) {
8622     // If either expression is type-dependent, always build an
8623     // overloaded op.
8624     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8625       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8626 
8627     // Otherwise, build an overloaded op if either expression has an
8628     // overloadable type.
8629     if (LHSExpr->getType()->isOverloadableType() ||
8630         RHSExpr->getType()->isOverloadableType())
8631       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8632   }
8633 
8634   // Build a built-in binary operation.
8635   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8636 }
8637 
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)8638 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8639                                       UnaryOperatorKind Opc,
8640                                       Expr *InputExpr) {
8641   ExprResult Input = Owned(InputExpr);
8642   ExprValueKind VK = VK_RValue;
8643   ExprObjectKind OK = OK_Ordinary;
8644   QualType resultType;
8645   switch (Opc) {
8646   case UO_PreInc:
8647   case UO_PreDec:
8648   case UO_PostInc:
8649   case UO_PostDec:
8650     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8651                                                 Opc == UO_PreInc ||
8652                                                 Opc == UO_PostInc,
8653                                                 Opc == UO_PreInc ||
8654                                                 Opc == UO_PreDec);
8655     break;
8656   case UO_AddrOf:
8657     resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8658     break;
8659   case UO_Deref: {
8660     Input = DefaultFunctionArrayLvalueConversion(Input.take());
8661     if (Input.isInvalid()) return ExprError();
8662     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8663     break;
8664   }
8665   case UO_Plus:
8666   case UO_Minus:
8667     Input = UsualUnaryConversions(Input.take());
8668     if (Input.isInvalid()) return ExprError();
8669     resultType = Input.get()->getType();
8670     if (resultType->isDependentType())
8671       break;
8672     if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8673         resultType->isVectorType())
8674       break;
8675     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8676              resultType->isEnumeralType())
8677       break;
8678     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8679              Opc == UO_Plus &&
8680              resultType->isPointerType())
8681       break;
8682 
8683     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8684       << resultType << Input.get()->getSourceRange());
8685 
8686   case UO_Not: // bitwise complement
8687     Input = UsualUnaryConversions(Input.take());
8688     if (Input.isInvalid()) return ExprError();
8689     resultType = Input.get()->getType();
8690     if (resultType->isDependentType())
8691       break;
8692     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8693     if (resultType->isComplexType() || resultType->isComplexIntegerType())
8694       // C99 does not support '~' for complex conjugation.
8695       Diag(OpLoc, diag::ext_integer_complement_complex)
8696         << resultType << Input.get()->getSourceRange();
8697     else if (resultType->hasIntegerRepresentation())
8698       break;
8699     else {
8700       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8701         << resultType << Input.get()->getSourceRange());
8702     }
8703     break;
8704 
8705   case UO_LNot: // logical negation
8706     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8707     Input = DefaultFunctionArrayLvalueConversion(Input.take());
8708     if (Input.isInvalid()) return ExprError();
8709     resultType = Input.get()->getType();
8710 
8711     // Though we still have to promote half FP to float...
8712     if (resultType->isHalfType()) {
8713       Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8714       resultType = Context.FloatTy;
8715     }
8716 
8717     if (resultType->isDependentType())
8718       break;
8719     if (resultType->isScalarType()) {
8720       // C99 6.5.3.3p1: ok, fallthrough;
8721       if (Context.getLangOpts().CPlusPlus) {
8722         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8723         // operand contextually converted to bool.
8724         Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8725                                   ScalarTypeToBooleanCastKind(resultType));
8726       }
8727     } else if (resultType->isExtVectorType()) {
8728       // Vector logical not returns the signed variant of the operand type.
8729       resultType = GetSignedVectorType(resultType);
8730       break;
8731     } else {
8732       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8733         << resultType << Input.get()->getSourceRange());
8734     }
8735 
8736     // LNot always has type int. C99 6.5.3.3p5.
8737     // In C++, it's bool. C++ 5.3.1p8
8738     resultType = Context.getLogicalOperationType();
8739     break;
8740   case UO_Real:
8741   case UO_Imag:
8742     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8743     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8744     // complex l-values to ordinary l-values and all other values to r-values.
8745     if (Input.isInvalid()) return ExprError();
8746     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8747       if (Input.get()->getValueKind() != VK_RValue &&
8748           Input.get()->getObjectKind() == OK_Ordinary)
8749         VK = Input.get()->getValueKind();
8750     } else if (!getLangOpts().CPlusPlus) {
8751       // In C, a volatile scalar is read by __imag. In C++, it is not.
8752       Input = DefaultLvalueConversion(Input.take());
8753     }
8754     break;
8755   case UO_Extension:
8756     resultType = Input.get()->getType();
8757     VK = Input.get()->getValueKind();
8758     OK = Input.get()->getObjectKind();
8759     break;
8760   }
8761   if (resultType.isNull() || Input.isInvalid())
8762     return ExprError();
8763 
8764   // Check for array bounds violations in the operand of the UnaryOperator,
8765   // except for the '*' and '&' operators that have to be handled specially
8766   // by CheckArrayAccess (as there are special cases like &array[arraysize]
8767   // that are explicitly defined as valid by the standard).
8768   if (Opc != UO_AddrOf && Opc != UO_Deref)
8769     CheckArrayAccess(Input.get());
8770 
8771   return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8772                                            VK, OK, OpLoc));
8773 }
8774 
8775 /// \brief Determine whether the given expression is a qualified member
8776 /// access expression, of a form that could be turned into a pointer to member
8777 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)8778 static bool isQualifiedMemberAccess(Expr *E) {
8779   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8780     if (!DRE->getQualifier())
8781       return false;
8782 
8783     ValueDecl *VD = DRE->getDecl();
8784     if (!VD->isCXXClassMember())
8785       return false;
8786 
8787     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8788       return true;
8789     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8790       return Method->isInstance();
8791 
8792     return false;
8793   }
8794 
8795   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8796     if (!ULE->getQualifier())
8797       return false;
8798 
8799     for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8800                                            DEnd = ULE->decls_end();
8801          D != DEnd; ++D) {
8802       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8803         if (Method->isInstance())
8804           return true;
8805       } else {
8806         // Overload set does not contain methods.
8807         break;
8808       }
8809     }
8810 
8811     return false;
8812   }
8813 
8814   return false;
8815 }
8816 
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)8817 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8818                               UnaryOperatorKind Opc, Expr *Input) {
8819   // First things first: handle placeholders so that the
8820   // overloaded-operator check considers the right type.
8821   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8822     // Increment and decrement of pseudo-object references.
8823     if (pty->getKind() == BuiltinType::PseudoObject &&
8824         UnaryOperator::isIncrementDecrementOp(Opc))
8825       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8826 
8827     // extension is always a builtin operator.
8828     if (Opc == UO_Extension)
8829       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8830 
8831     // & gets special logic for several kinds of placeholder.
8832     // The builtin code knows what to do.
8833     if (Opc == UO_AddrOf &&
8834         (pty->getKind() == BuiltinType::Overload ||
8835          pty->getKind() == BuiltinType::UnknownAny ||
8836          pty->getKind() == BuiltinType::BoundMember))
8837       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8838 
8839     // Anything else needs to be handled now.
8840     ExprResult Result = CheckPlaceholderExpr(Input);
8841     if (Result.isInvalid()) return ExprError();
8842     Input = Result.take();
8843   }
8844 
8845   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
8846       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8847       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8848     // Find all of the overloaded operators visible from this
8849     // point. We perform both an operator-name lookup from the local
8850     // scope and an argument-dependent lookup based on the types of
8851     // the arguments.
8852     UnresolvedSet<16> Functions;
8853     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8854     if (S && OverOp != OO_None)
8855       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8856                                    Functions);
8857 
8858     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8859   }
8860 
8861   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8862 }
8863 
8864 // Unary Operators.  'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)8865 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8866                               tok::TokenKind Op, Expr *Input) {
8867   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8868 }
8869 
8870 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)8871 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8872                                 LabelDecl *TheDecl) {
8873   TheDecl->setUsed();
8874   // Create the AST node.  The address of a label always has type 'void*'.
8875   return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8876                                        Context.getPointerType(Context.VoidTy)));
8877 }
8878 
8879 /// Given the last statement in a statement-expression, check whether
8880 /// the result is a producing expression (like a call to an
8881 /// ns_returns_retained function) and, if so, rebuild it to hoist the
8882 /// release out of the full-expression.  Otherwise, return null.
8883 /// Cannot fail.
maybeRebuildARCConsumingStmt(Stmt * Statement)8884 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
8885   // Should always be wrapped with one of these.
8886   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
8887   if (!cleanups) return 0;
8888 
8889   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8890   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
8891     return 0;
8892 
8893   // Splice out the cast.  This shouldn't modify any interesting
8894   // features of the statement.
8895   Expr *producer = cast->getSubExpr();
8896   assert(producer->getType() == cast->getType());
8897   assert(producer->getValueKind() == cast->getValueKind());
8898   cleanups->setSubExpr(producer);
8899   return cleanups;
8900 }
8901 
ActOnStartStmtExpr()8902 void Sema::ActOnStartStmtExpr() {
8903   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
8904 }
8905 
ActOnStmtExprError()8906 void Sema::ActOnStmtExprError() {
8907   // Note that function is also called by TreeTransform when leaving a
8908   // StmtExpr scope without rebuilding anything.
8909 
8910   DiscardCleanupsInEvaluationContext();
8911   PopExpressionEvaluationContext();
8912 }
8913 
8914 ExprResult
ActOnStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)8915 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8916                     SourceLocation RPLoc) { // "({..})"
8917   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8918   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8919 
8920   if (hasAnyUnrecoverableErrorsInThisFunction())
8921     DiscardCleanupsInEvaluationContext();
8922   assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
8923   PopExpressionEvaluationContext();
8924 
8925   bool isFileScope
8926     = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8927   if (isFileScope)
8928     return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8929 
8930   // FIXME: there are a variety of strange constraints to enforce here, for
8931   // example, it is not possible to goto into a stmt expression apparently.
8932   // More semantic analysis is needed.
8933 
8934   // If there are sub stmts in the compound stmt, take the type of the last one
8935   // as the type of the stmtexpr.
8936   QualType Ty = Context.VoidTy;
8937   bool StmtExprMayBindToTemp = false;
8938   if (!Compound->body_empty()) {
8939     Stmt *LastStmt = Compound->body_back();
8940     LabelStmt *LastLabelStmt = 0;
8941     // If LastStmt is a label, skip down through into the body.
8942     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8943       LastLabelStmt = Label;
8944       LastStmt = Label->getSubStmt();
8945     }
8946 
8947     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8948       // Do function/array conversion on the last expression, but not
8949       // lvalue-to-rvalue.  However, initialize an unqualified type.
8950       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8951       if (LastExpr.isInvalid())
8952         return ExprError();
8953       Ty = LastExpr.get()->getType().getUnqualifiedType();
8954 
8955       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8956         // In ARC, if the final expression ends in a consume, splice
8957         // the consume out and bind it later.  In the alternate case
8958         // (when dealing with a retainable type), the result
8959         // initialization will create a produce.  In both cases the
8960         // result will be +1, and we'll need to balance that out with
8961         // a bind.
8962         if (Expr *rebuiltLastStmt
8963               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8964           LastExpr = rebuiltLastStmt;
8965         } else {
8966           LastExpr = PerformCopyInitialization(
8967                             InitializedEntity::InitializeResult(LPLoc,
8968                                                                 Ty,
8969                                                                 false),
8970                                                    SourceLocation(),
8971                                                LastExpr);
8972         }
8973 
8974         if (LastExpr.isInvalid())
8975           return ExprError();
8976         if (LastExpr.get() != 0) {
8977           if (!LastLabelStmt)
8978             Compound->setLastStmt(LastExpr.take());
8979           else
8980             LastLabelStmt->setSubStmt(LastExpr.take());
8981           StmtExprMayBindToTemp = true;
8982         }
8983       }
8984     }
8985   }
8986 
8987   // FIXME: Check that expression type is complete/non-abstract; statement
8988   // expressions are not lvalues.
8989   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8990   if (StmtExprMayBindToTemp)
8991     return MaybeBindToTemporary(ResStmtExpr);
8992   return Owned(ResStmtExpr);
8993 }
8994 
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)8995 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8996                                       TypeSourceInfo *TInfo,
8997                                       OffsetOfComponent *CompPtr,
8998                                       unsigned NumComponents,
8999                                       SourceLocation RParenLoc) {
9000   QualType ArgTy = TInfo->getType();
9001   bool Dependent = ArgTy->isDependentType();
9002   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9003 
9004   // We must have at least one component that refers to the type, and the first
9005   // one is known to be a field designator.  Verify that the ArgTy represents
9006   // a struct/union/class.
9007   if (!Dependent && !ArgTy->isRecordType())
9008     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9009                        << ArgTy << TypeRange);
9010 
9011   // Type must be complete per C99 7.17p3 because a declaring a variable
9012   // with an incomplete type would be ill-formed.
9013   if (!Dependent
9014       && RequireCompleteType(BuiltinLoc, ArgTy,
9015                              diag::err_offsetof_incomplete_type, TypeRange))
9016     return ExprError();
9017 
9018   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9019   // GCC extension, diagnose them.
9020   // FIXME: This diagnostic isn't actually visible because the location is in
9021   // a system header!
9022   if (NumComponents != 1)
9023     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9024       << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9025 
9026   bool DidWarnAboutNonPOD = false;
9027   QualType CurrentType = ArgTy;
9028   typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9029   SmallVector<OffsetOfNode, 4> Comps;
9030   SmallVector<Expr*, 4> Exprs;
9031   for (unsigned i = 0; i != NumComponents; ++i) {
9032     const OffsetOfComponent &OC = CompPtr[i];
9033     if (OC.isBrackets) {
9034       // Offset of an array sub-field.  TODO: Should we allow vector elements?
