1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value. This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range. To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators. When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
16 //
17 // [F, F) = {} = Empty set
18 // [T, F) = {T}
19 // [F, T) = {F}
20 // [T, T) = {F, T} = Full set
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/InstrTypes.h"
25 #include "llvm/Support/ConstantRange.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
29
30 /// Initialize a full (the default) or empty set for the specified type.
31 ///
ConstantRange(uint32_t BitWidth,bool Full)32 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
33 if (Full)
34 Lower = Upper = APInt::getMaxValue(BitWidth);
35 else
36 Lower = Upper = APInt::getMinValue(BitWidth);
37 }
38
39 /// Initialize a range to hold the single specified value.
40 ///
ConstantRange(const APInt & V)41 ConstantRange::ConstantRange(const APInt &V) : Lower(V), Upper(V + 1) {}
42
ConstantRange(const APInt & L,const APInt & U)43 ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
44 Lower(L), Upper(U) {
45 assert(L.getBitWidth() == U.getBitWidth() &&
46 "ConstantRange with unequal bit widths");
47 assert((L != U || (L.isMaxValue() || L.isMinValue())) &&
48 "Lower == Upper, but they aren't min or max value!");
49 }
50
makeICmpRegion(unsigned Pred,const ConstantRange & CR)51 ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
52 const ConstantRange &CR) {
53 if (CR.isEmptySet())
54 return CR;
55
56 uint32_t W = CR.getBitWidth();
57 switch (Pred) {
58 default: llvm_unreachable("Invalid ICmp predicate to makeICmpRegion()");
59 case CmpInst::ICMP_EQ:
60 return CR;
61 case CmpInst::ICMP_NE:
62 if (CR.isSingleElement())
63 return ConstantRange(CR.getUpper(), CR.getLower());
64 return ConstantRange(W);
65 case CmpInst::ICMP_ULT: {
66 APInt UMax(CR.getUnsignedMax());
67 if (UMax.isMinValue())
68 return ConstantRange(W, /* empty */ false);
69 return ConstantRange(APInt::getMinValue(W), UMax);
70 }
71 case CmpInst::ICMP_SLT: {
72 APInt SMax(CR.getSignedMax());
73 if (SMax.isMinSignedValue())
74 return ConstantRange(W, /* empty */ false);
75 return ConstantRange(APInt::getSignedMinValue(W), SMax);
76 }
77 case CmpInst::ICMP_ULE: {
78 APInt UMax(CR.getUnsignedMax());
79 if (UMax.isMaxValue())
80 return ConstantRange(W);
81 return ConstantRange(APInt::getMinValue(W), UMax + 1);
82 }
83 case CmpInst::ICMP_SLE: {
84 APInt SMax(CR.getSignedMax());
85 if (SMax.isMaxSignedValue())
86 return ConstantRange(W);
87 return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
88 }
89 case CmpInst::ICMP_UGT: {
90 APInt UMin(CR.getUnsignedMin());
91 if (UMin.isMaxValue())
92 return ConstantRange(W, /* empty */ false);
93 return ConstantRange(UMin + 1, APInt::getNullValue(W));
94 }
95 case CmpInst::ICMP_SGT: {
96 APInt SMin(CR.getSignedMin());
97 if (SMin.isMaxSignedValue())
98 return ConstantRange(W, /* empty */ false);
99 return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
100 }
101 case CmpInst::ICMP_UGE: {
102 APInt UMin(CR.getUnsignedMin());
103 if (UMin.isMinValue())
104 return ConstantRange(W);
105 return ConstantRange(UMin, APInt::getNullValue(W));
106 }
107 case CmpInst::ICMP_SGE: {
108 APInt SMin(CR.getSignedMin());
109 if (SMin.isMinSignedValue())
110 return ConstantRange(W);
111 return ConstantRange(SMin, APInt::getSignedMinValue(W));
112 }
113 }
114 }
115
116 /// isFullSet - Return true if this set contains all of the elements possible
117 /// for this data-type
isFullSet() const118 bool ConstantRange::isFullSet() const {
119 return Lower == Upper && Lower.isMaxValue();
120 }
121
122 /// isEmptySet - Return true if this set contains no members.
