• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <assert.h>
30 #include <errno.h>
31 #include <fcntl.h>
32 #include <limits.h>
33 #include <malloc.h>
34 #include <memory.h>
35 #include <pthread.h>
36 #include <signal.h>
37 #include <stdint.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <sys/atomics.h>
41 #include <sys/mman.h>
42 #include <sys/prctl.h>
43 #include <sys/stat.h>
44 #include <sys/types.h>
45 #include <time.h>
46 #include <unistd.h>
47 
48 #include "bionic_atomic_inline.h"
49 #include "bionic_futex.h"
50 #include "bionic_pthread.h"
51 #include "bionic_tls.h"
52 #include "pthread_internal.h"
53 #include "thread_private.h"
54 
55 extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
56 extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
57 
58 extern int  __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
59 extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
60 extern void _exit_thread(int  retCode);
61 extern int  __set_errno(int);
62 
__futex_wake_ex(volatile void * ftx,int pshared,int val)63 int  __futex_wake_ex(volatile void *ftx, int pshared, int val)
64 {
65     return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
66 }
67 
__futex_wait_ex(volatile void * ftx,int pshared,int val,const struct timespec * timeout)68 int  __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
69 {
70     return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
71 }
72 
73 #define  __likely(cond)    __builtin_expect(!!(cond), 1)
74 #define  __unlikely(cond)  __builtin_expect(!!(cond), 0)
75 
76 #ifdef __i386__
77 #define ATTRIBUTES __attribute__((noinline)) __attribute__((fastcall))
78 #else
79 #define ATTRIBUTES __attribute__((noinline))
80 #endif
81 
82 void ATTRIBUTES _thread_created_hook(pid_t thread_id);
83 
84 static const int kPthreadInitFailed = 1;
85 
86 #define PTHREAD_ATTR_FLAG_DETACHED      0x00000001
87 #define PTHREAD_ATTR_FLAG_USER_STACK    0x00000002
88 
89 #define DEFAULT_STACKSIZE (1024 * 1024)
90 
91 static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
92 
93 
94 static const pthread_attr_t gDefaultPthreadAttr = {
95     .flags = 0,
96     .stack_base = NULL,
97     .stack_size = DEFAULT_STACKSIZE,
98     .guard_size = PAGE_SIZE,
99     .sched_policy = SCHED_NORMAL,
100     .sched_priority = 0
101 };
102 
103 static pthread_internal_t* gThreadList = NULL;
104 static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
105 static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
106 
107 
108 static void
_pthread_internal_free(pthread_internal_t * thread)109 _pthread_internal_free(pthread_internal_t* thread)
110 {
111     if (thread != NULL) {
112         free(thread);
113     }
114 }
115 
116 
117 static void
_pthread_internal_remove_locked(pthread_internal_t * thread)118 _pthread_internal_remove_locked( pthread_internal_t*  thread )
119 {
120     thread->next->prev = thread->prev;
121     thread->prev[0]    = thread->next;
122 }
123 
124 static void
_pthread_internal_remove(pthread_internal_t * thread)125 _pthread_internal_remove( pthread_internal_t*  thread )
126 {
127     pthread_mutex_lock(&gThreadListLock);
128     _pthread_internal_remove_locked(thread);
129     pthread_mutex_unlock(&gThreadListLock);
130 }
131 
132 __LIBC_ABI_PRIVATE__ void
_pthread_internal_add(pthread_internal_t * thread)133 _pthread_internal_add(pthread_internal_t* thread)
134 {
135     pthread_mutex_lock(&gThreadListLock);
136 
137     thread->prev = &gThreadList;
138     thread->next = *(thread->prev);
139     if (thread->next != NULL) {
140         thread->next->prev = &thread->next;
141     }
142     *(thread->prev) = thread;
143 
144     pthread_mutex_unlock(&gThreadListLock);
145 }
146 
147 __LIBC_ABI_PRIVATE__ pthread_internal_t*
__get_thread(void)148 __get_thread(void)
149 {
150     void**  tls = (void**)__get_tls();
151 
152     return  (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
153 }
154 
155 
156 void*
__get_stack_base(int * p_stack_size)157 __get_stack_base(int  *p_stack_size)
158 {
159     pthread_internal_t*  thread = __get_thread();
160 
161     *p_stack_size = thread->attr.stack_size;
162     return thread->attr.stack_base;
163 }
164 
165 
__init_tls(void ** tls,void * thread)166 void  __init_tls(void**  tls, void*  thread)
167 {
168     int  nn;
169 
170     ((pthread_internal_t*)thread)->tls = tls;
171 
172     // slot 0 must point to the tls area, this is required by the implementation
173     // of the x86 Linux kernel thread-local-storage
174     tls[TLS_SLOT_SELF]      = (void*)tls;
175     tls[TLS_SLOT_THREAD_ID] = thread;
176     for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
177        tls[nn] = 0;
178 
179     __set_tls( (void*)tls );
180 }
181 
182 
183 /*
184  * This trampoline is called from the assembly _pthread_clone() function.
185  */
__thread_entry(int (* func)(void *),void * arg,void ** tls)186 void __thread_entry(int (*func)(void*), void *arg, void **tls)
187 {
188     // Wait for our creating thread to release us. This lets it have time to
189     // notify gdb about this thread before we start doing anything.
190     //
191     // This also provides the memory barrier needed to ensure that all memory
192     // accesses previously made by the creating thread are visible to us.
193     pthread_mutex_t* start_mutex = (pthread_mutex_t*) &tls[TLS_SLOT_SELF];
194     pthread_mutex_lock(start_mutex);
195     pthread_mutex_destroy(start_mutex);
196 
197     pthread_internal_t* thread = (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
198     __init_tls(tls, thread);
199 
200     if ((thread->internal_flags & kPthreadInitFailed) != 0) {
201         pthread_exit(NULL);
202     }
203 
204     int result = func(arg);
205     pthread_exit((void*) result);
206 }
207 
208 #include <private/logd.h>
209 
210 __LIBC_ABI_PRIVATE__
_init_thread(pthread_internal_t * thread,pid_t kernel_id,pthread_attr_t * attr,void * stack_base,bool add_to_thread_list)211 int _init_thread(pthread_internal_t* thread, pid_t kernel_id, pthread_attr_t* attr,
212                  void* stack_base, bool add_to_thread_list)
213 {
214     int error = 0;
215 
216     if (attr == NULL) {
217         thread->attr = gDefaultPthreadAttr;
218     } else {
219         thread->attr = *attr;
220     }
221     thread->attr.stack_base = stack_base;
222     thread->kernel_id       = kernel_id;
223 
224     // Make a note of whether the user supplied this stack (so we know whether or not to free it).
225     if (attr->stack_base == stack_base) {
226         thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
227     }
228 
229     // Set the scheduling policy/priority of the thread.
230     if (thread->attr.sched_policy != SCHED_NORMAL) {
231         struct sched_param param;
232         param.sched_priority = thread->attr.sched_priority;
233         if (sched_setscheduler(kernel_id, thread->attr.sched_policy, &param) == -1) {
234             // For back compat reasons, we just warn about possible invalid sched_policy
235             const char* msg = "pthread_create sched_setscheduler call failed: %s\n";
236             __libc_android_log_print(ANDROID_LOG_WARN, "libc", msg, strerror(errno));
237         }
238     }
239 
240     pthread_cond_init(&thread->join_cond, NULL);
241     thread->join_count = 0;
242     thread->cleanup_stack = NULL;
243 
244     if (add_to_thread_list) {
245         _pthread_internal_add(thread);
246     }
247 
248     return error;
249 }
250 
mkstack(size_t size,size_t guard_size)251 static void *mkstack(size_t size, size_t guard_size)
252 {
253     pthread_mutex_lock(&mmap_lock);
254 
255     int prot = PROT_READ | PROT_WRITE;
256     int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE;
257     void* stack = mmap(NULL, size, prot, flags, -1, 0);
258     if (stack == MAP_FAILED) {
259         stack = NULL;
260         goto done;
261     }
262 
263     if (mprotect(stack, guard_size, PROT_NONE) == -1) {
264         munmap(stack, size);
265         stack = NULL;
266         goto done;
267     }
268 
269 done:
270     pthread_mutex_unlock(&mmap_lock);
271     return stack;
272 }
273 
274 /*
275  * Create a new thread. The thread's stack is laid out like so:
276  *
277  * +---------------------------+
278  * |     pthread_internal_t    |
279  * +---------------------------+
280  * |                           |
281  * |          TLS area         |
282  * |                           |
283  * +---------------------------+
284  * |                           |
285  * .                           .
286  * .         stack area        .
287  * .                           .
288  * |                           |
289  * +---------------------------+
290  * |         guard page        |
291  * +---------------------------+
292  *
293  *  note that TLS[0] must be a pointer to itself, this is required
294  *  by the thread-local storage implementation of the x86 Linux
295  *  kernel, where the TLS pointer is read by reading fs:[0]
296  */
pthread_create(pthread_t * thread_out,pthread_attr_t const * attr,void * (* start_routine)(void *),void * arg)297 int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
298                    void *(*start_routine)(void *), void * arg)
299 {
300     int old_errno = errno;
301 
302     /* this will inform the rest of the C library that at least one thread
303      * was created. this will enforce certain functions to acquire/release
304      * locks (e.g. atexit()) to protect shared global structures.
305      *
306      * this works because pthread_create() is not called by the C library
307      * initialization routine that sets up the main thread's data structures.
