1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <hieralloc.h>
34 }
35
36 #include "glsl_types.h"
37 #include "list.h"
38 #include "ir_visitor.h"
39 #include "ir_hierarchical_visitor.h"
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_max /**< maximum ir_type enum number, for validation */
85 };
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93 const struct glsl_type *type;
94
95 /** ir_print_visitor helper for debugging. */
96 void print(void) const;
97
98 virtual void accept(ir_visitor *) = 0;
99 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
100 virtual ir_instruction *clone(void *mem_ctx,
101 struct hash_table *ht) const = 0;
102
103 /**
104 * \name IR instruction downcast functions
105 *
106 * These functions either cast the object to a derived class or return
107 * \c NULL if the object's type does not match the specified derived class.
108 * Additional downcast functions will be added as needed.
109 */
110 /*@{*/
as_variable()111 virtual class ir_variable * as_variable() { return NULL; }
as_function()112 virtual class ir_function * as_function() { return NULL; }
as_dereference()113 virtual class ir_dereference * as_dereference() { return NULL; }
as_dereference_array()114 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
as_dereference_variable()115 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
as_expression()116 virtual class ir_expression * as_expression() { return NULL; }
as_rvalue()117 virtual class ir_rvalue * as_rvalue() { return NULL; }
as_loop()118 virtual class ir_loop * as_loop() { return NULL; }
as_assignment()119 virtual class ir_assignment * as_assignment() { return NULL; }
as_call()120 virtual class ir_call * as_call() { return NULL; }
as_return()121 virtual class ir_return * as_return() { return NULL; }
as_if()122 virtual class ir_if * as_if() { return NULL; }
as_swizzle()123 virtual class ir_swizzle * as_swizzle() { return NULL; }
as_constant()124 virtual class ir_constant * as_constant() { return NULL; }
as_discard()125 virtual class ir_discard * as_discard() { return NULL; }
126 /*@}*/
127
128 protected:
ir_instruction()129 ir_instruction()
130 {
131 ir_type = ir_type_unset;
132 type = NULL;
133 }
134
~ir_instruction()135 virtual ~ir_instruction() { } // GCC error about accessible nonvirtual dctor
136
137
138 };
139
140
141 class ir_rvalue : public ir_instruction {
142 public:
143 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
144
145 virtual ir_constant *constant_expression_value() = 0;
146
as_rvalue()147 virtual ir_rvalue * as_rvalue()
148 {
149 return this;
150 }
151
152 ir_rvalue *as_rvalue_to_saturate();
153
is_lvalue()154 virtual bool is_lvalue()
155 {
156 return false;
157 }
158
159 /**
160 * Get the variable that is ultimately referenced by an r-value
161 */
variable_referenced()162 virtual ir_variable *variable_referenced()
163 {
164 return NULL;
165 }
166
167
168 /**
169 * If an r-value is a reference to a whole variable, get that variable
170 *
171 * \return
172 * Pointer to a variable that is completely dereferenced by the r-value. If
173 * the r-value is not a dereference or the dereference does not access the
174 * entire variable (i.e., it's just one array element, struct field), \c NULL
175 * is returned.
176 */
whole_variable_referenced()177 virtual ir_variable *whole_variable_referenced()
178 {
179 return NULL;
180 }
181
182 /**
183 * Determine if an r-value has the value zero
184 *
185 * The base implementation of this function always returns \c false. The
186 * \c ir_constant class over-rides this function to return \c true \b only
187 * for vector and scalar types that have all elements set to the value
188 * zero (or \c false for booleans).
189 *
190 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
191 */
192 virtual bool is_zero() const;
193
194 /**
195 * Determine if an r-value has the value one
196 *
197 * The base implementation of this function always returns \c false. The
198 * \c ir_constant class over-rides this function to return \c true \b only
199 * for vector and scalar types that have all elements set to the value
200 * one (or \c true for booleans).
201 *
202 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
203 */
204 virtual bool is_one() const;
205
206 /**
207 * Determine if an r-value has the value negative one
208 *
209 * The base implementation of this function always returns \c false. The
210 * \c ir_constant class over-rides this function to return \c true \b only
211 * for vector and scalar types that have all elements set to the value
212 * negative one. For boolean times, the result is always \c false.
213 *
214 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
215 */
216 virtual bool is_negative_one() const;
217
218 protected:
219 ir_rvalue();
220 };
221
222
223 /**
224 * Variable storage classes
225 */
226 enum ir_variable_mode {
227 ir_var_auto = 0, /**< Function local variables and globals. */
228 ir_var_uniform, /**< Variable declared as a uniform. */
229 ir_var_in,
230 ir_var_out,
231 ir_var_inout,
232 ir_var_temporary /**< Temporary variable generated during compilation. */
233 };
234
235 enum ir_variable_interpolation {
236 ir_var_smooth = 0,
237 ir_var_flat,
238 ir_var_noperspective
239 };
240
241
242 class ir_variable : public ir_instruction {
243 public:
244 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
245
246 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
247
as_variable()248 virtual ir_variable *as_variable()
249 {
250 return this;
251 }
252
accept(ir_visitor * v)253 virtual void accept(ir_visitor *v)
254 {
255 v->visit(this);
256 }
257
258 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
259
260
261 /**
262 * Get the string value for the interpolation qualifier
263 *
264 * \return The string that would be used in a shader to specify \c
265 * mode will be returned.
