1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <assert.h>
30 #include <errno.h>
31 #include <fcntl.h>
32 #include <limits.h>
33 #include <malloc.h>
34 #include <memory.h>
35 #include <pthread.h>
36 #include <signal.h>
37 #include <stdint.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <sys/atomics.h>
41 #include <sys/mman.h>
42 #include <sys/prctl.h>
43 #include <sys/stat.h>
44 #include <sys/types.h>
45 #include <time.h>
46 #include <unistd.h>
47
48 #include "bionic_atomic_inline.h"
49 #include "bionic_futex.h"
50 #include "bionic_pthread.h"
51 #include "bionic_tls.h"
52 #include "pthread_internal.h"
53 #include "thread_private.h"
54
55 extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
56 extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
57
58 extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
59 extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
60 extern void _exit_thread(int retCode);
61 extern int __set_errno(int);
62
__futex_wake_ex(volatile void * ftx,int pshared,int val)63 int __futex_wake_ex(volatile void *ftx, int pshared, int val)
64 {
65 return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
66 }
67
__futex_wait_ex(volatile void * ftx,int pshared,int val,const struct timespec * timeout)68 int __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
69 {
70 return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
71 }
72
73 #define __likely(cond) __builtin_expect(!!(cond), 1)
74 #define __unlikely(cond) __builtin_expect(!!(cond), 0)
75
76 #ifdef __i386__
77 #define ATTRIBUTES __attribute__((noinline)) __attribute__((fastcall))
78 #else
79 #define ATTRIBUTES __attribute__((noinline))
80 #endif
81
82 void ATTRIBUTES _thread_created_hook(pid_t thread_id);
83
84 static const int kPthreadInitFailed = 1;
85
86 #define PTHREAD_ATTR_FLAG_DETACHED 0x00000001
87 #define PTHREAD_ATTR_FLAG_USER_STACK 0x00000002
88
89 #define DEFAULT_STACKSIZE (1024 * 1024)
90
91 static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
92
93
94 static const pthread_attr_t gDefaultPthreadAttr = {
95 .flags = 0,
96 .stack_base = NULL,
97 .stack_size = DEFAULT_STACKSIZE,
98 .guard_size = PAGE_SIZE,
99 .sched_policy = SCHED_NORMAL,
100 .sched_priority = 0
101 };
102
103 static pthread_internal_t* gThreadList = NULL;
104 static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
105 static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
106
107
108 static void
_pthread_internal_free(pthread_internal_t * thread)109 _pthread_internal_free(pthread_internal_t* thread)
110 {
111 if (thread != NULL) {
112 free(thread);
113 }
114 }
115
116
117 static void
_pthread_internal_remove_locked(pthread_internal_t * thread)118 _pthread_internal_remove_locked( pthread_internal_t* thread )
119 {
120 thread->next->prev = thread->prev;
121 thread->prev[0] = thread->next;
122 }
123
124 static void
_pthread_internal_remove(pthread_internal_t * thread)125 _pthread_internal_remove( pthread_internal_t* thread )
126 {
127 pthread_mutex_lock(&gThreadListLock);
128 _pthread_internal_remove_locked(thread);
129 pthread_mutex_unlock(&gThreadListLock);
130 }
131
132 __LIBC_ABI_PRIVATE__ void
_pthread_internal_add(pthread_internal_t * thread)133 _pthread_internal_add(pthread_internal_t* thread)
134 {
135 pthread_mutex_lock(&gThreadListLock);
136
137 thread->prev = &gThreadList;
138 thread->next = *(thread->prev);
139 if (thread->next != NULL) {
140 thread->next->prev = &thread->next;
141 }
142 *(thread->prev) = thread;
143
144 pthread_mutex_unlock(&gThreadListLock);
145 }
146
147 __LIBC_ABI_PRIVATE__ pthread_internal_t*
__get_thread(void)148 __get_thread(void)
149 {
150 void** tls = (void**)__get_tls();
151
152 return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
153 }
154
155
156 void*
__get_stack_base(int * p_stack_size)157 __get_stack_base(int *p_stack_size)
158 {
159 pthread_internal_t* thread = __get_thread();
160
161 *p_stack_size = thread->attr.stack_size;
162 return thread->attr.stack_base;
163 }
164
165
__init_tls(void ** tls,void * thread)166 void __init_tls(void** tls, void* thread)
167 {
168 int nn;
169
170 ((pthread_internal_t*)thread)->tls = tls;
171
172 // slot 0 must point to the tls area, this is required by the implementation
173 // of the x86 Linux kernel thread-local-storage
174 tls[TLS_SLOT_SELF] = (void*)tls;
175 tls[TLS_SLOT_THREAD_ID] = thread;
176 for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
177 tls[nn] = 0;
178
179 __set_tls( (void*)tls );
180 }
181
182
183 /*
184 * This trampoline is called from the assembly _pthread_clone() function.
185 */
__thread_entry(int (* func)(void *),void * arg,void ** tls)186 void __thread_entry(int (*func)(void*), void *arg, void **tls)
187 {
188 // Wait for our creating thread to release us. This lets it have time to
189 // notify gdb about this thread before we start doing anything.
190 //
191 // This also provides the memory barrier needed to ensure that all memory
192 // accesses previously made by the creating thread are visible to us.
193 pthread_mutex_t* start_mutex = (pthread_mutex_t*) &tls[TLS_SLOT_SELF];
194 pthread_mutex_lock(start_mutex);
195 pthread_mutex_destroy(start_mutex);
196
197 pthread_internal_t* thread = (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
198 __init_tls(tls, thread);
199
200 if ((thread->internal_flags & kPthreadInitFailed) != 0) {
201 pthread_exit(NULL);
202 }
203
204 int result = func(arg);
205 pthread_exit((void*) result);
206 }
207
208 #include <private/logd.h>
209
210 __LIBC_ABI_PRIVATE__
_init_thread(pthread_internal_t * thread,pid_t kernel_id,pthread_attr_t * attr,void * stack_base,bool add_to_thread_list)211 int _init_thread(pthread_internal_t* thread, pid_t kernel_id, pthread_attr_t* attr,
212 void* stack_base, bool add_to_thread_list)
213 {
214 int error = 0;
215
216 if (attr == NULL) {
217 thread->attr = gDefaultPthreadAttr;
218 } else {
219 thread->attr = *attr;
220 }
221 thread->attr.stack_base = stack_base;
222 thread->kernel_id = kernel_id;
223
224 // Make a note of whether the user supplied this stack (so we know whether or not to free it).
225 if (attr->stack_base == stack_base) {
226 thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
227 }
228
229 // Set the scheduling policy/priority of the thread.
230 if (thread->attr.sched_policy != SCHED_NORMAL) {
231 struct sched_param param;
232 param.sched_priority = thread->attr.sched_priority;
233 if (sched_setscheduler(kernel_id, thread->attr.sched_policy, ¶m) == -1) {
234 // For back compat reasons, we just warn about possible invalid sched_policy
235 const char* msg = "pthread_create sched_setscheduler call failed: %s\n";
236 __libc_android_log_print(ANDROID_LOG_WARN, "libc", msg, strerror(errno));
237 }
238 }
239
240 pthread_cond_init(&thread->join_cond, NULL);
241 thread->join_count = 0;
242 thread->cleanup_stack = NULL;
243
244 if (add_to_thread_list) {
245 _pthread_internal_add(thread);
246 }
247
248 return error;
249 }
250
mkstack(size_t size,size_t guard_size)251 static void *mkstack(size_t size, size_t guard_size)
252 {
253 pthread_mutex_lock(&mmap_lock);
254
255 int prot = PROT_READ | PROT_WRITE;
256 int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE;
257 void* stack = mmap(NULL, size, prot, flags, -1, 0);
258 if (stack == MAP_FAILED) {
259 stack = NULL;
260 goto done;
261 }
262
263 if (mprotect(stack, guard_size, PROT_NONE) == -1) {
264 munmap(stack, size);
265 stack = NULL;
266 goto done;
267 }
268
269 done:
270 pthread_mutex_unlock(&mmap_lock);
271 return stack;
272 }
273
274 /*
275 * Create a new thread. The thread's stack is laid out like so:
276 *
277 * +---------------------------+
278 * | pthread_internal_t |
279 * +---------------------------+
280 * | |
281 * | TLS area |
282 * | |
283 * +---------------------------+
284 * | |
285 * . .
286 * . stack area .
287 * . .
288 * | |
289 * +---------------------------+
290 * | guard page |
291 * +---------------------------+
292 *
293 * note that TLS[0] must be a pointer to itself, this is required
294 * by the thread-local storage implementation of the x86 Linux
295 * kernel, where the TLS pointer is read by reading fs:[0]
296 */
pthread_create(pthread_t * thread_out,pthread_attr_t const * attr,void * (* start_routine)(void *),void * arg)297 int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
298 void *(*start_routine)(void *), void * arg)
299 {
300 int old_errno = errno;
301
302 /* this will inform the rest of the C library that at least one thread
303 * was created. this will enforce certain functions to acquire/release
304 * locks (e.g. atexit()) to protect shared global structures.
305 *
306 * this works because pthread_create() is not called by the C library
307 * initialization routine that sets up the main thread's data structures.