308      */
309     __isthreaded = 1;
310 
311     pthread_internal_t* thread = calloc(sizeof(*thread), 1);
312     if (thread == NULL) {
313         return ENOMEM;
314     }
315 
316     if (attr == NULL) {
317         attr = &gDefaultPthreadAttr;
318     }
319 
320     // make sure the stack is PAGE_SIZE aligned
321     size_t stack_size = (attr->stack_size + (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
322     uint8_t* stack = attr->stack_base;
323     if (stack == NULL) {
324         stack = mkstack(stack_size, attr->guard_size);
325         if (stack == NULL) {
326             _pthread_internal_free(thread);
327             return ENOMEM;
328         }
329     }
330 
331     // Make room for TLS
332     void** tls = (void**)(stack + stack_size - BIONIC_TLS_SLOTS*sizeof(void*));
333 
334     // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
335     // it from doing anything until after we notify the debugger about it
336     //
337     // This also provides the memory barrier we need to ensure that all
338     // memory accesses previously performed by this thread are visible to
339     // the new thread.
340     pthread_mutex_t* start_mutex = (pthread_mutex_t*) &tls[TLS_SLOT_SELF];
341     pthread_mutex_init(start_mutex, NULL);
342     pthread_mutex_lock(start_mutex);
343 
344     tls[TLS_SLOT_THREAD_ID] = thread;
345 
346     int flags = CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND |
347                 CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED;
348     int tid = __pthread_clone((int(*)(void*))start_routine, tls, flags, arg);
349 
350     if (tid < 0) {
351         int clone_errno = errno;
352         pthread_mutex_unlock(start_mutex);
353         if (stack != attr->stack_base) {
354             munmap(stack, stack_size);
355         }
356         _pthread_internal_free(thread);
357         errno = old_errno;
358         return clone_errno;
359     }
360 
361     int init_errno = _init_thread(thread, tid, (pthread_attr_t*) attr, stack, true);
362     if (init_errno != 0) {
363         // Mark the thread detached and let its __thread_entry run to
364         // completion. (It'll just exit immediately, cleaning up its resources.)
365         thread->internal_flags |= kPthreadInitFailed;
366         thread->attr.flags |= PTHREAD_ATTR_FLAG_DETACHED;
367         pthread_mutex_unlock(start_mutex);
368         errno = old_errno;
369         return init_errno;
370     }
371 
372     // Notify any debuggers about the new thread.
373     pthread_mutex_lock(&gDebuggerNotificationLock);
374     _thread_created_hook(tid);
375     pthread_mutex_unlock(&gDebuggerNotificationLock);
376 
377     // Publish the pthread_t and let the thread run.
378     *thread_out = (pthread_t) thread;
379     pthread_mutex_unlock(start_mutex);
380 
381     return 0;
382 }
383 
384 
pthread_attr_init(pthread_attr_t * attr)385 int pthread_attr_init(pthread_attr_t * attr)
386 {
387     *attr = gDefaultPthreadAttr;
388     return 0;
389 }
390 
pthread_attr_destroy(pthread_attr_t * attr)391 int pthread_attr_destroy(pthread_attr_t * attr)
392 {
393     memset(attr, 0x42, sizeof(pthread_attr_t));
394     return 0;
395 }
396 
pthread_attr_setdetachstate(pthread_attr_t * attr,int state)397 int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
398 {
399     if (state == PTHREAD_CREATE_DETACHED) {
400         attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
401     } else if (state == PTHREAD_CREATE_JOINABLE) {
402         attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
403     } else {
404         return EINVAL;
405     }
406     return 0;
407 }
408 
pthread_attr_getdetachstate(pthread_attr_t const * attr,int * state)409 int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
410 {
411     *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
412            ? PTHREAD_CREATE_DETACHED
413            : PTHREAD_CREATE_JOINABLE;
414     return 0;
415 }
416 
pthread_attr_setschedpolicy(pthread_attr_t * attr,int policy)417 int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
418 {
419     attr->sched_policy = policy;
420     return 0;
421 }
422 
pthread_attr_getschedpolicy(pthread_attr_t const * attr,int * policy)423 int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
424 {
425     *policy = attr->sched_policy;
426     return 0;
427 }
428 
pthread_attr_setschedparam(pthread_attr_t * attr,struct sched_param const * param)429 int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
430 {
431     attr->sched_priority = param->sched_priority;
432     return 0;
433 }
434 
pthread_attr_getschedparam(pthread_attr_t const * attr,struct sched_param * param)435 int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
436 {
437     param->sched_priority = attr->sched_priority;
438     return 0;
439 }
440 
pthread_attr_setstacksize(pthread_attr_t * attr,size_t stack_size)441 int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
442 {
443     if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
444         return EINVAL;
445     }
446     attr->stack_size = stack_size;
447     return 0;
448 }
449 
pthread_attr_getstacksize(pthread_attr_t const * attr,size_t * stack_size)450 int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
451 {
452     *stack_size = attr->stack_size;
453     return 0;
454 }
455 
pthread_attr_setstackaddr(pthread_attr_t * attr,void * stack_addr)456 int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
457 {
458 #if 1
459     // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
460     return ENOSYS;
461 #else
462     if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
463         return EINVAL;
464     }
465     attr->stack_base = stack_addr;
466     return 0;
467 #endif
468 }
469 
pthread_attr_getstackaddr(pthread_attr_t const * attr,void ** stack_addr)470 int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
471 {
472     *stack_addr = (char*)attr->stack_base + attr->stack_size;
473     return 0;
474 }
475 
pthread_attr_setstack(pthread_attr_t * attr,void * stack_base,size_t stack_size)476 int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
477 {
478     if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
479         return EINVAL;
480     }
481     if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
482         return EINVAL;
483     }
484     attr->stack_base = stack_base;
485     attr->stack_size = stack_size;
486     return 0;
487 }
488 
pthread_attr_getstack(pthread_attr_t const * attr,void ** stack_base,size_t * stack_size)489 int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
490 {
491     *stack_base = attr->stack_base;
492     *stack_size = attr->stack_size;
493     return 0;
494 }
495 
pthread_attr_setguardsize(pthread_attr_t * attr,size_t guard_size)496 int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
497 {
498     if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
499         return EINVAL;
500     }
501 
502     attr->guard_size = guard_size;
503     return 0;
504 }
505 
pthread_attr_getguardsize(pthread_attr_t const * attr,size_t * guard_size)506 int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
507 {
508     *guard_size = attr->guard_size;
509     return 0;
510 }
511 
pthread_getattr_np(pthread_t thid,pthread_attr_t * attr)512 int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
513 {
514     pthread_internal_t * thread = (pthread_internal_t *)thid;
515     *attr = thread->attr;
516     return 0;
517 }
518 
pthread_attr_setscope(pthread_attr_t * attr,int scope)519 int pthread_attr_setscope(pthread_attr_t *attr, int  scope)
520 {
521     if (scope == PTHREAD_SCOPE_SYSTEM)
522         return 0;
523     if (scope == PTHREAD_SCOPE_PROCESS)
524         return ENOTSUP;
525 
526     return EINVAL;
527 }
528 
pthread_attr_getscope(pthread_attr_t const * attr)529 int pthread_attr_getscope(pthread_attr_t const *attr)
530 {
531     return PTHREAD_SCOPE_SYSTEM;
532 }
533 
534 
535 /* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
536  *         and thread cancelation
537  */
538 
__pthread_cleanup_push(__pthread_cleanup_t * c,__pthread_cleanup_func_t routine,void * arg)539 void __pthread_cleanup_push( __pthread_cleanup_t*      c,
540                              __pthread_cleanup_func_t  routine,
541                              void*                     arg )
542 {
543     pthread_internal_t*  thread = __get_thread();
544 
545     c->__cleanup_routine  = routine;
546     c->__cleanup_arg      = arg;
547     c->__cleanup_prev     = thread->cleanup_stack;
548     thread->cleanup_stack = c;
549 }
550 
__pthread_cleanup_pop(__pthread_cleanup_t * c,int execute)551 void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
552 {
553     pthread_internal_t*  thread = __get_thread();
554 
555     thread->cleanup_stack = c->__cleanup_prev;
556     if (execute)
557         c->__cleanup_routine(c->__cleanup_arg);
558 }
559 
560 /* used by pthread_exit() to clean all TLS keys of the current thread */
561 static void pthread_key_clean_all(void);
562 
pthread_exit(void * retval)563 void pthread_exit(void * retval)
564 {
565     pthread_internal_t*  thread     = __get_thread();
566     void*                stack_base = thread->attr.stack_base;
567     int                  stack_size = thread->attr.stack_size;
568     int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
569     sigset_t mask;
570 
571     // call the cleanup handlers first
572     while (thread->cleanup_stack) {
573         __pthread_cleanup_t*  c = thread->cleanup_stack;
574         thread->cleanup_stack   = c->__cleanup_prev;
575         c->__cleanup_routine(c->__cleanup_arg);
576     }
577 
578     // call the TLS destructors, it is important to do that before removing this
579     // thread from the global list. this will ensure that if someone else deletes
580     // a TLS key, the corresponding value will be set to NULL in this thread's TLS
581     // space (see pthread_key_delete)
582     pthread_key_clean_all();
583 
584     // if the thread is detached, destroy the pthread_internal_t
585     // otherwise, keep it in memory and signal any joiners
586     if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
587         _pthread_internal_remove(thread);
588         _pthread_internal_free(thread);
589     } else {
590         pthread_mutex_lock(&gThreadListLock);
591 
592        /* make sure that the thread struct doesn't have stale pointers to a stack that
593         * will be unmapped after the exit call below.
594         */
595         if (!user_stack) {
596             thread->attr.stack_base = NULL;
597             thread->attr.stack_size = 0;
598             thread->tls = NULL;
599         }
600 
601        /* the join_count field is used to store the number of threads waiting for
602         * the termination of this thread with pthread_join(),
603         *
604         * if it is positive we need to signal the waiters, and we do not touch
605         * the count (it will be decremented by the waiters, the last one will
606         * also remove/free the thread structure
607         *
608         * if it is zero, we set the count value to -1 to indicate that the
609         * thread is in 'zombie' state: it has stopped executing, and its stack
610         * is gone (as well as its TLS area). when another thread calls pthread_join()
611         * on it, it will immediately free the thread and return.
