• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file builds on the ADT/GraphTraits.h file to build a generic graph
11 // post order iterator.  This should work over any graph type that has a
12 // GraphTraits specialization.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
17 #define LLVM_ADT_POSTORDERITERATOR_H
18 
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include <set>
22 #include <vector>
23 
24 namespace llvm {
25 
26 // The po_iterator_storage template provides access to the set of already
27 // visited nodes during the po_iterator's depth-first traversal.
28 //
29 // The default implementation simply contains a set of visited nodes, while
30 // the Extended=true version uses a reference to an external set.
31 //
32 // It is possible to prune the depth-first traversal in several ways:
33 //
34 // - When providing an external set that already contains some graph nodes,
35 //   those nodes won't be visited again. This is useful for restarting a
36 //   post-order traversal on a graph with nodes that aren't dominated by a
37 //   single node.
38 //
39 // - By providing a custom SetType class, unwanted graph nodes can be excluded
40 //   by having the insert() function return false. This could for example
41 //   confine a CFG traversal to blocks in a specific loop.
42 //
43 // - Finally, by specializing the po_iterator_storage template itself, graph
44 //   edges can be pruned by returning false in the insertEdge() function. This
45 //   could be used to remove loop back-edges from the CFG seen by po_iterator.
46 //
47 // A specialized po_iterator_storage class can observe both the pre-order and
48 // the post-order. The insertEdge() function is called in a pre-order, while
49 // the finishPostorder() function is called just before the po_iterator moves
50 // on to the next node.
51 
52 /// Default po_iterator_storage implementation with an internal set object.
53 template<class SetType, bool External>
54 class po_iterator_storage {
55   SetType Visited;
56 public:
57   // Return true if edge destination should be visited.
58   template<typename NodeType>
insertEdge(NodeType * From,NodeType * To)59   bool insertEdge(NodeType *From, NodeType *To) {
60     return Visited.insert(To);
61   }
62 
63   // Called after all children of BB have been visited.
64   template<typename NodeType>
finishPostorder(NodeType * BB)65   void finishPostorder(NodeType *BB) {}
66 };
67 
68 /// Specialization of po_iterator_storage that references an external set.
69 template<class SetType>
70 class po_iterator_storage<SetType, true> {
71   SetType &Visited;
72 public:
po_iterator_storage(SetType & VSet)73   po_iterator_storage(SetType &VSet) : Visited(VSet) {}
po_iterator_storage(const po_iterator_storage & S)74   po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
75 
76   // Return true if edge destination should be visited, called with From = 0 for
77   // the root node.
78   // Graph edges can be pruned by specializing this function.
79   template<class NodeType>
insertEdge(NodeType * From,NodeType * To)80   bool insertEdge(NodeType *From, NodeType *To) { return Visited.insert(To); }
81 
82   // Called after all children of BB have been visited.
83   template<class NodeType>
finishPostorder(NodeType * BB)84   void finishPostorder(NodeType *BB) {}
85 };
86 
87 template<class GraphT,
88   class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
89   bool ExtStorage = false,
90   class GT = GraphTraits<GraphT> >
91 class po_iterator : public std::iterator<std::forward_iterator_tag,
92                                          typename GT::NodeType, ptrdiff_t>,
93                     public po_iterator_storage<SetType, ExtStorage> {
94   typedef std::iterator<std::forward_iterator_tag,
95                         typename GT::NodeType, ptrdiff_t> super;
96   typedef typename GT::NodeType          NodeType;
97   typedef typename GT::ChildIteratorType ChildItTy;
98 
99   // VisitStack - Used to maintain the ordering.  Top = current block
100   // First element is basic block pointer, second is the 'next child' to visit
101   std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
102 
traverseChild()103   void traverseChild() {
104     while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
105       NodeType *BB = *VisitStack.back().second++;
106       if (this->insertEdge(VisitStack.back().first, BB)) {
107         // If the block is not visited...
108         VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
109       }
110     }
111   }
112 
po_iterator(NodeType * BB)113   inline po_iterator(NodeType *BB) {
114     this->insertEdge((NodeType*)0, BB);
115     VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
116     traverseChild();
117   }
po_iterator()118   inline po_iterator() {} // End is when stack is empty.
119 
po_iterator(NodeType * BB,SetType & S)120   inline po_iterator(NodeType *BB, SetType &S) :
121     po_iterator_storage<SetType, ExtStorage>(S) {
122     if (this->insertEdge((NodeType*)0, BB)) {
123       VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
124       traverseChild();
125     }
126   }
127 
po_iterator(SetType & S)128   inline po_iterator(SetType &S) :
129       po_iterator_storage<SetType, ExtStorage>(S) {
130   } // End is when stack is empty.