308 */
309 __isthreaded = 1;
310
311 pthread_internal_t* thread = calloc(sizeof(*thread), 1);
312 if (thread == NULL) {
313 return ENOMEM;
314 }
315
316 if (attr == NULL) {
317 attr = &gDefaultPthreadAttr;
318 }
319
320 // make sure the stack is PAGE_SIZE aligned
321 size_t stack_size = (attr->stack_size + (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
322 uint8_t* stack = attr->stack_base;
323 if (stack == NULL) {
324 stack = mkstack(stack_size, attr->guard_size);
325 if (stack == NULL) {
326 _pthread_internal_free(thread);
327 return ENOMEM;
328 }
329 }
330
331 // Make room for TLS
332 void** tls = (void**)(stack + stack_size - BIONIC_TLS_SLOTS*sizeof(void*));
333
334 // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
335 // it from doing anything until after we notify the debugger about it
336 //
337 // This also provides the memory barrier we need to ensure that all
338 // memory accesses previously performed by this thread are visible to
339 // the new thread.
340 pthread_mutex_t* start_mutex = (pthread_mutex_t*) &tls[TLS_SLOT_SELF];
341 pthread_mutex_init(start_mutex, NULL);
342 pthread_mutex_lock(start_mutex);
343
344 tls[TLS_SLOT_THREAD_ID] = thread;
345
346 int flags = CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND |
347 CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED;
348 int tid = __pthread_clone((int(*)(void*))start_routine, tls, flags, arg);
349
350 if (tid < 0) {
351 int clone_errno = errno;
352 pthread_mutex_unlock(start_mutex);
353 if (stack != attr->stack_base) {
354 munmap(stack, stack_size);
355 }
356 _pthread_internal_free(thread);
357 errno = old_errno;
358 return clone_errno;
359 }
360
361 int init_errno = _init_thread(thread, tid, (pthread_attr_t*) attr, stack, true);
362 if (init_errno != 0) {
363 // Mark the thread detached and let its __thread_entry run to
364 // completion. (It'll just exit immediately, cleaning up its resources.)
365 thread->internal_flags |= kPthreadInitFailed;
366 thread->attr.flags |= PTHREAD_ATTR_FLAG_DETACHED;
367 pthread_mutex_unlock(start_mutex);
368 errno = old_errno;
369 return init_errno;
370 }
371
372 // Notify any debuggers about the new thread.
373 pthread_mutex_lock(&gDebuggerNotificationLock);
374 _thread_created_hook(tid);
375 pthread_mutex_unlock(&gDebuggerNotificationLock);
376
377 // Publish the pthread_t and let the thread run.
378 *thread_out = (pthread_t) thread;
379 pthread_mutex_unlock(start_mutex);
380
381 return 0;
382 }
383
384
pthread_attr_init(pthread_attr_t * attr)385 int pthread_attr_init(pthread_attr_t * attr)
386 {
387 *attr = gDefaultPthreadAttr;
388 return 0;
389 }
390
pthread_attr_destroy(pthread_attr_t * attr)391 int pthread_attr_destroy(pthread_attr_t * attr)
392 {
393 memset(attr, 0x42, sizeof(pthread_attr_t));
394 return 0;
395 }
396
pthread_attr_setdetachstate(pthread_attr_t * attr,int state)397 int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
398 {
399 if (state == PTHREAD_CREATE_DETACHED) {
400 attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
401 } else if (state == PTHREAD_CREATE_JOINABLE) {
402 attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
403 } else {
404 return EINVAL;
405 }
406 return 0;
407 }
408
pthread_attr_getdetachstate(pthread_attr_t const * attr,int * state)409 int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
410 {
411 *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
412 ? PTHREAD_CREATE_DETACHED
413 : PTHREAD_CREATE_JOINABLE;
414 return 0;
415 }
416
pthread_attr_setschedpolicy(pthread_attr_t * attr,int policy)417 int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
418 {
419 attr->sched_policy = policy;
420 return 0;
421 }
422
pthread_attr_getschedpolicy(pthread_attr_t const * attr,int * policy)423 int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
424 {
425 *policy = attr->sched_policy;
426 return 0;
427 }
428
pthread_attr_setschedparam(pthread_attr_t * attr,struct sched_param const * param)429 int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
430 {
431 attr->sched_priority = param->sched_priority;
432 return 0;
433 }
434
pthread_attr_getschedparam(pthread_attr_t const * attr,struct sched_param * param)435 int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
436 {
437 param->sched_priority = attr->sched_priority;
438 return 0;
439 }
440
pthread_attr_setstacksize(pthread_attr_t * attr,size_t stack_size)441 int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
442 {
443 if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
444 return EINVAL;
445 }
446 attr->stack_size = stack_size;
447 return 0;
448 }
449
pthread_attr_getstacksize(pthread_attr_t const * attr,size_t * stack_size)450 int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
451 {
452 *stack_size = attr->stack_size;
453 return 0;
454 }
455
pthread_attr_setstackaddr(pthread_attr_t * attr,void * stack_addr)456 int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
457 {
458 #if 1
459 // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
460 return ENOSYS;
461 #else
462 if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
463 return EINVAL;
464 }
465 attr->stack_base = stack_addr;
466 return 0;
467 #endif
468 }
469
pthread_attr_getstackaddr(pthread_attr_t const * attr,void ** stack_addr)470 int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
471 {
472 *stack_addr = (char*)attr->stack_base + attr->stack_size;
473 return 0;
474 }
475
pthread_attr_setstack(pthread_attr_t * attr,void * stack_base,size_t stack_size)476 int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
477 {
478 if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
479 return EINVAL;
480 }
481 if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
482 return EINVAL;
483 }
484 attr->stack_base = stack_base;
485 attr->stack_size = stack_size;
486 return 0;
487 }
488
pthread_attr_getstack(pthread_attr_t const * attr,void ** stack_base,size_t * stack_size)489 int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
490 {
491 *stack_base = attr->stack_base;
492 *stack_size = attr->stack_size;
493 return 0;
494 }
495
pthread_attr_setguardsize(pthread_attr_t * attr,size_t guard_size)496 int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
497 {
498 if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
499 return EINVAL;
500 }
501
502 attr->guard_size = guard_size;
503 return 0;
504 }
505
pthread_attr_getguardsize(pthread_attr_t const * attr,size_t * guard_size)506 int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
507 {
508 *guard_size = attr->guard_size;
509 return 0;
510 }
511
pthread_getattr_np(pthread_t thid,pthread_attr_t * attr)512 int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
513 {
514 pthread_internal_t * thread = (pthread_internal_t *)thid;
515 *attr = thread->attr;
516 return 0;
517 }
518
pthread_attr_setscope(pthread_attr_t * attr,int scope)519 int pthread_attr_setscope(pthread_attr_t *attr, int scope)
520 {
521 if (scope == PTHREAD_SCOPE_SYSTEM)
522 return 0;
523 if (scope == PTHREAD_SCOPE_PROCESS)
524 return ENOTSUP;
525
526 return EINVAL;
527 }
528
pthread_attr_getscope(pthread_attr_t const * attr)529 int pthread_attr_getscope(pthread_attr_t const *attr)
530 {
531 return PTHREAD_SCOPE_SYSTEM;
532 }
533
534
535 /* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
536 * and thread cancelation
537 */
538
__pthread_cleanup_push(__pthread_cleanup_t * c,__pthread_cleanup_func_t routine,void * arg)539 void __pthread_cleanup_push( __pthread_cleanup_t* c,
540 __pthread_cleanup_func_t routine,
541 void* arg )
542 {
543 pthread_internal_t* thread = __get_thread();
544
545 c->__cleanup_routine = routine;
546 c->__cleanup_arg = arg;
547 c->__cleanup_prev = thread->cleanup_stack;
548 thread->cleanup_stack = c;
549 }
550
__pthread_cleanup_pop(__pthread_cleanup_t * c,int execute)551 void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute )
552 {
553 pthread_internal_t* thread = __get_thread();
554
555 thread->cleanup_stack = c->__cleanup_prev;
556 if (execute)
557 c->__cleanup_routine(c->__cleanup_arg);
558 }
559
560 /* used by pthread_exit() to clean all TLS keys of the current thread */
561 static void pthread_key_clean_all(void);
562
pthread_exit(void * retval)563 void pthread_exit(void * retval)
564 {
565 pthread_internal_t* thread = __get_thread();
566 void* stack_base = thread->attr.stack_base;
567 int stack_size = thread->attr.stack_size;
568 int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
569 sigset_t mask;
570
571 // call the cleanup handlers first
572 while (thread->cleanup_stack) {
573 __pthread_cleanup_t* c = thread->cleanup_stack;
574 thread->cleanup_stack = c->__cleanup_prev;
575 c->__cleanup_routine(c->__cleanup_arg);
576 }
577
578 // call the TLS destructors, it is important to do that before removing this
579 // thread from the global list. this will ensure that if someone else deletes
580 // a TLS key, the corresponding value will be set to NULL in this thread's TLS
581 // space (see pthread_key_delete)
582 pthread_key_clean_all();
583
584 // if the thread is detached, destroy the pthread_internal_t
585 // otherwise, keep it in memory and signal any joiners
586 if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
587 _pthread_internal_remove(thread);
588 _pthread_internal_free(thread);
589 } else {
590 pthread_mutex_lock(&gThreadListLock);
591
592 /* make sure that the thread struct doesn't have stale pointers to a stack that
593 * will be unmapped after the exit call below.
594 */
595 if (!user_stack) {
596 thread->attr.stack_base = NULL;
597 thread->attr.stack_size = 0;
598 thread->tls = NULL;
599 }
600
601 /* the join_count field is used to store the number of threads waiting for
602 * the termination of this thread with pthread_join(),
603 *
604 * if it is positive we need to signal the waiters, and we do not touch
605 * the count (it will be decremented by the waiters, the last one will
606 * also remove/free the thread structure
607 *
608 * if it is zero, we set the count value to -1 to indicate that the
609 * thread is in 'zombie' state: it has stopped executing, and its stack
610 * is gone (as well as its TLS area). when another thread calls pthread_join()
611 * on it, it will immediately free the thread and return.