612         */
613         thread->return_value = retval;
614         if (thread->join_count > 0) {
615             pthread_cond_broadcast(&thread->join_cond);
616         } else {
617             thread->join_count = -1;  /* zombie thread */
618         }
619         pthread_mutex_unlock(&gThreadListLock);
620     }
621 
622     sigfillset(&mask);
623     sigdelset(&mask, SIGSEGV);
624     (void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL);
625 
626     // destroy the thread stack
627     if (user_stack)
628         _exit_thread((int)retval);
629     else
630         _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
631 }
632 
pthread_join(pthread_t thid,void ** ret_val)633 int pthread_join(pthread_t thid, void ** ret_val)
634 {
635     pthread_internal_t*  thread = (pthread_internal_t*)thid;
636     int                  count;
637 
638     // check that the thread still exists and is not detached
639     pthread_mutex_lock(&gThreadListLock);
640 
641     for (thread = gThreadList; thread != NULL; thread = thread->next)
642         if (thread == (pthread_internal_t*)thid)
643             goto FoundIt;
644 
645     pthread_mutex_unlock(&gThreadListLock);
646     return ESRCH;
647 
648 FoundIt:
649     if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
650         pthread_mutex_unlock(&gThreadListLock);
651         return EINVAL;
652     }
653 
654    /* wait for thread death when needed
655     *
656     * if the 'join_count' is negative, this is a 'zombie' thread that
657     * is already dead and without stack/TLS
658     *
659     * otherwise, we need to increment 'join-count' and wait to be signaled
660     */
661    count = thread->join_count;
662     if (count >= 0) {
663         thread->join_count += 1;
664         pthread_cond_wait( &thread->join_cond, &gThreadListLock );
665         count = --thread->join_count;
666     }
667     if (ret_val)
668         *ret_val = thread->return_value;
669 
670     /* remove thread descriptor when we're the last joiner or when the
671      * thread was already a zombie.
672      */
673     if (count <= 0) {
674         _pthread_internal_remove_locked(thread);
675         _pthread_internal_free(thread);
676     }
677     pthread_mutex_unlock(&gThreadListLock);
678     return 0;
679 }
680 
pthread_detach(pthread_t thid)681 int  pthread_detach( pthread_t  thid )
682 {
683     pthread_internal_t*  thread;
684     int                  result = 0;
685     int                  flags;
686 
687     pthread_mutex_lock(&gThreadListLock);
688     for (thread = gThreadList; thread != NULL; thread = thread->next)
689         if (thread == (pthread_internal_t*)thid)
690             goto FoundIt;
691 
692     result = ESRCH;
693     goto Exit;
694 
695 FoundIt:
696     do {
697         flags = thread->attr.flags;
698 
699         if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
700             /* thread is not joinable ! */
701             result = EINVAL;
702             goto Exit;
703         }
704     }
705     while ( __bionic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
706                               (volatile int*)&thread->attr.flags ) != 0 );
707 Exit:
708     pthread_mutex_unlock(&gThreadListLock);
709     return result;
710 }
711 
pthread_self(void)712 pthread_t pthread_self(void)
713 {
714     return (pthread_t)__get_thread();
715 }
716 
pthread_equal(pthread_t one,pthread_t two)717 int pthread_equal(pthread_t one, pthread_t two)
718 {
719     return (one == two ? 1 : 0);
720 }
721 
pthread_getschedparam(pthread_t thid,int * policy,struct sched_param * param)722 int pthread_getschedparam(pthread_t thid, int * policy,
723                           struct sched_param * param)
724 {
725     int  old_errno = errno;
726 
727     pthread_internal_t * thread = (pthread_internal_t *)thid;
728     int err = sched_getparam(thread->kernel_id, param);
729     if (!err) {
730         *policy = sched_getscheduler(thread->kernel_id);
731     } else {
732         err = errno;
733         errno = old_errno;
734     }
735     return err;
736 }
737 
pthread_setschedparam(pthread_t thid,int policy,struct sched_param const * param)738 int pthread_setschedparam(pthread_t thid, int policy,
739                           struct sched_param const * param)
740 {
741     pthread_internal_t * thread = (pthread_internal_t *)thid;
742     int                  old_errno = errno;
743     int                  ret;
744 
745     ret = sched_setscheduler(thread->kernel_id, policy, param);
746     if (ret < 0) {
747         ret = errno;
748         errno = old_errno;
749     }
750     return ret;
751 }
752 
753 
754 /* a mutex is implemented as a 32-bit integer holding the following fields
755  *
756  * bits:     name     description
757  * 31-16     tid      owner thread's kernel id (recursive and errorcheck only)
758  * 15-14     type     mutex type
759  * 13        shared   process-shared flag
760  * 12-2      counter  counter of recursive mutexes
761  * 1-0       state    lock state (0, 1 or 2)
762  */
763 
764 /* Convenience macro, creates a mask of 'bits' bits that starts from
765  * the 'shift'-th least significant bit in a 32-bit word.
766  *
767  * Examples: FIELD_MASK(0,4)  -> 0xf
768  *           FIELD_MASK(16,9) -> 0x1ff0000
769  */
770 #define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift))
771 
772 /* This one is used to create a bit pattern from a given field value */
773 #define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift))
774 
775 /* And this one does the opposite, i.e. extract a field's value from a bit pattern */
776 #define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1))
777 
778 /* Mutex state:
779  *
780  * 0 for unlocked
781  * 1 for locked, no waiters
782  * 2 for locked, maybe waiters
783  */
784 #define  MUTEX_STATE_SHIFT      0
785 #define  MUTEX_STATE_LEN        2
786 
787 #define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
788 #define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
789 #define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
790 
791 #define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
792 #define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */
793 #define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
794 
795 #define  MUTEX_STATE_FROM_BITS(v)    FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
796 #define  MUTEX_STATE_TO_BITS(v)      FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
797 
798 #define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
799 #define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
800 #define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
801 
802 /* return true iff the mutex if locked with no waiters */
803 #define  MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
804 
805 /* return true iff the mutex if locked with maybe waiters */
806 #define  MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
807 
808 /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
809 #define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
810 
811 /* Mutex counter:
812  *
813  * We need to check for overflow before incrementing, and we also need to
814  * detect when the counter is 0
815  */
816 #define  MUTEX_COUNTER_SHIFT         2
817 #define  MUTEX_COUNTER_LEN           11
818 #define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
819 
820 #define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
821 #define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0)
822 
823 /* Used to increment the counter directly after overflow has been checked */
824 #define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
825 
826 /* Returns true iff the counter is 0 */
827 #define  MUTEX_COUNTER_BITS_ARE_ZERO(v)  (((v) & MUTEX_COUNTER_MASK) == 0)
828 
829 /* Mutex shared bit flag
830  *
831  * This flag is set to indicate that the mutex is shared among processes.
832  * This changes the futex opcode we use for futex wait/wake operations
833  * (non-shared operations are much faster).
834  */
835 #define  MUTEX_SHARED_SHIFT    13
836 #define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1)
837 
838 /* Mutex type:
839  *
840  * We support normal, recursive and errorcheck mutexes.
841  *
842  * The constants defined here *cannot* be changed because they must match
843  * the C library ABI which defines the following initialization values in
844  * <pthread.h>:
845  *
846  *   __PTHREAD_MUTEX_INIT_VALUE
847  *   __PTHREAD_RECURSIVE_MUTEX_VALUE
848  *   __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
849  */
850 #define  MUTEX_TYPE_SHIFT      14
851 #define  MUTEX_TYPE_LEN        2
852 #define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
853 
854 #define  MUTEX_TYPE_NORMAL          0  /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
855 #define  MUTEX_TYPE_RECURSIVE       1
856 #define  MUTEX_TYPE_ERRORCHECK      2
857 
858 #define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
859 
860 #define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
861 #define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
862 #define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
863 
864 /* Mutex owner field:
865  *
866  * This is only used for recursive and errorcheck mutexes. It holds the
867  * kernel TID of the owning thread. Note that this works because the Linux
868  * kernel _only_ uses 16-bit values for thread ids.
869  *
870  * More specifically, it will wrap to 10000 when it reaches over 32768 for
871  * application processes. You can check this by running the following inside
872  * an adb shell session:
873  *
874     OLDPID=$$;
875     while true; do
876     NEWPID=$(sh -c 'echo $$')
877     if [ "$NEWPID" -gt 32768 ]; then
878         echo "AARGH: new PID $NEWPID is too high!"
879         exit 1
880     fi
881     if [ "$NEWPID" -lt "$OLDPID" ]; then
882         echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
883     else
884         echo -n "$NEWPID!"
885     fi
886     OLDPID=$NEWPID
887     done
888 
889  * Note that you can run the same example on a desktop Linux system,
890  * the wrapping will also happen at 32768, but will go back to 300 instead.
891  */
892 #define  MUTEX_OWNER_SHIFT     16
893 #define  MUTEX_OWNER_LEN       16
894 
895 #define  MUTEX_OWNER_FROM_BITS(v)    FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
896 #define  MUTEX_OWNER_TO_BITS(v)      FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
897 
898 /* Convenience macros.