9035       if (!CurrentType->isDependentType()) {
9036         const ArrayType *AT = Context.getAsArrayType(CurrentType);
9037         if(!AT)
9038           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9039                            << CurrentType);
9040         CurrentType = AT->getElementType();
9041       } else
9042         CurrentType = Context.DependentTy;
9043 
9044       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9045       if (IdxRval.isInvalid())
9046         return ExprError();
9047       Expr *Idx = IdxRval.take();
9048 
9049       // The expression must be an integral expression.
9050       // FIXME: An integral constant expression?
9051       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9052           !Idx->getType()->isIntegerType())
9053         return ExprError(Diag(Idx->getLocStart(),
9054                               diag::err_typecheck_subscript_not_integer)
9055                          << Idx->getSourceRange());
9056 
9057       // Record this array index.
9058       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9059       Exprs.push_back(Idx);
9060       continue;
9061     }
9062 
9063     // Offset of a field.
9064     if (CurrentType->isDependentType()) {
9065       // We have the offset of a field, but we can't look into the dependent
9066       // type. Just record the identifier of the field.
9067       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9068       CurrentType = Context.DependentTy;
9069       continue;
9070     }
9071 
9072     // We need to have a complete type to look into.
9073     if (RequireCompleteType(OC.LocStart, CurrentType,
9074                             diag::err_offsetof_incomplete_type))
9075       return ExprError();
9076 
9077     // Look for the designated field.
9078     const RecordType *RC = CurrentType->getAs<RecordType>();
9079     if (!RC)
9080       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9081                        << CurrentType);
9082     RecordDecl *RD = RC->getDecl();
9083 
9084     // C++ [lib.support.types]p5:
9085     //   The macro offsetof accepts a restricted set of type arguments in this
9086     //   International Standard. type shall be a POD structure or a POD union
9087     //   (clause 9).
9088     // C++11 [support.types]p4:
9089     //   If type is not a standard-layout class (Clause 9), the results are
9090     //   undefined.
9091     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9092       bool IsSafe = LangOpts.CPlusPlus0x? CRD->isStandardLayout() : CRD->isPOD();
9093       unsigned DiagID =
9094         LangOpts.CPlusPlus0x? diag::warn_offsetof_non_standardlayout_type
9095                             : diag::warn_offsetof_non_pod_type;
9096 
9097       if (!IsSafe && !DidWarnAboutNonPOD &&
9098           DiagRuntimeBehavior(BuiltinLoc, 0,
9099                               PDiag(DiagID)
9100                               << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9101                               << CurrentType))
9102         DidWarnAboutNonPOD = true;
9103     }
9104 
9105     // Look for the field.
9106     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9107     LookupQualifiedName(R, RD);
9108     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9109     IndirectFieldDecl *IndirectMemberDecl = 0;
9110     if (!MemberDecl) {
9111       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9112         MemberDecl = IndirectMemberDecl->getAnonField();
9113     }
9114 
9115     if (!MemberDecl)
9116       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9117                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9118                                                               OC.LocEnd));
9119 
9120     // C99 7.17p3:
9121     //   (If the specified member is a bit-field, the behavior is undefined.)
9122     //
9123     // We diagnose this as an error.
9124     if (MemberDecl->isBitField()) {
9125       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9126         << MemberDecl->getDeclName()
9127         << SourceRange(BuiltinLoc, RParenLoc);
9128       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9129       return ExprError();
9130     }
9131 
9132     RecordDecl *Parent = MemberDecl->getParent();
9133     if (IndirectMemberDecl)
9134       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9135 
9136     // If the member was found in a base class, introduce OffsetOfNodes for
9137     // the base class indirections.
9138     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9139                        /*DetectVirtual=*/false);
9140     if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9141       CXXBasePath &Path = Paths.front();
9142       for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9143            B != BEnd; ++B)
9144         Comps.push_back(OffsetOfNode(B->Base));
9145     }
9146 
9147     if (IndirectMemberDecl) {
9148       for (IndirectFieldDecl::chain_iterator FI =
9149            IndirectMemberDecl->chain_begin(),
9150            FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9151         assert(isa<FieldDecl>(*FI));
9152         Comps.push_back(OffsetOfNode(OC.LocStart,
9153                                      cast<FieldDecl>(*FI), OC.LocEnd));
9154       }
9155     } else
9156       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9157 
9158     CurrentType = MemberDecl->getType().getNonReferenceType();
9159   }
9160 
9161   return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9162                                     TInfo, Comps, Exprs, RParenLoc));
9163 }
9164 
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)9165 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9166                                       SourceLocation BuiltinLoc,
9167                                       SourceLocation TypeLoc,
9168                                       ParsedType ParsedArgTy,
9169                                       OffsetOfComponent *CompPtr,
9170                                       unsigned NumComponents,
9171                                       SourceLocation RParenLoc) {
9172 
9173   TypeSourceInfo *ArgTInfo;
9174   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
9175   if (ArgTy.isNull())
9176     return ExprError();
9177 
9178   if (!ArgTInfo)
9179     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9180 
9181   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9182                               RParenLoc);
9183 }
9184 
9185 
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)9186 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9187                                  Expr *CondExpr,
9188                                  Expr *LHSExpr, Expr *RHSExpr,
9189                                  SourceLocation RPLoc) {
9190   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9191 
9192   ExprValueKind VK = VK_RValue;
9193   ExprObjectKind OK = OK_Ordinary;
9194   QualType resType;
9195   bool ValueDependent = false;
9196   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9197     resType = Context.DependentTy;
9198     ValueDependent = true;
9199   } else {
9200     // The conditional expression is required to be a constant expression.
9201     llvm::APSInt condEval(32);
9202     ExprResult CondICE
9203       = VerifyIntegerConstantExpression(CondExpr, &condEval,
9204           diag::err_typecheck_choose_expr_requires_constant, false);
9205     if (CondICE.isInvalid())
9206       return ExprError();
9207     CondExpr = CondICE.take();
9208 
9209     // If the condition is > zero, then the AST type is the same as the LSHExpr.
9210     Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
9211 
9212     resType = ActiveExpr->getType();
9213     ValueDependent = ActiveExpr->isValueDependent();
9214     VK = ActiveExpr->getValueKind();
9215     OK = ActiveExpr->getObjectKind();
9216   }
9217 
9218   return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9219                                         resType, VK, OK, RPLoc,
9220                                         resType->isDependentType(),
9221                                         ValueDependent));
9222 }
9223 
9224 //===----------------------------------------------------------------------===//
9225 // Clang Extensions.
9226 //===----------------------------------------------------------------------===//
9227 
9228 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)9229 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
9230   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9231   PushBlockScope(CurScope, Block);
9232   CurContext->addDecl(Block);
9233   if (CurScope)
9234     PushDeclContext(CurScope, Block);
9235   else
9236     CurContext = Block;
9237 
9238   getCurBlock()->HasImplicitReturnType = true;
9239 
9240   // Enter a new evaluation context to insulate the block from any
9241   // cleanups from the enclosing full-expression.
9242   PushExpressionEvaluationContext(PotentiallyEvaluated);
9243 }
9244 
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)9245 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
9246                                Scope *CurScope) {
9247   assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
9248   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
9249   BlockScopeInfo *CurBlock = getCurBlock();
9250 
9251   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
9252   QualType T = Sig->getType();
9253 
9254   // FIXME: We should allow unexpanded parameter packs here, but that would,
9255   // in turn, make the block expression contain unexpanded parameter packs.
9256   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
9257     // Drop the parameters.
9258     FunctionProtoType::ExtProtoInfo EPI;
9259     EPI.HasTrailingReturn = false;
9260     EPI.TypeQuals |= DeclSpec::TQ_const;
9261     T = Context.getFunctionType(Context.DependentTy, /*Args=*/0, /*NumArgs=*/0,
9262                                 EPI);
9263     Sig = Context.getTrivialTypeSourceInfo(T);
9264   }
9265 
9266   // GetTypeForDeclarator always produces a function type for a block
9267   // literal signature.  Furthermore, it is always a FunctionProtoType
9268   // unless the function was written with a typedef.
9269   assert(T->isFunctionType() &&
9270          "GetTypeForDeclarator made a non-function block signature");
9271 
9272   // Look for an explicit signature in that function type.
9273   FunctionProtoTypeLoc ExplicitSignature;
9274 
9275   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
9276   if (isa<FunctionProtoTypeLoc>(tmp)) {
9277     ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
9278 
9279     // Check whether that explicit signature was synthesized by
9280     // GetTypeForDeclarator.  If so, don't save that as part of the
9281     // written signature.
9282     if (ExplicitSignature.getLocalRangeBegin() ==
9283         ExplicitSignature.getLocalRangeEnd()) {
9284       // This would be much cheaper if we stored TypeLocs instead of
9285       // TypeSourceInfos.
9286       TypeLoc Result = ExplicitSignature.getResultLoc();
9287       unsigned Size = Result.getFullDataSize();
9288       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
9289       Sig->getTypeLoc().initializeFullCopy(Result, Size);
9290 
9291       ExplicitSignature = FunctionProtoTypeLoc();
9292     }
9293   }
9294 
9295   CurBlock->TheDecl->setSignatureAsWritten(Sig);
9296   CurBlock->FunctionType = T;
9297 
9298   const FunctionType *Fn = T->getAs<FunctionType>();
9299   QualType RetTy = Fn->getResultType();
9300   bool isVariadic =
9301     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
9302 
9303   CurBlock->TheDecl->setIsVariadic(isVariadic);
9304 
9305   // Don't allow returning a objc interface by value.
9306   if (RetTy->isObjCObjectType()) {
9307     Diag(ParamInfo.getLocStart(),
9308          diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
9309     return;
9310   }
9311 
9312   // Context.DependentTy is used as a placeholder for a missing block
9313   // return type.  TODO:  what should we do with declarators like:
9314   //   ^ * { ... }
9315   // If the answer is "apply template argument deduction"....
9316   if (RetTy != Context.DependentTy) {
9317     CurBlock->ReturnType = RetTy;
9318     CurBlock->TheDecl->setBlockMissingReturnType(false);
9319     CurBlock->HasImplicitReturnType = false;
9320   }
9321 
9322   // Push block parameters from the declarator if we had them.
9323   SmallVector<ParmVarDecl*, 8> Params;
9324   if (ExplicitSignature) {
9325     for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
9326       ParmVarDecl *Param = ExplicitSignature.getArg(I);
9327       if (Param->getIdentifier() == 0 &&
9328           !Param->isImplicit() &&
9329           !Param->isInvalidDecl() &&
9330           !getLangOpts().CPlusPlus)
9331         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9332       Params.push_back(Param);
9333     }
9334 
9335   // Fake up parameter variables if we have a typedef, like
9336   //   ^ fntype { ... }
9337   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
9338     for (FunctionProtoType::arg_type_iterator
9339            I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
9340       ParmVarDecl *Param =
9341         BuildParmVarDeclForTypedef(CurBlock->TheDecl,
9342                                    ParamInfo.getLocStart(),
9343                                    *I);
9344       Params.push_back(Param);
9345     }
9346   }
9347 
9348   // Set the parameters on the block decl.
9349   if (!Params.empty()) {
9350     CurBlock->TheDecl->setParams(Params);
9351     CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9352                              CurBlock->TheDecl->param_end(),
9353                              /*CheckParameterNames=*/false);
9354   }
9355 
9356   // Finally we can process decl attributes.
9357   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9358 
9359   // Put the parameter variables in scope.  We can bail out immediately
9360   // if we don't have any.
9361   if (Params.empty())
9362     return;
9363 
9364   for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9365          E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9366     (*AI)->setOwningFunction(CurBlock->TheDecl);
9367 
9368     // If this has an identifier, add it to the scope stack.
9369     if ((*AI)->getIdentifier()) {
9370       CheckShadow(CurBlock->TheScope, *AI);
9371 
9372       PushOnScopeChains(*AI, CurBlock->TheScope);
9373     }
9374   }
9375 }
9376 
9377 /// ActOnBlockError - If there is an error parsing a block, this callback
9378 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)9379 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9380   // Leave the expression-evaluation context.
9381   DiscardCleanupsInEvaluationContext();
9382   PopExpressionEvaluationContext();
9383 
9384   // Pop off CurBlock, handle nested blocks.
9385   PopDeclContext();
9386   PopFunctionScopeInfo();
9387 }
9388 
9389 /// ActOnBlockStmtExpr - This is called when the body of a block statement
9390 /// literal was successfully completed.  ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)9391 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9392                                     Stmt *Body, Scope *CurScope) {
9393   // If blocks are disabled, emit an error.
9394   if (!LangOpts.Blocks)
9395     Diag(CaretLoc, diag::err_blocks_disable);
9396 
9397   // Leave the expression-evaluation context.
9398   if (hasAnyUnrecoverableErrorsInThisFunction())
9399     DiscardCleanupsInEvaluationContext();
9400   assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9401   PopExpressionEvaluationContext();
9402 
9403   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9404 
9405   if (BSI->HasImplicitReturnType)
9406     deduceClosureReturnType(*BSI);
9407 
9408   PopDeclContext();
9409 
9410   QualType RetTy = Context.VoidTy;
9411   if (!BSI->ReturnType.isNull())
9412     RetTy = BSI->ReturnType;
9413 
9414   bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9415   QualType BlockTy;
9416 
9417   // Set the captured variables on the block.
9418   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9419   SmallVector<BlockDecl::Capture, 4> Captures;
9420   for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9421     CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9422     if (Cap.isThisCapture())
9423       continue;
9424     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9425                               Cap.isNested(), Cap.getCopyExpr());
9426     Captures.push_back(NewCap);
9427   }
9428   BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9429                             BSI->CXXThisCaptureIndex != 0);
9430 
9431   // If the user wrote a function type in some form, try to use that.