612 */
613 thread->return_value = retval;
614 if (thread->join_count > 0) {
615 pthread_cond_broadcast(&thread->join_cond);
616 } else {
617 thread->join_count = -1; /* zombie thread */
618 }
619 pthread_mutex_unlock(&gThreadListLock);
620 }
621
622 sigfillset(&mask);
623 sigdelset(&mask, SIGSEGV);
624 (void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL);
625
626 // destroy the thread stack
627 if (user_stack)
628 _exit_thread((int)retval);
629 else
630 _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
631 }
632
pthread_join(pthread_t thid,void ** ret_val)633 int pthread_join(pthread_t thid, void ** ret_val)
634 {
635 pthread_internal_t* thread = (pthread_internal_t*)thid;
636 int count;
637
638 // check that the thread still exists and is not detached
639 pthread_mutex_lock(&gThreadListLock);
640
641 for (thread = gThreadList; thread != NULL; thread = thread->next)
642 if (thread == (pthread_internal_t*)thid)
643 goto FoundIt;
644
645 pthread_mutex_unlock(&gThreadListLock);
646 return ESRCH;
647
648 FoundIt:
649 if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
650 pthread_mutex_unlock(&gThreadListLock);
651 return EINVAL;
652 }
653
654 /* wait for thread death when needed
655 *
656 * if the 'join_count' is negative, this is a 'zombie' thread that
657 * is already dead and without stack/TLS
658 *
659 * otherwise, we need to increment 'join-count' and wait to be signaled
660 */
661 count = thread->join_count;
662 if (count >= 0) {
663 thread->join_count += 1;
664 pthread_cond_wait( &thread->join_cond, &gThreadListLock );
665 count = --thread->join_count;
666 }
667 if (ret_val)
668 *ret_val = thread->return_value;
669
670 /* remove thread descriptor when we're the last joiner or when the
671 * thread was already a zombie.
672 */
673 if (count <= 0) {
674 _pthread_internal_remove_locked(thread);
675 _pthread_internal_free(thread);
676 }
677 pthread_mutex_unlock(&gThreadListLock);
678 return 0;
679 }
680
pthread_detach(pthread_t thid)681 int pthread_detach( pthread_t thid )
682 {
683 pthread_internal_t* thread;
684 int result = 0;
685 int flags;
686
687 pthread_mutex_lock(&gThreadListLock);
688 for (thread = gThreadList; thread != NULL; thread = thread->next)
689 if (thread == (pthread_internal_t*)thid)
690 goto FoundIt;
691
692 result = ESRCH;
693 goto Exit;
694
695 FoundIt:
696 do {
697 flags = thread->attr.flags;
698
699 if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
700 /* thread is not joinable ! */
701 result = EINVAL;
702 goto Exit;
703 }
704 }
705 while ( __bionic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
706 (volatile int*)&thread->attr.flags ) != 0 );
707 Exit:
708 pthread_mutex_unlock(&gThreadListLock);
709 return result;
710 }
711
pthread_self(void)712 pthread_t pthread_self(void)
713 {
714 return (pthread_t)__get_thread();
715 }
716
pthread_equal(pthread_t one,pthread_t two)717 int pthread_equal(pthread_t one, pthread_t two)
718 {
719 return (one == two ? 1 : 0);
720 }
721
pthread_getschedparam(pthread_t thid,int * policy,struct sched_param * param)722 int pthread_getschedparam(pthread_t thid, int * policy,
723 struct sched_param * param)
724 {
725 int old_errno = errno;
726
727 pthread_internal_t * thread = (pthread_internal_t *)thid;
728 int err = sched_getparam(thread->kernel_id, param);
729 if (!err) {
730 *policy = sched_getscheduler(thread->kernel_id);
731 } else {
732 err = errno;
733 errno = old_errno;
734 }
735 return err;
736 }
737
pthread_setschedparam(pthread_t thid,int policy,struct sched_param const * param)738 int pthread_setschedparam(pthread_t thid, int policy,
739 struct sched_param const * param)
740 {
741 pthread_internal_t * thread = (pthread_internal_t *)thid;
742 int old_errno = errno;
743 int ret;
744
745 ret = sched_setscheduler(thread->kernel_id, policy, param);
746 if (ret < 0) {
747 ret = errno;
748 errno = old_errno;
749 }
750 return ret;
751 }
752
753
754 /* a mutex is implemented as a 32-bit integer holding the following fields
755 *
756 * bits: name description
757 * 31-16 tid owner thread's kernel id (recursive and errorcheck only)
758 * 15-14 type mutex type
759 * 13 shared process-shared flag
760 * 12-2 counter counter of recursive mutexes
761 * 1-0 state lock state (0, 1 or 2)
762 */
763
764 /* Convenience macro, creates a mask of 'bits' bits that starts from
765 * the 'shift'-th least significant bit in a 32-bit word.
766 *
767 * Examples: FIELD_MASK(0,4) -> 0xf
768 * FIELD_MASK(16,9) -> 0x1ff0000
769 */
770 #define FIELD_MASK(shift,bits) (((1 << (bits))-1) << (shift))
771
772 /* This one is used to create a bit pattern from a given field value */
773 #define FIELD_TO_BITS(val,shift,bits) (((val) & ((1 << (bits))-1)) << (shift))
774
775 /* And this one does the opposite, i.e. extract a field's value from a bit pattern */
776 #define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1))
777
778 /* Mutex state:
779 *
780 * 0 for unlocked
781 * 1 for locked, no waiters
782 * 2 for locked, maybe waiters
783 */
784 #define MUTEX_STATE_SHIFT 0
785 #define MUTEX_STATE_LEN 2
786
787 #define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
788 #define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
789 #define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
790
791 #define MUTEX_STATE_UNLOCKED 0 /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
792 #define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */
793 #define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
794
795 #define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
796 #define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
797
798 #define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
799 #define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
800 #define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
801
802 /* return true iff the mutex if locked with no waiters */
803 #define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
804
805 /* return true iff the mutex if locked with maybe waiters */
806 #define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
807
808 /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
809 #define MUTEX_STATE_BITS_FLIP_CONTENTION(v) ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
810
811 /* Mutex counter:
812 *
813 * We need to check for overflow before incrementing, and we also need to
814 * detect when the counter is 0
815 */
816 #define MUTEX_COUNTER_SHIFT 2
817 #define MUTEX_COUNTER_LEN 11
818 #define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
819
820 #define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v) (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
821 #define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
822
823 /* Used to increment the counter directly after overflow has been checked */
824 #define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
825
826 /* Returns true iff the counter is 0 */
827 #define MUTEX_COUNTER_BITS_ARE_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
828
829 /* Mutex shared bit flag
830 *
831 * This flag is set to indicate that the mutex is shared among processes.
832 * This changes the futex opcode we use for futex wait/wake operations
833 * (non-shared operations are much faster).
834 */
835 #define MUTEX_SHARED_SHIFT 13
836 #define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1)
837
838 /* Mutex type:
839 *
840 * We support normal, recursive and errorcheck mutexes.
841 *
842 * The constants defined here *cannot* be changed because they must match
843 * the C library ABI which defines the following initialization values in
844 * <pthread.h>:
845 *
846 * __PTHREAD_MUTEX_INIT_VALUE
847 * __PTHREAD_RECURSIVE_MUTEX_VALUE
848 * __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
849 */
850 #define MUTEX_TYPE_SHIFT 14
851 #define MUTEX_TYPE_LEN 2
852 #define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
853
854 #define MUTEX_TYPE_NORMAL 0 /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
855 #define MUTEX_TYPE_RECURSIVE 1
856 #define MUTEX_TYPE_ERRORCHECK 2
857
858 #define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
859
860 #define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
861 #define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
862 #define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
863
864 /* Mutex owner field:
865 *
866 * This is only used for recursive and errorcheck mutexes. It holds the
867 * kernel TID of the owning thread. Note that this works because the Linux
868 * kernel _only_ uses 16-bit values for thread ids.
869 *
870 * More specifically, it will wrap to 10000 when it reaches over 32768 for
871 * application processes. You can check this by running the following inside
872 * an adb shell session:
873 *
874 OLDPID=$$;
875 while true; do
876 NEWPID=$(sh -c 'echo $$')
877 if [ "$NEWPID" -gt 32768 ]; then
878 echo "AARGH: new PID $NEWPID is too high!"
879 exit 1
880 fi
881 if [ "$NEWPID" -lt "$OLDPID" ]; then
882 echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
883 else
884 echo -n "$NEWPID!"
885 fi
886 OLDPID=$NEWPID
887 done
888
889 * Note that you can run the same example on a desktop Linux system,
890 * the wrapping will also happen at 32768, but will go back to 300 instead.
891 */
892 #define MUTEX_OWNER_SHIFT 16
893 #define MUTEX_OWNER_LEN 16
894
895 #define MUTEX_OWNER_FROM_BITS(v) FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
896 #define MUTEX_OWNER_TO_BITS(v) FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
897
898 /* Convenience macros.
