1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Instruction class for the VMCore library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Instruction.h"
15 #include "llvm/Type.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/Support/CallSite.h"
20 #include "llvm/Support/LeakDetector.h"
21 using namespace llvm;
22
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,Instruction * InsertBefore)23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
24 Instruction *InsertBefore)
25 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
26 // Make sure that we get added to a basicblock
27 LeakDetector::addGarbageObject(this);
28
29 // If requested, insert this instruction into a basic block...
30 if (InsertBefore) {
31 assert(InsertBefore->getParent() &&
32 "Instruction to insert before is not in a basic block!");
33 InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
34 }
35 }
36
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,BasicBlock * InsertAtEnd)37 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
38 BasicBlock *InsertAtEnd)
39 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
40 // Make sure that we get added to a basicblock
41 LeakDetector::addGarbageObject(this);
42
43 // append this instruction into the basic block
44 assert(InsertAtEnd && "Basic block to append to may not be NULL!");
45 InsertAtEnd->getInstList().push_back(this);
46 }
47
48
49 // Out of line virtual method, so the vtable, etc has a home.
~Instruction()50 Instruction::~Instruction() {
51 assert(Parent == 0 && "Instruction still linked in the program!");
52 if (hasMetadataHashEntry())
53 clearMetadataHashEntries();
54 }
55
56
setParent(BasicBlock * P)57 void Instruction::setParent(BasicBlock *P) {
58 if (getParent()) {
59 if (!P) LeakDetector::addGarbageObject(this);
60 } else {
61 if (P) LeakDetector::removeGarbageObject(this);
62 }
63
64 Parent = P;
65 }
66
removeFromParent()67 void Instruction::removeFromParent() {
68 getParent()->getInstList().remove(this);
69 }
70
eraseFromParent()71 void Instruction::eraseFromParent() {
72 getParent()->getInstList().erase(this);
73 }
74
75 /// insertBefore - Insert an unlinked instructions into a basic block
76 /// immediately before the specified instruction.
insertBefore(Instruction * InsertPos)77 void Instruction::insertBefore(Instruction *InsertPos) {
78 InsertPos->getParent()->getInstList().insert(InsertPos, this);
79 }
80
81 /// insertAfter - Insert an unlinked instructions into a basic block
82 /// immediately after the specified instruction.
insertAfter(Instruction * InsertPos)83 void Instruction::insertAfter(Instruction *InsertPos) {
84 InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
85 }
86
87 /// moveBefore - Unlink this instruction from its current basic block and
88 /// insert it into the basic block that MovePos lives in, right before
89 /// MovePos.
moveBefore(Instruction * MovePos)90 void Instruction::moveBefore(Instruction *MovePos) {
91 MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
92 this);
93 }
94
95
getOpcodeName(unsigned OpCode)96 const char *Instruction::getOpcodeName(unsigned OpCode) {
97 switch (OpCode) {
98 // Terminators
99 case Ret: return "ret";
100 case Br: return "br";
101 case Switch: return "switch";
102 case IndirectBr: return "indirectbr";
103 case Invoke: return "invoke";
104 case Resume: return "resume";
105 case Unreachable: return "unreachable";
106
107 // Standard binary operators...
108 case Add: return "add";
109 case FAdd: return "fadd";
110 case Sub: return "sub";
111 case FSub: return "fsub";
112 case Mul: return "mul";
113 case FMul: return "fmul";
114 case UDiv: return "udiv";
115 case SDiv: return "sdiv";
116 case FDiv: return "fdiv";
117 case URem: return "urem";
118 case SRem: return "srem";
119 case FRem: return "frem";
120
121 // Logical operators...
122 case And: return "and";
123 case Or : return "or";
124 case Xor: return "xor";
125
126 // Memory instructions...
127 case Alloca: return "alloca";
128 case Load: return "load";
129 case Store: return "store";
130 case AtomicCmpXchg: return "cmpxchg";
131 case AtomicRMW: return "atomicrmw";
132 case Fence: return "fence";
133 case GetElementPtr: return "getelementptr";
134
135 // Convert instructions...
136 case Trunc: return "trunc";
137 case ZExt: return "zext";
138 case SExt: return "sext";
139 case FPTrunc: return "fptrunc";
140 case FPExt: return "fpext";
141 case FPToUI: return "fptoui";
142 case FPToSI: return "fptosi";
143 case UIToFP: return "uitofp";
144 case SIToFP: return "sitofp";
145 case IntToPtr: return "inttoptr";
146 case PtrToInt: return "ptrtoint";
147 case BitCast: return "bitcast";
148
149 // Other instructions...