9432   if (!BSI->FunctionType.isNull()) {
9433     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9434 
9435     FunctionType::ExtInfo Ext = FTy->getExtInfo();
9436     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9437 
9438     // Turn protoless block types into nullary block types.
9439     if (isa<FunctionNoProtoType>(FTy)) {
9440       FunctionProtoType::ExtProtoInfo EPI;
9441       EPI.ExtInfo = Ext;
9442       BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9443 
9444     // Otherwise, if we don't need to change anything about the function type,
9445     // preserve its sugar structure.
9446     } else if (FTy->getResultType() == RetTy &&
9447                (!NoReturn || FTy->getNoReturnAttr())) {
9448       BlockTy = BSI->FunctionType;
9449 
9450     // Otherwise, make the minimal modifications to the function type.
9451     } else {
9452       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9453       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9454       EPI.TypeQuals = 0; // FIXME: silently?
9455       EPI.ExtInfo = Ext;
9456       BlockTy = Context.getFunctionType(RetTy,
9457                                         FPT->arg_type_begin(),
9458                                         FPT->getNumArgs(),
9459                                         EPI);
9460     }
9461 
9462   // If we don't have a function type, just build one from nothing.
9463   } else {
9464     FunctionProtoType::ExtProtoInfo EPI;
9465     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9466     BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9467   }
9468 
9469   DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9470                            BSI->TheDecl->param_end());
9471   BlockTy = Context.getBlockPointerType(BlockTy);
9472 
9473   // If needed, diagnose invalid gotos and switches in the block.
9474   if (getCurFunction()->NeedsScopeChecking() &&
9475       !hasAnyUnrecoverableErrorsInThisFunction() &&
9476       !PP.isCodeCompletionEnabled())
9477     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9478 
9479   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9480 
9481   // Try to apply the named return value optimization. We have to check again
9482   // if we can do this, though, because blocks keep return statements around
9483   // to deduce an implicit return type.
9484   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
9485       !BSI->TheDecl->isDependentContext())
9486     computeNRVO(Body, getCurBlock());
9487 
9488   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9489   const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9490   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9491 
9492   // If the block isn't obviously global, i.e. it captures anything at
9493   // all, then we need to do a few things in the surrounding context:
9494   if (Result->getBlockDecl()->hasCaptures()) {
9495     // First, this expression has a new cleanup object.
9496     ExprCleanupObjects.push_back(Result->getBlockDecl());
9497     ExprNeedsCleanups = true;
9498 
9499     // It also gets a branch-protected scope if any of the captured
9500     // variables needs destruction.
9501     for (BlockDecl::capture_const_iterator
9502            ci = Result->getBlockDecl()->capture_begin(),
9503            ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9504       const VarDecl *var = ci->getVariable();
9505       if (var->getType().isDestructedType() != QualType::DK_none) {
9506         getCurFunction()->setHasBranchProtectedScope();
9507         break;
9508       }
9509     }
9510   }
9511 
9512   return Owned(Result);
9513 }
9514 
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)9515 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9516                                         Expr *E, ParsedType Ty,
9517                                         SourceLocation RPLoc) {
9518   TypeSourceInfo *TInfo;
9519   GetTypeFromParser(Ty, &TInfo);
9520   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9521 }
9522 
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)9523 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9524                                 Expr *E, TypeSourceInfo *TInfo,
9525                                 SourceLocation RPLoc) {
9526   Expr *OrigExpr = E;
9527 
9528   // Get the va_list type
9529   QualType VaListType = Context.getBuiltinVaListType();
9530   if (VaListType->isArrayType()) {
9531     // Deal with implicit array decay; for example, on x86-64,
9532     // va_list is an array, but it's supposed to decay to
9533     // a pointer for va_arg.
9534     VaListType = Context.getArrayDecayedType(VaListType);
9535     // Make sure the input expression also decays appropriately.
9536     ExprResult Result = UsualUnaryConversions(E);
9537     if (Result.isInvalid())
9538       return ExprError();
9539     E = Result.take();
9540   } else {
9541     // Otherwise, the va_list argument must be an l-value because
9542     // it is modified by va_arg.
9543     if (!E->isTypeDependent() &&
9544         CheckForModifiableLvalue(E, BuiltinLoc, *this))
9545       return ExprError();
9546   }
9547 
9548   if (!E->isTypeDependent() &&
9549       !Context.hasSameType(VaListType, E->getType())) {
9550     return ExprError(Diag(E->getLocStart(),
9551                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
9552       << OrigExpr->getType() << E->getSourceRange());
9553   }
9554 
9555   if (!TInfo->getType()->isDependentType()) {
9556     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9557                             diag::err_second_parameter_to_va_arg_incomplete,
9558                             TInfo->getTypeLoc()))
9559       return ExprError();
9560 
9561     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9562                                TInfo->getType(),
9563                                diag::err_second_parameter_to_va_arg_abstract,
9564                                TInfo->getTypeLoc()))
9565       return ExprError();
9566 
9567     if (!TInfo->getType().isPODType(Context)) {
9568       Diag(TInfo->getTypeLoc().getBeginLoc(),
9569            TInfo->getType()->isObjCLifetimeType()
9570              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9571              : diag::warn_second_parameter_to_va_arg_not_pod)
9572         << TInfo->getType()
9573         << TInfo->getTypeLoc().getSourceRange();
9574     }
9575 
9576     // Check for va_arg where arguments of the given type will be promoted
9577     // (i.e. this va_arg is guaranteed to have undefined behavior).
9578     QualType PromoteType;
9579     if (TInfo->getType()->isPromotableIntegerType()) {
9580       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9581       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9582         PromoteType = QualType();
9583     }
9584     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9585       PromoteType = Context.DoubleTy;
9586     if (!PromoteType.isNull())
9587       Diag(TInfo->getTypeLoc().getBeginLoc(),
9588           diag::warn_second_parameter_to_va_arg_never_compatible)
9589         << TInfo->getType()
9590         << PromoteType
9591         << TInfo->getTypeLoc().getSourceRange();
9592   }
9593 
9594   QualType T = TInfo->getType().getNonLValueExprType(Context);
9595   return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9596 }
9597 
ActOnGNUNullExpr(SourceLocation TokenLoc)9598 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9599   // The type of __null will be int or long, depending on the size of
9600   // pointers on the target.
9601   QualType Ty;
9602   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9603   if (pw == Context.getTargetInfo().getIntWidth())
9604     Ty = Context.IntTy;
9605   else if (pw == Context.getTargetInfo().getLongWidth())
9606     Ty = Context.LongTy;
9607   else if (pw == Context.getTargetInfo().getLongLongWidth())
9608     Ty = Context.LongLongTy;
9609   else {
9610     llvm_unreachable("I don't know size of pointer!");
9611   }
9612 
9613   return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9614 }
9615 
MakeObjCStringLiteralFixItHint(Sema & SemaRef,QualType DstType,Expr * SrcExpr,FixItHint & Hint)9616 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9617                                            Expr *SrcExpr, FixItHint &Hint) {
9618   if (!SemaRef.getLangOpts().ObjC1)
9619     return;
9620 
9621   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9622   if (!PT)
9623     return;
9624 
9625   // Check if the destination is of type 'id'.
9626   if (!PT->isObjCIdType()) {
9627     // Check if the destination is the 'NSString' interface.
9628     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9629     if (!ID || !ID->getIdentifier()->isStr("NSString"))
9630       return;
9631   }
9632 
9633   // Ignore any parens, implicit casts (should only be
9634   // array-to-pointer decays), and not-so-opaque values.  The last is
9635   // important for making this trigger for property assignments.
9636   SrcExpr = SrcExpr->IgnoreParenImpCasts();
9637   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9638     if (OV->getSourceExpr())
9639       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9640 
9641   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9642   if (!SL || !SL->isAscii())
9643     return;
9644 
9645   Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9646 }
9647 
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)9648 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9649                                     SourceLocation Loc,
9650                                     QualType DstType, QualType SrcType,
9651                                     Expr *SrcExpr, AssignmentAction Action,
9652                                     bool *Complained) {
9653   if (Complained)
9654     *Complained = false;
9655 
9656   // Decode the result (notice that AST's are still created for extensions).
9657   bool CheckInferredResultType = false;
9658   bool isInvalid = false;
9659   unsigned DiagKind = 0;
9660   FixItHint Hint;
9661   ConversionFixItGenerator ConvHints;
9662   bool MayHaveConvFixit = false;
9663   bool MayHaveFunctionDiff = false;
9664 
9665   switch (ConvTy) {
9666   case Compatible:
9667       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
9668       return false;
9669 
9670   case PointerToInt:
9671     DiagKind = diag::ext_typecheck_convert_pointer_int;
9672     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9673     MayHaveConvFixit = true;
9674     break;
9675   case IntToPointer:
9676     DiagKind = diag::ext_typecheck_convert_int_pointer;
9677     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9678     MayHaveConvFixit = true;
9679     break;
9680   case IncompatiblePointer:
9681     MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9682     DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9683     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9684       SrcType->isObjCObjectPointerType();
9685     if (Hint.isNull() && !CheckInferredResultType) {
9686       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9687     }
9688     MayHaveConvFixit = true;
9689     break;
9690   case IncompatiblePointerSign:
9691     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9692     break;
9693   case FunctionVoidPointer:
9694     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9695     break;
9696   case IncompatiblePointerDiscardsQualifiers: {
9697     // Perform array-to-pointer decay if necessary.
9698     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9699 
9700     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9701     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9702     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9703       DiagKind = diag::err_typecheck_incompatible_address_space;
9704       break;
9705 
9706 
9707     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9708       DiagKind = diag::err_typecheck_incompatible_ownership;
9709       break;
9710     }
9711 
9712     llvm_unreachable("unknown error case for discarding qualifiers!");
9713     // fallthrough
9714   }
9715   case CompatiblePointerDiscardsQualifiers:
9716     // If the qualifiers lost were because we were applying the
9717     // (deprecated) C++ conversion from a string literal to a char*
9718     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9719     // Ideally, this check would be performed in
9720     // checkPointerTypesForAssignment. However, that would require a
9721     // bit of refactoring (so that the second argument is an
9722     // expression, rather than a type), which should be done as part
9723     // of a larger effort to fix checkPointerTypesForAssignment for
9724     // C++ semantics.
9725     if (getLangOpts().CPlusPlus &&
9726         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9727       return false;
9728     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9729     break;
9730   case IncompatibleNestedPointerQualifiers:
9731     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9732     break;
9733   case IntToBlockPointer:
9734     DiagKind = diag::err_int_to_block_pointer;
9735     break;
9736   case IncompatibleBlockPointer:
9737     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9738     break;
9739   case IncompatibleObjCQualifiedId:
9740     // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9741     // it can give a more specific diagnostic.
9742     DiagKind = diag::warn_incompatible_qualified_id;
9743     break;
9744   case IncompatibleVectors:
9745     DiagKind = diag::warn_incompatible_vectors;
9746     break;
9747   case IncompatibleObjCWeakRef:
9748     DiagKind = diag::err_arc_weak_unavailable_assign;
9749     break;
9750   case Incompatible:
9751     DiagKind = diag::err_typecheck_convert_incompatible;
9752     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9753     MayHaveConvFixit = true;
9754     isInvalid = true;
9755     MayHaveFunctionDiff = true;
9756     break;
9757   }
9758 
9759   QualType FirstType, SecondType;
9760   switch (Action) {
9761   case AA_Assigning:
9762   case AA_Initializing:
9763     // The destination type comes first.
9764     FirstType = DstType;
9765     SecondType = SrcType;
9766     break;
9767 
9768   case AA_Returning:
9769   case AA_Passing:
9770   case AA_Converting:
9771   case AA_Sending:
9772   case AA_Casting:
9773     // The source type comes first.
9774     FirstType = SrcType;
9775     SecondType = DstType;
9776     break;
9777   }
9778 
9779   PartialDiagnostic FDiag = PDiag(DiagKind);
9780   FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9781 
9782   // If we can fix the conversion, suggest the FixIts.