899 *
900 * These are used to form or modify the bit pattern of a given mutex value
901 */
902
903
904
905 /* a mutex attribute holds the following fields
906 *
907 * bits: name description
908 * 0-3 type type of mutex
909 * 4 shared process-shared flag
910 */
911 #define MUTEXATTR_TYPE_MASK 0x000f
912 #define MUTEXATTR_SHARED_MASK 0x0010
913
914
pthread_mutexattr_init(pthread_mutexattr_t * attr)915 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
916 {
917 if (attr) {
918 *attr = PTHREAD_MUTEX_DEFAULT;
919 return 0;
920 } else {
921 return EINVAL;
922 }
923 }
924
pthread_mutexattr_destroy(pthread_mutexattr_t * attr)925 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
926 {
927 if (attr) {
928 *attr = -1;
929 return 0;
930 } else {
931 return EINVAL;
932 }
933 }
934
pthread_mutexattr_gettype(const pthread_mutexattr_t * attr,int * type)935 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
936 {
937 if (attr) {
938 int atype = (*attr & MUTEXATTR_TYPE_MASK);
939
940 if (atype >= PTHREAD_MUTEX_NORMAL &&
941 atype <= PTHREAD_MUTEX_ERRORCHECK) {
942 *type = atype;
943 return 0;
944 }
945 }
946 return EINVAL;
947 }
948
pthread_mutexattr_settype(pthread_mutexattr_t * attr,int type)949 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
950 {
951 if (attr && type >= PTHREAD_MUTEX_NORMAL &&
952 type <= PTHREAD_MUTEX_ERRORCHECK ) {
953 *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
954 return 0;
955 }
956 return EINVAL;
957 }
958
959 /* process-shared mutexes are not supported at the moment */
960
pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,int pshared)961 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
962 {
963 if (!attr)
964 return EINVAL;
965
966 switch (pshared) {
967 case PTHREAD_PROCESS_PRIVATE:
968 *attr &= ~MUTEXATTR_SHARED_MASK;
969 return 0;
970
971 case PTHREAD_PROCESS_SHARED:
972 /* our current implementation of pthread actually supports shared
973 * mutexes but won't cleanup if a process dies with the mutex held.
974 * Nevertheless, it's better than nothing. Shared mutexes are used
975 * by surfaceflinger and audioflinger.
976 */
977 *attr |= MUTEXATTR_SHARED_MASK;
978 return 0;
979 }
980 return EINVAL;
981 }
982
pthread_mutexattr_getpshared(pthread_mutexattr_t * attr,int * pshared)983 int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
984 {
985 if (!attr || !pshared)
986 return EINVAL;
987
988 *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
989 : PTHREAD_PROCESS_PRIVATE;
990 return 0;
991 }
992
pthread_mutex_init(pthread_mutex_t * mutex,const pthread_mutexattr_t * attr)993 int pthread_mutex_init(pthread_mutex_t *mutex,
994 const pthread_mutexattr_t *attr)
995 {
996 int value = 0;
997
998 if (mutex == NULL)
999 return EINVAL;
1000
1001 if (__likely(attr == NULL)) {
1002 mutex->value = MUTEX_TYPE_BITS_NORMAL;
1003 return 0;
1004 }
1005
1006 if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
1007 value |= MUTEX_SHARED_MASK;
1008
1009 switch (*attr & MUTEXATTR_TYPE_MASK) {
1010 case PTHREAD_MUTEX_NORMAL:
1011 value |= MUTEX_TYPE_BITS_NORMAL;
1012 break;
1013 case PTHREAD_MUTEX_RECURSIVE:
1014 value |= MUTEX_TYPE_BITS_RECURSIVE;
1015 break;
1016 case PTHREAD_MUTEX_ERRORCHECK:
1017 value |= MUTEX_TYPE_BITS_ERRORCHECK;
1018 break;
1019 default:
1020 return EINVAL;
1021 }
1022
1023 mutex->value = value;
1024 return 0;
1025 }
1026
1027
1028 /*
1029 * Lock a non-recursive mutex.
1030 *
1031 * As noted above, there are three states:
1032 * 0 (unlocked, no contention)
1033 * 1 (locked, no contention)
1034 * 2 (locked, contention)
1035 *
1036 * Non-recursive mutexes don't use the thread-id or counter fields, and the
1037 * "type" value is zero, so the only bits that will be set are the ones in
1038 * the lock state field.
1039 */
1040 static __inline__ void
_normal_lock(pthread_mutex_t * mutex,int shared)1041 _normal_lock(pthread_mutex_t* mutex, int shared)
1042 {
1043 /* convenience shortcuts */
1044 const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
1045 const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1046 /*
1047 * The common case is an unlocked mutex, so we begin by trying to
1048 * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
1049 * __bionic_cmpxchg() returns 0 if it made the swap successfully.
1050 * If the result is nonzero, this lock is already held by another thread.
1051 */
1052 if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
1053 const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1054 /*
1055 * We want to go to sleep until the mutex is available, which
1056 * requires promoting it to state 2 (CONTENDED). We need to
1057 * swap in the new state value and then wait until somebody wakes us up.
1058 *
1059 * __bionic_swap() returns the previous value. We swap 2 in and
1060 * see if we got zero back; if so, we have acquired the lock. If
1061 * not, another thread still holds the lock and we wait again.
1062 *
1063 * The second argument to the __futex_wait() call is compared
1064 * against the current value. If it doesn't match, __futex_wait()
1065 * returns immediately (otherwise, it sleeps for a time specified
1066 * by the third argument; 0 means sleep forever). This ensures
1067 * that the mutex is in state 2 when we go to sleep on it, which
1068 * guarantees a wake-up call.
1069 */
1070 while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
1071 __futex_wait_ex(&mutex->value, shared, locked_contended, 0);
1072 }
1073 ANDROID_MEMBAR_FULL();
1074 }
1075
1076 /*
1077 * Release a non-recursive mutex. The caller is responsible for determining
1078 * that we are in fact the owner of this lock.
1079 */
1080 static __inline__ void
_normal_unlock(pthread_mutex_t * mutex,int shared)1081 _normal_unlock(pthread_mutex_t* mutex, int shared)
1082 {
1083 ANDROID_MEMBAR_FULL();
1084
1085 /*
1086 * The mutex state will be 1 or (rarely) 2. We use an atomic decrement
1087 * to release the lock. __bionic_atomic_dec() returns the previous value;
1088 * if it wasn't 1 we have to do some additional work.
1089 */
1090 if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
1091 /*
1092 * Start by releasing the lock. The decrement changed it from
1093 * "contended lock" to "uncontended lock", which means we still
1094 * hold it, and anybody who tries to sneak in will push it back
1095 * to state 2.
1096 *
1097 * Once we set it to zero the lock is up for grabs. We follow
1098 * this with a __futex_wake() to ensure that one of the waiting
1099 * threads has a chance to grab it.
1100 *
1101 * This doesn't cause a race with the swap/wait pair in
1102 * _normal_lock(), because the __futex_wait() call there will
1103 * return immediately if the mutex value isn't 2.
1104 */
1105 mutex->value = shared;
1106
1107 /*
1108 * Wake up one waiting thread. We don't know which thread will be
1109 * woken or when it'll start executing -- futexes make no guarantees
1110 * here. There may not even be a thread waiting.
1111 *
1112 * The newly-woken thread will replace the 0 we just set above
1113 * with 2, which means that when it eventually releases the mutex
1114 * it will also call FUTEX_WAKE. This results in one extra wake
1115 * call whenever a lock is contended, but lets us avoid forgetting
1116 * anyone without requiring us to track the number of sleepers.
1117 *
1118 * It's possible for another thread to sneak in and grab the lock
1119 * between the zero assignment above and the wake call below. If
1120 * the new thread is "slow" and holds the lock for a while, we'll
1121 * wake up a sleeper, which will swap in a 2 and then go back to
1122 * sleep since the lock is still held. If the new thread is "fast",
1123 * running to completion before we call wake, the thread we
1124 * eventually wake will find an unlocked mutex and will execute.
1125 * Either way we have correct behavior and nobody is orphaned on
1126 * the wait queue.
1127 */
1128 __futex_wake_ex(&mutex->value, shared, 1);
1129 }
1130 }
1131
1132 /* This common inlined function is used to increment the counter of an
1133 * errorcheck or recursive mutex.
1134 *
1135 * For errorcheck mutexes, it will return EDEADLK
1136 * If the counter overflows, it will return EAGAIN
1137 * Otherwise, it atomically increments the counter and returns 0
1138 * after providing an acquire barrier.
1139 *
1140 * mtype is the current mutex type
1141 * mvalue is the current mutex value (already loaded)
1142 * mutex pointers to the mutex.
1143 */
1144 static __inline__ __attribute__((always_inline)) int
_recursive_increment(pthread_mutex_t * mutex,int mvalue,int mtype)1145 _recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
1146 {
1147 if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
1148 /* trying to re-lock a mutex we already acquired */
1149 return EDEADLK;
1150 }
1151
1152 /* Detect recursive lock overflow and return EAGAIN.
1153 * This is safe because only the owner thread can modify the
1154 * counter bits in the mutex value.
1155 */
1156 if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
1157 return EAGAIN;
1158 }
1159
1160 /* We own the mutex, but other threads are able to change
1161 * the lower bits (e.g. promoting it to "contended"), so we
1162 * need to use an atomic cmpxchg loop to update the counter.
1163 */
1164 for (;;) {
1165 /* increment counter, overflow was already checked */
1166 int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
1167 if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
1168 /* mutex is still locked, not need for a memory barrier */
1169 return 0;
1170 }
1171 /* the value was changed, this happens when another thread changes
1172 * the lower state bits from 1 to 2 to indicate contention. This
1173 * cannot change the counter, so simply reload and try again.