266 *
267 * This function should only be used on a shader input or output variable.
268 */
269 const char *interpolation_string() const;
270
271 /**
272 * Calculate the number of slots required to hold this variable
273 *
274 * This is used to determine how many uniform or varying locations a variable
275 * occupies. The count is in units of floating point components.
276 */
277 unsigned component_slots() const;
278
279 /**
280 * Delcared name of the variable
281 */
282 const char *name;
283
284 /**
285 * Highest element accessed with a constant expression array index
286 *
287 * Not used for non-array variables.
288 */
289 unsigned max_array_access;
290
291 /**
292 * Is the variable read-only?
293 *
294 * This is set for variables declared as \c const, shader inputs,
295 * and uniforms.
296 */
297 unsigned read_only:1;
298 unsigned centroid:1;
299 unsigned invariant:1;
300
301 /**
302 * Storage class of the variable.
303 *
304 * \sa ir_variable_mode
305 */
306 unsigned mode:3;
307
308 /**
309 * Interpolation mode for shader inputs / outputs
310 *
311 * \sa ir_variable_interpolation
312 */
313 unsigned interpolation:2;
314
315 /**
316 * Flag that the whole array is assignable
317 *
318 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
319 * equality). This flag enables this behavior.
320 */
321 unsigned array_lvalue:1;
322
323 /**
324 * \name ARB_fragment_coord_conventions
325 * @{
326 */
327 unsigned origin_upper_left:1;
328 unsigned pixel_center_integer:1;
329 /*@}*/
330
331 /**
332 * Was the location explicitly set in the shader?
333 *
334 * If the location is explicitly set in the shader, it \b cannot be changed
335 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
336 * no effect).
337 */
338 unsigned explicit_location:1;
339
340 /**
341 * Storage location of the base of this variable
342 *
343 * The precise meaning of this field depends on the nature of the variable.
344 *
345 * - Vertex shader input: one of the values from \c gl_vert_attrib.
346 * - Vertex shader output: one of the values from \c gl_vert_result.
347 * - Fragment shader input: one of the values from \c gl_frag_attrib.
348 * - Fragment shader output: one of the values from \c gl_frag_result.
349 * - Uniforms: Per-stage uniform slot number.
350 * - Other: This field is not currently used.
351 *
352 * If the variable is a uniform, shader input, or shader output, and the
353 * slot has not been assigned, the value will be -1.
354 */
355 int location;
356
357 /**
358 * Emit a warning if this variable is accessed.
359 */
360 const char *warn_extension;
361
362 /**
363 * Value assigned in the initializer of a variable declared "const"
364 */
365 ir_constant *constant_value;
366 };
367
368
369 /*@{*/
370 /**
371 * The representation of a function instance; may be the full definition or
372 * simply a prototype.
373 */
374 class ir_function_signature : public ir_instruction {
375 /* An ir_function_signature will be part of the list of signatures in
376 * an ir_function.
377 */
378 public:
379 ir_function_signature(const glsl_type *return_type);
380
381 virtual ir_function_signature *clone(void *mem_ctx,
382 struct hash_table *ht) const;
383 ir_function_signature *clone_prototype(void *mem_ctx,
384 struct hash_table *ht) const;
385
accept(ir_visitor * v)386 virtual void accept(ir_visitor *v)
387 {
388 v->visit(this);
389 }
390
391 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
392
393 /**
394 * Get the name of the function for which this is a signature
395 */
396 const char *function_name() const;
397
398 /**
399 * Get a handle to the function for which this is a signature
400 *
401 * There is no setter function, this function returns a \c const pointer,
402 * and \c ir_function_signature::_function is private for a reason. The
403 * only way to make a connection between a function and function signature
404 * is via \c ir_function::add_signature. This helps ensure that certain
405 * invariants (i.e., a function signature is in the list of signatures for
406 * its \c _function) are met.
407 *
408 * \sa ir_function::add_signature
409 */
function()410 inline const class ir_function *function() const
411 {
412 return this->_function;
413 }
414
415 /**
416 * Check whether the qualifiers match between this signature's parameters
417 * and the supplied parameter list. If not, returns the name of the first
418 * parameter with mismatched qualifiers (for use in error messages).
419 */
420 const char *qualifiers_match(exec_list *params);
421
422 /**
423 * Replace the current parameter list with the given one. This is useful
424 * if the current information came from a prototype, and either has invalid
425 * or missing parameter names.
426 */
427 void replace_parameters(exec_list *new_params);
428
429 /**
430 * Function return type.
431 *
432 * \note This discards the optional precision qualifier.
433 */
434 const struct glsl_type *return_type;
435
436 /**
437 * List of ir_variable of function parameters.
438 *
439 * This represents the storage. The paramaters passed in a particular
440 * call will be in ir_call::actual_paramaters.