9783   assert(ConvHints.isNull() || Hint.isNull());
9784   if (!ConvHints.isNull()) {
9785     for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
9786          HE = ConvHints.Hints.end(); HI != HE; ++HI)
9787       FDiag << *HI;
9788   } else {
9789     FDiag << Hint;
9790   }
9791   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9792 
9793   if (MayHaveFunctionDiff)
9794     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9795 
9796   Diag(Loc, FDiag);
9797 
9798   if (SecondType == Context.OverloadTy)
9799     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9800                               FirstType);
9801 
9802   if (CheckInferredResultType)
9803     EmitRelatedResultTypeNote(SrcExpr);
9804 
9805   if (Complained)
9806     *Complained = true;
9807   return isInvalid;
9808 }
9809 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result)9810 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9811                                                  llvm::APSInt *Result) {
9812   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
9813   public:
9814     virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9815       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
9816     }
9817   } Diagnoser;
9818 
9819   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
9820 }
9821 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,bool AllowFold)9822 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9823                                                  llvm::APSInt *Result,
9824                                                  unsigned DiagID,
9825                                                  bool AllowFold) {
9826   class IDDiagnoser : public VerifyICEDiagnoser {
9827     unsigned DiagID;
9828 
9829   public:
9830     IDDiagnoser(unsigned DiagID)
9831       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
9832 
9833     virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9834       S.Diag(Loc, DiagID) << SR;
9835     }
9836   } Diagnoser(DiagID);
9837 
9838   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
9839 }
9840 
diagnoseFold(Sema & S,SourceLocation Loc,SourceRange SR)9841 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
9842                                             SourceRange SR) {
9843   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
9844 }
9845 
9846 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,bool AllowFold)9847 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
9848                                       VerifyICEDiagnoser &Diagnoser,
9849                                       bool AllowFold) {
9850   SourceLocation DiagLoc = E->getLocStart();
9851 
9852   if (getLangOpts().CPlusPlus0x) {
9853     // C++11 [expr.const]p5:
9854     //   If an expression of literal class type is used in a context where an
9855     //   integral constant expression is required, then that class type shall
9856     //   have a single non-explicit conversion function to an integral or
9857     //   unscoped enumeration type
9858     ExprResult Converted;
9859     if (!Diagnoser.Suppress) {
9860       class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
9861       public:
9862         CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
9863 
9864         virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9865                                                  QualType T) {
9866           return S.Diag(Loc, diag::err_ice_not_integral) << T;
9867         }
9868 
9869         virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9870                                                      SourceLocation Loc,
9871                                                      QualType T) {
9872           return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
9873         }
9874 
9875         virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9876                                                        SourceLocation Loc,
9877                                                        QualType T,
9878                                                        QualType ConvTy) {
9879           return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
9880         }
9881 
9882         virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9883                                                    CXXConversionDecl *Conv,
9884                                                    QualType ConvTy) {
9885           return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9886                    << ConvTy->isEnumeralType() << ConvTy;
9887         }
9888 
9889         virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9890                                                     QualType T) {
9891           return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
9892         }
9893 
9894         virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9895                                                 CXXConversionDecl *Conv,
9896                                                 QualType ConvTy) {
9897           return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9898                    << ConvTy->isEnumeralType() << ConvTy;
9899         }
9900 
9901         virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9902                                                      SourceLocation Loc,
9903                                                      QualType T,
9904                                                      QualType ConvTy) {
9905           return DiagnosticBuilder::getEmpty();
9906         }
9907       } ConvertDiagnoser;
9908 
9909       Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9910                                                      ConvertDiagnoser,
9911                                              /*AllowScopedEnumerations*/ false);
9912     } else {
9913       // The caller wants to silently enquire whether this is an ICE. Don't
9914       // produce any diagnostics if it isn't.
9915       class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
9916       public:
9917         SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
9918 
9919         virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9920                                                  QualType T) {
9921           return DiagnosticBuilder::getEmpty();
9922         }
9923 
9924         virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9925                                                      SourceLocation Loc,
9926                                                      QualType T) {
9927           return DiagnosticBuilder::getEmpty();
9928         }
9929 
9930         virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9931                                                        SourceLocation Loc,
9932                                                        QualType T,
9933                                                        QualType ConvTy) {
9934           return DiagnosticBuilder::getEmpty();
9935         }
9936 
9937         virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9938                                                    CXXConversionDecl *Conv,
9939                                                    QualType ConvTy) {
9940           return DiagnosticBuilder::getEmpty();
9941         }
9942 
9943         virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9944                                                     QualType T) {
9945           return DiagnosticBuilder::getEmpty();
9946         }
9947 
9948         virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9949                                                 CXXConversionDecl *Conv,
9950                                                 QualType ConvTy) {
9951           return DiagnosticBuilder::getEmpty();
9952         }
9953 
9954         virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9955                                                      SourceLocation Loc,
9956                                                      QualType T,
9957                                                      QualType ConvTy) {
9958           return DiagnosticBuilder::getEmpty();
9959         }
9960       } ConvertDiagnoser;
9961 
9962       Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9963                                                      ConvertDiagnoser, false);
9964     }
9965     if (Converted.isInvalid())
9966       return Converted;
9967     E = Converted.take();
9968     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
9969       return ExprError();
9970   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
9971     // An ICE must be of integral or unscoped enumeration type.
9972     if (!Diagnoser.Suppress)
9973       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
9974     return ExprError();
9975   }
9976 
9977   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
9978   // in the non-ICE case.
9979   if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
9980     if (Result)
9981       *Result = E->EvaluateKnownConstInt(Context);
9982     return Owned(E);
9983   }
9984 
9985   Expr::EvalResult EvalResult;
9986   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
9987   EvalResult.Diag = &Notes;
9988 
9989   // Try to evaluate the expression, and produce diagnostics explaining why it's
9990   // not a constant expression as a side-effect.
9991   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
9992                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
9993 
9994   // In C++11, we can rely on diagnostics being produced for any expression
9995   // which is not a constant expression. If no diagnostics were produced, then
9996   // this is a constant expression.
9997   if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
9998     if (Result)
9999       *Result = EvalResult.Val.getInt();
10000     return Owned(E);
10001   }
10002 
10003   // If our only note is the usual "invalid subexpression" note, just point
10004   // the caret at its location rather than producing an essentially
10005   // redundant note.
10006   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10007         diag::note_invalid_subexpr_in_const_expr) {
10008     DiagLoc = Notes[0].first;
10009     Notes.clear();
10010   }
10011 
10012   if (!Folded || !AllowFold) {
10013     if (!Diagnoser.Suppress) {
10014       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10015       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10016         Diag(Notes[I].first, Notes[I].second);
10017     }
10018 
10019     return ExprError();
10020   }
10021 
10022   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10023   for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10024     Diag(Notes[I].first, Notes[I].second);
10025 
10026   if (Result)
10027     *Result = EvalResult.Val.getInt();
10028   return Owned(E);
10029 }
10030 
10031 namespace {
10032   // Handle the case where we conclude a expression which we speculatively
10033   // considered to be unevaluated is actually evaluated.
10034   class TransformToPE : public TreeTransform<TransformToPE> {
10035     typedef TreeTransform<TransformToPE> BaseTransform;
10036 
10037   public:
TransformToPE(Sema & SemaRef)10038     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10039 
10040     // Make sure we redo semantic analysis
AlwaysRebuild()10041     bool AlwaysRebuild() { return true; }
10042 
10043     // Make sure we handle LabelStmts correctly.
10044     // FIXME: This does the right thing, but maybe we need a more general
10045     // fix to TreeTransform?
TransformLabelStmt(LabelStmt * S)10046     StmtResult TransformLabelStmt(LabelStmt *S) {
10047       S->getDecl()->setStmt(0);
10048       return BaseTransform::TransformLabelStmt(S);
10049     }
10050 
10051     // We need to special-case DeclRefExprs referring to FieldDecls which
10052     // are not part of a member pointer formation; normal TreeTransforming
10053     // doesn't catch this case because of the way we represent them in the AST.
10054     // FIXME: This is a bit ugly; is it really the best way to handle this
10055     // case?
10056     //
10057     // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)10058     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10059       if (isa<FieldDecl>(E->getDecl()) &&
10060           !SemaRef.isUnevaluatedContext())
10061         return SemaRef.Diag(E->getLocation(),
10062                             diag::err_invalid_non_static_member_use)
10063             << E->getDecl() << E->getSourceRange();
10064 
10065       return BaseTransform::TransformDeclRefExpr(E);
10066     }
10067 
10068     // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)10069     ExprResult TransformUnaryOperator(UnaryOperator *E) {
10070       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10071         return E;
10072 
10073       return BaseTransform::TransformUnaryOperator(E);
10074     }
10075 
TransformLambdaExpr(LambdaExpr * E)10076     ExprResult TransformLambdaExpr(LambdaExpr *E) {
10077       // Lambdas never need to be transformed.
10078       return E;
10079     }
10080   };
10081 }
10082 
TranformToPotentiallyEvaluated(Expr * E)10083 ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
10084   assert(ExprEvalContexts.back().Context == Unevaluated &&
10085          "Should only transform unevaluated expressions");
10086   ExprEvalContexts.back().Context =
10087       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10088   if (ExprEvalContexts.back().Context == Unevaluated)
10089     return E;
10090   return TransformToPE(*this).TransformExpr(E);
10091 }
10092 
10093 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,bool IsDecltype)10094 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10095                                       Decl *LambdaContextDecl,
10096                                       bool IsDecltype) {
10097   ExprEvalContexts.push_back(
10098              ExpressionEvaluationContextRecord(NewContext,
10099                                                ExprCleanupObjects.size(),
10100                                                ExprNeedsCleanups,
10101                                                LambdaContextDecl,
10102                                                IsDecltype));
10103   ExprNeedsCleanups = false;
10104   if (!MaybeODRUseExprs.empty())
10105     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
10106 }
10107 
PopExpressionEvaluationContext()10108 void Sema::PopExpressionEvaluationContext() {
10109   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
10110 
10111   if (!Rec.Lambdas.empty()) {
10112     if (Rec.Context == Unevaluated) {
10113       // C++11 [expr.prim.lambda]p2:
10114       //   A lambda-expression shall not appear in an unevaluated operand
10115       //   (Clause 5).
10116       for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
10117         Diag(Rec.Lambdas[I]->getLocStart(),
10118              diag::err_lambda_unevaluated_operand);
10119     } else {
10120       // Mark the capture expressions odr-used. This was deferred
10121       // during lambda expression creation.
10122       for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
10123         LambdaExpr *Lambda = Rec.Lambdas[I];
10124         for (LambdaExpr::capture_init_iterator
10125                   C = Lambda->capture_init_begin(),
10126                CEnd = Lambda->capture_init_end();
10127              C != CEnd; ++C) {
10128           MarkDeclarationsReferencedInExpr(*C);
10129         }
10130       }
10131     }
10132   }
10133 
10134   // When are coming out of an unevaluated context, clear out any
10135   // temporaries that we may have created as part of the evaluation of
10136   // the expression in that context: they aren't relevant because they
10137   // will never be constructed.
10138   if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
10139     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
10140                              ExprCleanupObjects.end());
10141     ExprNeedsCleanups = Rec.ParentNeedsCleanups;
10142     CleanupVarDeclMarking();
10143     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
10144   // Otherwise, merge the contexts together.
10145   } else {
10146     ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
10147     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
10148                             Rec.SavedMaybeODRUseExprs.end());
10149   }
10150 
10151   // Pop the current expression evaluation context off the stack.
10152   ExprEvalContexts.pop_back();
10153 }
10154 
DiscardCleanupsInEvaluationContext()10155 void Sema::DiscardCleanupsInEvaluationContext() {
10156   ExprCleanupObjects.erase(
10157          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
10158          ExprCleanupObjects.end());
10159   ExprNeedsCleanups = false;
10160   MaybeODRUseExprs.clear();
10161 }
10162 
HandleExprEvaluationContextForTypeof(Expr * E)10163 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
10164   if (!E->getType()->isVariablyModifiedType())
10165     return E;
10166   return TranformToPotentiallyEvaluated(E);
10167 }
10168 
IsPotentiallyEvaluatedContext(Sema & SemaRef)10169 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
10170   // Do not mark anything as "used" within a dependent context; wait for
10171   // an instantiation.
10172   if (SemaRef.CurContext->isDependentContext())
10173     return false;
10174 
10175   switch (SemaRef.ExprEvalContexts.back().Context) {
10176     case Sema::Unevaluated:
10177       // We are in an expression that is not potentially evaluated; do nothing.
10178       // (Depending on how you read the standard, we actually do need to do
10179       // something here for null pointer constants, but the standard's
10180       // definition of a null pointer constant is completely crazy.)
10181       return false;
10182 
10183     case Sema::ConstantEvaluated:
10184     case Sema::PotentiallyEvaluated:
10185       // We are in a potentially evaluated expression (or a constant-expression
10186       // in C++03); we need to do implicit template instantiation, implicitly
10187       // define class members, and mark most declarations as used.
10188       return true;
10189 
10190     case Sema::PotentiallyEvaluatedIfUsed:
10191       // Referenced declarations will only be used if the construct in the
10192       // containing expression is used.
10193       return false;
10194   }
10195   llvm_unreachable("Invalid context");
10196 }
10197 
10198 /// \brief Mark a function referenced, and check whether it is odr-used
10199 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func)10200 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
10201   assert(Func && "No function?");
10202 
10203   Func->setReferenced();
10204 
10205   // Don't mark this function as used multiple times, unless it's a constexpr
10206   // function which we need to instantiate.
10207   if (Func->isUsed(false) &&
10208       !(Func->isConstexpr() && !Func->getBody() &&
10209         Func->isImplicitlyInstantiable()))
10210     return;
10211 
10212   if (!IsPotentiallyEvaluatedContext(*this))
10213     return;
10214 
10215   // Note that this declaration has been used.
10216   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
10217     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
10218       if (Constructor->isDefaultConstructor()) {
10219         if (Constructor->isTrivial())
10220           return;
10221         if (!Constructor->isUsed(false))
10222           DefineImplicitDefaultConstructor(Loc, Constructor);
10223       } else if (Constructor->isCopyConstructor()) {
10224         if (!Constructor->isUsed(false))
10225           DefineImplicitCopyConstructor(Loc, Constructor);
10226       } else if (Constructor->isMoveConstructor()) {
10227         if (!Constructor->isUsed(false))
10228           DefineImplicitMoveConstructor(Loc, Constructor);
10229       }
10230     }
10231 
10232     MarkVTableUsed(Loc, Constructor->getParent());
10233   } else if (CXXDestructorDecl *Destructor =
10234                  dyn_cast<CXXDestructorDecl>(Func)) {
10235     if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
10236         !Destructor->isUsed(false))
10237       DefineImplicitDestructor(Loc, Destructor);
10238     if (Destructor->isVirtual())
10239       MarkVTableUsed(Loc, Destructor->getParent());
10240   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
10241     if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
10242         MethodDecl->isOverloadedOperator() &&
10243         MethodDecl->getOverloadedOperator() == OO_Equal) {
10244       if (!MethodDecl->isUsed(false)) {
10245         if (MethodDecl->isCopyAssignmentOperator())
10246           DefineImplicitCopyAssignment(Loc, MethodDecl);
10247         else
10248           DefineImplicitMoveAssignment(Loc, MethodDecl);
10249       }
10250     } else if (isa<CXXConversionDecl>(MethodDecl) &&
10251                MethodDecl->getParent()->isLambda()) {
10252       CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
10253       if (Conversion->isLambdaToBlockPointerConversion())
10254         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
10255       else
10256         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
10257     } else if (MethodDecl->isVirtual())
10258       MarkVTableUsed(Loc, MethodDecl->getParent());
10259   }
10260 
10261   // Recursive functions should be marked when used from another function.