1174 */
1175 mvalue = mutex->value;
1176 }
1177 }
1178
1179 __LIBC_HIDDEN__
pthread_mutex_lock_impl(pthread_mutex_t * mutex)1180 int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
1181 {
1182 int mvalue, mtype, tid, new_lock_type, shared;
1183
1184 if (__unlikely(mutex == NULL))
1185 return EINVAL;
1186
1187 mvalue = mutex->value;
1188 mtype = (mvalue & MUTEX_TYPE_MASK);
1189 shared = (mvalue & MUTEX_SHARED_MASK);
1190
1191 /* Handle normal case first */
1192 if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
1193 _normal_lock(mutex, shared);
1194 return 0;
1195 }
1196
1197 /* Do we already own this recursive or error-check mutex ? */
1198 tid = __get_thread()->kernel_id;
1199 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1200 return _recursive_increment(mutex, mvalue, mtype);
1201
1202 /* Add in shared state to avoid extra 'or' operations below */
1203 mtype |= shared;
1204
1205 /* First, if the mutex is unlocked, try to quickly acquire it.
1206 * In the optimistic case where this works, set the state to 1 to
1207 * indicate locked with no contention */
1208 if (mvalue == mtype) {
1209 int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1210 if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
1211 ANDROID_MEMBAR_FULL();
1212 return 0;
1213 }
1214 /* argh, the value changed, reload before entering the loop */
1215 mvalue = mutex->value;
1216 }
1217
1218 for (;;) {
1219 int newval;
1220
1221 /* if the mutex is unlocked, its value should be 'mtype' and
1222 * we try to acquire it by setting its owner and state atomically.
1223 * NOTE: We put the state to 2 since we _know_ there is contention
1224 * when we are in this loop. This ensures all waiters will be
1225 * unlocked.
1226 */
1227 if (mvalue == mtype) {
1228 newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1229 /* TODO: Change this to __bionic_cmpxchg_acquire when we
1230 * implement it to get rid of the explicit memory
1231 * barrier below.
1232 */
1233 if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
1234 mvalue = mutex->value;
1235 continue;
1236 }
1237 ANDROID_MEMBAR_FULL();
1238 return 0;
1239 }
1240
1241 /* the mutex is already locked by another thread, if its state is 1
1242 * we will change it to 2 to indicate contention. */
1243 if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
1244 newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
1245 if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
1246 mvalue = mutex->value;
1247 continue;
1248 }
1249 mvalue = newval;
1250 }
1251
1252 /* wait until the mutex is unlocked */
1253 __futex_wait_ex(&mutex->value, shared, mvalue, NULL);
1254
1255 mvalue = mutex->value;
1256 }
1257 /* NOTREACHED */
1258 }
1259
pthread_mutex_lock(pthread_mutex_t * mutex)1260 int pthread_mutex_lock(pthread_mutex_t *mutex)
1261 {
1262 int err = pthread_mutex_lock_impl(mutex);
1263 #ifdef PTHREAD_DEBUG
1264 if (PTHREAD_DEBUG_ENABLED) {
1265 if (!err) {
1266 pthread_debug_mutex_lock_check(mutex);
1267 }
1268 }
1269 #endif
1270 return err;
1271 }
1272
1273 __LIBC_HIDDEN__
pthread_mutex_unlock_impl(pthread_mutex_t * mutex)1274 int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
1275 {
1276 int mvalue, mtype, tid, oldv, shared;
1277
1278 if (__unlikely(mutex == NULL))
1279 return EINVAL;
1280
1281 mvalue = mutex->value;
1282 mtype = (mvalue & MUTEX_TYPE_MASK);
1283 shared = (mvalue & MUTEX_SHARED_MASK);
1284
1285 /* Handle common case first */
1286 if (__likely(mtype == MUTEX_TYPE_BITS_NORMAL)) {
1287 _normal_unlock(mutex, shared);
1288 return 0;
1289 }
1290
1291 /* Do we already own this recursive or error-check mutex ? */
1292 tid = __get_thread()->kernel_id;
1293 if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
1294 return EPERM;
1295
1296 /* If the counter is > 0, we can simply decrement it atomically.
1297 * Since other threads can mutate the lower state bits (and only the
1298 * lower state bits), use a cmpxchg to do it.
1299 */
1300 if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
1301 for (;;) {
1302 int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
1303 if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
1304 /* success: we still own the mutex, so no memory barrier */
1305 return 0;
1306 }
1307 /* the value changed, so reload and loop */
1308 mvalue = mutex->value;
1309 }
1310 }
1311
1312 /* the counter is 0, so we're going to unlock the mutex by resetting
1313 * its value to 'unlocked'. We need to perform a swap in order
1314 * to read the current state, which will be 2 if there are waiters
1315 * to awake.
1316 *
1317 * TODO: Change this to __bionic_swap_release when we implement it
1318 * to get rid of the explicit memory barrier below.
1319 */
1320 ANDROID_MEMBAR_FULL(); /* RELEASE BARRIER */
1321 mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
1322
1323 /* Wake one waiting thread, if any */
1324 if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
1325 __futex_wake_ex(&mutex->value, shared, 1);
1326 }
1327 return 0;
1328 }
1329
pthread_mutex_unlock(pthread_mutex_t * mutex)1330 int pthread_mutex_unlock(pthread_mutex_t *mutex)
1331 {
1332 #ifdef PTHREAD_DEBUG
1333 if (PTHREAD_DEBUG_ENABLED) {
1334 pthread_debug_mutex_unlock_check(mutex);
1335 }
1336 #endif
1337 return pthread_mutex_unlock_impl(mutex);
1338 }
1339
1340 __LIBC_HIDDEN__
pthread_mutex_trylock_impl(pthread_mutex_t * mutex)1341 int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
1342 {
1343 int mvalue, mtype, tid, oldv, shared;
1344
1345 if (__unlikely(mutex == NULL))
1346 return EINVAL;
1347
1348 mvalue = mutex->value;
1349 mtype = (mvalue & MUTEX_TYPE_MASK);
1350 shared = (mvalue & MUTEX_SHARED_MASK);
1351
1352 /* Handle common case first */
1353 if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
1354 {
1355 if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
1356 shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
1357 &mutex->value) == 0) {
1358 ANDROID_MEMBAR_FULL();
1359 return 0;
1360 }
1361
1362 return EBUSY;
1363 }
1364
1365 /* Do we already own this recursive or error-check mutex ? */
1366 tid = __get_thread()->kernel_id;
1367 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1368 return _recursive_increment(mutex, mvalue, mtype);
1369
1370 /* Same as pthread_mutex_lock, except that we don't want to wait, and
1371 * the only operation that can succeed is a single cmpxchg to acquire the
1372 * lock if it is released / not owned by anyone. No need for a complex loop.
1373 */
1374 mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
1375 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1376
1377 if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
1378 ANDROID_MEMBAR_FULL();
1379 return 0;
1380 }
1381
1382 return EBUSY;
1383 }
1384
pthread_mutex_trylock(pthread_mutex_t * mutex)1385 int pthread_mutex_trylock(pthread_mutex_t *mutex)
1386 {
1387 int err = pthread_mutex_trylock_impl(mutex);
1388 #ifdef PTHREAD_DEBUG
1389 if (PTHREAD_DEBUG_ENABLED) {
1390 if (!err) {
1391 pthread_debug_mutex_lock_check(mutex);
1392 }
1393 }
1394 #endif
1395 return err;
1396 }
1397
1398 /* initialize 'ts' with the difference between 'abstime' and the current time
1399 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
1400 */
1401 static int
__timespec_to_absolute(struct timespec * ts,const struct timespec * abstime,clockid_t clock)1402 __timespec_to_absolute(struct timespec* ts, const struct timespec* abstime, clockid_t clock)
1403 {
1404 clock_gettime(clock, ts);
1405 ts->tv_sec = abstime->tv_sec - ts->tv_sec;
1406 ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
1407 if (ts->tv_nsec < 0) {
1408 ts->tv_sec--;
1409 ts->tv_nsec += 1000000000;
1410 }
1411 if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
1412 return -1;
1413
1414 return 0;
1415 }
1416
1417 /* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
1418 * milliseconds.
1419 */
1420 static void
__timespec_to_relative_msec(struct timespec * abstime,unsigned msecs,clockid_t clock)1421 __timespec_to_relative_msec(struct timespec* abstime, unsigned msecs, clockid_t clock)
1422 {
1423 clock_gettime(clock, abstime);
1424 abstime->tv_sec += msecs/1000;
1425 abstime->tv_nsec += (msecs%1000)*1000000;
1426 if (abstime->tv_nsec >= 1000000000) {
1427 abstime->tv_sec++;
1428 abstime->tv_nsec -= 1000000000;
1429 }
1430 }
1431
1432 __LIBC_HIDDEN__
pthread_mutex_lock_timeout_np_impl(pthread_mutex_t * mutex,unsigned msecs)1433 int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
1434 {
1435 clockid_t clock = CLOCK_MONOTONIC;
1436 struct timespec abstime;
1437 struct timespec ts;
1438 int mvalue, mtype, tid, oldv, new_lock_type, shared;
1439
1440 /* compute absolute expiration time */
1441 __timespec_to_relative_msec(&abstime, msecs, clock);
1442
1443 if (__unlikely(mutex == NULL))
1444 return EINVAL;
1445
1446 mvalue = mutex->value;
1447 mtype = (mvalue & MUTEX_TYPE_MASK);
1448 shared = (mvalue & MUTEX_SHARED_MASK);
1449
1450 /* Handle common case first */
1451 if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
1452 {
1453 const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
1454 const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1455 const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1456
1457 /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
1458 if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
1459 ANDROID_MEMBAR_FULL();
1460 return 0;
1461 }
1462
1463 /* loop while needed */
1464 while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
1465 if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1466 return EBUSY;
1467
1468 __futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
1469 }
1470 ANDROID_MEMBAR_FULL();
1471 return 0;
1472 }
1473
1474 /* Do we already own this recursive or error-check mutex ? */
1475 tid = __get_thread()->kernel_id;
1476 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1477 return _recursive_increment(mutex, mvalue, mtype);
1478
1479 /* the following implements the same loop than pthread_mutex_lock_impl
1480 * but adds checks to ensure that the operation never exceeds the
1481 * absolute expiration time.