123 ///
isEmptySet() const124 bool ConstantRange::isEmptySet() const {
125 return Lower == Upper && Lower.isMinValue();
126 }
127
128 /// isWrappedSet - Return true if this set wraps around the top of the range,
129 /// for example: [100, 8)
130 ///
isWrappedSet() const131 bool ConstantRange::isWrappedSet() const {
132 return Lower.ugt(Upper);
133 }
134
135 /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
136 /// its bitwidth, for example: i8 [120, 140).
137 ///
isSignWrappedSet() const138 bool ConstantRange::isSignWrappedSet() const {
139 return contains(APInt::getSignedMaxValue(getBitWidth())) &&
140 contains(APInt::getSignedMinValue(getBitWidth()));
141 }
142
143 /// getSetSize - Return the number of elements in this set.
144 ///
getSetSize() const145 APInt ConstantRange::getSetSize() const {
146 if (isEmptySet())
147 return APInt(getBitWidth()+1, 0);
148
149 if (isFullSet()) {
150 APInt Size(getBitWidth()+1, 0);
151 Size.setBit(getBitWidth());
152 return Size;
153 }
154
155 // This is also correct for wrapped sets.
156 return (Upper - Lower).zext(getBitWidth()+1);
157 }
158
159 /// getUnsignedMax - Return the largest unsigned value contained in the
160 /// ConstantRange.
161 ///
getUnsignedMax() const162 APInt ConstantRange::getUnsignedMax() const {
163 if (isFullSet() || isWrappedSet())
164 return APInt::getMaxValue(getBitWidth());
165 return getUpper() - 1;
166 }
167
168 /// getUnsignedMin - Return the smallest unsigned value contained in the
169 /// ConstantRange.
170 ///
getUnsignedMin() const171 APInt ConstantRange::getUnsignedMin() const {
172 if (isFullSet() || (isWrappedSet() && getUpper() != 0))
173 return APInt::getMinValue(getBitWidth());
174 return getLower();
175 }
176
177 /// getSignedMax - Return the largest signed value contained in the
178 /// ConstantRange.
179 ///
getSignedMax() const180 APInt ConstantRange::getSignedMax() const {
181 APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
182 if (!isWrappedSet()) {
183 if (getLower().sle(getUpper() - 1))
184 return getUpper() - 1;
185 return SignedMax;
186 }
187 if (getLower().isNegative() == getUpper().isNegative())
188 return SignedMax;
189 return getUpper() - 1;
190 }
191
192 /// getSignedMin - Return the smallest signed value contained in the
193 /// ConstantRange.
194 ///
getSignedMin() const195 APInt ConstantRange::getSignedMin() const {
196 APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
197 if (!isWrappedSet()) {
198 if (getLower().sle(getUpper() - 1))
199 return getLower();
200 return SignedMin;
201 }
202 if ((getUpper() - 1).slt(getLower())) {
203 if (getUpper() != SignedMin)
204 return SignedMin;
205 }
206 return getLower();
207 }
208
209 /// contains - Return true if the specified value is in the set.
210 ///
contains(const APInt & V) const211 bool ConstantRange::contains(const APInt &V) const {
212 if (Lower == Upper)
213 return isFullSet();
214
215 if (!isWrappedSet())
216 return Lower.ule(V) && V.ult(Upper);
217 return Lower.ule(V) || V.ult(Upper);
218 }
219
220 /// contains - Return true if the argument is a subset of this range.
221 /// Two equal sets contain each other. The empty set contained by all other
222 /// sets.
223 ///
contains(const ConstantRange & Other) const224 bool ConstantRange::contains(const ConstantRange &Other) const {
225 if (isFullSet() || Other.isEmptySet()) return true;
226 if (isEmptySet() || Other.isFullSet()) return false;
227
228 if (!isWrappedSet()) {
229 if (Other.isWrappedSet())
230 return false;
231
232 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
233 }
234
235 if (!Other.isWrappedSet())
236 return Other.getUpper().ule(Upper) ||
237 Lower.ule(Other.getLower());
238
239 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
240 }
241
242 /// subtract - Subtract the specified constant from the endpoints of this
243 /// constant range.
subtract(const APInt & Val) const244 ConstantRange ConstantRange::subtract(const APInt &Val) const {
245 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
246 // If the set is empty or full, don't modify the endpoints.