10262   // FIXME: Is this really right?
10263   if (CurContext == Func) return;
10264 
10265   // Resolve the exception specification for any function which is
10266   // used: CodeGen will need it.
10267   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
10268   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
10269     ResolveExceptionSpec(Loc, FPT);
10270 
10271   // Implicit instantiation of function templates and member functions of
10272   // class templates.
10273   if (Func->isImplicitlyInstantiable()) {
10274     bool AlreadyInstantiated = false;
10275     SourceLocation PointOfInstantiation = Loc;
10276     if (FunctionTemplateSpecializationInfo *SpecInfo
10277                               = Func->getTemplateSpecializationInfo()) {
10278       if (SpecInfo->getPointOfInstantiation().isInvalid())
10279         SpecInfo->setPointOfInstantiation(Loc);
10280       else if (SpecInfo->getTemplateSpecializationKind()
10281                  == TSK_ImplicitInstantiation) {
10282         AlreadyInstantiated = true;
10283         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
10284       }
10285     } else if (MemberSpecializationInfo *MSInfo
10286                                 = Func->getMemberSpecializationInfo()) {
10287       if (MSInfo->getPointOfInstantiation().isInvalid())
10288         MSInfo->setPointOfInstantiation(Loc);
10289       else if (MSInfo->getTemplateSpecializationKind()
10290                  == TSK_ImplicitInstantiation) {
10291         AlreadyInstantiated = true;
10292         PointOfInstantiation = MSInfo->getPointOfInstantiation();
10293       }
10294     }
10295 
10296     if (!AlreadyInstantiated || Func->isConstexpr()) {
10297       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
10298           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
10299         PendingLocalImplicitInstantiations.push_back(
10300             std::make_pair(Func, PointOfInstantiation));
10301       else if (Func->isConstexpr())
10302         // Do not defer instantiations of constexpr functions, to avoid the
10303         // expression evaluator needing to call back into Sema if it sees a
10304         // call to such a function.
10305         InstantiateFunctionDefinition(PointOfInstantiation, Func);
10306       else {
10307         PendingInstantiations.push_back(std::make_pair(Func,
10308                                                        PointOfInstantiation));
10309         // Notify the consumer that a function was implicitly instantiated.
10310         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
10311       }
10312     }
10313   } else {
10314     // Walk redefinitions, as some of them may be instantiable.
10315     for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
10316          e(Func->redecls_end()); i != e; ++i) {
10317       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
10318         MarkFunctionReferenced(Loc, *i);
10319     }
10320   }
10321 
10322   // Keep track of used but undefined functions.
10323   if (!Func->isPure() && !Func->hasBody() &&
10324       Func->getLinkage() != ExternalLinkage) {
10325     SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
10326     if (old.isInvalid()) old = Loc;
10327   }
10328 
10329   Func->setUsed(true);
10330 }
10331 
10332 static void
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,VarDecl * var,DeclContext * DC)10333 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
10334                                    VarDecl *var, DeclContext *DC) {
10335   DeclContext *VarDC = var->getDeclContext();
10336 
10337   //  If the parameter still belongs to the translation unit, then
10338   //  we're actually just using one parameter in the declaration of
10339   //  the next.
10340   if (isa<ParmVarDecl>(var) &&
10341       isa<TranslationUnitDecl>(VarDC))
10342     return;
10343 
10344   // For C code, don't diagnose about capture if we're not actually in code
10345   // right now; it's impossible to write a non-constant expression outside of
10346   // function context, so we'll get other (more useful) diagnostics later.
10347   //
10348   // For C++, things get a bit more nasty... it would be nice to suppress this
10349   // diagnostic for certain cases like using a local variable in an array bound
10350   // for a member of a local class, but the correct predicate is not obvious.
10351   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
10352     return;
10353 
10354   if (isa<CXXMethodDecl>(VarDC) &&
10355       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
10356     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
10357       << var->getIdentifier();
10358   } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
10359     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
10360       << var->getIdentifier() << fn->getDeclName();
10361   } else if (isa<BlockDecl>(VarDC)) {
10362     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
10363       << var->getIdentifier();
10364   } else {
10365     // FIXME: Is there any other context where a local variable can be
10366     // declared?
10367     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
10368       << var->getIdentifier();
10369   }
10370 
10371   S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
10372     << var->getIdentifier();
10373 
10374   // FIXME: Add additional diagnostic info about class etc. which prevents
10375   // capture.
10376 }
10377 
10378 /// \brief Capture the given variable in the given lambda expression.
captureInLambda(Sema & S,LambdaScopeInfo * LSI,VarDecl * Var,QualType FieldType,QualType DeclRefType,SourceLocation Loc,bool RefersToEnclosingLocal)10379 static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
10380                                   VarDecl *Var, QualType FieldType,
10381                                   QualType DeclRefType,
10382                                   SourceLocation Loc,
10383                                   bool RefersToEnclosingLocal) {
10384   CXXRecordDecl *Lambda = LSI->Lambda;
10385 
10386   // Build the non-static data member.
10387   FieldDecl *Field
10388     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
10389                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
10390                         0, false, ICIS_NoInit);
10391   Field->setImplicit(true);
10392   Field->setAccess(AS_private);
10393   Lambda->addDecl(Field);
10394 
10395   // C++11 [expr.prim.lambda]p21:
10396   //   When the lambda-expression is evaluated, the entities that
10397   //   are captured by copy are used to direct-initialize each
10398   //   corresponding non-static data member of the resulting closure
10399   //   object. (For array members, the array elements are
10400   //   direct-initialized in increasing subscript order.) These
10401   //   initializations are performed in the (unspecified) order in
10402   //   which the non-static data members are declared.
10403 
10404   // Introduce a new evaluation context for the initialization, so
10405   // that temporaries introduced as part of the capture are retained
10406   // to be re-"exported" from the lambda expression itself.
10407   S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
10408 
10409   // C++ [expr.prim.labda]p12:
10410   //   An entity captured by a lambda-expression is odr-used (3.2) in
10411   //   the scope containing the lambda-expression.
10412   Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
10413                                           DeclRefType, VK_LValue, Loc);
10414   Var->setReferenced(true);
10415   Var->setUsed(true);
10416 
10417   // When the field has array type, create index variables for each
10418   // dimension of the array. We use these index variables to subscript
10419   // the source array, and other clients (e.g., CodeGen) will perform
10420   // the necessary iteration with these index variables.
10421   SmallVector<VarDecl *, 4> IndexVariables;
10422   QualType BaseType = FieldType;
10423   QualType SizeType = S.Context.getSizeType();
10424   LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
10425   while (const ConstantArrayType *Array
10426                         = S.Context.getAsConstantArrayType(BaseType)) {
10427     // Create the iteration variable for this array index.
10428     IdentifierInfo *IterationVarName = 0;
10429     {
10430       SmallString<8> Str;
10431       llvm::raw_svector_ostream OS(Str);
10432       OS << "__i" << IndexVariables.size();
10433       IterationVarName = &S.Context.Idents.get(OS.str());
10434     }
10435     VarDecl *IterationVar
10436       = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
10437                         IterationVarName, SizeType,
10438                         S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
10439                         SC_None, SC_None);
10440     IndexVariables.push_back(IterationVar);
10441     LSI->ArrayIndexVars.push_back(IterationVar);
10442 
10443     // Create a reference to the iteration variable.
10444     ExprResult IterationVarRef
10445       = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
10446     assert(!IterationVarRef.isInvalid() &&
10447            "Reference to invented variable cannot fail!");
10448     IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
10449     assert(!IterationVarRef.isInvalid() &&
10450            "Conversion of invented variable cannot fail!");
10451 
10452     // Subscript the array with this iteration variable.
10453     ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
10454                              Ref, Loc, IterationVarRef.take(), Loc);
10455     if (Subscript.isInvalid()) {
10456       S.CleanupVarDeclMarking();
10457       S.DiscardCleanupsInEvaluationContext();
10458       S.PopExpressionEvaluationContext();
10459       return ExprError();
10460     }
10461 
10462     Ref = Subscript.take();
10463     BaseType = Array->getElementType();
10464   }
10465 
10466   // Construct the entity that we will be initializing. For an array, this
10467   // will be first element in the array, which may require several levels
10468   // of array-subscript entities.
10469   SmallVector<InitializedEntity, 4> Entities;
10470   Entities.reserve(1 + IndexVariables.size());
10471   Entities.push_back(
10472     InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
10473   for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
10474     Entities.push_back(InitializedEntity::InitializeElement(S.Context,
10475                                                             0,
10476                                                             Entities.back()));
10477 
10478   InitializationKind InitKind
10479     = InitializationKind::CreateDirect(Loc, Loc, Loc);
10480   InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
10481   ExprResult Result(true);
10482   if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
10483     Result = Init.Perform(S, Entities.back(), InitKind, Ref);
10484 
10485   // If this initialization requires any cleanups (e.g., due to a
10486   // default argument to a copy constructor), note that for the
10487   // lambda.
10488   if (S.ExprNeedsCleanups)
10489     LSI->ExprNeedsCleanups = true;
10490 
10491   // Exit the expression evaluation context used for the capture.
10492   S.CleanupVarDeclMarking();
10493   S.DiscardCleanupsInEvaluationContext();
10494   S.PopExpressionEvaluationContext();
10495   return Result;
10496 }
10497 
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType)10498 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10499                               TryCaptureKind Kind, SourceLocation EllipsisLoc,
10500                               bool BuildAndDiagnose,
10501                               QualType &CaptureType,
10502                               QualType &DeclRefType) {
10503   bool Nested = false;
10504 
10505   DeclContext *DC = CurContext;
10506   if (Var->getDeclContext() == DC) return true;
10507   if (!Var->hasLocalStorage()) return true;
10508 
10509   bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10510 
10511   // Walk up the stack to determine whether we can capture the variable,
10512   // performing the "simple" checks that don't depend on type. We stop when
10513   // we've either hit the declared scope of the variable or find an existing
10514   // capture of that variable.
10515   CaptureType = Var->getType();
10516   DeclRefType = CaptureType.getNonReferenceType();
10517   bool Explicit = (Kind != TryCapture_Implicit);
10518   unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10519   do {
10520     // Only block literals and lambda expressions can capture; other
10521     // scopes don't work.
10522     DeclContext *ParentDC;
10523     if (isa<BlockDecl>(DC))
10524       ParentDC = DC->getParent();
10525     else if (isa<CXXMethodDecl>(DC) &&
10526              cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10527              cast<CXXRecordDecl>(DC->getParent())->isLambda())
10528       ParentDC = DC->getParent()->getParent();
10529     else {
10530       if (BuildAndDiagnose)
10531         diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10532       return true;
10533     }
10534 
10535     CapturingScopeInfo *CSI =
10536       cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10537 
10538     // Check whether we've already captured it.
10539     if (CSI->CaptureMap.count(Var)) {
10540       // If we found a capture, any subcaptures are nested.
10541       Nested = true;
10542 
10543       // Retrieve the capture type for this variable.
10544       CaptureType = CSI->getCapture(Var).getCaptureType();
10545 
10546       // Compute the type of an expression that refers to this variable.
10547       DeclRefType = CaptureType.getNonReferenceType();
10548 
10549       const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10550       if (Cap.isCopyCapture() &&
10551           !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10552         DeclRefType.addConst();
10553       break;
10554     }
10555 
10556     bool IsBlock = isa<BlockScopeInfo>(CSI);
10557     bool IsLambda = !IsBlock;
10558 
10559     // Lambdas are not allowed to capture unnamed variables
10560     // (e.g. anonymous unions).
10561     // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10562     // assuming that's the intent.
10563     if (IsLambda && !Var->getDeclName()) {
10564       if (BuildAndDiagnose) {
10565         Diag(Loc, diag::err_lambda_capture_anonymous_var);
10566         Diag(Var->getLocation(), diag::note_declared_at);
10567       }
10568       return true;
10569     }
10570 
10571     // Prohibit variably-modified types; they're difficult to deal with.
10572     if (Var->getType()->isVariablyModifiedType()) {
10573       if (BuildAndDiagnose) {
10574         if (IsBlock)
10575           Diag(Loc, diag::err_ref_vm_type);
10576         else
10577           Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10578         Diag(Var->getLocation(), diag::note_previous_decl)
10579           << Var->getDeclName();
10580       }
10581       return true;
10582     }
10583 
10584     // Lambdas are not allowed to capture __block variables; they don't
10585     // support the expected semantics.
10586     if (IsLambda && HasBlocksAttr) {
10587       if (BuildAndDiagnose) {
10588         Diag(Loc, diag::err_lambda_capture_block)
10589           << Var->getDeclName();
10590         Diag(Var->getLocation(), diag::note_previous_decl)
10591           << Var->getDeclName();
10592       }
10593       return true;
10594     }
10595 
10596     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10597       // No capture-default
10598       if (BuildAndDiagnose) {
10599         Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10600         Diag(Var->getLocation(), diag::note_previous_decl)
10601           << Var->getDeclName();
10602         Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10603              diag::note_lambda_decl);
10604       }
10605       return true;
10606     }
10607 
10608     FunctionScopesIndex--;
10609     DC = ParentDC;
10610     Explicit = false;
10611   } while (!Var->getDeclContext()->Equals(DC));
10612 
10613   // Walk back down the scope stack, computing the type of the capture at
10614   // each step, checking type-specific requirements, and adding captures if
10615   // requested.
10616   for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10617        ++I) {
10618     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10619 
10620     // Compute the type of the capture and of a reference to the capture within
10621     // this scope.
10622     if (isa<BlockScopeInfo>(CSI)) {
10623       Expr *CopyExpr = 0;
10624       bool ByRef = false;
10625 
10626       // Blocks are not allowed to capture arrays.