1482 */
1483 mtype |= shared;
1484
1485 /* first try a quick lock */
1486 if (mvalue == mtype) {
1487 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1488 if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
1489 ANDROID_MEMBAR_FULL();
1490 return 0;
1491 }
1492 mvalue = mutex->value;
1493 }
1494
1495 for (;;) {
1496 struct timespec ts;
1497
1498 /* if the value is 'unlocked', try to acquire it directly */
1499 /* NOTE: put state to 2 since we know there is contention */
1500 if (mvalue == mtype) /* unlocked */ {
1501 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1502 if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
1503 ANDROID_MEMBAR_FULL();
1504 return 0;
1505 }
1506 /* the value changed before we could lock it. We need to check
1507 * the time to avoid livelocks, reload the value, then loop again. */
1508 if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1509 return EBUSY;
1510
1511 mvalue = mutex->value;
1512 continue;
1513 }
1514
1515 /* The value is locked. If 'uncontended', try to switch its state
1516 * to 'contented' to ensure we get woken up later. */
1517 if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
1518 int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
1519 if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
1520 /* this failed because the value changed, reload it */
1521 mvalue = mutex->value;
1522 } else {
1523 /* this succeeded, update mvalue */
1524 mvalue = newval;
1525 }
1526 }
1527
1528 /* check time and update 'ts' */
1529 if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1530 return EBUSY;
1531
1532 /* Only wait to be woken up if the state is '2', otherwise we'll
1533 * simply loop right now. This can happen when the second cmpxchg
1534 * in our loop failed because the mutex was unlocked by another
1535 * thread.
1536 */
1537 if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
1538 if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
1539 return EBUSY;
1540 }
1541 mvalue = mutex->value;
1542 }
1543 }
1544 /* NOTREACHED */
1545 }
1546
pthread_mutex_lock_timeout_np(pthread_mutex_t * mutex,unsigned msecs)1547 int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
1548 {
1549 int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
1550 #ifdef PTHREAD_DEBUG
1551 if (PTHREAD_DEBUG_ENABLED) {
1552 if (!err) {
1553 pthread_debug_mutex_lock_check(mutex);
1554 }
1555 }
1556 #endif
1557 return err;
1558 }
1559
pthread_mutex_destroy(pthread_mutex_t * mutex)1560 int pthread_mutex_destroy(pthread_mutex_t *mutex)
1561 {
1562 int ret;
1563
1564 /* use trylock to ensure that the mutex value is
1565 * valid and is not already locked. */
1566 ret = pthread_mutex_trylock_impl(mutex);
1567 if (ret != 0)
1568 return ret;
1569
1570 mutex->value = 0xdead10cc;
1571 return 0;
1572 }
1573
1574
1575
pthread_condattr_init(pthread_condattr_t * attr)1576 int pthread_condattr_init(pthread_condattr_t *attr)
1577 {
1578 if (attr == NULL)
1579 return EINVAL;
1580
1581 *attr = PTHREAD_PROCESS_PRIVATE;
1582 return 0;
1583 }
1584
pthread_condattr_getpshared(pthread_condattr_t * attr,int * pshared)1585 int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
1586 {
1587 if (attr == NULL || pshared == NULL)
1588 return EINVAL;
1589
1590 *pshared = *attr;
1591 return 0;
1592 }
1593
pthread_condattr_setpshared(pthread_condattr_t * attr,int pshared)1594 int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
1595 {
1596 if (attr == NULL)
1597 return EINVAL;
1598
1599 if (pshared != PTHREAD_PROCESS_SHARED &&
1600 pshared != PTHREAD_PROCESS_PRIVATE)
1601 return EINVAL;
1602
1603 *attr = pshared;
1604 return 0;
1605 }
1606
pthread_condattr_destroy(pthread_condattr_t * attr)1607 int pthread_condattr_destroy(pthread_condattr_t *attr)
1608 {
1609 if (attr == NULL)
1610 return EINVAL;
1611
1612 *attr = 0xdeada11d;
1613 return 0;
1614 }
1615
1616 /* We use one bit in condition variable values as the 'shared' flag
1617 * The rest is a counter.
1618 */
1619 #define COND_SHARED_MASK 0x0001
1620 #define COND_COUNTER_INCREMENT 0x0002
1621 #define COND_COUNTER_MASK (~COND_SHARED_MASK)
1622
1623 #define COND_IS_SHARED(c) (((c)->value & COND_SHARED_MASK) != 0)
1624
1625 /* XXX *technically* there is a race condition that could allow
1626 * XXX a signal to be missed. If thread A is preempted in _wait()
1627 * XXX after unlocking the mutex and before waiting, and if other
1628 * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
1629 * XXX before thread A is scheduled again and calls futex_wait(),
1630 * XXX then the signal will be lost.
1631 */
1632
pthread_cond_init(pthread_cond_t * cond,const pthread_condattr_t * attr)1633 int pthread_cond_init(pthread_cond_t *cond,
1634 const pthread_condattr_t *attr)
1635 {
1636 if (cond == NULL)
1637 return EINVAL;
1638
1639 cond->value = 0;
1640
1641 if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
1642 cond->value |= COND_SHARED_MASK;
1643
1644 return 0;
1645 }
1646
pthread_cond_destroy(pthread_cond_t * cond)1647 int pthread_cond_destroy(pthread_cond_t *cond)
1648 {
1649 if (cond == NULL)
1650 return EINVAL;
1651
1652 cond->value = 0xdeadc04d;
1653 return 0;
1654 }
1655
1656 /* This function is used by pthread_cond_broadcast and
1657 * pthread_cond_signal to atomically decrement the counter
1658 * then wake-up 'counter' threads.
1659 */
1660 static int
__pthread_cond_pulse(pthread_cond_t * cond,int counter)1661 __pthread_cond_pulse(pthread_cond_t *cond, int counter)
1662 {
1663 long flags;
1664
1665 if (__unlikely(cond == NULL))
1666 return EINVAL;
1667
1668 flags = (cond->value & ~COND_COUNTER_MASK);
1669 for (;;) {
1670 long oldval = cond->value;
1671 long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
1672 | flags;
1673 if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
1674 break;
1675 }
1676
1677 /*
1678 * Ensure that all memory accesses previously made by this thread are
1679 * visible to the woken thread(s). On the other side, the "wait"
1680 * code will issue any necessary barriers when locking the mutex.
1681 *
1682 * This may not strictly be necessary -- if the caller follows
1683 * recommended practice and holds the mutex before signaling the cond
1684 * var, the mutex ops will provide correct semantics. If they don't
1685 * hold the mutex, they're subject to race conditions anyway.
1686 */
1687 ANDROID_MEMBAR_FULL();
1688
1689 __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
1690 return 0;
1691 }
1692
pthread_cond_broadcast(pthread_cond_t * cond)1693 int pthread_cond_broadcast(pthread_cond_t *cond)
1694 {
1695 return __pthread_cond_pulse(cond, INT_MAX);
1696 }
1697
pthread_cond_signal(pthread_cond_t * cond)1698 int pthread_cond_signal(pthread_cond_t *cond)
1699 {
1700 return __pthread_cond_pulse(cond, 1);
1701 }
1702
pthread_cond_wait(pthread_cond_t * cond,pthread_mutex_t * mutex)1703 int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1704 {
1705 return pthread_cond_timedwait(cond, mutex, NULL);
1706 }
1707
__pthread_cond_timedwait_relative(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1708 int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1709 pthread_mutex_t * mutex,
1710 const struct timespec *reltime)
1711 {
1712 int status;
1713 int oldvalue = cond->value;
1714
1715 pthread_mutex_unlock(mutex);
1716 status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
1717 pthread_mutex_lock(mutex);
1718
1719 if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1720 return 0;
1721 }
1722
__pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime,clockid_t clock)1723 int __pthread_cond_timedwait(pthread_cond_t *cond,
1724 pthread_mutex_t * mutex,
1725 const struct timespec *abstime,
1726 clockid_t clock)
1727 {
1728 struct timespec ts;
1729 struct timespec * tsp;
1730
1731 if (abstime != NULL) {
1732 if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1733 return ETIMEDOUT;
1734 tsp = &ts;
1735 } else {
1736 tsp = NULL;
1737 }
1738
1739 return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1740 }
1741
pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1742 int pthread_cond_timedwait(pthread_cond_t *cond,
1743 pthread_mutex_t * mutex,
1744 const struct timespec *abstime)
1745 {
1746 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1747 }
1748
1749
1750 /* this one exists only for backward binary compatibility */
pthread_cond_timedwait_monotonic(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1751 int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1752 pthread_mutex_t * mutex,
1753 const struct timespec *abstime)
1754 {
1755 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1756 }
1757
pthread_cond_timedwait_monotonic_np(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1758 int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1759 pthread_mutex_t * mutex,
1760 const struct timespec *abstime)
1761 {
1762 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1763 }
1764
pthread_cond_timedwait_relative_np(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1765 int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1766 pthread_mutex_t * mutex,
1767 const struct timespec *reltime)
1768 {
1769 return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1770 }
1771
pthread_cond_timeout_np(pthread_cond_t * cond,pthread_mutex_t * mutex,unsigned msecs)1772 int pthread_cond_timeout_np(pthread_cond_t *cond,
1773 pthread_mutex_t * mutex,
1774 unsigned msecs)
1775 {
1776 struct timespec ts;
1777
1778 ts.tv_sec = msecs / 1000;
1779 ts.tv_nsec = (msecs % 1000) * 1000000;
1780
1781 return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1782 }
1783
1784
1785
1786 /* A technical note regarding our thread-local-storage (TLS) implementation:
1787 *
1788 * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1789 * though the first TLSMAP_START keys are reserved for Bionic to hold
1790 * special thread-specific variables like errno or a pointer to
1791 * the current thread's descriptor.