899  *
900  * These are used to form or modify the bit pattern of a given mutex value
901  */
902 
903 
904 
905 /* a mutex attribute holds the following fields
906  *
907  * bits:     name       description
908  * 0-3       type       type of mutex
909  * 4         shared     process-shared flag
910  */
911 #define  MUTEXATTR_TYPE_MASK   0x000f
912 #define  MUTEXATTR_SHARED_MASK 0x0010
913 
914 
pthread_mutexattr_init(pthread_mutexattr_t * attr)915 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
916 {
917     if (attr) {
918         *attr = PTHREAD_MUTEX_DEFAULT;
919         return 0;
920     } else {
921         return EINVAL;
922     }
923 }
924 
pthread_mutexattr_destroy(pthread_mutexattr_t * attr)925 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
926 {
927     if (attr) {
928         *attr = -1;
929         return 0;
930     } else {
931         return EINVAL;
932     }
933 }
934 
pthread_mutexattr_gettype(const pthread_mutexattr_t * attr,int * type)935 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
936 {
937     if (attr) {
938         int  atype = (*attr & MUTEXATTR_TYPE_MASK);
939 
940          if (atype >= PTHREAD_MUTEX_NORMAL &&
941              atype <= PTHREAD_MUTEX_ERRORCHECK) {
942             *type = atype;
943             return 0;
944         }
945     }
946     return EINVAL;
947 }
948 
pthread_mutexattr_settype(pthread_mutexattr_t * attr,int type)949 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
950 {
951     if (attr && type >= PTHREAD_MUTEX_NORMAL &&
952                 type <= PTHREAD_MUTEX_ERRORCHECK ) {
953         *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
954         return 0;
955     }
956     return EINVAL;
957 }
958 
959 /* process-shared mutexes are not supported at the moment */
960 
pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,int pshared)961 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
962 {
963     if (!attr)
964         return EINVAL;
965 
966     switch (pshared) {
967     case PTHREAD_PROCESS_PRIVATE:
968         *attr &= ~MUTEXATTR_SHARED_MASK;
969         return 0;
970 
971     case PTHREAD_PROCESS_SHARED:
972         /* our current implementation of pthread actually supports shared
973          * mutexes but won't cleanup if a process dies with the mutex held.
974          * Nevertheless, it's better than nothing. Shared mutexes are used
975          * by surfaceflinger and audioflinger.
976          */
977         *attr |= MUTEXATTR_SHARED_MASK;
978         return 0;
979     }
980     return EINVAL;
981 }
982 
pthread_mutexattr_getpshared(pthread_mutexattr_t * attr,int * pshared)983 int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
984 {
985     if (!attr || !pshared)
986         return EINVAL;
987 
988     *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
989                                                : PTHREAD_PROCESS_PRIVATE;
990     return 0;
991 }
992 
pthread_mutex_init(pthread_mutex_t * mutex,const pthread_mutexattr_t * attr)993 int pthread_mutex_init(pthread_mutex_t *mutex,
994                        const pthread_mutexattr_t *attr)
995 {
996     int value = 0;
997 
998     if (mutex == NULL)
999         return EINVAL;
1000 
1001     if (__likely(attr == NULL)) {
1002         mutex->value = MUTEX_TYPE_BITS_NORMAL;
1003         return 0;
1004     }
1005 
1006     if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
1007         value |= MUTEX_SHARED_MASK;
1008 
1009     switch (*attr & MUTEXATTR_TYPE_MASK) {
1010     case PTHREAD_MUTEX_NORMAL:
1011         value |= MUTEX_TYPE_BITS_NORMAL;
1012         break;
1013     case PTHREAD_MUTEX_RECURSIVE:
1014         value |= MUTEX_TYPE_BITS_RECURSIVE;
1015         break;
1016     case PTHREAD_MUTEX_ERRORCHECK:
1017         value |= MUTEX_TYPE_BITS_ERRORCHECK;
1018         break;
1019     default:
1020         return EINVAL;
1021     }
1022 
1023     mutex->value = value;
1024     return 0;
1025 }
1026 
1027 
1028 /*
1029  * Lock a non-recursive mutex.
1030  *
1031  * As noted above, there are three states:
1032  *   0 (unlocked, no contention)
1033  *   1 (locked, no contention)
1034  *   2 (locked, contention)
1035  *
1036  * Non-recursive mutexes don't use the thread-id or counter fields, and the
1037  * "type" value is zero, so the only bits that will be set are the ones in
1038  * the lock state field.
1039  */
1040 static __inline__ void
_normal_lock(pthread_mutex_t * mutex,int shared)1041 _normal_lock(pthread_mutex_t*  mutex, int shared)
1042 {
1043     /* convenience shortcuts */
1044     const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
1045     const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1046     /*
1047      * The common case is an unlocked mutex, so we begin by trying to
1048      * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
1049      * __bionic_cmpxchg() returns 0 if it made the swap successfully.
1050      * If the result is nonzero, this lock is already held by another thread.
1051      */
1052     if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
1053         const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1054         /*
1055          * We want to go to sleep until the mutex is available, which
1056          * requires promoting it to state 2 (CONTENDED). We need to
1057          * swap in the new state value and then wait until somebody wakes us up.
1058          *
1059          * __bionic_swap() returns the previous value.  We swap 2 in and
1060          * see if we got zero back; if so, we have acquired the lock.  If
1061          * not, another thread still holds the lock and we wait again.
1062          *
1063          * The second argument to the __futex_wait() call is compared
1064          * against the current value.  If it doesn't match, __futex_wait()
1065          * returns immediately (otherwise, it sleeps for a time specified
1066          * by the third argument; 0 means sleep forever).  This ensures
1067          * that the mutex is in state 2 when we go to sleep on it, which
1068          * guarantees a wake-up call.
1069          */
1070         while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
1071             __futex_wait_ex(&mutex->value, shared, locked_contended, 0);
1072     }
1073     ANDROID_MEMBAR_FULL();
1074 }
1075 
1076 /*
1077  * Release a non-recursive mutex.  The caller is responsible for determining
1078  * that we are in fact the owner of this lock.
1079  */
1080 static __inline__ void
_normal_unlock(pthread_mutex_t * mutex,int shared)1081 _normal_unlock(pthread_mutex_t*  mutex, int shared)
1082 {
1083     ANDROID_MEMBAR_FULL();
1084 
1085     /*
1086      * The mutex state will be 1 or (rarely) 2.  We use an atomic decrement
1087      * to release the lock.  __bionic_atomic_dec() returns the previous value;
1088      * if it wasn't 1 we have to do some additional work.
1089      */
1090     if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
1091         /*
1092          * Start by releasing the lock.  The decrement changed it from
1093          * "contended lock" to "uncontended lock", which means we still
1094          * hold it, and anybody who tries to sneak in will push it back
1095          * to state 2.
1096          *
1097          * Once we set it to zero the lock is up for grabs.  We follow
1098          * this with a __futex_wake() to ensure that one of the waiting
1099          * threads has a chance to grab it.
1100          *
1101          * This doesn't cause a race with the swap/wait pair in
1102          * _normal_lock(), because the __futex_wait() call there will
1103          * return immediately if the mutex value isn't 2.
1104          */
1105         mutex->value = shared;
1106 
1107         /*
1108          * Wake up one waiting thread.  We don't know which thread will be
1109          * woken or when it'll start executing -- futexes make no guarantees
1110          * here.  There may not even be a thread waiting.
1111          *
1112          * The newly-woken thread will replace the 0 we just set above
1113          * with 2, which means that when it eventually releases the mutex
1114          * it will also call FUTEX_WAKE.  This results in one extra wake
1115          * call whenever a lock is contended, but lets us avoid forgetting
1116          * anyone without requiring us to track the number of sleepers.
1117          *
1118          * It's possible for another thread to sneak in and grab the lock
1119          * between the zero assignment above and the wake call below.  If
1120          * the new thread is "slow" and holds the lock for a while, we'll
1121          * wake up a sleeper, which will swap in a 2 and then go back to
1122          * sleep since the lock is still held.  If the new thread is "fast",
1123          * running to completion before we call wake, the thread we
1124          * eventually wake will find an unlocked mutex and will execute.
1125          * Either way we have correct behavior and nobody is orphaned on
1126          * the wait queue.
1127          */
1128         __futex_wake_ex(&mutex->value, shared, 1);
1129     }
1130 }
1131 
1132 /* This common inlined function is used to increment the counter of an
1133  * errorcheck or recursive mutex.
1134  *
1135  * For errorcheck mutexes, it will return EDEADLK
1136  * If the counter overflows, it will return EAGAIN
1137  * Otherwise, it atomically increments the counter and returns 0
1138  * after providing an acquire barrier.
1139  *
1140  * mtype is the current mutex type
1141  * mvalue is the current mutex value (already loaded)
1142  * mutex pointers to the mutex.
1143  */
1144 static __inline__ __attribute__((always_inline)) int
_recursive_increment(pthread_mutex_t * mutex,int mvalue,int mtype)1145 _recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
1146 {
1147     if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
1148         /* trying to re-lock a mutex we already acquired */
1149         return EDEADLK;
1150     }
1151 
1152     /* Detect recursive lock overflow and return EAGAIN.
1153      * This is safe because only the owner thread can modify the
1154      * counter bits in the mutex value.
1155      */
1156     if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
1157         return EAGAIN;
1158     }
1159 
1160     /* We own the mutex, but other threads are able to change
1161      * the lower bits (e.g. promoting it to "contended"), so we
1162      * need to use an atomic cmpxchg loop to update the counter.
1163      */
1164     for (;;) {
1165         /* increment counter, overflow was already checked */
1166         int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
1167         if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
1168             /* mutex is still locked, not need for a memory barrier */
1169             return 0;
1170         }
1171         /* the value was changed, this happens when another thread changes
1172          * the lower state bits from 1 to 2 to indicate contention. This
1173          * cannot change the counter, so simply reload and try again.
1174          */
1175         mvalue = mutex->value;
1176     }
1177 }
1178 
1179 __LIBC_HIDDEN__
pthread_mutex_lock_impl(pthread_mutex_t * mutex)1180 int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
1181 {
1182     int mvalue, mtype, tid, new_lock_type, shared;
1183 
1184     if (__unlikely(mutex == NULL))
1185         return EINVAL;
1186 
1187     mvalue = mutex->value;
1188     mtype = (mvalue & MUTEX_TYPE_MASK);
1189     shared = (mvalue & MUTEX_SHARED_MASK);
1190 
1191     /* Handle normal case first */
1192     if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
1193         _normal_lock(mutex, shared);
1194         return 0;
1195     }
1196 
1197     /* Do we already own this recursive or error-check mutex ? */
1198     tid = __get_thread()->kernel_id;
1199     if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1200         return _recursive_increment(mutex, mvalue, mtype);
1201 
1202     /* Add in shared state to avoid extra 'or' operations below */
1203     mtype |= shared;
1204 
1205     /* First, if the mutex is unlocked, try to quickly acquire it.