441 */
442 struct exec_list parameters;
443
444 /** Whether or not this function has a body (which may be empty). */
445 unsigned is_defined:1;
446
447 /** Whether or not this function signature is a built-in. */
448 unsigned is_builtin:1;
449
450 /** Body of instructions in the function. */
451 struct exec_list body;
452
453 private:
454 /** Function of which this signature is one overload. */
455 class ir_function *_function;
456
457 friend class ir_function;
458 };
459
460
461 /**
462 * Header for tracking multiple overloaded functions with the same name.
463 * Contains a list of ir_function_signatures representing each of the
464 * actual functions.
465 */
466 class ir_function : public ir_instruction {
467 public:
468 ir_function(const char *name);
469
470 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
471
as_function()472 virtual ir_function *as_function()
473 {
474 return this;
475 }
476
accept(ir_visitor * v)477 virtual void accept(ir_visitor *v)
478 {
479 v->visit(this);
480 }
481
482 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
483
add_signature(ir_function_signature * sig)484 void add_signature(ir_function_signature *sig)
485 {
486 sig->_function = this;
487 this->signatures.push_tail(sig);
488 }
489
490 /**
491 * Get an iterator for the set of function signatures
492 */
iterator()493 exec_list_iterator iterator()
494 {
495 return signatures.iterator();
496 }
497
498 /**
499 * Find a signature that matches a set of actual parameters, taking implicit
500 * conversions into account.
501 */
502 ir_function_signature *matching_signature(const exec_list *actual_param);
503
504 /**
505 * Find a signature that exactly matches a set of actual parameters without
506 * any implicit type conversions.
507 */
508 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
509
510 /**
511 * Name of the function.
512 */
513 const char *name;
514
515 /** Whether or not this function has a signature that isn't a built-in. */
516 bool has_user_signature();
517
518 /**
519 * List of ir_function_signature for each overloaded function with this name.
520 */
521 struct exec_list signatures;
522 };
523
function_name()524 inline const char *ir_function_signature::function_name() const
525 {
526 return this->_function->name;
527 }
528 /*@}*/
529
530
531 /**
532 * IR instruction representing high-level if-statements
533 */
534 class ir_if : public ir_instruction {
535 public:
ir_if(ir_rvalue * condition)536 ir_if(ir_rvalue *condition)
537 : condition(condition)
538 {
539 ir_type = ir_type_if;
540 }
541
542 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
543
as_if()544 virtual ir_if *as_if()
545 {
546 return this;
547 }
548
accept(ir_visitor * v)549 virtual void accept(ir_visitor *v)
550 {
551 v->visit(this);
552 }
553
554 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
555
556 ir_rvalue *condition;
557 /** List of ir_instruction for the body of the then branch */
558 exec_list then_instructions;
559 /** List of ir_instruction for the body of the else branch */
560 exec_list else_instructions;
561 };
562
563
564 /**
565 * IR instruction representing a high-level loop structure.
566 */
567 class ir_loop : public ir_instruction {
568 public:
569 ir_loop();
570
571 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
572
accept(ir_visitor * v)573 virtual void accept(ir_visitor *v)
574 {
575 v->visit(this);
576 }
577
578 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
579
as_loop()580 virtual ir_loop *as_loop()
581 {
582 return this;
583 }
584
585 /**
586 * Get an iterator for the instructions of the loop body
587 */
iterator()588 exec_list_iterator iterator()
589 {
590 return body_instructions.iterator();
591 }
592
593 /** List of ir_instruction that make up the body of the loop. */
594 exec_list body_instructions;
595
596 /**
597 * \name Loop counter and controls
598 *
599 * Represents a loop like a FORTRAN \c do-loop.
600 *
601 * \note
602 * If \c from and \c to are the same value, the loop will execute once.
603 */
604 /*@{*/
605 ir_rvalue *from; /** Value of the loop counter on the first
606 * iteration of the loop.
607 */
608 ir_rvalue *to; /** Value of the loop counter on the last
609 * iteration of the loop.
610 */
611 ir_rvalue *increment;
612 ir_variable *counter;
613
614 /**
615 * Comparison operation in the loop terminator.
616 *
617 * If any of the loop control fields are non-\c NULL, this field must be
618 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
619 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
620 */
621 int cmp;
622 /*@}*/
623 };
624
625
626 class ir_assignment : public ir_instruction {
627 public:
628 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
629
630 /**
631 * Construct an assignment with an explicit write mask
632 *
633 * \note
634 * Since a write mask is supplied, the LHS must already be a bare
635 * \c ir_dereference. The cannot be any swizzles in the LHS.