1792 *
1793 * while stored in the TLS area, these entries cannot be accessed through
1794 * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1795 *
1796 * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1797 * to greatly simplify and speedup some OpenGL-related operations. though the
1798 * initialy value will be NULL on all threads.
1799 *
1800 * you can use pthread_getspecific()/setspecific() on these, and in theory
1801 * you could also call pthread_key_delete() as well, though this would
1802 * probably break some apps.
1803 *
1804 * The 'tlsmap_t' type defined below implements a shared global map of
1805 * currently created/allocated TLS keys and the destructors associated
1806 * with them. You should use tlsmap_lock/unlock to access it to avoid
1807 * any race condition.
1808 *
1809 * the global TLS map simply contains a bitmap of allocated keys, and
1810 * an array of destructors.
1811 *
1812 * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1813 * pointers. the TLS area of the main thread is stack-allocated in
1814 * __libc_init_common, while the TLS area of other threads is placed at
1815 * the top of their stack in pthread_create.
1816 *
1817 * when pthread_key_create() is called, it finds the first free key in the
1818 * bitmap, then set it to 1, saving the destructor altogether
1819 *
1820 * when pthread_key_delete() is called. it will erase the key's bitmap bit
1821 * and its destructor, and will also clear the key data in the TLS area of
1822 * all created threads. As mandated by Posix, it is the responsability of
1823 * the caller of pthread_key_delete() to properly reclaim the objects that
1824 * were pointed to by these data fields (either before or after the call).
1825 *
1826 */
1827
1828 /* TLS Map implementation
1829 */
1830
1831 #define TLSMAP_START (TLS_SLOT_MAX_WELL_KNOWN+1)
1832 #define TLSMAP_SIZE BIONIC_TLS_SLOTS
1833 #define TLSMAP_BITS 32
1834 #define TLSMAP_WORDS ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1835 #define TLSMAP_WORD(m,k) (m)->map[(k)/TLSMAP_BITS]
1836 #define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1)))
1837
1838 /* this macro is used to quickly check that a key belongs to a reasonable range */
1839 #define TLSMAP_VALIDATE_KEY(key) \
1840 ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1841
1842 /* the type of tls key destructor functions */
1843 typedef void (*tls_dtor_t)(void*);
1844
1845 typedef struct {
1846 int init; /* see comment in tlsmap_lock() */
1847 uint32_t map[TLSMAP_WORDS]; /* bitmap of allocated keys */
1848 tls_dtor_t dtors[TLSMAP_SIZE]; /* key destructors */
1849 } tlsmap_t;
1850
1851 static pthread_mutex_t _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1852 static tlsmap_t _tlsmap;
1853
1854 /* lock the global TLS map lock and return a handle to it */
tlsmap_lock(void)1855 static __inline__ tlsmap_t* tlsmap_lock(void)
1856 {
1857 tlsmap_t* m = &_tlsmap;
1858
1859 pthread_mutex_lock(&_tlsmap_lock);
1860 /* we need to initialize the first entry of the 'map' array
1861 * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1862 * when declaring _tlsmap is a bit awkward and is going to
1863 * produce warnings, so do it the first time we use the map
1864 * instead
1865 */
1866 if (__unlikely(!m->init)) {
1867 TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1868 m->init = 1;
1869 }
1870 return m;
1871 }
1872
1873 /* unlock the global TLS map */
tlsmap_unlock(tlsmap_t * m)1874 static __inline__ void tlsmap_unlock(tlsmap_t* m)
1875 {
1876 pthread_mutex_unlock(&_tlsmap_lock);
1877 (void)m; /* a good compiler is a happy compiler */
1878 }
1879
1880 /* test to see wether a key is allocated */
tlsmap_test(tlsmap_t * m,int key)1881 static __inline__ int tlsmap_test(tlsmap_t* m, int key)
1882 {
1883 return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1884 }
1885
1886 /* set the destructor and bit flag on a newly allocated key */
tlsmap_set(tlsmap_t * m,int key,tls_dtor_t dtor)1887 static __inline__ void tlsmap_set(tlsmap_t* m, int key, tls_dtor_t dtor)
1888 {
1889 TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1890 m->dtors[key] = dtor;
1891 }
1892
1893 /* clear the destructor and bit flag on an existing key */
tlsmap_clear(tlsmap_t * m,int key)1894 static __inline__ void tlsmap_clear(tlsmap_t* m, int key)
1895 {
1896 TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1897 m->dtors[key] = NULL;
1898 }
1899
1900 /* allocate a new TLS key, return -1 if no room left */
tlsmap_alloc(tlsmap_t * m,tls_dtor_t dtor)1901 static int tlsmap_alloc(tlsmap_t* m, tls_dtor_t dtor)
1902 {
1903 int key;
1904
1905 for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1906 if ( !tlsmap_test(m, key) ) {
1907 tlsmap_set(m, key, dtor);
1908 return key;
1909 }
1910 }
1911 return -1;
1912 }
1913
1914
pthread_key_create(pthread_key_t * key,void (* destructor_function)(void *))1915 int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1916 {
1917 uint32_t err = ENOMEM;
1918 tlsmap_t* map = tlsmap_lock();
1919 int k = tlsmap_alloc(map, destructor_function);
1920
1921 if (k >= 0) {
1922 *key = k;
1923 err = 0;
1924 }
1925 tlsmap_unlock(map);
1926 return err;
1927 }
1928
1929
1930 /* This deletes a pthread_key_t. note that the standard mandates that this does
1931 * not call the destructor of non-NULL key values. Instead, it is the
1932 * responsibility of the caller to properly dispose of the corresponding data
1933 * and resources, using any means it finds suitable.
1934 *
1935 * On the other hand, this function will clear the corresponding key data
1936 * values in all known threads. this prevents later (invalid) calls to
1937 * pthread_getspecific() to receive invalid/stale values.
1938 */
pthread_key_delete(pthread_key_t key)1939 int pthread_key_delete(pthread_key_t key)
1940 {
1941 uint32_t err;
1942 pthread_internal_t* thr;
1943 tlsmap_t* map;
1944
1945 if (!TLSMAP_VALIDATE_KEY(key)) {
1946 return EINVAL;
1947 }
1948
1949 map = tlsmap_lock();
1950
1951 if (!tlsmap_test(map, key)) {
1952 err = EINVAL;
1953 goto err1;
1954 }
1955
1956 /* clear value in all threads */
1957 pthread_mutex_lock(&gThreadListLock);
1958 for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1959 /* avoid zombie threads with a negative 'join_count'. these are really
1960 * already dead and don't have a TLS area anymore.
1961 *
1962 * similarly, it is possible to have thr->tls == NULL for threads that
1963 * were just recently created through pthread_create() but whose
1964 * startup trampoline (__thread_entry) hasn't been run yet by the
1965 * scheduler. thr->tls will also be NULL after it's stack has been
1966 * unmapped but before the ongoing pthread_join() is finished.
1967 * so check for this too.
1968 */
1969 if (thr->join_count < 0 || !thr->tls)
1970 continue;
1971
1972 thr->tls[key] = NULL;
1973 }
1974 tlsmap_clear(map, key);
1975
1976 pthread_mutex_unlock(&gThreadListLock);
1977 err = 0;
1978
1979 err1:
1980 tlsmap_unlock(map);
1981 return err;
1982 }
1983
1984
pthread_setspecific(pthread_key_t key,const void * ptr)1985 int pthread_setspecific(pthread_key_t key, const void *ptr)
1986 {
1987 int err = EINVAL;
1988 tlsmap_t* map;
1989
1990 if (TLSMAP_VALIDATE_KEY(key)) {
1991 /* check that we're trying to set data for an allocated key */
1992 map = tlsmap_lock();
1993 if (tlsmap_test(map, key)) {
1994 ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1995 err = 0;
1996 }
1997 tlsmap_unlock(map);
1998 }
1999 return err;
2000 }
2001
pthread_getspecific(pthread_key_t key)2002 void * pthread_getspecific(pthread_key_t key)
2003 {
2004 if (!TLSMAP_VALIDATE_KEY(key)) {
2005 return NULL;
2006 }
2007
2008 /* for performance reason, we do not lock/unlock the global TLS map
2009 * to check that the key is properly allocated. if the key was not
2010 * allocated, the value read from the TLS should always be NULL
2011 * due to pthread_key_delete() clearing the values for all threads.
2012 */
2013 return (void *)(((unsigned *)__get_tls())[key]);
2014 }
2015
2016 /* Posix mandates that this be defined in <limits.h> but we don't have
2017 * it just yet.
2018 */
2019 #ifndef PTHREAD_DESTRUCTOR_ITERATIONS
2020 # define PTHREAD_DESTRUCTOR_ITERATIONS 4
2021 #endif
2022
2023 /* this function is called from pthread_exit() to remove all TLS key data
2024 * from this thread's TLS area. this must call the destructor of all keys
2025 * that have a non-NULL data value (and a non-NULL destructor).