1206      * In the optimistic case where this works, set the state to 1 to
1207      * indicate locked with no contention */
1208     if (mvalue == mtype) {
1209         int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1210         if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
1211             ANDROID_MEMBAR_FULL();
1212             return 0;
1213         }
1214         /* argh, the value changed, reload before entering the loop */
1215         mvalue = mutex->value;
1216     }
1217 
1218     for (;;) {
1219         int newval;
1220 
1221         /* if the mutex is unlocked, its value should be 'mtype' and
1222          * we try to acquire it by setting its owner and state atomically.
1223          * NOTE: We put the state to 2 since we _know_ there is contention
1224          * when we are in this loop. This ensures all waiters will be
1225          * unlocked.
1226          */
1227         if (mvalue == mtype) {
1228             newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1229             /* TODO: Change this to __bionic_cmpxchg_acquire when we
1230              *        implement it to get rid of the explicit memory
1231              *        barrier below.
1232              */
1233             if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
1234                 mvalue = mutex->value;
1235                 continue;
1236             }
1237             ANDROID_MEMBAR_FULL();
1238             return 0;
1239         }
1240 
1241         /* the mutex is already locked by another thread, if its state is 1
1242          * we will change it to 2 to indicate contention. */
1243         if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
1244             newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
1245             if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
1246                 mvalue = mutex->value;
1247                 continue;
1248             }
1249             mvalue = newval;
1250         }
1251 
1252         /* wait until the mutex is unlocked */
1253         __futex_wait_ex(&mutex->value, shared, mvalue, NULL);
1254 
1255         mvalue = mutex->value;
1256     }
1257     /* NOTREACHED */
1258 }
1259 
pthread_mutex_lock(pthread_mutex_t * mutex)1260 int pthread_mutex_lock(pthread_mutex_t *mutex)
1261 {
1262     int err = pthread_mutex_lock_impl(mutex);
1263 #ifdef PTHREAD_DEBUG
1264     if (PTHREAD_DEBUG_ENABLED) {
1265         if (!err) {
1266             pthread_debug_mutex_lock_check(mutex);
1267         }
1268     }
1269 #endif
1270     return err;
1271 }
1272 
1273 __LIBC_HIDDEN__
pthread_mutex_unlock_impl(pthread_mutex_t * mutex)1274 int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
1275 {
1276     int mvalue, mtype, tid, oldv, shared;
1277 
1278     if (__unlikely(mutex == NULL))
1279         return EINVAL;
1280 
1281     mvalue = mutex->value;
1282     mtype  = (mvalue & MUTEX_TYPE_MASK);
1283     shared = (mvalue & MUTEX_SHARED_MASK);
1284 
1285     /* Handle common case first */
1286     if (__likely(mtype == MUTEX_TYPE_BITS_NORMAL)) {
1287         _normal_unlock(mutex, shared);
1288         return 0;
1289     }
1290 
1291     /* Do we already own this recursive or error-check mutex ? */
1292     tid = __get_thread()->kernel_id;
1293     if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
1294         return EPERM;
1295 
1296     /* If the counter is > 0, we can simply decrement it atomically.
1297      * Since other threads can mutate the lower state bits (and only the
1298      * lower state bits), use a cmpxchg to do it.
1299      */
1300     if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
1301         for (;;) {
1302             int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
1303             if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
1304                 /* success: we still own the mutex, so no memory barrier */
1305                 return 0;
1306             }
1307             /* the value changed, so reload and loop */
1308             mvalue = mutex->value;
1309         }
1310     }
1311 
1312     /* the counter is 0, so we're going to unlock the mutex by resetting
1313      * its value to 'unlocked'. We need to perform a swap in order
1314      * to read the current state, which will be 2 if there are waiters
1315      * to awake.
1316      *
1317      * TODO: Change this to __bionic_swap_release when we implement it
1318      *        to get rid of the explicit memory barrier below.
1319      */
1320     ANDROID_MEMBAR_FULL();  /* RELEASE BARRIER */
1321     mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
1322 
1323     /* Wake one waiting thread, if any */
1324     if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
1325         __futex_wake_ex(&mutex->value, shared, 1);
1326     }
1327     return 0;
1328 }
1329 
pthread_mutex_unlock(pthread_mutex_t * mutex)1330 int pthread_mutex_unlock(pthread_mutex_t *mutex)
1331 {
1332 #ifdef PTHREAD_DEBUG
1333     if (PTHREAD_DEBUG_ENABLED) {
1334         pthread_debug_mutex_unlock_check(mutex);
1335     }
1336 #endif
1337     return pthread_mutex_unlock_impl(mutex);
1338 }
1339 
1340 __LIBC_HIDDEN__
pthread_mutex_trylock_impl(pthread_mutex_t * mutex)1341 int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
1342 {
1343     int mvalue, mtype, tid, oldv, shared;
1344 
1345     if (__unlikely(mutex == NULL))
1346         return EINVAL;
1347 
1348     mvalue = mutex->value;
1349     mtype  = (mvalue & MUTEX_TYPE_MASK);
1350     shared = (mvalue & MUTEX_SHARED_MASK);
1351 
1352     /* Handle common case first */
1353     if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
1354     {
1355         if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
1356                              shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
1357                              &mutex->value) == 0) {
1358             ANDROID_MEMBAR_FULL();
1359             return 0;
1360         }
1361 
1362         return EBUSY;
1363     }
1364 
1365     /* Do we already own this recursive or error-check mutex ? */
1366     tid = __get_thread()->kernel_id;
1367     if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1368         return _recursive_increment(mutex, mvalue, mtype);
1369 
1370     /* Same as pthread_mutex_lock, except that we don't want to wait, and
1371      * the only operation that can succeed is a single cmpxchg to acquire the
1372      * lock if it is released / not owned by anyone. No need for a complex loop.
1373      */
1374     mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
1375     mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1376 
1377     if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
1378         ANDROID_MEMBAR_FULL();
1379         return 0;
1380     }
1381 
1382     return EBUSY;
1383 }
1384 
pthread_mutex_trylock(pthread_mutex_t * mutex)1385 int pthread_mutex_trylock(pthread_mutex_t *mutex)
1386 {
1387     int err = pthread_mutex_trylock_impl(mutex);
1388 #ifdef PTHREAD_DEBUG
1389     if (PTHREAD_DEBUG_ENABLED) {
1390         if (!err) {
1391             pthread_debug_mutex_lock_check(mutex);
1392         }
1393     }
1394 #endif
1395     return err;
1396 }
1397 
1398 /* initialize 'ts' with the difference between 'abstime' and the current time
1399  * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
1400  */
1401 static int
__timespec_to_absolute(struct timespec * ts,const struct timespec * abstime,clockid_t clock)1402 __timespec_to_absolute(struct timespec*  ts, const struct timespec*  abstime, clockid_t  clock)
1403 {
1404     clock_gettime(clock, ts);
1405     ts->tv_sec  = abstime->tv_sec - ts->tv_sec;
1406     ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
1407     if (ts->tv_nsec < 0) {
1408         ts->tv_sec--;
1409         ts->tv_nsec += 1000000000;
1410     }
1411     if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
1412         return -1;
1413 
1414     return 0;
1415 }
1416 
1417 /* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
1418  * milliseconds.
1419  */
1420 static void
__timespec_to_relative_msec(struct timespec * abstime,unsigned msecs,clockid_t clock)1421 __timespec_to_relative_msec(struct timespec*  abstime, unsigned  msecs, clockid_t  clock)
1422 {
1423     clock_gettime(clock, abstime);
1424     abstime->tv_sec  += msecs/1000;
1425     abstime->tv_nsec += (msecs%1000)*1000000;
1426     if (abstime->tv_nsec >= 1000000000) {
1427         abstime->tv_sec++;
1428         abstime->tv_nsec -= 1000000000;
1429     }
1430 }
1431 
1432 __LIBC_HIDDEN__
pthread_mutex_lock_timeout_np_impl(pthread_mutex_t * mutex,unsigned msecs)1433 int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
1434 {
1435     clockid_t        clock = CLOCK_MONOTONIC;
1436     struct timespec  abstime;
1437     struct timespec  ts;
1438     int               mvalue, mtype, tid, oldv, new_lock_type, shared;
1439 
1440     /* compute absolute expiration time */
1441     __timespec_to_relative_msec(&abstime, msecs, clock);
1442 
1443     if (__unlikely(mutex == NULL))
1444         return EINVAL;
1445 
1446     mvalue = mutex->value;
1447     mtype  = (mvalue & MUTEX_TYPE_MASK);
1448     shared = (mvalue & MUTEX_SHARED_MASK);
1449 
1450     /* Handle common case first */
1451     if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
1452     {
1453         const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
1454         const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1455         const int locked_contended   = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1456 
1457         /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
1458         if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
1459             ANDROID_MEMBAR_FULL();
1460             return 0;
1461         }
1462 
1463         /* loop while needed */
1464         while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
1465             if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1466                 return EBUSY;
1467 
1468             __futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
1469         }
1470         ANDROID_MEMBAR_FULL();
1471         return 0;
1472     }
1473 
1474     /* Do we already own this recursive or error-check mutex ? */
1475     tid = __get_thread()->kernel_id;
1476     if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1477         return _recursive_increment(mutex, mvalue, mtype);
1478 
1479     /* the following implements the same loop than pthread_mutex_lock_impl
1480      * but adds checks to ensure that the operation never exceeds the
1481      * absolute expiration time.