150 case ICmp: return "icmp";
151 case FCmp: return "fcmp";
152 case PHI: return "phi";
153 case Select: return "select";
154 case Call: return "call";
155 case Shl: return "shl";
156 case LShr: return "lshr";
157 case AShr: return "ashr";
158 case VAArg: return "va_arg";
159 case ExtractElement: return "extractelement";
160 case InsertElement: return "insertelement";
161 case ShuffleVector: return "shufflevector";
162 case ExtractValue: return "extractvalue";
163 case InsertValue: return "insertvalue";
164 case LandingPad: return "landingpad";
165
166 default: return "<Invalid operator> ";
167 }
168 }
169
170 /// isIdenticalTo - Return true if the specified instruction is exactly
171 /// identical to the current one. This means that all operands match and any
172 /// extra information (e.g. load is volatile) agree.
isIdenticalTo(const Instruction * I) const173 bool Instruction::isIdenticalTo(const Instruction *I) const {
174 return isIdenticalToWhenDefined(I) &&
175 SubclassOptionalData == I->SubclassOptionalData;
176 }
177
178 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
179 /// ignores the SubclassOptionalData flags, which specify conditions
180 /// under which the instruction's result is undefined.
isIdenticalToWhenDefined(const Instruction * I) const181 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
182 if (getOpcode() != I->getOpcode() ||
183 getNumOperands() != I->getNumOperands() ||
184 getType() != I->getType())
185 return false;
186
187 // We have two instructions of identical opcode and #operands. Check to see
188 // if all operands are the same.
189 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
190 if (getOperand(i) != I->getOperand(i))
191 return false;
192
193 // Check special state that is a part of some instructions.
194 if (const LoadInst *LI = dyn_cast<LoadInst>(this))
195 return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
196 LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
197 LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
198 LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
199 if (const StoreInst *SI = dyn_cast<StoreInst>(this))
200 return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
201 SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
202 SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
203 SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
204 if (const CmpInst *CI = dyn_cast<CmpInst>(this))
205 return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
206 if (const CallInst *CI = dyn_cast<CallInst>(this))
207 return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
208 CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
209 CI->getAttributes() == cast<CallInst>(I)->getAttributes();
210 if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
211 return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
212 CI->getAttributes() == cast<InvokeInst>(I)->getAttributes();
213 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
214 return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
215 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
216 return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
217 if (const FenceInst *FI = dyn_cast<FenceInst>(this))
218 return FI->getOrdering() == cast<FenceInst>(FI)->getOrdering() &&
219 FI->getSynchScope() == cast<FenceInst>(FI)->getSynchScope();
220 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
221 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
222 CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
223 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
224 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
225 return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
226 RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
227 RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
228 RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
229 if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
230 const PHINode *otherPHI = cast<PHINode>(I);
231 for (unsigned i = 0, e = thisPHI->getNumOperands(); i != e; ++i) {
232 if (thisPHI->getIncomingBlock(i) != otherPHI->getIncomingBlock(i))
233 return false;
234 }
235 return true;
236 }
237 return true;
238 }
239
240 // isSameOperationAs
241 // This should be kept in sync with isEquivalentOperation in
242 // lib/Transforms/IPO/MergeFunctions.cpp.
isSameOperationAs(const Instruction * I,unsigned flags) const243 bool Instruction::isSameOperationAs(const Instruction *I,
244 unsigned flags) const {
245 bool IgnoreAlignment = flags & CompareIgnoringAlignment;
246 bool UseScalarTypes = flags & CompareUsingScalarTypes;
247
248 if (getOpcode() != I->getOpcode() ||
249 getNumOperands() != I->getNumOperands() ||
250 (UseScalarTypes ?
251 getType()->getScalarType() != I->getType()->getScalarType() :
252 getType() != I->getType()))
253 return false;
254
255 // We have two instructions of identical opcode and #operands. Check to see
256 // if all operands are the same type
257 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
258 if (UseScalarTypes ?
259 getOperand(i)->getType()->getScalarType() !=
260 I->getOperand(i)->getType()->getScalarType() :
261 getOperand(i)->getType() != I->getOperand(i)->getType())
262 return false;
263
264 // Check special state that is a part of some instructions.
265 if (const LoadInst *LI = dyn_cast<LoadInst>(this))
266 return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
267 (LI->getAlignment() == cast<LoadInst>(I)->getAlignment() ||
268 IgnoreAlignment) &&
269 LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
270 LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
271 if (const StoreInst *SI = dyn_cast<StoreInst>(this))
272 return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
273 (SI->getAlignment() == cast<StoreInst>(I)->getAlignment() ||
274 IgnoreAlignment) &&
275 SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
276 SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
277 if (const CmpInst *CI = dyn_cast<CmpInst>(this))
278 return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
279 if (const CallInst *CI = dyn_cast<CallInst>(this))
280 return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
281 CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
282 CI->getAttributes() == cast<CallInst>(I)->getAttributes();
283 if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
284 return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
285 CI->getAttributes() ==
286 cast<InvokeInst>(I)->getAttributes();
287 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
288 return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
289 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
290 return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
291 if (const FenceInst *FI = dyn_cast<FenceInst>(this))
292 return FI->getOrdering() == cast<FenceInst>(I)->getOrdering() &&
293 FI->getSynchScope() == cast<FenceInst>(I)->getSynchScope();
294 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
295 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
296 CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
297 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
298 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
299 return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
300 RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
301 RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
302 RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
303
304 return true;
305 }
306
307 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
308 /// specified block. Note that PHI nodes are considered to evaluate their
309 /// operands in the corresponding predecessor block.
isUsedOutsideOfBlock(const BasicBlock * BB) const310 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
311 for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
312 // PHI nodes uses values in the corresponding predecessor block. For other
313 // instructions, just check to see whether the parent of the use matches up.