10627       if (CaptureType->isArrayType()) {
10628         if (BuildAndDiagnose) {
10629           Diag(Loc, diag::err_ref_array_type);
10630           Diag(Var->getLocation(), diag::note_previous_decl)
10631           << Var->getDeclName();
10632         }
10633         return true;
10634       }
10635 
10636       // Forbid the block-capture of autoreleasing variables.
10637       if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10638         if (BuildAndDiagnose) {
10639           Diag(Loc, diag::err_arc_autoreleasing_capture)
10640             << /*block*/ 0;
10641           Diag(Var->getLocation(), diag::note_previous_decl)
10642             << Var->getDeclName();
10643         }
10644         return true;
10645       }
10646 
10647       if (HasBlocksAttr || CaptureType->isReferenceType()) {
10648         // Block capture by reference does not change the capture or
10649         // declaration reference types.
10650         ByRef = true;
10651       } else {
10652         // Block capture by copy introduces 'const'.
10653         CaptureType = CaptureType.getNonReferenceType().withConst();
10654         DeclRefType = CaptureType;
10655 
10656         if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10657           if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10658             // The capture logic needs the destructor, so make sure we mark it.
10659             // Usually this is unnecessary because most local variables have
10660             // their destructors marked at declaration time, but parameters are
10661             // an exception because it's technically only the call site that
10662             // actually requires the destructor.
10663             if (isa<ParmVarDecl>(Var))
10664               FinalizeVarWithDestructor(Var, Record);
10665 
10666             // According to the blocks spec, the capture of a variable from
10667             // the stack requires a const copy constructor.  This is not true
10668             // of the copy/move done to move a __block variable to the heap.
10669             Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
10670                                                       DeclRefType.withConst(),
10671                                                       VK_LValue, Loc);
10672             ExprResult Result
10673               = PerformCopyInitialization(
10674                   InitializedEntity::InitializeBlock(Var->getLocation(),
10675                                                      CaptureType, false),
10676                   Loc, Owned(DeclRef));
10677 
10678             // Build a full-expression copy expression if initialization
10679             // succeeded and used a non-trivial constructor.  Recover from
10680             // errors by pretending that the copy isn't necessary.
10681             if (!Result.isInvalid() &&
10682                 !cast<CXXConstructExpr>(Result.get())->getConstructor()
10683                    ->isTrivial()) {
10684               Result = MaybeCreateExprWithCleanups(Result);
10685               CopyExpr = Result.take();
10686             }
10687           }
10688         }
10689       }
10690 
10691       // Actually capture the variable.
10692       if (BuildAndDiagnose)
10693         CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
10694                         SourceLocation(), CaptureType, CopyExpr);
10695       Nested = true;
10696       continue;
10697     }
10698 
10699     LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
10700 
10701     // Determine whether we are capturing by reference or by value.
10702     bool ByRef = false;
10703     if (I == N - 1 && Kind != TryCapture_Implicit) {
10704       ByRef = (Kind == TryCapture_ExplicitByRef);
10705     } else {
10706       ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
10707     }
10708 
10709     // Compute the type of the field that will capture this variable.
10710     if (ByRef) {
10711       // C++11 [expr.prim.lambda]p15:
10712       //   An entity is captured by reference if it is implicitly or
10713       //   explicitly captured but not captured by copy. It is
10714       //   unspecified whether additional unnamed non-static data
10715       //   members are declared in the closure type for entities
10716       //   captured by reference.
10717       //
10718       // FIXME: It is not clear whether we want to build an lvalue reference
10719       // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
10720       // to do the former, while EDG does the latter. Core issue 1249 will
10721       // clarify, but for now we follow GCC because it's a more permissive and
10722       // easily defensible position.
10723       CaptureType = Context.getLValueReferenceType(DeclRefType);
10724     } else {
10725       // C++11 [expr.prim.lambda]p14:
10726       //   For each entity captured by copy, an unnamed non-static
10727       //   data member is declared in the closure type. The
10728       //   declaration order of these members is unspecified. The type
10729       //   of such a data member is the type of the corresponding
10730       //   captured entity if the entity is not a reference to an
10731       //   object, or the referenced type otherwise. [Note: If the
10732       //   captured entity is a reference to a function, the
10733       //   corresponding data member is also a reference to a
10734       //   function. - end note ]
10735       if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
10736         if (!RefType->getPointeeType()->isFunctionType())
10737           CaptureType = RefType->getPointeeType();
10738       }
10739 
10740       // Forbid the lambda copy-capture of autoreleasing variables.
10741       if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10742         if (BuildAndDiagnose) {
10743           Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
10744           Diag(Var->getLocation(), diag::note_previous_decl)
10745             << Var->getDeclName();
10746         }
10747         return true;
10748       }
10749     }
10750 
10751     // Capture this variable in the lambda.
10752     Expr *CopyExpr = 0;
10753     if (BuildAndDiagnose) {
10754       ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
10755                                           DeclRefType, Loc,
10756                                           I == N-1);
10757       if (!Result.isInvalid())
10758         CopyExpr = Result.take();
10759     }
10760 
10761     // Compute the type of a reference to this captured variable.
10762     if (ByRef)
10763       DeclRefType = CaptureType.getNonReferenceType();
10764     else {
10765       // C++ [expr.prim.lambda]p5:
10766       //   The closure type for a lambda-expression has a public inline
10767       //   function call operator [...]. This function call operator is
10768       //   declared const (9.3.1) if and only if the lambda-expression’s
10769       //   parameter-declaration-clause is not followed by mutable.
10770       DeclRefType = CaptureType.getNonReferenceType();
10771       if (!LSI->Mutable && !CaptureType->isReferenceType())
10772         DeclRefType.addConst();
10773     }
10774 
10775     // Add the capture.
10776     if (BuildAndDiagnose)
10777       CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
10778                       EllipsisLoc, CaptureType, CopyExpr);
10779     Nested = true;
10780   }
10781 
10782   return false;
10783 }
10784 
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)10785 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10786                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
10787   QualType CaptureType;
10788   QualType DeclRefType;
10789   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
10790                             /*BuildAndDiagnose=*/true, CaptureType,
10791                             DeclRefType);
10792 }
10793 
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)10794 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
10795   QualType CaptureType;
10796   QualType DeclRefType;
10797 
10798   // Determine whether we can capture this variable.
10799   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
10800                          /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
10801     return QualType();
10802 
10803   return DeclRefType;
10804 }
10805 
MarkVarDeclODRUsed(Sema & SemaRef,VarDecl * Var,SourceLocation Loc)10806 static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
10807                                SourceLocation Loc) {
10808   // Keep track of used but undefined variables.
10809   // FIXME: We shouldn't suppress this warning for static data members.
10810   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
10811       Var->getLinkage() != ExternalLinkage &&
10812       !(Var->isStaticDataMember() && Var->hasInit())) {
10813     SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
10814     if (old.isInvalid()) old = Loc;
10815   }
10816 
10817   SemaRef.tryCaptureVariable(Var, Loc);
10818 
10819   Var->setUsed(true);
10820 }
10821 
UpdateMarkingForLValueToRValue(Expr * E)10822 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
10823   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10824   // an object that satisfies the requirements for appearing in a
10825   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10826   // is immediately applied."  This function handles the lvalue-to-rvalue
10827   // conversion part.
10828   MaybeODRUseExprs.erase(E->IgnoreParens());
10829 }
10830 
ActOnConstantExpression(ExprResult Res)10831 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
10832   if (!Res.isUsable())
10833     return Res;
10834 
10835   // If a constant-expression is a reference to a variable where we delay
10836   // deciding whether it is an odr-use, just assume we will apply the
10837   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
10838   // (a non-type template argument), we have special handling anyway.
10839   UpdateMarkingForLValueToRValue(Res.get());
10840   return Res;
10841 }
10842 
CleanupVarDeclMarking()10843 void Sema::CleanupVarDeclMarking() {
10844   for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
10845                                         e = MaybeODRUseExprs.end();
10846        i != e; ++i) {
10847     VarDecl *Var;
10848     SourceLocation Loc;
10849     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
10850       Var = cast<VarDecl>(DRE->getDecl());
10851       Loc = DRE->getLocation();
10852     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
10853       Var = cast<VarDecl>(ME->getMemberDecl());
10854       Loc = ME->getMemberLoc();
10855     } else {
10856       llvm_unreachable("Unexpcted expression");
10857     }
10858 
10859     MarkVarDeclODRUsed(*this, Var, Loc);
10860   }
10861 
10862   MaybeODRUseExprs.clear();
10863 }
10864 
10865 // Mark a VarDecl referenced, and perform the necessary handling to compute
10866 // odr-uses.
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E)10867 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
10868                                     VarDecl *Var, Expr *E) {
10869   Var->setReferenced();
10870 
10871   if (!IsPotentiallyEvaluatedContext(SemaRef))
10872     return;
10873 
10874   // Implicit instantiation of static data members of class templates.
10875   if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
10876     MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
10877     assert(MSInfo && "Missing member specialization information?");
10878     bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
10879     if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
10880         (!AlreadyInstantiated ||
10881          Var->isUsableInConstantExpressions(SemaRef.Context))) {
10882       if (!AlreadyInstantiated) {
10883         // This is a modification of an existing AST node. Notify listeners.
10884         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
10885           L->StaticDataMemberInstantiated(Var);
10886         MSInfo->setPointOfInstantiation(Loc);
10887       }
10888       SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
10889       if (Var->isUsableInConstantExpressions(SemaRef.Context))
10890         // Do not defer instantiations of variables which could be used in a
10891         // constant expression.
10892         SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
10893       else
10894         SemaRef.PendingInstantiations.push_back(
10895             std::make_pair(Var, PointOfInstantiation));
10896     }
10897   }
10898 
10899   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10900   // an object that satisfies the requirements for appearing in a
10901   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10902   // is immediately applied."  We check the first part here, and
10903   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
10904   // Note that we use the C++11 definition everywhere because nothing in
10905   // C++03 depends on whether we get the C++03 version correct. This does not
10906   // apply to references, since they are not objects.
10907   const VarDecl *DefVD;
10908   if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
10909       Var->isUsableInConstantExpressions(SemaRef.Context) &&
10910       Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
10911     SemaRef.MaybeODRUseExprs.insert(E);
10912   else
10913     MarkVarDeclODRUsed(SemaRef, Var, Loc);
10914 }
10915 
10916 /// \brief Mark a variable referenced, and check whether it is odr-used
10917 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
10918 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)10919 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
10920   DoMarkVarDeclReferenced(*this, Loc, Var, 0);
10921 }
10922 
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E)10923 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
10924                                Decl *D, Expr *E) {
10925   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
10926     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
10927     return;
10928   }
10929 
10930   SemaRef.MarkAnyDeclReferenced(Loc, D);
10931 
10932   // If this is a call to a method via a cast, also mark the method in the
10933   // derived class used in case codegen can devirtualize the call.
10934   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
10935   if (!ME)
10936     return;
10937   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
10938   if (!MD)
10939     return;
10940   const Expr *Base = ME->getBase();
10941   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
10942   if (!MostDerivedClassDecl)
10943     return;
10944   CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
10945   if (!DM)
10946     return;
10947   SemaRef.MarkAnyDeclReferenced(Loc, DM);
10948 }
10949 
10950 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
MarkDeclRefReferenced(DeclRefExpr * E)10951 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
10952   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
10953 }
10954 
10955 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)10956 void Sema::MarkMemberReferenced(MemberExpr *E) {
10957   MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
10958 }
10959 
10960 /// \brief Perform marking for a reference to an arbitrary declaration.  It
10961 /// marks the declaration referenced, and performs odr-use checking for functions
10962 /// and variables. This method should not be used when building an normal
10963 /// expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D)10964 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
10965   if (VarDecl *VD = dyn_cast<VarDecl>(D))
10966     MarkVariableReferenced(Loc, VD);
10967   else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
10968     MarkFunctionReferenced(Loc, FD);
10969   else
10970     D->setReferenced();
10971 }
10972 
10973 namespace {
10974   // Mark all of the declarations referenced
10975   // FIXME: Not fully implemented yet! We need to have a better understanding
10976   // of when we're entering
10977   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
10978     Sema &S;
10979     SourceLocation Loc;
10980 
10981   public:
10982     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
10983 
MarkReferencedDecls(Sema & S,SourceLocation Loc)10984     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
10985 
10986     bool TraverseTemplateArgument(const TemplateArgument &Arg);
10987     bool TraverseRecordType(RecordType *T);
10988   };
10989 }
10990 
TraverseTemplateArgument(const TemplateArgument & Arg)10991 bool MarkReferencedDecls::TraverseTemplateArgument(
10992   const TemplateArgument &Arg) {
10993   if (Arg.getKind() == TemplateArgument::Declaration) {
10994     if (Decl *D = Arg.getAsDecl())
10995       S.MarkAnyDeclReferenced(Loc, D);
10996   }
10997 
10998   return Inherited::TraverseTemplateArgument(Arg);
10999 }
11000 
TraverseRecordType(RecordType * T)11001 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
11002   if (ClassTemplateSpecializationDecl *Spec
11003                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
11004     const TemplateArgumentList &Args = Spec->getTemplateArgs();
11005     return TraverseTemplateArguments(Args.data(), Args.size());
11006   }
11007 
11008   return true;
11009 }
11010 
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)11011 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
11012   MarkReferencedDecls Marker(*this, Loc);
11013   Marker.TraverseType(Context.getCanonicalType(T));
11014 }
11015 
11016 namespace {
11017   /// \brief Helper class that marks all of the declarations referenced by
11018   /// potentially-evaluated subexpressions as "referenced".