131 public:
132   typedef typename super::pointer pointer;
133   typedef po_iterator<GraphT, SetType, ExtStorage, GT> _Self;
134 
135   // Provide static "constructors"...
begin(GraphT G)136   static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
end(GraphT G)137   static inline _Self end  (GraphT G) { return _Self(); }
138 
begin(GraphT G,SetType & S)139   static inline _Self begin(GraphT G, SetType &S) {
140     return _Self(GT::getEntryNode(G), S);
141   }
end(GraphT G,SetType & S)142   static inline _Self end  (GraphT G, SetType &S) { return _Self(S); }
143 
144   inline bool operator==(const _Self& x) const {
145     return VisitStack == x.VisitStack;
146   }
147   inline bool operator!=(const _Self& x) const { return !operator==(x); }
148 
149   inline pointer operator*() const {
150     return VisitStack.back().first;
151   }
152 
153   // This is a nonstandard operator-> that dereferences the pointer an extra
154   // time... so that you can actually call methods ON the BasicBlock, because
155   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
156   //
157   inline NodeType *operator->() const { return operator*(); }
158 
159   inline _Self& operator++() {   // Preincrement
160     this->finishPostorder(VisitStack.back().first);
161     VisitStack.pop_back();
162     if (!VisitStack.empty())
163       traverseChild();
164     return *this;
165   }
166 
167   inline _Self operator++(int) { // Postincrement
168     _Self tmp = *this; ++*this; return tmp;
169   }
170 };
171 
172 // Provide global constructors that automatically figure out correct types...
173 //
174 template <class T>
po_begin(T G)175 po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); }
176 template <class T>
po_end(T G)177 po_iterator<T> po_end  (T G) { return po_iterator<T>::end(G); }
178 
179 // Provide global definitions of external postorder iterators...
180 template<class T, class SetType=std::set<typename GraphTraits<T>::NodeType*> >
181 struct po_ext_iterator : public po_iterator<T, SetType, true> {
po_ext_iteratorpo_ext_iterator182   po_ext_iterator(const po_iterator<T, SetType, true> &V) :
183   po_iterator<T, SetType, true>(V) {}
184 };
185 
186 template<class T, class SetType>
po_ext_begin(T G,SetType & S)187 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
188   return po_ext_iterator<T, SetType>::begin(G, S);
189 }
190 
191 template<class T, class SetType>
po_ext_end(T G,SetType & S)192 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
193   return po_ext_iterator<T, SetType>::end(G, S);
194 }
195 
196 // Provide global definitions of inverse post order iterators...
197 template <class T,
198           class SetType = std::set<typename GraphTraits<T>::NodeType*>,
199           bool External = false>
200 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > {
ipo_iteratoripo_iterator201   ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
202      po_iterator<Inverse<T>, SetType, External> (V) {}
203 };
204 
205 template <class T>
206 ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
207   return ipo_iterator<T>::begin(G, Reverse);
208 }
209 
210 template <class T>
ipo_end(T G)211 ipo_iterator<T> ipo_end(T G){
212   return ipo_iterator<T>::end(G);
213 }
214 
215 // Provide global definitions of external inverse postorder iterators...
216 template <class T,
217           class SetType = std::set<typename GraphTraits<T>::NodeType*> >
218 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
ipo_ext_iteratoripo_ext_iterator219   ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
220     ipo_iterator<T, SetType, true>(V) {}
ipo_ext_iteratoripo_ext_iterator221   ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
222     ipo_iterator<T, SetType, true>(V) {}
223 };
224 
225 template <class T, class SetType>
ipo_ext_begin(T G,SetType & S)226 ipo_ext_iterator<T, SetType> ipo_ext_begin(T G, SetType &S) {
227   return ipo_ext_iterator<T, SetType>::begin(G, S);
228 }
229 
230 template <class T, class SetType>
ipo_ext_end(T G,SetType & S)231 ipo_ext_iterator<T, SetType> ipo_ext_end(T G, SetType &S) {
232   return ipo_ext_iterator<T, SetType>::end(G, S);
233 }
234 
235 //===--------------------------------------------------------------------===//
236 // Reverse Post Order CFG iterator code
237 //===--------------------------------------------------------------------===//
238 //
239 // This is used to visit basic blocks in a method in reverse post order.  This
240 // class is awkward to use because I don't know a good incremental algorithm to
241 // computer RPO from a graph.  Because of this, the construction of the
242 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
243 // with a postorder iterator to build the data structures).  The moral of this
244 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
245 //
246 // This class should be used like this:
247 // {
248 //   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
249 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
250 //      ...
251 //   }
252 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
253 //      ...
254 //   }
255 // }
256 //
257 
258 template<class GraphT, class GT = GraphTraits<GraphT> >
259 class ReversePostOrderTraversal {
260   typedef typename GT::NodeType NodeType;
261   std::vector<NodeType*> Blocks;       // Block list in normal PO order
Initialize(NodeType * BB)262   inline void Initialize(NodeType *BB) {
263     copy(po_begin(BB), po_end(BB), back_inserter(Blocks));
264   }
265 public:
266   typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator;
267 
ReversePostOrderTraversal(GraphT G)268   inline ReversePostOrderTraversal(GraphT G) {
269     Initialize(GT::getEntryNode(G));
270   }
271 
272   // Because we want a reverse post order, use reverse iterators from the vector
begin()273   inline rpo_iterator begin() { return Blocks.rbegin(); }
end()274   inline rpo_iterator end()   { return Blocks.rend(); }
275 };
276 
277 } // End llvm namespace
278 
279 #endif
280