636 */
637 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
638 unsigned write_mask);
639
640 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
641
642 virtual ir_constant *constant_expression_value();
643
accept(ir_visitor * v)644 virtual void accept(ir_visitor *v)
645 {
646 v->visit(this);
647 }
648
649 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
650
as_assignment()651 virtual ir_assignment * as_assignment()
652 {
653 return this;
654 }
655
656 /**
657 * Get a whole variable written by an assignment
658 *
659 * If the LHS of the assignment writes a whole variable, the variable is
660 * returned. Otherwise \c NULL is returned. Examples of whole-variable
661 * assignment are:
662 *
663 * - Assigning to a scalar
664 * - Assigning to all components of a vector
665 * - Whole array (or matrix) assignment
666 * - Whole structure assignment
667 */
668 ir_variable *whole_variable_written();
669
670 /**
671 * Set the LHS of an assignment
672 */
673 void set_lhs(ir_rvalue *lhs);
674
675 /**
676 * Left-hand side of the assignment.
677 *
678 * This should be treated as read only. If you need to set the LHS of an
679 * assignment, use \c ir_assignment::set_lhs.
680 */
681 ir_dereference *lhs;
682
683 /**
684 * Value being assigned
685 */
686 ir_rvalue *rhs;
687
688 /**
689 * Optional condition for the assignment.
690 */
691 ir_rvalue *condition;
692
693
694 /**
695 * Component mask written
696 *
697 * For non-vector types in the LHS, this field will be zero. For vector
698 * types, a bit will be set for each component that is written. Note that
699 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
700 *
701 * A partially-set write mask means that each enabled channel gets
702 * the value from a consecutive channel of the rhs. For example,
703 * to write just .xyw of gl_FrontColor with color:
704 *
705 * (assign (constant bool (1)) (xyw)
706 * (var_ref gl_FragColor)
707 * (swiz xyw (var_ref color)))
708 */
709 unsigned write_mask:4;
710 };
711
712 /* Update ir_expression::num_operands() and operator_strs when
713 * updating this list.
714 */
715 enum ir_expression_operation {
716 ir_unop_bit_not,
717 ir_unop_logic_not,
718 ir_unop_neg,
719 ir_unop_abs,
720 ir_unop_sign,
721 ir_unop_rcp,
722 ir_unop_rsq,
723 ir_unop_sqrt,
724 ir_unop_exp, /**< Log base e on gentype */
725 ir_unop_log, /**< Natural log on gentype */
726 ir_unop_exp2,
727 ir_unop_log2,
728 ir_unop_f2i, /**< Float-to-integer conversion. */
729 ir_unop_i2f, /**< Integer-to-float conversion. */
730 ir_unop_f2b, /**< Float-to-boolean conversion */
731 ir_unop_b2f, /**< Boolean-to-float conversion */
732 ir_unop_i2b, /**< int-to-boolean conversion */
733 ir_unop_b2i, /**< Boolean-to-int conversion */
734 ir_unop_u2f, /**< Unsigned-to-float conversion. */
735 ir_unop_any,
736
737 /**
738 * \name Unary floating-point rounding operations.
739 */
740 /*@{*/
741 ir_unop_trunc,
742 ir_unop_ceil,
743 ir_unop_floor,
744 ir_unop_fract,
745 ir_unop_round_even,
746 /*@}*/
747
748 /**
749 * \name Trigonometric operations.
750 */
751 /*@{*/
752 ir_unop_sin,
753 ir_unop_cos,
754 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
755 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
756 /*@}*/
757
758 /**
759 * \name Partial derivatives.
760 */
761 /*@{*/
762 ir_unop_dFdx,
763 ir_unop_dFdy,
764 /*@}*/
765
766 ir_unop_noise,
767
768 /**
769 * A sentinel marking the last of the unary operations.
770 */
771 ir_last_unop = ir_unop_noise,
772
773 ir_binop_add,
774 ir_binop_sub,
775 ir_binop_mul,
776 ir_binop_div,
777
778 /**
779 * Takes one of two combinations of arguments:
780 *
781 * - mod(vecN, vecN)
782 * - mod(vecN, float)
783 *
784 * Does not take integer types.
785 */
786 ir_binop_mod,
787
788 /**
789 * \name Binary comparison operators which return a boolean vector.
790 * The type of both operands must be equal.
791 */
792 /*@{*/
793 ir_binop_less,
794 ir_binop_greater,
795 ir_binop_lequal,
796 ir_binop_gequal,
797 ir_binop_equal,
798 ir_binop_nequal,
799 /**
800 * Returns single boolean for whether all components of operands[0]
801 * equal the components of operands[1].
802 */
803 ir_binop_all_equal,
804 /**
805 * Returns single boolean for whether any component of operands[0]
806 * is not equal to the corresponding component of operands[1].
807 */
808 ir_binop_any_nequal,
809 /*@}*/
810
811 /**
812 * \name Bit-wise binary operations.
813 */
814 /*@{*/
815 ir_binop_lshift,
816 ir_binop_rshift,
817 ir_binop_bit_and,
818 ir_binop_bit_xor,
819 ir_binop_bit_or,
820 /*@}*/
821
822 ir_binop_logic_and,
823 ir_binop_logic_xor,
824 ir_binop_logic_or,
825
826 ir_binop_dot,
827 ir_binop_min,
828 ir_binop_max,
829
830 ir_binop_pow,
831
832 /**
833 * A sentinel marking the last of the binary operations.