247 if (Lower == Upper)
248 return *this;
249 return ConstantRange(Lower - Val, Upper - Val);
250 }
251
252 /// \brief Subtract the specified range from this range (aka relative complement
253 /// of the sets).
difference(const ConstantRange & CR) const254 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
255 return intersectWith(CR.inverse());
256 }
257
258 /// intersectWith - Return the range that results from the intersection of this
259 /// range with another range. The resultant range is guaranteed to include all
260 /// elements contained in both input ranges, and to have the smallest possible
261 /// set size that does so. Because there may be two intersections with the
262 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
intersectWith(const ConstantRange & CR) const263 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
264 assert(getBitWidth() == CR.getBitWidth() &&
265 "ConstantRange types don't agree!");
266
267 // Handle common cases.
268 if ( isEmptySet() || CR.isFullSet()) return *this;
269 if (CR.isEmptySet() || isFullSet()) return CR;
270
271 if (!isWrappedSet() && CR.isWrappedSet())
272 return CR.intersectWith(*this);
273
274 if (!isWrappedSet() && !CR.isWrappedSet()) {
275 if (Lower.ult(CR.Lower)) {
276 if (Upper.ule(CR.Lower))
277 return ConstantRange(getBitWidth(), false);
278
279 if (Upper.ult(CR.Upper))
280 return ConstantRange(CR.Lower, Upper);
281
282 return CR;
283 }
284 if (Upper.ult(CR.Upper))
285 return *this;
286
287 if (Lower.ult(CR.Upper))
288 return ConstantRange(Lower, CR.Upper);
289
290 return ConstantRange(getBitWidth(), false);
291 }
292
293 if (isWrappedSet() && !CR.isWrappedSet()) {
294 if (CR.Lower.ult(Upper)) {
295 if (CR.Upper.ult(Upper))
296 return CR;
297
298 if (CR.Upper.ule(Lower))
299 return ConstantRange(CR.Lower, Upper);
300
301 if (getSetSize().ult(CR.getSetSize()))
302 return *this;
303 return CR;
304 }
305 if (CR.Lower.ult(Lower)) {
306 if (CR.Upper.ule(Lower))
307 return ConstantRange(getBitWidth(), false);
308
309 return ConstantRange(Lower, CR.Upper);
310 }
311 return CR;
312 }
313
314 if (CR.Upper.ult(Upper)) {
315 if (CR.Lower.ult(Upper)) {
316 if (getSetSize().ult(CR.getSetSize()))
317 return *this;
318 return CR;
319 }
320
321 if (CR.Lower.ult(Lower))
322 return ConstantRange(Lower, CR.Upper);
323
324 return CR;
325 }
326 if (CR.Upper.ule(Lower)) {
327 if (CR.Lower.ult(Lower))
328 return *this;
329
330 return ConstantRange(CR.Lower, Upper);
331 }
332 if (getSetSize().ult(CR.getSetSize()))
333 return *this;
334 return CR;
335 }
336
337
338 /// unionWith - Return the range that results from the union of this range with
339 /// another range. The resultant range is guaranteed to include the elements of
340 /// both sets, but may contain more. For example, [3, 9) union [12,15) is
341 /// [3, 15), which includes 9, 10, and 11, which were not included in either
342 /// set before.
343 ///
unionWith(const ConstantRange & CR) const344 ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
345 assert(getBitWidth() == CR.getBitWidth() &&
346 "ConstantRange types don't agree!");
347
348 if ( isFullSet() || CR.isEmptySet()) return *this;
349 if (CR.isFullSet() || isEmptySet()) return CR;
350
351 if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
352
353 if (!isWrappedSet() && !CR.isWrappedSet()) {
354 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
355 // If the two ranges are disjoint, find the smaller gap and bridge it.