314 const User *U = *UI;
315 const PHINode *PN = dyn_cast<PHINode>(U);
316 if (PN == 0) {
317 if (cast<Instruction>(U)->getParent() != BB)
318 return true;
319 continue;
320 }
321
322 if (PN->getIncomingBlock(UI) != BB)
323 return true;
324 }
325 return false;
326 }
327
328 /// mayReadFromMemory - Return true if this instruction may read memory.
329 ///
mayReadFromMemory() const330 bool Instruction::mayReadFromMemory() const {
331 switch (getOpcode()) {
332 default: return false;
333 case Instruction::VAArg:
334 case Instruction::Load:
335 case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
336 case Instruction::AtomicCmpXchg:
337 case Instruction::AtomicRMW:
338 return true;
339 case Instruction::Call:
340 return !cast<CallInst>(this)->doesNotAccessMemory();
341 case Instruction::Invoke:
342 return !cast<InvokeInst>(this)->doesNotAccessMemory();
343 case Instruction::Store:
344 return !cast<StoreInst>(this)->isUnordered();
345 }
346 }
347
348 /// mayWriteToMemory - Return true if this instruction may modify memory.
349 ///
mayWriteToMemory() const350 bool Instruction::mayWriteToMemory() const {
351 switch (getOpcode()) {
352 default: return false;
353 case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
354 case Instruction::Store:
355 case Instruction::VAArg:
356 case Instruction::AtomicCmpXchg:
357 case Instruction::AtomicRMW:
358 return true;
359 case Instruction::Call:
360 return !cast<CallInst>(this)->onlyReadsMemory();
361 case Instruction::Invoke:
362 return !cast<InvokeInst>(this)->onlyReadsMemory();
363 case Instruction::Load:
364 return !cast<LoadInst>(this)->isUnordered();
365 }
366 }
367
368 /// mayThrow - Return true if this instruction may throw an exception.
369 ///
mayThrow() const370 bool Instruction::mayThrow() const {
371 if (const CallInst *CI = dyn_cast<CallInst>(this))
372 return !CI->doesNotThrow();
373 return isa<ResumeInst>(this);
374 }
375
376 /// isAssociative - Return true if the instruction is associative:
377 ///
378 /// Associative operators satisfy: x op (y op z) === (x op y) op z
379 ///
380 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
381 ///
isAssociative(unsigned Opcode)382 bool Instruction::isAssociative(unsigned Opcode) {
383 return Opcode == And || Opcode == Or || Opcode == Xor ||
384 Opcode == Add || Opcode == Mul;
385 }
386
387 /// isCommutative - Return true if the instruction is commutative:
388 ///
389 /// Commutative operators satisfy: (x op y) === (y op x)
390 ///
391 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
392 /// applied to any type.
393 ///
isCommutative(unsigned op)394 bool Instruction::isCommutative(unsigned op) {
395 switch (op) {
396 case Add:
397 case FAdd:
398 case Mul:
399 case FMul:
400 case And:
401 case Or:
402 case Xor:
403 return true;
404 default:
405 return false;
406 }
407 }
408
409 /// isIdempotent - Return true if the instruction is idempotent:
410 ///
411 /// Idempotent operators satisfy: x op x === x
412 ///
413 /// In LLVM, the And and Or operators are idempotent.
414 ///
isIdempotent(unsigned Opcode)415 bool Instruction::isIdempotent(unsigned Opcode) {
416 return Opcode == And || Opcode == Or;
417 }
418
419 /// isNilpotent - Return true if the instruction is nilpotent:
420 ///
421 /// Nilpotent operators satisfy: x op x === Id,
422 ///
423 /// where Id is the identity for the operator, i.e. a constant such that
424 /// x op Id === x and Id op x === x for all x.
425 ///
426 /// In LLVM, the Xor operator is nilpotent.
427 ///
isNilpotent(unsigned Opcode)428 bool Instruction::isNilpotent(unsigned Opcode) {
429 return Opcode == Xor;
430 }
431
clone() const432 Instruction *Instruction::clone() const {
433 Instruction *New = clone_impl();
434 New->SubclassOptionalData = SubclassOptionalData;
435 if (!hasMetadata())
436 return New;
437
438 // Otherwise, enumerate and copy over metadata from the old instruction to the
439 // new one.
440 SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
441 getAllMetadataOtherThanDebugLoc(TheMDs);
442 for (unsigned i = 0, e = TheMDs.size(); i != e; ++i)
443 New->setMetadata(TheMDs[i].first, TheMDs[i].second);
444
445 New->setDebugLoc(getDebugLoc());
446 return New;
447 }
448