1482      */
1483     mtype |= shared;
1484 
1485     /* first try a quick lock */
1486     if (mvalue == mtype) {
1487         mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1488         if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
1489             ANDROID_MEMBAR_FULL();
1490             return 0;
1491         }
1492         mvalue = mutex->value;
1493     }
1494 
1495     for (;;) {
1496         struct timespec ts;
1497 
1498         /* if the value is 'unlocked', try to acquire it directly */
1499         /* NOTE: put state to 2 since we know there is contention */
1500         if (mvalue == mtype) /* unlocked */ {
1501             mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1502             if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
1503                 ANDROID_MEMBAR_FULL();
1504                 return 0;
1505             }
1506             /* the value changed before we could lock it. We need to check
1507              * the time to avoid livelocks, reload the value, then loop again. */
1508             if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1509                 return EBUSY;
1510 
1511             mvalue = mutex->value;
1512             continue;
1513         }
1514 
1515         /* The value is locked. If 'uncontended', try to switch its state
1516          * to 'contented' to ensure we get woken up later. */
1517         if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
1518             int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
1519             if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
1520                 /* this failed because the value changed, reload it */
1521                 mvalue = mutex->value;
1522             } else {
1523                 /* this succeeded, update mvalue */
1524                 mvalue = newval;
1525             }
1526         }
1527 
1528         /* check time and update 'ts' */
1529         if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1530             return EBUSY;
1531 
1532         /* Only wait to be woken up if the state is '2', otherwise we'll
1533          * simply loop right now. This can happen when the second cmpxchg
1534          * in our loop failed because the mutex was unlocked by another
1535          * thread.
1536          */
1537         if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
1538             if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
1539                 return EBUSY;
1540             }
1541             mvalue = mutex->value;
1542         }
1543     }
1544     /* NOTREACHED */
1545 }
1546 
pthread_mutex_lock_timeout_np(pthread_mutex_t * mutex,unsigned msecs)1547 int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
1548 {
1549     int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
1550 #ifdef PTHREAD_DEBUG
1551     if (PTHREAD_DEBUG_ENABLED) {
1552         if (!err) {
1553             pthread_debug_mutex_lock_check(mutex);
1554         }
1555     }
1556 #endif
1557     return err;
1558 }
1559 
pthread_mutex_destroy(pthread_mutex_t * mutex)1560 int pthread_mutex_destroy(pthread_mutex_t *mutex)
1561 {
1562     int ret;
1563 
1564     /* use trylock to ensure that the mutex value is
1565      * valid and is not already locked. */
1566     ret = pthread_mutex_trylock_impl(mutex);
1567     if (ret != 0)
1568         return ret;
1569 
1570     mutex->value = 0xdead10cc;
1571     return 0;
1572 }
1573 
1574 
1575 
pthread_condattr_init(pthread_condattr_t * attr)1576 int pthread_condattr_init(pthread_condattr_t *attr)
1577 {
1578     if (attr == NULL)
1579         return EINVAL;
1580 
1581     *attr = PTHREAD_PROCESS_PRIVATE;
1582     return 0;
1583 }
1584 
pthread_condattr_getpshared(pthread_condattr_t * attr,int * pshared)1585 int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
1586 {
1587     if (attr == NULL || pshared == NULL)
1588         return EINVAL;
1589 
1590     *pshared = *attr;
1591     return 0;
1592 }
1593 
pthread_condattr_setpshared(pthread_condattr_t * attr,int pshared)1594 int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
1595 {
1596     if (attr == NULL)
1597         return EINVAL;
1598 
1599     if (pshared != PTHREAD_PROCESS_SHARED &&
1600         pshared != PTHREAD_PROCESS_PRIVATE)
1601         return EINVAL;
1602 
1603     *attr = pshared;
1604     return 0;
1605 }
1606 
pthread_condattr_destroy(pthread_condattr_t * attr)1607 int pthread_condattr_destroy(pthread_condattr_t *attr)
1608 {
1609     if (attr == NULL)
1610         return EINVAL;
1611 
1612     *attr = 0xdeada11d;
1613     return 0;
1614 }
1615 
1616 /* We use one bit in condition variable values as the 'shared' flag
1617  * The rest is a counter.
1618  */
1619 #define COND_SHARED_MASK        0x0001
1620 #define COND_COUNTER_INCREMENT  0x0002
1621 #define COND_COUNTER_MASK       (~COND_SHARED_MASK)
1622 
1623 #define COND_IS_SHARED(c)  (((c)->value & COND_SHARED_MASK) != 0)
1624 
1625 /* XXX *technically* there is a race condition that could allow
1626  * XXX a signal to be missed.  If thread A is preempted in _wait()
1627  * XXX after unlocking the mutex and before waiting, and if other
1628  * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
1629  * XXX before thread A is scheduled again and calls futex_wait(),
1630  * XXX then the signal will be lost.
1631  */
1632 
pthread_cond_init(pthread_cond_t * cond,const pthread_condattr_t * attr)1633 int pthread_cond_init(pthread_cond_t *cond,
1634                       const pthread_condattr_t *attr)
1635 {
1636     if (cond == NULL)
1637         return EINVAL;
1638 
1639     cond->value = 0;
1640 
1641     if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
1642         cond->value |= COND_SHARED_MASK;
1643 
1644     return 0;
1645 }
1646 
pthread_cond_destroy(pthread_cond_t * cond)1647 int pthread_cond_destroy(pthread_cond_t *cond)
1648 {
1649     if (cond == NULL)
1650         return EINVAL;
1651 
1652     cond->value = 0xdeadc04d;
1653     return 0;
1654 }
1655 
1656 /* This function is used by pthread_cond_broadcast and
1657  * pthread_cond_signal to atomically decrement the counter
1658  * then wake-up 'counter' threads.
1659  */
1660 static int
__pthread_cond_pulse(pthread_cond_t * cond,int counter)1661 __pthread_cond_pulse(pthread_cond_t *cond, int  counter)
1662 {
1663     long flags;
1664 
1665     if (__unlikely(cond == NULL))
1666         return EINVAL;
1667 
1668     flags = (cond->value & ~COND_COUNTER_MASK);
1669     for (;;) {
1670         long oldval = cond->value;
1671         long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
1672                       | flags;
1673         if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
1674             break;
1675     }
1676 
1677     /*
1678      * Ensure that all memory accesses previously made by this thread are
1679      * visible to the woken thread(s).  On the other side, the "wait"
1680      * code will issue any necessary barriers when locking the mutex.
1681      *
1682      * This may not strictly be necessary -- if the caller follows
1683      * recommended practice and holds the mutex before signaling the cond
1684      * var, the mutex ops will provide correct semantics.  If they don't
1685      * hold the mutex, they're subject to race conditions anyway.
1686      */
1687     ANDROID_MEMBAR_FULL();
1688 
1689     __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
1690     return 0;
1691 }
1692 
pthread_cond_broadcast(pthread_cond_t * cond)1693 int pthread_cond_broadcast(pthread_cond_t *cond)
1694 {
1695     return __pthread_cond_pulse(cond, INT_MAX);
1696 }
1697 
pthread_cond_signal(pthread_cond_t * cond)1698 int pthread_cond_signal(pthread_cond_t *cond)
1699 {
1700     return __pthread_cond_pulse(cond, 1);
1701 }
1702 
pthread_cond_wait(pthread_cond_t * cond,pthread_mutex_t * mutex)1703 int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1704 {
1705     return pthread_cond_timedwait(cond, mutex, NULL);
1706 }
1707 
__pthread_cond_timedwait_relative(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1708 int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1709                                       pthread_mutex_t * mutex,
1710                                       const struct timespec *reltime)
1711 {
1712     int  status;
1713     int  oldvalue = cond->value;
1714 
1715     pthread_mutex_unlock(mutex);
1716     status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
1717     pthread_mutex_lock(mutex);
1718 
1719     if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1720     return 0;
1721 }
1722 
__pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime,clockid_t clock)1723 int __pthread_cond_timedwait(pthread_cond_t *cond,
1724                              pthread_mutex_t * mutex,
1725                              const struct timespec *abstime,
1726                              clockid_t clock)
1727 {
1728     struct timespec ts;
1729     struct timespec * tsp;
1730 
1731     if (abstime != NULL) {
1732         if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1733             return ETIMEDOUT;
1734         tsp = &ts;
1735     } else {
1736         tsp = NULL;
1737     }
1738 
1739     return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1740 }
1741 
pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1742 int pthread_cond_timedwait(pthread_cond_t *cond,
1743                            pthread_mutex_t * mutex,
1744                            const struct timespec *abstime)
1745 {
1746     return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1747 }
1748 
1749 
1750 /* this one exists only for backward binary compatibility */
pthread_cond_timedwait_monotonic(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1751 int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1752                                      pthread_mutex_t * mutex,
1753                                      const struct timespec *abstime)
1754 {
1755     return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1756 }
1757 
pthread_cond_timedwait_monotonic_np(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1758 int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1759                                      pthread_mutex_t * mutex,
1760                                      const struct timespec *abstime)
1761 {
1762     return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1763 }
1764 
pthread_cond_timedwait_relative_np(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1765 int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1766                                       pthread_mutex_t * mutex,
1767                                       const struct timespec *reltime)
1768 {
1769     return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1770 }
1771 
pthread_cond_timeout_np(pthread_cond_t * cond,pthread_mutex_t * mutex,unsigned msecs)1772 int pthread_cond_timeout_np(pthread_cond_t *cond,
1773                             pthread_mutex_t * mutex,
1774                             unsigned msecs)
1775 {
1776     struct timespec ts;
1777 
1778     ts.tv_sec = msecs / 1000;
1779     ts.tv_nsec = (msecs % 1000) * 1000000;
1780 
1781     return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1782 }
1783 
1784 
1785 
1786 /* A technical note regarding our thread-local-storage (TLS) implementation:
1787  *
1788  * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1789  * though the first TLSMAP_START keys are reserved for Bionic to hold
1790  * special thread-specific variables like errno or a pointer to
1791  * the current thread's descriptor.