834 */
835 ir_last_binop = ir_binop_pow,
836
837 ir_quadop_vector,
838
839 /**
840 * A sentinel marking the last of all operations.
841 */
842 ir_last_opcode = ir_last_binop
843 };
844
845 class ir_expression : public ir_rvalue {
846 public:
847 /**
848 * Constructor for unary operation expressions
849 */
850 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
851 ir_expression(int op, ir_rvalue *);
852
853 /**
854 * Constructor for binary operation expressions
855 */
856 ir_expression(int op, const struct glsl_type *type,
857 ir_rvalue *, ir_rvalue *);
858 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
859
860 /**
861 * Constructor for quad operator expressions
862 */
863 ir_expression(int op, const struct glsl_type *type,
864 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
865
as_expression()866 virtual ir_expression *as_expression()
867 {
868 return this;
869 }
870
871 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
872
873 /**
874 * Attempt to constant-fold the expression
875 *
876 * If the expression cannot be constant folded, this method will return
877 * \c NULL.
878 */
879 virtual ir_constant *constant_expression_value();
880
881 /**
882 * Determine the number of operands used by an expression
883 */
884 static unsigned int get_num_operands(ir_expression_operation);
885
886 /**
887 * Determine the number of operands used by an expression
888 */
get_num_operands()889 unsigned int get_num_operands() const
890 {
891 return (this->operation == ir_quadop_vector)
892 ? this->type->vector_elements : get_num_operands(operation);
893 }
894
895 /**
896 * Return a string representing this expression's operator.
897 */
898 const char *operator_string();
899
900 /**
901 * Return a string representing this expression's operator.
902 */
903 static const char *operator_string(ir_expression_operation);
904
905
906 /**
907 * Do a reverse-lookup to translate the given string into an operator.
908 */
909 static ir_expression_operation get_operator(const char *);
910
accept(ir_visitor * v)911 virtual void accept(ir_visitor *v)
912 {
913 v->visit(this);
914 }
915
916 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
917
918 ir_expression_operation operation;
919 ir_rvalue *operands[4];
920 };
921
922
923 /**
924 * IR instruction representing a function call
925 */
926 class ir_call : public ir_rvalue {
927 public:
ir_call(ir_function_signature * callee,exec_list * actual_parameters)928 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
929 : callee(callee)
930 {
931 ir_type = ir_type_call;
932 assert(callee->return_type != NULL);
933 type = callee->return_type;
934 actual_parameters->move_nodes_to(& this->actual_parameters);
935 }
936
937 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
938
939 virtual ir_constant *constant_expression_value();
940
as_call()941 virtual ir_call *as_call()
942 {
943 return this;
944 }
945
accept(ir_visitor * v)946 virtual void accept(ir_visitor *v)
947 {
948 v->visit(this);
949 }
950
951 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
952
953 /**
954 * Get a generic ir_call object when an error occurs
955 *
956 * Any allocation will be performed with 'ctx' as hieralloc owner.
957 */
958 static ir_call *get_error_instruction(void *ctx);
959
960 /**
961 * Get an iterator for the set of acutal parameters
962 */
iterator()963 exec_list_iterator iterator()
964 {
965 return actual_parameters.iterator();
966 }
967
968 /**
969 * Get the name of the function being called.
970 */
callee_name()971 const char *callee_name() const
972 {
973 return callee->function_name();
974 }
975
976 /**
977 * Get the function signature bound to this function call
978 */
get_callee()979 ir_function_signature *get_callee()
980 {
981 return callee;
982 }
983
984 /**
985 * Set the function call target
986 */
987 void set_callee(ir_function_signature *sig);
988
989 /**
990 * Generates an inline version of the function before @ir,
991 * returning the return value of the function.
992 */
993 ir_rvalue *generate_inline(ir_instruction *ir);
994
995 /* List of ir_rvalue of paramaters passed in this call. */
996 exec_list actual_parameters;
997
998 private:
ir_call()999 ir_call()
1000 : callee(NULL)
1001 {
1002 this->ir_type = ir_type_call;
1003 }
1004
1005 ir_function_signature *callee;
1006 };
1007
1008
1009 /**
1010 * \name Jump-like IR instructions.
1011 *
1012 * These include \c break, \c continue, \c return, and \c discard.
1013 */
1014 /*@{*/
1015 class ir_jump : public ir_instruction {
1016 protected:
ir_jump()1017 ir_jump()
1018 {
1019 ir_type = ir_type_unset;
1020 }
1021 };
1022
1023 class ir_return : public ir_jump {
1024 public:
ir_return()1025 ir_return()
1026 : value(NULL)
1027 {
1028 this->ir_type = ir_type_return;
1029 }
1030
ir_return(ir_rvalue * value)1031 ir_return(ir_rvalue *value)
1032 : value(value)
1033 {
1034 this->ir_type = ir_type_return;
1035 }
1036
1037 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1038
as_return()1039 virtual ir_return *as_return()
1040 {
1041 return this;
1042 }
1043
get_value()1044 ir_rvalue *get_value() const
1045 {
1046 return value;
1047 }
1048
accept(ir_visitor * v)1049 virtual void accept(ir_visitor *v)
1050 {
1051 v->visit(this);
1052 }
1053
1054 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1055
1056 ir_rvalue *value;
1057 };
1058
1059
1060 /**
1061 * Jump instructions used inside loops
1062 *
1063 * These include \c break and \c continue. The \c break within a loop is
1064 * different from the \c break within a switch-statement.