2026 *
2027 * because destructors can do funky things like deleting/creating other
2028 * keys, we need to implement this in a loop
2029 */
pthread_key_clean_all(void)2030 static void pthread_key_clean_all(void)
2031 {
2032 tlsmap_t* map;
2033 void** tls = (void**)__get_tls();
2034 int rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
2035
2036 map = tlsmap_lock();
2037
2038 for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
2039 {
2040 int kk, count = 0;
2041
2042 for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
2043 if ( tlsmap_test(map, kk) )
2044 {
2045 void* data = tls[kk];
2046 tls_dtor_t dtor = map->dtors[kk];
2047
2048 if (data != NULL && dtor != NULL)
2049 {
2050 /* we need to clear the key data now, this will prevent the
2051 * destructor (or a later one) from seeing the old value if
2052 * it calls pthread_getspecific() for some odd reason
2053 *
2054 * we do not do this if 'dtor == NULL' just in case another
2055 * destructor function might be responsible for manually
2056 * releasing the corresponding data.
2057 */
2058 tls[kk] = NULL;
2059
2060 /* because the destructor is free to call pthread_key_create
2061 * and/or pthread_key_delete, we need to temporarily unlock
2062 * the TLS map
2063 */
2064 tlsmap_unlock(map);
2065 (*dtor)(data);
2066 map = tlsmap_lock();
2067
2068 count += 1;
2069 }
2070 }
2071 }
2072
2073 /* if we didn't call any destructor, there is no need to check the
2074 * TLS data again
2075 */
2076 if (count == 0)
2077 break;
2078 }
2079 tlsmap_unlock(map);
2080 }
2081
2082 // man says this should be in <linux/unistd.h>, but it isn't
2083 extern int tgkill(int tgid, int tid, int sig);
2084
pthread_kill(pthread_t tid,int sig)2085 int pthread_kill(pthread_t tid, int sig)
2086 {
2087 int ret;
2088 int old_errno = errno;
2089 pthread_internal_t * thread = (pthread_internal_t *)tid;
2090
2091 ret = tgkill(getpid(), thread->kernel_id, sig);
2092 if (ret < 0) {
2093 ret = errno;
2094 errno = old_errno;
2095 }
2096
2097 return ret;
2098 }
2099
2100 /* Despite the fact that our kernel headers define sigset_t explicitly
2101 * as a 32-bit integer, the kernel system call really expects a 64-bit
2102 * bitmap for the signal set, or more exactly an array of two-32-bit
2103 * values (see $KERNEL/arch/$ARCH/include/asm/signal.h for details).
2104 *
2105 * Unfortunately, we cannot fix the sigset_t definition without breaking
2106 * the C library ABI, so perform a little runtime translation here.
2107 */
2108 typedef union {
2109 sigset_t bionic;
2110 uint32_t kernel[2];
2111 } kernel_sigset_t;
2112
2113 /* this is a private syscall stub */
2114 extern int __rt_sigprocmask(int, const kernel_sigset_t *, kernel_sigset_t *, size_t);
2115
pthread_sigmask(int how,const sigset_t * set,sigset_t * oset)2116 int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
2117 {
2118 /* pthread_sigmask must return the error code, but the syscall
2119 * will set errno instead and return 0/-1
2120 */
2121 int ret, old_errno = errno;
2122
2123 /* We must convert *set into a kernel_sigset_t */
2124 kernel_sigset_t in_set, *in_set_ptr;
2125 kernel_sigset_t out_set;
2126
2127 in_set.kernel[0] = in_set.kernel[1] = 0;
2128 out_set.kernel[0] = out_set.kernel[1] = 0;
2129
2130 /* 'in_set_ptr' is the second parameter to __rt_sigprocmask. It must be NULL
2131 * if 'set' is NULL to ensure correct semantics (which in this case would
2132 * be to ignore 'how' and return the current signal set into 'oset'.
2133 */
2134 if (set == NULL) {
2135 in_set_ptr = NULL;
2136 } else {
2137 in_set.bionic = *set;
2138 in_set_ptr = &in_set;
2139 }
2140
2141 ret = __rt_sigprocmask(how, in_set_ptr, &out_set, sizeof(kernel_sigset_t));
2142 if (ret < 0)
2143 ret = errno;
2144
2145 if (oset)
2146 *oset = out_set.bionic;
2147
2148 errno = old_errno;
2149 return ret;
2150 }
2151
2152
pthread_getcpuclockid(pthread_t tid,clockid_t * clockid)2153 int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid)
2154 {
2155 const int CLOCK_IDTYPE_BITS = 3;
2156 pthread_internal_t* thread = (pthread_internal_t*)tid;
2157
2158 if (!thread)
2159 return ESRCH;
2160
2161 *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
2162 return 0;
2163 }
2164
2165
2166 /* NOTE: this implementation doesn't support a init function that throws a C++ exception
2167 * or calls fork()
2168 */
pthread_once(pthread_once_t * once_control,void (* init_routine)(void))2169 int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) )
2170 {
2171 static pthread_mutex_t once_lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER;
2172 volatile pthread_once_t* ocptr = once_control;
2173 pthread_once_t value;
2174
2175 /* PTHREAD_ONCE_INIT is 0, we use the following bit flags
2176 *
2177 * bit 0 set -> initialization is under way
2178 * bit 1 set -> initialization is complete
2179 */
2180 #define ONCE_INITIALIZING (1 << 0)
2181 #define ONCE_COMPLETED (1 << 1)
2182
2183 /* First check if the once is already initialized. This will be the common
2184 * case and we want to make this as fast as possible. Note that this still
2185 * requires a load_acquire operation here to ensure that all the
2186 * stores performed by the initialization function are observable on
2187 * this CPU after we exit.
2188 */
2189 if (__likely((*ocptr & ONCE_COMPLETED) != 0)) {
2190 ANDROID_MEMBAR_FULL();
2191 return 0;
2192 }
2193
2194 for (;;) {
2195 /* Try to atomically set the INITIALIZING flag.
2196 * This requires a cmpxchg loop, and we may need
2197 * to exit prematurely if we detect that
2198 * COMPLETED is now set.
2199 */
2200 int32_t oldval, newval;
2201
2202 do {
2203 oldval = *ocptr;
2204 if ((oldval & ONCE_COMPLETED) != 0)
2205 break;
2206
2207 newval = oldval | ONCE_INITIALIZING;
2208 } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);
2209
2210 if ((oldval & ONCE_COMPLETED) != 0) {
2211 /* We detected that COMPLETED was set while in our loop */
2212 ANDROID_MEMBAR_FULL();
2213 return 0;
2214 }
2215
2216 if ((oldval & ONCE_INITIALIZING) == 0) {
2217 /* We got there first, we can jump out of the loop to
2218 * handle the initialization */
2219 break;
2220 }
2221
2222 /* Another thread is running the initialization and hasn't completed
2223 * yet, so wait for it, then try again. */
2224 __futex_wait_ex(ocptr, 0, oldval, NULL);
2225 }
2226
2227 /* call the initialization function. */
2228 (*init_routine)();
2229
2230 /* Do a store_release indicating that initialization is complete */
2231 ANDROID_MEMBAR_FULL();
2232 *ocptr = ONCE_COMPLETED;
2233
2234 /* Wake up any waiters, if any */
2235 __futex_wake_ex(ocptr, 0, INT_MAX);
2236
2237 return 0;
2238 }
2239
2240 /* This value is not exported by kernel headers, so hardcode it here */
2241 #define MAX_TASK_COMM_LEN 16
2242 #define TASK_COMM_FMT "/proc/self/task/%u/comm"
2243
pthread_setname_np(pthread_t thid,const char * thname)2244 int pthread_setname_np(pthread_t thid, const char *thname)
2245 {
2246 size_t thname_len;
2247 int saved_errno, ret;
2248
2249 if (thid == 0 || thname == NULL)
2250 return EINVAL;
2251
2252 thname_len = strlen(thname);
2253 if (thname_len >= MAX_TASK_COMM_LEN)
2254 return ERANGE;
2255
2256 saved_errno = errno;
2257 if (thid == pthread_self())
2258 {
2259 ret = prctl(PR_SET_NAME, (unsigned long)thname, 0, 0, 0) ? errno : 0;
2260 }
2261 else
2262 {
2263 /* Have to change another thread's name */
2264 pthread_internal_t *thread = (pthread_internal_t *)thid;
2265 char comm_name[sizeof(TASK_COMM_FMT) + 8];
2266 ssize_t n;
2267 int fd;
2268
2269 snprintf(comm_name, sizeof(comm_name), TASK_COMM_FMT, (unsigned int)thread->kernel_id);
2270 fd = open(comm_name, O_RDWR);
2271 if (fd == -1)
2272 {
2273 ret = errno;
2274 goto exit;
2275 }
2276 n = TEMP_FAILURE_RETRY(write(fd, thname, thname_len));
2277 close(fd);
2278
2279 if (n < 0)
2280 ret = errno;
2281 else if ((size_t)n != thname_len)
2282 ret = EIO;
2283 else
2284 ret = 0;
2285 }
2286 exit:
2287 errno = saved_errno;
2288 return ret;
2289 }
2290
2291 /* Return the kernel thread ID for a pthread.
2292 * This is only defined for implementations where pthread <-> kernel is 1:1, which this is.
2293 * Not the same as pthread_getthreadid_np, which is commonly defined to be opaque.
2294 * Internal, not an NDK API.
2295 */
2296
__pthread_gettid(pthread_t thid)2297 pid_t __pthread_gettid(pthread_t thid)
2298 {
2299 pthread_internal_t* thread = (pthread_internal_t*)thid;
2300 return thread->kernel_id;
2301 }
2302
__pthread_settid(pthread_t thid,pid_t tid)2303 int __pthread_settid(pthread_t thid, pid_t tid)
2304 {
2305 if (thid == 0)
2306 return EINVAL;
2307
2308 pthread_internal_t* thread = (pthread_internal_t*)thid;
2309 thread->kernel_id = tid;
2310
2311 return 0;
2312 }
2313