11019   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
11020     Sema &S;
11021     bool SkipLocalVariables;
11022 
11023   public:
11024     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
11025 
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables)11026     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
11027       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
11028 
VisitDeclRefExpr(DeclRefExpr * E)11029     void VisitDeclRefExpr(DeclRefExpr *E) {
11030       // If we were asked not to visit local variables, don't.
11031       if (SkipLocalVariables) {
11032         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
11033           if (VD->hasLocalStorage())
11034             return;
11035       }
11036 
11037       S.MarkDeclRefReferenced(E);
11038     }
11039 
VisitMemberExpr(MemberExpr * E)11040     void VisitMemberExpr(MemberExpr *E) {
11041       S.MarkMemberReferenced(E);
11042       Inherited::VisitMemberExpr(E);
11043     }
11044 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)11045     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
11046       S.MarkFunctionReferenced(E->getLocStart(),
11047             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
11048       Visit(E->getSubExpr());
11049     }
11050 
VisitCXXNewExpr(CXXNewExpr * E)11051     void VisitCXXNewExpr(CXXNewExpr *E) {
11052       if (E->getOperatorNew())
11053         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
11054       if (E->getOperatorDelete())
11055         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11056       Inherited::VisitCXXNewExpr(E);
11057     }
11058 
VisitCXXDeleteExpr(CXXDeleteExpr * E)11059     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
11060       if (E->getOperatorDelete())
11061         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11062       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
11063       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11064         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11065         S.MarkFunctionReferenced(E->getLocStart(),
11066                                     S.LookupDestructor(Record));
11067       }
11068 
11069       Inherited::VisitCXXDeleteExpr(E);
11070     }
11071 
VisitCXXConstructExpr(CXXConstructExpr * E)11072     void VisitCXXConstructExpr(CXXConstructExpr *E) {
11073       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
11074       Inherited::VisitCXXConstructExpr(E);
11075     }
11076 
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * E)11077     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11078       Visit(E->getExpr());
11079     }
11080 
VisitImplicitCastExpr(ImplicitCastExpr * E)11081     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11082       Inherited::VisitImplicitCastExpr(E);
11083 
11084       if (E->getCastKind() == CK_LValueToRValue)
11085         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
11086     }
11087   };
11088 }
11089 
11090 /// \brief Mark any declarations that appear within this expression or any
11091 /// potentially-evaluated subexpressions as "referenced".
11092 ///
11093 /// \param SkipLocalVariables If true, don't mark local variables as
11094 /// 'referenced'.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables)11095 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
11096                                             bool SkipLocalVariables) {
11097   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
11098 }
11099 
11100 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
11101 /// of the program being compiled.
11102 ///
11103 /// This routine emits the given diagnostic when the code currently being
11104 /// type-checked is "potentially evaluated", meaning that there is a
11105 /// possibility that the code will actually be executable. Code in sizeof()
11106 /// expressions, code used only during overload resolution, etc., are not
11107 /// potentially evaluated. This routine will suppress such diagnostics or,
11108 /// in the absolutely nutty case of potentially potentially evaluated
11109 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
11110 /// later.
11111 ///
11112 /// This routine should be used for all diagnostics that describe the run-time
11113 /// behavior of a program, such as passing a non-POD value through an ellipsis.
11114 /// Failure to do so will likely result in spurious diagnostics or failures
11115 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)11116 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
11117                                const PartialDiagnostic &PD) {
11118   switch (ExprEvalContexts.back().Context) {
11119   case Unevaluated:
11120     // The argument will never be evaluated, so don't complain.
11121     break;
11122 
11123   case ConstantEvaluated:
11124     // Relevant diagnostics should be produced by constant evaluation.
11125     break;
11126 
11127   case PotentiallyEvaluated:
11128   case PotentiallyEvaluatedIfUsed:
11129     if (Statement && getCurFunctionOrMethodDecl()) {
11130       FunctionScopes.back()->PossiblyUnreachableDiags.
11131         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
11132     }
11133     else
11134       Diag(Loc, PD);
11135 
11136     return true;
11137   }
11138 
11139   return false;
11140 }
11141 
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)11142 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
11143                                CallExpr *CE, FunctionDecl *FD) {
11144   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
11145     return false;
11146 
11147   // If we're inside a decltype's expression, don't check for a valid return
11148   // type or construct temporaries until we know whether this is the last call.
11149   if (ExprEvalContexts.back().IsDecltype) {
11150     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
11151     return false;
11152   }
11153 
11154   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
11155     FunctionDecl *FD;
11156     CallExpr *CE;
11157 
11158   public:
11159     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
11160       : FD(FD), CE(CE) { }
11161 
11162     virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
11163       if (!FD) {
11164         S.Diag(Loc, diag::err_call_incomplete_return)
11165           << T << CE->getSourceRange();
11166         return;
11167       }
11168 
11169       S.Diag(Loc, diag::err_call_function_incomplete_return)
11170         << CE->getSourceRange() << FD->getDeclName() << T;
11171       S.Diag(FD->getLocation(),
11172              diag::note_function_with_incomplete_return_type_declared_here)
11173         << FD->getDeclName();
11174     }
11175   } Diagnoser(FD, CE);
11176 
11177   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
11178     return true;
11179 
11180   return false;
11181 }
11182 
11183 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
11184 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)11185 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
11186   SourceLocation Loc;
11187 
11188   unsigned diagnostic = diag::warn_condition_is_assignment;
11189   bool IsOrAssign = false;
11190 
11191   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
11192     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
11193       return;
11194 
11195     IsOrAssign = Op->getOpcode() == BO_OrAssign;
11196 
11197     // Greylist some idioms by putting them into a warning subcategory.
11198     if (ObjCMessageExpr *ME
11199           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
11200       Selector Sel = ME->getSelector();
11201 
11202       // self = [<foo> init...]
11203       if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
11204         diagnostic = diag::warn_condition_is_idiomatic_assignment;
11205 
11206       // <foo> = [<bar> nextObject]
11207       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
11208         diagnostic = diag::warn_condition_is_idiomatic_assignment;
11209     }
11210 
11211     Loc = Op->getOperatorLoc();
11212   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
11213     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
11214       return;
11215 
11216     IsOrAssign = Op->getOperator() == OO_PipeEqual;
11217     Loc = Op->getOperatorLoc();
11218   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
11219     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
11220   else {
11221     // Not an assignment.
11222     return;
11223   }
11224 
11225   Diag(Loc, diagnostic) << E->getSourceRange();
11226 
11227   SourceLocation Open = E->getLocStart();
11228   SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
11229   Diag(Loc, diag::note_condition_assign_silence)
11230         << FixItHint::CreateInsertion(Open, "(")
11231         << FixItHint::CreateInsertion(Close, ")");
11232 
11233   if (IsOrAssign)
11234     Diag(Loc, diag::note_condition_or_assign_to_comparison)
11235       << FixItHint::CreateReplacement(Loc, "!=");
11236   else
11237     Diag(Loc, diag::note_condition_assign_to_comparison)
11238       << FixItHint::CreateReplacement(Loc, "==");
11239 }
11240 
11241 /// \brief Redundant parentheses over an equality comparison can indicate
11242 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)11243 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
11244   // Don't warn if the parens came from a macro.
11245   SourceLocation parenLoc = ParenE->getLocStart();
11246   if (parenLoc.isInvalid() || parenLoc.isMacroID())
11247     return;
11248   // Don't warn for dependent expressions.
11249   if (ParenE->isTypeDependent())
11250     return;
11251 
11252   Expr *E = ParenE->IgnoreParens();
11253 
11254   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
11255     if (opE->getOpcode() == BO_EQ &&
11256         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
11257                                                            == Expr::MLV_Valid) {
11258       SourceLocation Loc = opE->getOperatorLoc();
11259 
11260       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
11261       SourceRange ParenERange = ParenE->getSourceRange();
11262       Diag(Loc, diag::note_equality_comparison_silence)
11263         << FixItHint::CreateRemoval(ParenERange.getBegin())
11264         << FixItHint::CreateRemoval(ParenERange.getEnd());
11265       Diag(Loc, diag::note_equality_comparison_to_assign)
11266         << FixItHint::CreateReplacement(Loc, "=");
11267     }
11268 }
11269 
CheckBooleanCondition(Expr * E,SourceLocation Loc)11270 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
11271   DiagnoseAssignmentAsCondition(E);
11272   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
11273     DiagnoseEqualityWithExtraParens(parenE);
11274 
11275   ExprResult result = CheckPlaceholderExpr(E);
11276   if (result.isInvalid()) return ExprError();
11277   E = result.take();
11278 
11279   if (!E->isTypeDependent()) {
11280     if (getLangOpts().CPlusPlus)
11281       return CheckCXXBooleanCondition(E); // C++ 6.4p4
11282 
11283     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
11284     if (ERes.isInvalid())
11285       return ExprError();
11286     E = ERes.take();
11287 
11288     QualType T = E->getType();
11289     if (!T->isScalarType()) { // C99 6.8.4.1p1
11290       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
11291         << T << E->getSourceRange();
11292       return ExprError();
11293     }
11294   }
11295 
11296   return Owned(E);
11297 }
11298 
ActOnBooleanCondition(Scope * S,SourceLocation Loc,Expr * SubExpr)11299 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
11300                                        Expr *SubExpr) {
11301   if (!SubExpr)
11302     return ExprError();
11303 
11304   return CheckBooleanCondition(SubExpr, Loc);
11305 }
11306 
11307 namespace {
11308   /// A visitor for rebuilding a call to an __unknown_any expression
11309   /// to have an appropriate type.
11310   struct RebuildUnknownAnyFunction
11311     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
11312 
11313     Sema &S;
11314 
RebuildUnknownAnyFunction__anon51d3525c0711::RebuildUnknownAnyFunction11315     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
11316 
VisitStmt__anon51d3525c0711::RebuildUnknownAnyFunction11317     ExprResult VisitStmt(Stmt *S) {
11318       llvm_unreachable("unexpected statement!");
11319     }
11320 
VisitExpr__anon51d3525c0711::RebuildUnknownAnyFunction11321     ExprResult VisitExpr(Expr *E) {
11322       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
11323         << E->getSourceRange();
11324       return ExprError();
11325     }
11326 
11327     /// Rebuild an expression which simply semantically wraps another
11328     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon51d3525c0711::RebuildUnknownAnyFunction11329     template <class T> ExprResult rebuildSugarExpr(T *E) {
11330       ExprResult SubResult = Visit(E->getSubExpr());
11331       if (SubResult.isInvalid()) return ExprError();
11332 
11333       Expr *SubExpr = SubResult.take();
11334       E->setSubExpr(SubExpr);
11335       E->setType(SubExpr->getType());
11336       E->setValueKind(SubExpr->getValueKind());
11337       assert(E->getObjectKind() == OK_Ordinary);
11338       return E;
11339     }
11340 
VisitParenExpr__anon51d3525c0711::RebuildUnknownAnyFunction11341     ExprResult VisitParenExpr(ParenExpr *E) {
11342       return rebuildSugarExpr(E);
11343     }
11344 
VisitUnaryExtension__anon51d3525c0711::RebuildUnknownAnyFunction11345     ExprResult VisitUnaryExtension(UnaryOperator *E) {
11346       return rebuildSugarExpr(E);
11347     }
11348 
VisitUnaryAddrOf__anon51d3525c0711::RebuildUnknownAnyFunction11349     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11350       ExprResult SubResult = Visit(E->getSubExpr());
11351       if (SubResult.isInvalid()) return ExprError();
11352 
11353       Expr *SubExpr = SubResult.take();
11354       E->setSubExpr(SubExpr);
11355       E->setType(S.Context.getPointerType(SubExpr->getType()));
11356       assert(E->getValueKind() == VK_RValue);
11357       assert(E->getObjectKind() == OK_Ordinary);
11358       return E;
11359     }
11360 
resolveDecl__anon51d3525c0711::RebuildUnknownAnyFunction11361     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
11362       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
11363 
11364       E->setType(VD->getType());
11365 
11366       assert(E->getValueKind() == VK_RValue);
11367       if (S.getLangOpts().CPlusPlus &&
11368           !(isa<CXXMethodDecl>(VD) &&
11369             cast<CXXMethodDecl>(VD)->isInstance()))
11370         E->setValueKind(VK_LValue);
11371 
11372       return E;
11373     }
11374 
VisitMemberExpr__anon51d3525c0711::RebuildUnknownAnyFunction11375     ExprResult VisitMemberExpr(MemberExpr *E) {
11376       return resolveDecl(E, E->getMemberDecl());
11377     }
11378 
VisitDeclRefExpr__anon51d3525c0711::RebuildUnknownAnyFunction11379     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11380       return resolveDecl(E, E->getDecl());
11381     }
11382   };
11383 }
11384 
11385 /// Given a function expression of unknown-any type, try to rebuild it
11386 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)11387 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
11388   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
11389   if (Result.isInvalid()) return ExprError();
11390   return S.DefaultFunctionArrayConversion(Result.take());
11391 }
11392 
11393 namespace {
11394   /// A visitor for rebuilding an expression of type __unknown_anytype
11395   /// into one which resolves the type directly on the referring
11396   /// expression.  Strict preservation of the original source
11397   /// structure is not a goal.
11398   struct RebuildUnknownAnyExpr
11399     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
11400 
11401     Sema &S;
11402 
11403     /// The current destination type.