1065 *
1066 * \sa ir_switch_jump
1067 */
1068 class ir_loop_jump : public ir_jump {
1069 public:
1070 enum jump_mode {
1071 jump_break,
1072 jump_continue
1073 };
1074
ir_loop_jump(jump_mode mode)1075 ir_loop_jump(jump_mode mode)
1076 {
1077 this->ir_type = ir_type_loop_jump;
1078 this->mode = mode;
1079 this->loop = loop;
1080 }
1081
1082 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1083
accept(ir_visitor * v)1084 virtual void accept(ir_visitor *v)
1085 {
1086 v->visit(this);
1087 }
1088
1089 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1090
is_break()1091 bool is_break() const
1092 {
1093 return mode == jump_break;
1094 }
1095
is_continue()1096 bool is_continue() const
1097 {
1098 return mode == jump_continue;
1099 }
1100
1101 /** Mode selector for the jump instruction. */
1102 enum jump_mode mode;
1103 private:
1104 /** Loop containing this break instruction. */
1105 ir_loop *loop;
1106 };
1107
1108 /**
1109 * IR instruction representing discard statements.
1110 */
1111 class ir_discard : public ir_jump {
1112 public:
ir_discard()1113 ir_discard()
1114 {
1115 this->ir_type = ir_type_discard;
1116 this->condition = NULL;
1117 }
1118
ir_discard(ir_rvalue * cond)1119 ir_discard(ir_rvalue *cond)
1120 {
1121 this->ir_type = ir_type_discard;
1122 this->condition = cond;
1123 }
1124
1125 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1126
accept(ir_visitor * v)1127 virtual void accept(ir_visitor *v)
1128 {
1129 v->visit(this);
1130 }
1131
1132 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1133
as_discard()1134 virtual ir_discard *as_discard()
1135 {
1136 return this;
1137 }
1138
1139 ir_rvalue *condition;
1140 };
1141 /*@}*/
1142
1143
1144 /**
1145 * Texture sampling opcodes used in ir_texture
1146 */
1147 enum ir_texture_opcode {
1148 ir_tex, /**< Regular texture look-up */
1149 ir_txb, /**< Texture look-up with LOD bias */
1150 ir_txl, /**< Texture look-up with explicit LOD */
1151 ir_txd, /**< Texture look-up with partial derivatvies */
1152 ir_txf /**< Texel fetch with explicit LOD */
1153 };
1154
1155
1156 /**
1157 * IR instruction to sample a texture
1158 *
1159 * The specific form of the IR instruction depends on the \c mode value
1160 * selected from \c ir_texture_opcodes. In the printed IR, these will
1161 * appear as:
1162 *
1163 * Texel offset
1164 * | Projection divisor
1165 * | | Shadow comparitor
1166 * | | |
1167 * v v v
1168 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1169 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1170 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1171 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1172 * (txf (sampler) (coordinate) (0 0 0) (lod))
1173 */
1174 class ir_texture : public ir_rvalue {
1175 public:
ir_texture(enum ir_texture_opcode op)1176 ir_texture(enum ir_texture_opcode op)
1177 : op(op), projector(NULL), shadow_comparitor(NULL)
1178 {
1179 this->ir_type = ir_type_texture;
1180 }
1181
1182 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1183
1184 virtual ir_constant *constant_expression_value();
1185
accept(ir_visitor * v)1186 virtual void accept(ir_visitor *v)
1187 {
1188 v->visit(this);
1189 }
1190
1191 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1192
1193 /**
1194 * Return a string representing the ir_texture_opcode.
1195 */
1196 const char *opcode_string();
1197
1198 /** Set the sampler and infer the type. */
1199 void set_sampler(ir_dereference *sampler);
1200
1201 /**
1202 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1203 */
1204 static ir_texture_opcode get_opcode(const char *);
1205
1206 enum ir_texture_opcode op;
1207
1208 /** Sampler to use for the texture access. */
1209 ir_dereference *sampler;
1210
1211 /** Texture coordinate to sample */
1212 ir_rvalue *coordinate;
1213
1214 /**
1215 * Value used for projective divide.
1216 *
1217 * If there is no projective divide (the common case), this will be
1218 * \c NULL. Optimization passes should check for this to point to a constant
1219 * of 1.0 and replace that with \c NULL.
1220 */
1221 ir_rvalue *projector;
1222
1223 /**
1224 * Coordinate used for comparison on shadow look-ups.
1225 *
1226 * If there is no shadow comparison, this will be \c NULL. For the
1227 * \c ir_txf opcode, this *must* be \c NULL.
