• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2  *
3  * LibTomCrypt is a library that provides various cryptographic
4  * algorithms in a highly modular and flexible manner.
5  *
6  * The library is free for all purposes without any express
7  * guarantee it works.
8  *
9  * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10  */
11 
12 /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
13  *
14  * All curves taken from NIST recommendation paper of July 1999
15  * Available at http://csrc.nist.gov/cryptval/dss.htm
16  */
17 #include "tomcrypt.h"
18 
19 /**
20   @file ltc_ecc_projective_dbl_point.c
21   ECC Crypto, Tom St Denis
22 */
23 
24 #if defined(MECC) && (!defined(MECC_ACCEL) || defined(LTM_DESC))
25 
26 /**
27    Double an ECC point
28    @param P   The point to double
29    @param R   [out] The destination of the double
30    @param modulus  The modulus of the field the ECC curve is in
31    @param mp       The "b" value from montgomery_setup()
32    @return CRYPT_OK on success
33 */
ltc_ecc_projective_dbl_point(ecc_point * P,ecc_point * R,void * modulus,void * mp)34 int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp)
35 {
36    void *t1, *t2;
37    int   err;
38 
39    LTC_ARGCHK(P       != NULL);
40    LTC_ARGCHK(R       != NULL);
41    LTC_ARGCHK(modulus != NULL);
42    LTC_ARGCHK(mp      != NULL);
43 
44    if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) {
45       return err;
46    }
47 
48    if (P != R) {
49       if ((err = mp_copy(P->x, R->x)) != CRYPT_OK)                                { goto done; }
50       if ((err = mp_copy(P->y, R->y)) != CRYPT_OK)                                { goto done; }
51       if ((err = mp_copy(P->z, R->z)) != CRYPT_OK)                                { goto done; }
52    }
53 
54    /* t1 = Z * Z */
55    if ((err = mp_sqr(R->z, t1)) != CRYPT_OK)                                      { goto done; }
56    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)                 { goto done; }
57    /* Z = Y * Z */
58    if ((err = mp_mul(R->z, R->y, R->z)) != CRYPT_OK)                              { goto done; }
59    if ((err = mp_montgomery_reduce(R->z, modulus, mp)) != CRYPT_OK)               { goto done; }
60    /* Z = 2Z */
61    if ((err = mp_add(R->z, R->z, R->z)) != CRYPT_OK)                              { goto done; }
62    if (mp_cmp(R->z, modulus) != LTC_MP_LT) {
63       if ((err = mp_sub(R->z, modulus, R->z)) != CRYPT_OK)                        { goto done; }
64    }
65 
66    /* T2 = X - T1 */
67    if ((err = mp_sub(R->x, t1, t2)) != CRYPT_OK)                                  { goto done; }
68    if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
69       if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                            { goto done; }
70    }
71    /* T1 = X + T1 */
72    if ((err = mp_add(t1, R->x, t1)) != CRYPT_OK)                                  { goto done; }
73    if (mp_cmp(t1, modulus) != LTC_MP_LT) {
74       if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
75    }
76    /* T2 = T1 * T2 */
77    if ((err = mp_mul(t1, t2, t2)) != CRYPT_OK)                                    { goto done; }
78    if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)                 { goto done; }
79    /* T1 = 2T2 */
80    if ((err = mp_add(t2, t2, t1)) != CRYPT_OK)                                    { goto done; }
81    if (mp_cmp(t1, modulus) != LTC_MP_LT) {
82       if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
83    }
84    /* T1 = T1 + T2 */
85    if ((err = mp_add(t1, t2, t1)) != CRYPT_OK)                                    { goto done; }
86    if (mp_cmp(t1, modulus) != LTC_MP_LT) {
87       if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
88    }
89 
90    /* Y = 2Y */
91    if ((err = mp_add(R->y, R->y, R->y)) != CRYPT_OK)                              { goto done; }
92    if (mp_cmp(R->y, modulus) != LTC_MP_LT) {
93       if ((err = mp_sub(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
94    }
95    /* Y = Y * Y */
96    if ((err = mp_sqr(R->y, R->y)) != CRYPT_OK)                                    { goto done; }
97    if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }
98    /* T2 = Y * Y */
99    if ((err = mp_sqr(R->y, t2)) != CRYPT_OK)                                      { goto done; }
100    if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)                 { goto done; }
101    /* T2 = T2/2 */
102    if (mp_isodd(t2)) {
103       if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                            { goto done; }
104    }
105    if ((err = mp_div_2(t2, t2)) != CRYPT_OK)                                      { goto done; }
106    /* Y = Y * X */
107    if ((err = mp_mul(R->y, R->x, R->y)) != CRYPT_OK)                              { goto done; }
108    if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }
109 
110    /* X  = T1 * T1 */
111    if ((err = mp_sqr(t1, R->x)) != CRYPT_OK)                                      { goto done; }
112    if ((err = mp_montgomery_reduce(R->x, modulus, mp)) != CRYPT_OK)               { goto done; }
113    /* X = X - Y */
114    if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK)                              { goto done; }
115    if (mp_cmp_d(R->x, 0) == LTC_MP_LT) {
116       if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK)                        { goto done; }
117    }
118    /* X = X - Y */
119    if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK)                              { goto done; }
120    if (mp_cmp_d(R->x, 0) == LTC_MP_LT) {
121       if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK)                        { goto done; }
122    }
123 
124    /* Y = Y - X */
125    if ((err = mp_sub(R->y, R->x, R->y)) != CRYPT_OK)                              { goto done; }
126    if (mp_cmp_d(R->y, 0) == LTC_MP_LT) {
127       if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
128    }
129    /* Y = Y * T1 */
130    if ((err = mp_mul(R->y, t1, R->y)) != CRYPT_OK)                                { goto done; }
131    if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }
132    /* Y = Y - T2 */
133    if ((err = mp_sub(R->y, t2, R->y)) != CRYPT_OK)                                { goto done; }
134    if (mp_cmp_d(R->y, 0) == LTC_MP_LT) {
135       if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
136    }
137 
138    err = CRYPT_OK;
139 done:
140    mp_clear_multi(t1, t2, NULL);
141    return err;
142 }
143 #endif
144 /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_projective_dbl_point.c,v $ */
145 /* $Revision: 1.8 $ */
146 /* $Date: 2006/12/04 05:07:59 $ */
147 
148