356 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
357 if (d1.ult(d2))
358 return ConstantRange(Lower, CR.Upper);
359 return ConstantRange(CR.Lower, Upper);
360 }
361
362 APInt L = Lower, U = Upper;
363 if (CR.Lower.ult(L))
364 L = CR.Lower;
365 if ((CR.Upper - 1).ugt(U - 1))
366 U = CR.Upper;
367
368 if (L == 0 && U == 0)
369 return ConstantRange(getBitWidth());
370
371 return ConstantRange(L, U);
372 }
373
374 if (!CR.isWrappedSet()) {
375 // ------U L----- and ------U L----- : this
376 // L--U L--U : CR
377 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
378 return *this;
379
380 // ------U L----- : this
381 // L---------U : CR
382 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
383 return ConstantRange(getBitWidth());
384
385 // ----U L---- : this
386 // L---U : CR
387 // <d1> <d2>
388 if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
389 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
390 if (d1.ult(d2))
391 return ConstantRange(Lower, CR.Upper);
392 return ConstantRange(CR.Lower, Upper);
393 }
394
395 // ----U L----- : this
396 // L----U : CR
397 if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
398 return ConstantRange(CR.Lower, Upper);
399
400 // ------U L---- : this
401 // L-----U : CR
402 assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
403 "ConstantRange::unionWith missed a case with one range wrapped");
404 return ConstantRange(Lower, CR.Upper);
405 }
406
407 // ------U L---- and ------U L---- : this
408 // -U L----------- and ------------U L : CR
409 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
410 return ConstantRange(getBitWidth());
411
412 APInt L = Lower, U = Upper;
413 if (CR.Upper.ugt(U))
414 U = CR.Upper;
415 if (CR.Lower.ult(L))
416 L = CR.Lower;
417
418 return ConstantRange(L, U);
419 }
420
421 /// zeroExtend - Return a new range in the specified integer type, which must
422 /// be strictly larger than the current type. The returned range will
423 /// correspond to the possible range of values as if the source range had been
424 /// zero extended.
zeroExtend(uint32_t DstTySize) const425 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
426 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
427
428 unsigned SrcTySize = getBitWidth();
429 assert(SrcTySize < DstTySize && "Not a value extension");
430 if (isFullSet() || isWrappedSet()) {
431 // Change into [0, 1 << src bit width)
432 APInt LowerExt(DstTySize, 0);
433 if (!Upper) // special case: [X, 0) -- not really wrapping around
434 LowerExt = Lower.zext(DstTySize);
435 return ConstantRange(LowerExt, APInt(DstTySize, 1).shl(SrcTySize));
436 }
437
438 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
439 }
440
441 /// signExtend - Return a new range in the specified integer type, which must
442 /// be strictly larger than the current type. The returned range will
443 /// correspond to the possible range of values as if the source range had been
444 /// sign extended.
signExtend(uint32_t DstTySize) const445 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
446 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
447
448 unsigned SrcTySize = getBitWidth();
449 assert(SrcTySize < DstTySize && "Not a value extension");
450 if (isFullSet() || isSignWrappedSet()) {
451 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
452 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
453 }
454
455 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
456 }
457
458 /// truncate - Return a new range in the specified integer type, which must be
459 /// strictly smaller than the current type. The returned range will
460 /// correspond to the possible range of values as if the source range had been
461 /// truncated to the specified type.
truncate(uint32_t DstTySize) const462 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
463 assert(getBitWidth() > DstTySize && "Not a value truncation");
464 if (isEmptySet())
465 return ConstantRange(DstTySize, /*isFullSet=*/false);
466 if (isFullSet())
467 return ConstantRange(DstTySize, /*isFullSet=*/true);
468
469 APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth());
470 APInt MaxBitValue(getBitWidth(), 0);
471 MaxBitValue.setBit(DstTySize);
472
473 APInt LowerDiv(Lower), UpperDiv(Upper);
474 ConstantRange Union(DstTySize, /*isFullSet=*/false);
475
476 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
477 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
478 // then we do the union with [MaxValue, Upper)
479 if (isWrappedSet()) {
480 // if Upper is greater than Max Value, it covers the whole truncated range.