1228 */
1229 ir_rvalue *shadow_comparitor;
1230
1231 /** Explicit texel offsets. */
1232 signed char offsets[3];
1233
1234 union {
1235 ir_rvalue *lod; /**< Floating point LOD */
1236 ir_rvalue *bias; /**< Floating point LOD bias */
1237 struct {
1238 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1239 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1240 } grad;
1241 } lod_info;
1242 };
1243
1244
1245 struct ir_swizzle_mask {
1246 unsigned x:2;
1247 unsigned y:2;
1248 unsigned z:2;
1249 unsigned w:2;
1250
1251 /**
1252 * Number of components in the swizzle.
1253 */
1254 unsigned num_components:3;
1255
1256 /**
1257 * Does the swizzle contain duplicate components?
1258 *
1259 * L-value swizzles cannot contain duplicate components.
1260 */
1261 unsigned has_duplicates:1;
1262 };
1263
1264
1265 class ir_swizzle : public ir_rvalue {
1266 public:
1267 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1268 unsigned count);
1269
1270 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1271
1272 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1273
1274 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1275
1276 virtual ir_constant *constant_expression_value();
1277
as_swizzle()1278 virtual ir_swizzle *as_swizzle()
1279 {
1280 return this;
1281 }
1282
1283 /**
1284 * Construct an ir_swizzle from the textual representation. Can fail.
1285 */
1286 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1287
accept(ir_visitor * v)1288 virtual void accept(ir_visitor *v)
1289 {
1290 v->visit(this);
1291 }
1292
1293 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1294
is_lvalue()1295 bool is_lvalue()
1296 {
1297 return val->is_lvalue() && !mask.has_duplicates;
1298 }
1299
1300 /**
1301 * Get the variable that is ultimately referenced by an r-value
1302 */
1303 virtual ir_variable *variable_referenced();
1304
1305 ir_rvalue *val;
1306 ir_swizzle_mask mask;
1307
1308 private:
1309 /**
1310 * Initialize the mask component of a swizzle
1311 *
1312 * This is used by the \c ir_swizzle constructors.
1313 */
1314 void init_mask(const unsigned *components, unsigned count);
1315 };
1316
1317
1318 class ir_dereference : public ir_rvalue {
1319 public:
1320 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1321
as_dereference()1322 virtual ir_dereference *as_dereference()
1323 {
1324 return this;
1325 }
1326
1327 bool is_lvalue();
1328
1329 /**
1330 * Get the variable that is ultimately referenced by an r-value
1331 */
1332 virtual ir_variable *variable_referenced() = 0;
1333 };
1334
1335
1336 class ir_dereference_variable : public ir_dereference {
1337 public:
1338 ir_dereference_variable(ir_variable *var);
1339
1340 virtual ir_dereference_variable *clone(void *mem_ctx,
1341 struct hash_table *) const;
1342
1343 virtual ir_constant *constant_expression_value();
1344
as_dereference_variable()1345 virtual ir_dereference_variable *as_dereference_variable()
1346 {
1347 return this;
1348 }
1349
1350 /**
1351 * Get the variable that is ultimately referenced by an r-value
1352 */
variable_referenced()1353 virtual ir_variable *variable_referenced()
1354 {
1355 return this->var;
1356 }
1357
whole_variable_referenced()1358 virtual ir_variable *whole_variable_referenced()
1359 {
1360 /* ir_dereference_variable objects always dereference the entire
1361 * variable. However, if this dereference is dereferenced by anything
1362 * else, the complete deferefernce chain is not a whole-variable
1363 * dereference. This method should only be called on the top most
1364 * ir_rvalue in a dereference chain.
1365 */
1366 return this->var;
1367 }
1368
accept(ir_visitor * v)1369 virtual void accept(ir_visitor *v)
1370 {
1371 v->visit(this);
1372 }
1373
1374 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1375
1376 /**
1377 * Object being dereferenced.