1792  *
1793  * while stored in the TLS area, these entries cannot be accessed through
1794  * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1795  *
1796  * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1797  * to greatly simplify and speedup some OpenGL-related operations. though the
1798  * initialy value will be NULL on all threads.
1799  *
1800  * you can use pthread_getspecific()/setspecific() on these, and in theory
1801  * you could also call pthread_key_delete() as well, though this would
1802  * probably break some apps.
1803  *
1804  * The 'tlsmap_t' type defined below implements a shared global map of
1805  * currently created/allocated TLS keys and the destructors associated
1806  * with them. You should use tlsmap_lock/unlock to access it to avoid
1807  * any race condition.
1808  *
1809  * the global TLS map simply contains a bitmap of allocated keys, and
1810  * an array of destructors.
1811  *
1812  * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1813  * pointers. the TLS area of the main thread is stack-allocated in
1814  * __libc_init_common, while the TLS area of other threads is placed at
1815  * the top of their stack in pthread_create.
1816  *
1817  * when pthread_key_create() is called, it finds the first free key in the
1818  * bitmap, then set it to 1, saving the destructor altogether
1819  *
1820  * when pthread_key_delete() is called. it will erase the key's bitmap bit
1821  * and its destructor, and will also clear the key data in the TLS area of
1822  * all created threads. As mandated by Posix, it is the responsability of
1823  * the caller of pthread_key_delete() to properly reclaim the objects that
1824  * were pointed to by these data fields (either before or after the call).
1825  *
1826  */
1827 
1828 /* TLS Map implementation
1829  */
1830 
1831 #define TLSMAP_START      (TLS_SLOT_MAX_WELL_KNOWN+1)
1832 #define TLSMAP_SIZE       BIONIC_TLS_SLOTS
1833 #define TLSMAP_BITS       32
1834 #define TLSMAP_WORDS      ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1835 #define TLSMAP_WORD(m,k)  (m)->map[(k)/TLSMAP_BITS]
1836 #define TLSMAP_MASK(k)    (1U << ((k)&(TLSMAP_BITS-1)))
1837 
1838 /* this macro is used to quickly check that a key belongs to a reasonable range */
1839 #define TLSMAP_VALIDATE_KEY(key)  \
1840     ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1841 
1842 /* the type of tls key destructor functions */
1843 typedef void (*tls_dtor_t)(void*);
1844 
1845 typedef struct {
1846     int         init;                  /* see comment in tlsmap_lock() */
1847     uint32_t    map[TLSMAP_WORDS];     /* bitmap of allocated keys */
1848     tls_dtor_t  dtors[TLSMAP_SIZE];    /* key destructors */
1849 } tlsmap_t;
1850 
1851 static pthread_mutex_t  _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1852 static tlsmap_t         _tlsmap;
1853 
1854 /* lock the global TLS map lock and return a handle to it */
tlsmap_lock(void)1855 static __inline__ tlsmap_t* tlsmap_lock(void)
1856 {
1857     tlsmap_t*   m = &_tlsmap;
1858 
1859     pthread_mutex_lock(&_tlsmap_lock);
1860     /* we need to initialize the first entry of the 'map' array
1861      * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1862      * when declaring _tlsmap is a bit awkward and is going to
1863      * produce warnings, so do it the first time we use the map
1864      * instead
1865      */
1866     if (__unlikely(!m->init)) {
1867         TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1868         m->init          = 1;
1869     }
1870     return m;
1871 }
1872 
1873 /* unlock the global TLS map */
tlsmap_unlock(tlsmap_t * m)1874 static __inline__ void tlsmap_unlock(tlsmap_t*  m)
1875 {
1876     pthread_mutex_unlock(&_tlsmap_lock);
1877     (void)m;  /* a good compiler is a happy compiler */
1878 }
1879 
1880 /* test to see wether a key is allocated */
tlsmap_test(tlsmap_t * m,int key)1881 static __inline__ int tlsmap_test(tlsmap_t*  m, int  key)
1882 {
1883     return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1884 }
1885 
1886 /* set the destructor and bit flag on a newly allocated key */
tlsmap_set(tlsmap_t * m,int key,tls_dtor_t dtor)1887 static __inline__ void tlsmap_set(tlsmap_t*  m, int  key, tls_dtor_t  dtor)
1888 {
1889     TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1890     m->dtors[key]       = dtor;
1891 }
1892 
1893 /* clear the destructor and bit flag on an existing key */
tlsmap_clear(tlsmap_t * m,int key)1894 static __inline__ void  tlsmap_clear(tlsmap_t*  m, int  key)
1895 {
1896     TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1897     m->dtors[key]       = NULL;
1898 }
1899 
1900 /* allocate a new TLS key, return -1 if no room left */
tlsmap_alloc(tlsmap_t * m,tls_dtor_t dtor)1901 static int tlsmap_alloc(tlsmap_t*  m, tls_dtor_t  dtor)
1902 {
1903     int  key;
1904 
1905     for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1906         if ( !tlsmap_test(m, key) ) {
1907             tlsmap_set(m, key, dtor);
1908             return key;
1909         }
1910     }
1911     return -1;
1912 }
1913 
1914 
pthread_key_create(pthread_key_t * key,void (* destructor_function)(void *))1915 int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1916 {
1917     uint32_t   err = ENOMEM;
1918     tlsmap_t*  map = tlsmap_lock();
1919     int        k   = tlsmap_alloc(map, destructor_function);
1920 
1921     if (k >= 0) {
1922         *key = k;
1923         err  = 0;
1924     }
1925     tlsmap_unlock(map);
1926     return err;
1927 }
1928 
1929 
1930 /* This deletes a pthread_key_t. note that the standard mandates that this does
1931  * not call the destructor of non-NULL key values. Instead, it is the
1932  * responsibility of the caller to properly dispose of the corresponding data
1933  * and resources, using any means it finds suitable.
1934  *
1935  * On the other hand, this function will clear the corresponding key data
1936  * values in all known threads. this prevents later (invalid) calls to
1937  * pthread_getspecific() to receive invalid/stale values.
1938  */
pthread_key_delete(pthread_key_t key)1939 int pthread_key_delete(pthread_key_t key)
1940 {
1941     uint32_t             err;
1942     pthread_internal_t*  thr;
1943     tlsmap_t*            map;
1944 
1945     if (!TLSMAP_VALIDATE_KEY(key)) {
1946         return EINVAL;
1947     }
1948 
1949     map = tlsmap_lock();
1950 
1951     if (!tlsmap_test(map, key)) {
1952         err = EINVAL;
1953         goto err1;
1954     }
1955 
1956     /* clear value in all threads */
1957     pthread_mutex_lock(&gThreadListLock);
1958     for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1959         /* avoid zombie threads with a negative 'join_count'. these are really
1960          * already dead and don't have a TLS area anymore.
1961          *
1962          * similarly, it is possible to have thr->tls == NULL for threads that
1963          * were just recently created through pthread_create() but whose
1964          * startup trampoline (__thread_entry) hasn't been run yet by the
1965          * scheduler. thr->tls will also be NULL after it's stack has been
1966          * unmapped but before the ongoing pthread_join() is finished.
1967          * so check for this too.
1968          */
1969         if (thr->join_count < 0 || !thr->tls)
1970             continue;
1971 
1972         thr->tls[key] = NULL;
1973     }
1974     tlsmap_clear(map, key);
1975 
1976     pthread_mutex_unlock(&gThreadListLock);
1977     err = 0;
1978 
1979 err1:
1980     tlsmap_unlock(map);
1981     return err;
1982 }
1983 
1984 
pthread_setspecific(pthread_key_t key,const void * ptr)1985 int pthread_setspecific(pthread_key_t key, const void *ptr)
1986 {
1987     int        err = EINVAL;
1988     tlsmap_t*  map;
1989 
1990     if (TLSMAP_VALIDATE_KEY(key)) {
1991         /* check that we're trying to set data for an allocated key */
1992         map = tlsmap_lock();
1993         if (tlsmap_test(map, key)) {
1994             ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1995             err = 0;
1996         }
1997         tlsmap_unlock(map);
1998     }
1999     return err;
2000 }
2001 
pthread_getspecific(pthread_key_t key)2002 void * pthread_getspecific(pthread_key_t key)
2003 {
2004     if (!TLSMAP_VALIDATE_KEY(key)) {
2005         return NULL;
2006     }
2007 
2008     /* for performance reason, we do not lock/unlock the global TLS map
2009      * to check that the key is properly allocated. if the key was not
2010      * allocated, the value read from the TLS should always be NULL
2011      * due to pthread_key_delete() clearing the values for all threads.
2012      */
2013     return (void *)(((unsigned *)__get_tls())[key]);
2014 }
2015 
2016 /* Posix mandates that this be defined in <limits.h> but we don't have
2017  * it just yet.
2018  */
2019 #ifndef PTHREAD_DESTRUCTOR_ITERATIONS
2020 #  define PTHREAD_DESTRUCTOR_ITERATIONS  4
2021 #endif
2022 
2023 /* this function is called from pthread_exit() to remove all TLS key data
2024  * from this thread's TLS area. this must call the destructor of all keys
2025  * that have a non-NULL data value (and a non-NULL destructor).