481 if (Upper.uge(MaxValue))
482 return ConstantRange(DstTySize, /*isFullSet=*/true);
483
484 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
485 UpperDiv = APInt::getMaxValue(getBitWidth());
486
487 // Union covers the MaxValue case, so return if the remaining range is just
488 // MaxValue.
489 if (LowerDiv == UpperDiv)
490 return Union;
491 }
492
493 // Chop off the most significant bits that are past the destination bitwidth.
494 if (LowerDiv.uge(MaxValue)) {
495 APInt Div(getBitWidth(), 0);
496 APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv);
497 UpperDiv = UpperDiv - MaxBitValue * Div;
498 }
499
500 if (UpperDiv.ule(MaxValue))
501 return ConstantRange(LowerDiv.trunc(DstTySize),
502 UpperDiv.trunc(DstTySize)).unionWith(Union);
503
504 // The truncated value wrapps around. Check if we can do better than fullset.
505 APInt UpperModulo = UpperDiv - MaxBitValue;
506 if (UpperModulo.ult(LowerDiv))
507 return ConstantRange(LowerDiv.trunc(DstTySize),
508 UpperModulo.trunc(DstTySize)).unionWith(Union);
509
510 return ConstantRange(DstTySize, /*isFullSet=*/true);
511 }
512
513 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
514 /// value is zero extended, truncated, or left alone to make it that width.
zextOrTrunc(uint32_t DstTySize) const515 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
516 unsigned SrcTySize = getBitWidth();
517 if (SrcTySize > DstTySize)
518 return truncate(DstTySize);
519 if (SrcTySize < DstTySize)
520 return zeroExtend(DstTySize);
521 return *this;
522 }
523
524 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
525 /// value is sign extended, truncated, or left alone to make it that width.
sextOrTrunc(uint32_t DstTySize) const526 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
527 unsigned SrcTySize = getBitWidth();
528 if (SrcTySize > DstTySize)
529 return truncate(DstTySize);
530 if (SrcTySize < DstTySize)
531 return signExtend(DstTySize);
532 return *this;
533 }
534
535 ConstantRange
add(const ConstantRange & Other) const536 ConstantRange::add(const ConstantRange &Other) const {
537 if (isEmptySet() || Other.isEmptySet())
538 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
539 if (isFullSet() || Other.isFullSet())
540 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
541
542 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
543 APInt NewLower = getLower() + Other.getLower();
544 APInt NewUpper = getUpper() + Other.getUpper() - 1;
545 if (NewLower == NewUpper)
546 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
547
548 ConstantRange X = ConstantRange(NewLower, NewUpper);
549 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
550 // We've wrapped, therefore, full set.
551 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
552
553 return X;
554 }
555
556 ConstantRange
sub(const ConstantRange & Other) const557 ConstantRange::sub(const ConstantRange &Other) const {
558 if (isEmptySet() || Other.isEmptySet())
559 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
560 if (isFullSet() || Other.isFullSet())
561 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
562
563 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
564 APInt NewLower = getLower() - Other.getUpper() + 1;
565 APInt NewUpper = getUpper() - Other.getLower();
566 if (NewLower == NewUpper)
567 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
568
569 ConstantRange X = ConstantRange(NewLower, NewUpper);
570 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
571 // We've wrapped, therefore, full set.
572 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
573
574 return X;
575 }
576
577 ConstantRange
multiply(const ConstantRange & Other) const578 ConstantRange::multiply(const ConstantRange &Other) const {
579 // TODO: If either operand is a single element and the multiply is known to
580 // be non-wrapping, round the result min and max value to the appropriate
581 // multiple of that element. If wrapping is possible, at least adjust the
582 // range according to the greatest power-of-two factor of the single element.