1378 */
1379 ir_variable *var;
1380 };
1381
1382
1383 class ir_dereference_array : public ir_dereference {
1384 public:
1385 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1386
1387 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1388
1389 virtual ir_dereference_array *clone(void *mem_ctx,
1390 struct hash_table *) const;
1391
1392 virtual ir_constant *constant_expression_value();
1393
as_dereference_array()1394 virtual ir_dereference_array *as_dereference_array()
1395 {
1396 return this;
1397 }
1398
1399 /**
1400 * Get the variable that is ultimately referenced by an r-value
1401 */
variable_referenced()1402 virtual ir_variable *variable_referenced()
1403 {
1404 return this->array->variable_referenced();
1405 }
1406
accept(ir_visitor * v)1407 virtual void accept(ir_visitor *v)
1408 {
1409 v->visit(this);
1410 }
1411
1412 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1413
1414 ir_rvalue *array;
1415 ir_rvalue *array_index;
1416
1417 private:
1418 void set_array(ir_rvalue *value);
1419 };
1420
1421
1422 class ir_dereference_record : public ir_dereference {
1423 public:
1424 ir_dereference_record(ir_rvalue *value, const char *field);
1425
1426 ir_dereference_record(ir_variable *var, const char *field);
1427
1428 virtual ir_dereference_record *clone(void *mem_ctx,
1429 struct hash_table *) const;
1430
1431 virtual ir_constant *constant_expression_value();
1432
1433 /**
1434 * Get the variable that is ultimately referenced by an r-value
1435 */
variable_referenced()1436 virtual ir_variable *variable_referenced()
1437 {
1438 return this->record->variable_referenced();
1439 }
1440
accept(ir_visitor * v)1441 virtual void accept(ir_visitor *v)
1442 {
1443 v->visit(this);
1444 }
1445
1446 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1447
1448 ir_rvalue *record;
1449 const char *field;
1450 };
1451
1452
1453 /**
1454 * Data stored in an ir_constant
1455 */
1456 union ir_constant_data {
1457 unsigned u[16];
1458 int i[16];
1459 float f[16];
1460 bool b[16];
1461 };
1462
1463
1464 class ir_constant : public ir_rvalue {
1465 public:
1466 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1467 ir_constant(bool b);
1468 ir_constant(unsigned int u);
1469 ir_constant(int i);
1470 ir_constant(float f);
1471
1472 /**
1473 * Construct an ir_constant from a list of ir_constant values
1474 */
1475 ir_constant(const struct glsl_type *type, exec_list *values);
1476
1477 /**
1478 * Construct an ir_constant from a scalar component of another ir_constant
1479 *
1480 * The new \c ir_constant inherits the type of the component from the
1481 * source constant.
1482 *
1483 * \note
1484 * In the case of a matrix constant, the new constant is a scalar, \b not
1485 * a vector.
1486 */
1487 ir_constant(const ir_constant *c, unsigned i);
1488
1489 /**
1490 * Return a new ir_constant of the specified type containing all zeros.
1491 */
1492 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1493
1494 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1495
1496 virtual ir_constant *constant_expression_value();
1497
as_constant()1498 virtual ir_constant *as_constant()
1499 {
1500 return this;
1501 }
1502
accept(ir_visitor * v)1503 virtual void accept(ir_visitor *v)
1504 {
1505 v->visit(this);
1506 }
1507
1508 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1509
1510 /**
1511 * Get a particular component of a constant as a specific type
1512 *
1513 * This is useful, for example, to get a value from an integer constant
1514 * as a float or bool. This appears frequently when constructors are
1515 * called with all constant parameters.
1516 */
1517 /*@{*/
1518 bool get_bool_component(unsigned i) const;
1519 float get_float_component(unsigned i) const;
1520 int get_int_component(unsigned i) const;
1521 unsigned get_uint_component(unsigned i) const;
1522 /*@}*/
1523
1524 ir_constant *get_array_element(unsigned i) const;
1525
1526 ir_constant *get_record_field(const char *name);
1527
1528 /**
1529 * Determine whether a constant has the same value as another constant
1530 *
1531 * \sa ir_constant::is_zero, ir_constant::is_one,
1532 * ir_constant::is_negative_one
1533 */
1534 bool has_value(const ir_constant *) const;
1535
1536 virtual bool is_zero() const;
1537 virtual bool is_one() const;
1538 virtual bool is_negative_one() const;
1539
1540 /**
1541 * Value of the constant.
1542 *
1543 * The field used to back the values supplied by the constant is determined
1544 * by the type associated with the \c ir_instruction. Constants may be
1545 * scalars, vectors, or matrices.
1546 */
1547 union ir_constant_data value;
1548
1549 /* Array elements */
1550 ir_constant **array_elements;
1551
1552 /* Structure fields */
1553 exec_list components;
1554
1555 private:
1556 /**
1557 * Parameterless constructor only used by the clone method
1558 */
1559 ir_constant(void);
1560 };
1561
1562 /*@}*/
1563
1564 /**
1565 * Apply a visitor to each IR node in a list
1566 */
1567 void
1568 visit_exec_list(exec_list *list, ir_visitor *visitor);
1569
1570 /**
1571 * Validate invariants on each IR node in a list
1572 */
1573 void validate_ir_tree(exec_list *instructions);
1574
1575 /**
1576 * Make a clone of each IR instruction in a list
1577 *
1578 * \param in List of IR instructions that are to be cloned
1579 * \param out List to hold the cloned instructions
1580 */
1581 void
1582 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1583
1584 extern void
1585 _mesa_glsl_initialize_variables(exec_list *instructions,
1586 struct _mesa_glsl_parse_state *state);
1587
1588 extern void
1589 _mesa_glsl_initialize_functions(exec_list *instructions,
1590 struct _mesa_glsl_parse_state *state);
1591
1592 extern void
1593 _mesa_glsl_release_functions(void);
1594
1595 extern void
1596 reparent_ir(exec_list *list, void *mem_ctx);
1597
1598 struct glsl_symbol_table;
1599
1600 extern void
1601 import_prototypes(const exec_list *source, exec_list *dest,
1602 struct glsl_symbol_table *symbols, void *mem_ctx);
1603
1604 extern bool
1605 ir_has_call(ir_instruction *ir);
1606
1607 extern void
1608 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1609
1610 #endif /* IR_H */
1611