11404     QualType DestType;
11405 
RebuildUnknownAnyExpr__anon51d3525c0811::RebuildUnknownAnyExpr11406     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
11407       : S(S), DestType(CastType) {}
11408 
VisitStmt__anon51d3525c0811::RebuildUnknownAnyExpr11409     ExprResult VisitStmt(Stmt *S) {
11410       llvm_unreachable("unexpected statement!");
11411     }
11412 
VisitExpr__anon51d3525c0811::RebuildUnknownAnyExpr11413     ExprResult VisitExpr(Expr *E) {
11414       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11415         << E->getSourceRange();
11416       return ExprError();
11417     }
11418 
11419     ExprResult VisitCallExpr(CallExpr *E);
11420     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
11421 
11422     /// Rebuild an expression which simply semantically wraps another
11423     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon51d3525c0811::RebuildUnknownAnyExpr11424     template <class T> ExprResult rebuildSugarExpr(T *E) {
11425       ExprResult SubResult = Visit(E->getSubExpr());
11426       if (SubResult.isInvalid()) return ExprError();
11427       Expr *SubExpr = SubResult.take();
11428       E->setSubExpr(SubExpr);
11429       E->setType(SubExpr->getType());
11430       E->setValueKind(SubExpr->getValueKind());
11431       assert(E->getObjectKind() == OK_Ordinary);
11432       return E;
11433     }
11434 
VisitParenExpr__anon51d3525c0811::RebuildUnknownAnyExpr11435     ExprResult VisitParenExpr(ParenExpr *E) {
11436       return rebuildSugarExpr(E);
11437     }
11438 
VisitUnaryExtension__anon51d3525c0811::RebuildUnknownAnyExpr11439     ExprResult VisitUnaryExtension(UnaryOperator *E) {
11440       return rebuildSugarExpr(E);
11441     }
11442 
VisitUnaryAddrOf__anon51d3525c0811::RebuildUnknownAnyExpr11443     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11444       const PointerType *Ptr = DestType->getAs<PointerType>();
11445       if (!Ptr) {
11446         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
11447           << E->getSourceRange();
11448         return ExprError();
11449       }
11450       assert(E->getValueKind() == VK_RValue);
11451       assert(E->getObjectKind() == OK_Ordinary);
11452       E->setType(DestType);
11453 
11454       // Build the sub-expression as if it were an object of the pointee type.
11455       DestType = Ptr->getPointeeType();
11456       ExprResult SubResult = Visit(E->getSubExpr());
11457       if (SubResult.isInvalid()) return ExprError();
11458       E->setSubExpr(SubResult.take());
11459       return E;
11460     }
11461 
11462     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
11463 
11464     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
11465 
VisitMemberExpr__anon51d3525c0811::RebuildUnknownAnyExpr11466     ExprResult VisitMemberExpr(MemberExpr *E) {
11467       return resolveDecl(E, E->getMemberDecl());
11468     }
11469 
VisitDeclRefExpr__anon51d3525c0811::RebuildUnknownAnyExpr11470     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11471       return resolveDecl(E, E->getDecl());
11472     }
11473   };
11474 }
11475 
11476 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)11477 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
11478   Expr *CalleeExpr = E->getCallee();
11479 
11480   enum FnKind {
11481     FK_MemberFunction,
11482     FK_FunctionPointer,
11483     FK_BlockPointer
11484   };
11485 
11486   FnKind Kind;
11487   QualType CalleeType = CalleeExpr->getType();
11488   if (CalleeType == S.Context.BoundMemberTy) {
11489     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
11490     Kind = FK_MemberFunction;
11491     CalleeType = Expr::findBoundMemberType(CalleeExpr);
11492   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
11493     CalleeType = Ptr->getPointeeType();
11494     Kind = FK_FunctionPointer;
11495   } else {
11496     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
11497     Kind = FK_BlockPointer;
11498   }
11499   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
11500 
11501   // Verify that this is a legal result type of a function.
11502   if (DestType->isArrayType() || DestType->isFunctionType()) {
11503     unsigned diagID = diag::err_func_returning_array_function;
11504     if (Kind == FK_BlockPointer)
11505       diagID = diag::err_block_returning_array_function;
11506 
11507     S.Diag(E->getExprLoc(), diagID)
11508       << DestType->isFunctionType() << DestType;
11509     return ExprError();
11510   }
11511 
11512   // Otherwise, go ahead and set DestType as the call's result.
11513   E->setType(DestType.getNonLValueExprType(S.Context));
11514   E->setValueKind(Expr::getValueKindForType(DestType));
11515   assert(E->getObjectKind() == OK_Ordinary);
11516 
11517   // Rebuild the function type, replacing the result type with DestType.
11518   if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
11519     DestType = S.Context.getFunctionType(DestType,
11520                                          Proto->arg_type_begin(),
11521                                          Proto->getNumArgs(),
11522                                          Proto->getExtProtoInfo());
11523   else
11524     DestType = S.Context.getFunctionNoProtoType(DestType,
11525                                                 FnType->getExtInfo());
11526 
11527   // Rebuild the appropriate pointer-to-function type.
11528   switch (Kind) {
11529   case FK_MemberFunction:
11530     // Nothing to do.
11531     break;
11532 
11533   case FK_FunctionPointer:
11534     DestType = S.Context.getPointerType(DestType);
11535     break;
11536 
11537   case FK_BlockPointer:
11538     DestType = S.Context.getBlockPointerType(DestType);
11539     break;
11540   }
11541 
11542   // Finally, we can recurse.
11543   ExprResult CalleeResult = Visit(CalleeExpr);
11544   if (!CalleeResult.isUsable()) return ExprError();
11545   E->setCallee(CalleeResult.take());
11546 
11547   // Bind a temporary if necessary.
11548   return S.MaybeBindToTemporary(E);
11549 }
11550 
VisitObjCMessageExpr(ObjCMessageExpr * E)11551 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11552   // Verify that this is a legal result type of a call.
11553   if (DestType->isArrayType() || DestType->isFunctionType()) {
11554     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11555       << DestType->isFunctionType() << DestType;
11556     return ExprError();
11557   }
11558 
11559   // Rewrite the method result type if available.
11560   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11561     assert(Method->getResultType() == S.Context.UnknownAnyTy);
11562     Method->setResultType(DestType);
11563   }
11564 
11565   // Change the type of the message.
11566   E->setType(DestType.getNonReferenceType());
11567   E->setValueKind(Expr::getValueKindForType(DestType));
11568 
11569   return S.MaybeBindToTemporary(E);
11570 }
11571 
VisitImplicitCastExpr(ImplicitCastExpr * E)11572 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11573   // The only case we should ever see here is a function-to-pointer decay.
11574   if (E->getCastKind() == CK_FunctionToPointerDecay) {
11575     assert(E->getValueKind() == VK_RValue);
11576     assert(E->getObjectKind() == OK_Ordinary);
11577 
11578     E->setType(DestType);
11579 
11580     // Rebuild the sub-expression as the pointee (function) type.
11581     DestType = DestType->castAs<PointerType>()->getPointeeType();
11582 
11583     ExprResult Result = Visit(E->getSubExpr());
11584     if (!Result.isUsable()) return ExprError();
11585 
11586     E->setSubExpr(Result.take());
11587     return S.Owned(E);
11588   } else if (E->getCastKind() == CK_LValueToRValue) {
11589     assert(E->getValueKind() == VK_RValue);
11590     assert(E->getObjectKind() == OK_Ordinary);
11591 
11592     assert(isa<BlockPointerType>(E->getType()));
11593 
11594     E->setType(DestType);
11595 
11596     // The sub-expression has to be a lvalue reference, so rebuild it as such.
11597     DestType = S.Context.getLValueReferenceType(DestType);
11598 
11599     ExprResult Result = Visit(E->getSubExpr());
11600     if (!Result.isUsable()) return ExprError();
11601 
11602     E->setSubExpr(Result.take());
11603     return S.Owned(E);
11604   } else {
11605     llvm_unreachable("Unhandled cast type!");
11606   }
11607 }
11608 
resolveDecl(Expr * E,ValueDecl * VD)11609 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11610   ExprValueKind ValueKind = VK_LValue;
11611   QualType Type = DestType;
11612 
11613   // We know how to make this work for certain kinds of decls:
11614 
11615   //  - functions
11616   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11617     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11618       DestType = Ptr->getPointeeType();
11619       ExprResult Result = resolveDecl(E, VD);
11620       if (Result.isInvalid()) return ExprError();
11621       return S.ImpCastExprToType(Result.take(), Type,
11622                                  CK_FunctionToPointerDecay, VK_RValue);
11623     }
11624 
11625     if (!Type->isFunctionType()) {
11626       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11627         << VD << E->getSourceRange();
11628       return ExprError();
11629     }
11630 
11631     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11632       if (MD->isInstance()) {
11633         ValueKind = VK_RValue;
11634         Type = S.Context.BoundMemberTy;
11635       }
11636 
11637     // Function references aren't l-values in C.
11638     if (!S.getLangOpts().CPlusPlus)
11639       ValueKind = VK_RValue;
11640 
11641   //  - variables
11642   } else if (isa<VarDecl>(VD)) {
11643     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11644       Type = RefTy->getPointeeType();
11645     } else if (Type->isFunctionType()) {
11646       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11647         << VD << E->getSourceRange();
11648       return ExprError();
11649     }
11650 
11651   //  - nothing else
11652   } else {
11653     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11654       << VD << E->getSourceRange();
11655     return ExprError();
11656   }
11657 
11658   VD->setType(DestType);
11659   E->setType(Type);
11660   E->setValueKind(ValueKind);
11661   return S.Owned(E);
11662 }
11663 
11664 /// Check a cast of an unknown-any type.  We intentionally only
11665 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)11666 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11667                                      Expr *CastExpr, CastKind &CastKind,
11668                                      ExprValueKind &VK, CXXCastPath &Path) {
11669   // Rewrite the casted expression from scratch.
11670   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
11671   if (!result.isUsable()) return ExprError();
11672 
11673   CastExpr = result.take();
11674   VK = CastExpr->getValueKind();
11675   CastKind = CK_NoOp;
11676 
11677   return CastExpr;
11678 }
11679 
forceUnknownAnyToType(Expr * E,QualType ToType)11680 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
11681   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
11682 }
11683 
diagnoseUnknownAnyExpr(Sema & S,Expr * E)11684 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
11685   Expr *orig = E;
11686   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
11687   while (true) {
11688     E = E->IgnoreParenImpCasts();
11689     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
11690       E = call->getCallee();
11691       diagID = diag::err_uncasted_call_of_unknown_any;
11692     } else {
11693       break;
11694     }
11695   }
11696 
11697   SourceLocation loc;
11698   NamedDecl *d;
11699   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
11700     loc = ref->getLocation();
11701     d = ref->getDecl();
11702   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
11703     loc = mem->getMemberLoc();
11704     d = mem->getMemberDecl();
11705   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
11706     diagID = diag::err_uncasted_call_of_unknown_any;
11707     loc = msg->getSelectorStartLoc();
11708     d = msg->getMethodDecl();
11709     if (!d) {
11710       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
11711         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
11712         << orig->getSourceRange();
11713       return ExprError();
11714     }
11715   } else {
11716     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11717       << E->getSourceRange();
11718     return ExprError();
11719   }
11720 
11721   S.Diag(loc, diagID) << d << orig->getSourceRange();
11722 
11723   // Never recoverable.
11724   return ExprError();
11725 }
11726 
11727 /// Check for operands with placeholder types and complain if found.
11728 /// Returns true if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)11729 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
11730   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
11731   if (!placeholderType) return Owned(E);
11732 
11733   switch (placeholderType->getKind()) {
11734 
11735   // Overloaded expressions.
11736   case BuiltinType::Overload: {
11737     // Try to resolve a single function template specialization.
11738     // This is obligatory.
11739     ExprResult result = Owned(E);
11740     if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
11741       return result;
11742 
11743     // If that failed, try to recover with a call.
11744     } else {
11745       tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
11746                            /*complain*/ true);
11747       return result;
11748     }
11749   }
11750 
11751   // Bound member functions.
11752   case BuiltinType::BoundMember: {
11753     ExprResult result = Owned(E);
11754     tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
11755                          /*complain*/ true);
11756     return result;
11757   }
11758 
11759   // ARC unbridged casts.
11760   case BuiltinType::ARCUnbridgedCast: {
11761     Expr *realCast = stripARCUnbridgedCast(E);
11762     diagnoseARCUnbridgedCast(realCast);
11763     return Owned(realCast);
11764   }
11765 
11766   // Expressions of unknown type.
11767   case BuiltinType::UnknownAny:
11768     return diagnoseUnknownAnyExpr(*this, E);
11769 
11770   // Pseudo-objects.
11771   case BuiltinType::PseudoObject:
11772     return checkPseudoObjectRValue(E);
11773 
11774   case BuiltinType::BuiltinFn:
11775     Diag(E->getLocStart(), diag::err_builtin_fn_use);
11776     return ExprError();
11777 
11778   // Everything else should be impossible.
11779 #define BUILTIN_TYPE(Id, SingletonId) \
11780   case BuiltinType::Id:
11781 #define PLACEHOLDER_TYPE(Id, SingletonId)
11782 #include "clang/AST/BuiltinTypes.def"
11783     break;
11784   }
11785 
11786   llvm_unreachable("invalid placeholder type!");
11787 }
11788 
CheckCaseExpression(Expr * E)11789 bool Sema::CheckCaseExpression(Expr *E) {
11790   if (E->isTypeDependent())
11791     return true;
11792   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
11793     return E->getType()->isIntegralOrEnumerationType();
11794   return false;
11795 }
11796 
11797 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
11798 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)11799 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
11800   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
11801          "Unknown Objective-C Boolean value!");
11802   QualType BoolT = Context.ObjCBuiltinBoolTy;
11803   if (!Context.getBOOLDecl()) {
11804     LookupResult Result(*this, &Context.Idents.get("BOOL"), SourceLocation(),
11805                         Sema::LookupOrdinaryName);
11806     if (LookupName(Result, getCurScope())) {
11807       NamedDecl *ND = Result.getFoundDecl();
11808       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
11809         Context.setBOOLDecl(TD);
11810     }
11811   }
11812   if (Context.getBOOLDecl())
11813     BoolT = Context.getBOOLType();
11814   return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
11815                                         BoolT, OpLoc));
11816 }
11817