583
584 if (isEmptySet() || Other.isEmptySet())
585 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
586
587 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
588 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
589 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
590 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
591
592 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
593 this_max * Other_max + 1);
594 return Result_zext.truncate(getBitWidth());
595 }
596
597 ConstantRange
smax(const ConstantRange & Other) const598 ConstantRange::smax(const ConstantRange &Other) const {
599 // X smax Y is: range(smax(X_smin, Y_smin),
600 // smax(X_smax, Y_smax))
601 if (isEmptySet() || Other.isEmptySet())
602 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
603 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
604 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
605 if (NewU == NewL)
606 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
607 return ConstantRange(NewL, NewU);
608 }
609
610 ConstantRange
umax(const ConstantRange & Other) const611 ConstantRange::umax(const ConstantRange &Other) const {
612 // X umax Y is: range(umax(X_umin, Y_umin),
613 // umax(X_umax, Y_umax))
614 if (isEmptySet() || Other.isEmptySet())
615 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
616 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
617 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
618 if (NewU == NewL)
619 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
620 return ConstantRange(NewL, NewU);
621 }
622
623 ConstantRange
udiv(const ConstantRange & RHS) const624 ConstantRange::udiv(const ConstantRange &RHS) const {
625 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
626 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
627 if (RHS.isFullSet())
628 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
629
630 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
631
632 APInt RHS_umin = RHS.getUnsignedMin();
633 if (RHS_umin == 0) {
634 // We want the lowest value in RHS excluding zero. Usually that would be 1
635 // except for a range in the form of [X, 1) in which case it would be X.
636 if (RHS.getUpper() == 1)
637 RHS_umin = RHS.getLower();
638 else
639 RHS_umin = APInt(getBitWidth(), 1);
640 }
641
642 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
643
644 // If the LHS is Full and the RHS is a wrapped interval containing 1 then
645 // this could occur.
646 if (Lower == Upper)
647 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
648
649 return ConstantRange(Lower, Upper);
650 }
651
652 ConstantRange
binaryAnd(const ConstantRange & Other) const653 ConstantRange::binaryAnd(const ConstantRange &Other) const {
654 if (isEmptySet() || Other.isEmptySet())
655 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
656
657 // TODO: replace this with something less conservative
658
659 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
660 if (umin.isAllOnesValue())
661 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
662 return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
663 }
664
665 ConstantRange
binaryOr(const ConstantRange & Other) const666 ConstantRange::binaryOr(const ConstantRange &Other) const {
667 if (isEmptySet() || Other.isEmptySet())
668 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
669
670 // TODO: replace this with something less conservative
671
672 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
673 if (umax.isMinValue())
674 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
675 return ConstantRange(umax, APInt::getNullValue(getBitWidth()));
676 }
677
678 ConstantRange
shl(const ConstantRange & Other) const679 ConstantRange::shl(const ConstantRange &Other) const {
680 if (isEmptySet() || Other.isEmptySet())
681 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
682
683 APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
684 APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
685
686 // there's no overflow!
687 APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
688 if (Zeros.ugt(Other.getUnsignedMax()))
689 return ConstantRange(min, max + 1);
690
691 // FIXME: implement the other tricky cases
692 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
693 }
694
695 ConstantRange
lshr(const ConstantRange & Other) const696 ConstantRange::lshr(const ConstantRange &Other) const {
697 if (isEmptySet() || Other.isEmptySet())
698 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
699
700 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
701 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
702 if (min == max + 1)
703 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
704
705 return ConstantRange(min, max + 1);
706 }
707
inverse() const708 ConstantRange ConstantRange::inverse() const {
709 if (isFullSet())
710 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
711 if (isEmptySet())
712 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
713 return ConstantRange(Upper, Lower);
714 }
715
716 /// print - Print out the bounds to a stream...
717 ///
print(raw_ostream & OS) const718 void ConstantRange::print(raw_ostream &OS) const {
719 if (isFullSet())
720 OS << "full-set";
721 else if (isEmptySet())
722 OS << "empty-set";
723 else
724 OS << "[" << Lower << "," << Upper << ")";
725 }
726
727 /// dump - Allow printing from a debugger easily...
728 ///
dump() const729 void ConstantRange::dump() const {
730 print(dbgs());
731 }
732