2026  *
2027  * because destructors can do funky things like deleting/creating other
2028  * keys, we need to implement this in a loop
2029  */
pthread_key_clean_all(void)2030 static void pthread_key_clean_all(void)
2031 {
2032     tlsmap_t*    map;
2033     void**       tls = (void**)__get_tls();
2034     int          rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
2035 
2036     map = tlsmap_lock();
2037 
2038     for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
2039     {
2040         int  kk, count = 0;
2041 
2042         for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
2043             if ( tlsmap_test(map, kk) )
2044             {
2045                 void*       data = tls[kk];
2046                 tls_dtor_t  dtor = map->dtors[kk];
2047 
2048                 if (data != NULL && dtor != NULL)
2049                 {
2050                    /* we need to clear the key data now, this will prevent the
2051                     * destructor (or a later one) from seeing the old value if
2052                     * it calls pthread_getspecific() for some odd reason
2053                     *
2054                     * we do not do this if 'dtor == NULL' just in case another
2055                     * destructor function might be responsible for manually
2056                     * releasing the corresponding data.
2057                     */
2058                     tls[kk] = NULL;
2059 
2060                    /* because the destructor is free to call pthread_key_create
2061                     * and/or pthread_key_delete, we need to temporarily unlock
2062                     * the TLS map
2063                     */
2064                     tlsmap_unlock(map);
2065                     (*dtor)(data);
2066                     map = tlsmap_lock();
2067 
2068                     count += 1;
2069                 }
2070             }
2071         }
2072 
2073         /* if we didn't call any destructor, there is no need to check the
2074          * TLS data again
2075          */
2076         if (count == 0)
2077             break;
2078     }
2079     tlsmap_unlock(map);
2080 }
2081 
2082 // man says this should be in <linux/unistd.h>, but it isn't
2083 extern int tgkill(int tgid, int tid, int sig);
2084 
pthread_kill(pthread_t tid,int sig)2085 int pthread_kill(pthread_t tid, int sig)
2086 {
2087     int  ret;
2088     int  old_errno = errno;
2089     pthread_internal_t * thread = (pthread_internal_t *)tid;
2090 
2091     ret = tgkill(getpid(), thread->kernel_id, sig);
2092     if (ret < 0) {
2093         ret = errno;
2094         errno = old_errno;
2095     }
2096 
2097     return ret;
2098 }
2099 
2100 /* Despite the fact that our kernel headers define sigset_t explicitly
2101  * as a 32-bit integer, the kernel system call really expects a 64-bit
2102  * bitmap for the signal set, or more exactly an array of two-32-bit
2103  * values (see $KERNEL/arch/$ARCH/include/asm/signal.h for details).
2104  *
2105  * Unfortunately, we cannot fix the sigset_t definition without breaking
2106  * the C library ABI, so perform a little runtime translation here.
2107  */
2108 typedef union {
2109     sigset_t   bionic;
2110     uint32_t   kernel[2];
2111 } kernel_sigset_t;
2112 
2113 /* this is a private syscall stub */
2114 extern int __rt_sigprocmask(int, const kernel_sigset_t *, kernel_sigset_t *, size_t);
2115 
pthread_sigmask(int how,const sigset_t * set,sigset_t * oset)2116 int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
2117 {
2118     /* pthread_sigmask must return the error code, but the syscall
2119      * will set errno instead and return 0/-1
2120      */
2121     int ret, old_errno = errno;
2122 
2123     /* We must convert *set into a kernel_sigset_t */
2124     kernel_sigset_t  in_set, *in_set_ptr;
2125     kernel_sigset_t  out_set;
2126 
2127     in_set.kernel[0] = in_set.kernel[1] = 0;
2128     out_set.kernel[0] = out_set.kernel[1] = 0;
2129 
2130     /* 'in_set_ptr' is the second parameter to __rt_sigprocmask. It must be NULL
2131      * if 'set' is NULL to ensure correct semantics (which in this case would
2132      * be to ignore 'how' and return the current signal set into 'oset'.
2133      */
2134     if (set == NULL) {
2135         in_set_ptr = NULL;
2136     } else {
2137         in_set.bionic = *set;
2138         in_set_ptr = &in_set;
2139     }
2140 
2141     ret = __rt_sigprocmask(how, in_set_ptr, &out_set, sizeof(kernel_sigset_t));
2142     if (ret < 0)
2143         ret = errno;
2144 
2145     if (oset)
2146         *oset = out_set.bionic;
2147 
2148     errno = old_errno;
2149     return ret;
2150 }
2151 
2152 
pthread_getcpuclockid(pthread_t tid,clockid_t * clockid)2153 int pthread_getcpuclockid(pthread_t  tid, clockid_t  *clockid)
2154 {
2155     const int            CLOCK_IDTYPE_BITS = 3;
2156     pthread_internal_t*  thread = (pthread_internal_t*)tid;
2157 
2158     if (!thread)
2159         return ESRCH;
2160 
2161     *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
2162     return 0;
2163 }
2164 
2165 
2166 /* NOTE: this implementation doesn't support a init function that throws a C++ exception
2167  *       or calls fork()
2168  */
pthread_once(pthread_once_t * once_control,void (* init_routine)(void))2169 int  pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
2170 {
2171     static pthread_mutex_t   once_lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER;
2172     volatile pthread_once_t* ocptr = once_control;
2173     pthread_once_t value;
2174 
2175     /* PTHREAD_ONCE_INIT is 0, we use the following bit flags
2176      *
2177      *   bit 0 set  -> initialization is under way
2178      *   bit 1 set  -> initialization is complete
2179      */
2180 #define ONCE_INITIALIZING           (1 << 0)
2181 #define ONCE_COMPLETED              (1 << 1)
2182 
2183     /* First check if the once is already initialized. This will be the common
2184     * case and we want to make this as fast as possible. Note that this still
2185     * requires a load_acquire operation here to ensure that all the
2186     * stores performed by the initialization function are observable on
2187     * this CPU after we exit.
2188     */
2189     if (__likely((*ocptr & ONCE_COMPLETED) != 0)) {
2190         ANDROID_MEMBAR_FULL();
2191         return 0;
2192     }
2193 
2194     for (;;) {
2195         /* Try to atomically set the INITIALIZING flag.
2196          * This requires a cmpxchg loop, and we may need
2197          * to exit prematurely if we detect that
2198          * COMPLETED is now set.
2199          */
2200         int32_t  oldval, newval;
2201 
2202         do {
2203             oldval = *ocptr;
2204             if ((oldval & ONCE_COMPLETED) != 0)
2205                 break;
2206 
2207             newval = oldval | ONCE_INITIALIZING;
2208         } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);
2209 
2210         if ((oldval & ONCE_COMPLETED) != 0) {
2211             /* We detected that COMPLETED was set while in our loop */
2212             ANDROID_MEMBAR_FULL();
2213             return 0;
2214         }
2215 
2216         if ((oldval & ONCE_INITIALIZING) == 0) {
2217             /* We got there first, we can jump out of the loop to
2218              * handle the initialization */
2219             break;
2220         }
2221 
2222         /* Another thread is running the initialization and hasn't completed
2223          * yet, so wait for it, then try again. */
2224         __futex_wait_ex(ocptr, 0, oldval, NULL);
2225     }
2226 
2227     /* call the initialization function. */
2228     (*init_routine)();
2229 
2230     /* Do a store_release indicating that initialization is complete */
2231     ANDROID_MEMBAR_FULL();
2232     *ocptr = ONCE_COMPLETED;
2233 
2234     /* Wake up any waiters, if any */
2235     __futex_wake_ex(ocptr, 0, INT_MAX);
2236 
2237     return 0;
2238 }
2239 
2240 /* This value is not exported by kernel headers, so hardcode it here */
2241 #define MAX_TASK_COMM_LEN	16
2242 #define TASK_COMM_FMT 		"/proc/self/task/%u/comm"
2243 
pthread_setname_np(pthread_t thid,const char * thname)2244 int pthread_setname_np(pthread_t thid, const char *thname)
2245 {
2246     size_t thname_len;
2247     int saved_errno, ret;
2248 
2249     if (thid == 0 || thname == NULL)
2250         return EINVAL;
2251 
2252     thname_len = strlen(thname);
2253     if (thname_len >= MAX_TASK_COMM_LEN)
2254         return ERANGE;
2255 
2256     saved_errno = errno;
2257     if (thid == pthread_self())
2258     {
2259         ret = prctl(PR_SET_NAME, (unsigned long)thname, 0, 0, 0) ? errno : 0;
2260     }
2261     else
2262     {
2263         /* Have to change another thread's name */
2264         pthread_internal_t *thread = (pthread_internal_t *)thid;
2265         char comm_name[sizeof(TASK_COMM_FMT) + 8];
2266         ssize_t n;
2267         int fd;
2268 
2269         snprintf(comm_name, sizeof(comm_name), TASK_COMM_FMT, (unsigned int)thread->kernel_id);
2270         fd = open(comm_name, O_RDWR);
2271         if (fd == -1)
2272         {
2273             ret = errno;
2274             goto exit;
2275         }
2276         n = TEMP_FAILURE_RETRY(write(fd, thname, thname_len));
2277         close(fd);
2278 
2279         if (n < 0)
2280             ret = errno;
2281         else if ((size_t)n != thname_len)
2282             ret = EIO;
2283         else
2284             ret = 0;
2285     }
2286 exit:
2287     errno = saved_errno;
2288     return ret;
2289 }
2290 
2291 /* Return the kernel thread ID for a pthread.
2292  * This is only defined for implementations where pthread <-> kernel is 1:1, which this is.
2293  * Not the same as pthread_getthreadid_np, which is commonly defined to be opaque.
2294  * Internal, not an NDK API.
2295  */
2296 
__pthread_gettid(pthread_t thid)2297 pid_t __pthread_gettid(pthread_t thid)
2298 {
2299     pthread_internal_t* thread = (pthread_internal_t*)thid;
2300     return thread->kernel_id;
2301 }
2302 
__pthread_settid(pthread_t thid,pid_t tid)2303 int __pthread_settid(pthread_t thid, pid_t tid)
2304 {
2305     if (thid == 0)
2306         return EINVAL;
2307 
2308     pthread_internal_t* thread = (pthread_internal_t*)thid;
2309     thread->kernel_id = tid;
2310 
2311     return 0;
2312 }
2313