1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "CGOpenCLRuntime.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/GlobalVariable.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32
EmitDecl(const Decl & D)33 void CodeGenFunction::EmitDecl(const Decl &D) {
34 switch (D.getKind()) {
35 case Decl::TranslationUnit:
36 case Decl::Namespace:
37 case Decl::UnresolvedUsingTypename:
38 case Decl::ClassTemplateSpecialization:
39 case Decl::ClassTemplatePartialSpecialization:
40 case Decl::TemplateTypeParm:
41 case Decl::UnresolvedUsingValue:
42 case Decl::NonTypeTemplateParm:
43 case Decl::CXXMethod:
44 case Decl::CXXConstructor:
45 case Decl::CXXDestructor:
46 case Decl::CXXConversion:
47 case Decl::Field:
48 case Decl::IndirectField:
49 case Decl::ObjCIvar:
50 case Decl::ObjCAtDefsField:
51 case Decl::ParmVar:
52 case Decl::ImplicitParam:
53 case Decl::ClassTemplate:
54 case Decl::FunctionTemplate:
55 case Decl::TypeAliasTemplate:
56 case Decl::TemplateTemplateParm:
57 case Decl::ObjCMethod:
58 case Decl::ObjCCategory:
59 case Decl::ObjCProtocol:
60 case Decl::ObjCInterface:
61 case Decl::ObjCCategoryImpl:
62 case Decl::ObjCImplementation:
63 case Decl::ObjCProperty:
64 case Decl::ObjCCompatibleAlias:
65 case Decl::AccessSpec:
66 case Decl::LinkageSpec:
67 case Decl::ObjCPropertyImpl:
68 case Decl::FileScopeAsm:
69 case Decl::Friend:
70 case Decl::FriendTemplate:
71 case Decl::Block:
72 case Decl::ClassScopeFunctionSpecialization:
73 llvm_unreachable("Declaration should not be in declstmts!");
74 case Decl::Function: // void X();
75 case Decl::Record: // struct/union/class X;
76 case Decl::Enum: // enum X;
77 case Decl::EnumConstant: // enum ? { X = ? }
78 case Decl::CXXRecord: // struct/union/class X; [C++]
79 case Decl::Using: // using X; [C++]
80 case Decl::UsingShadow:
81 case Decl::UsingDirective: // using namespace X; [C++]
82 case Decl::NamespaceAlias:
83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84 case Decl::Label: // __label__ x;
85 case Decl::Import:
86 // None of these decls require codegen support.
87 return;
88
89 case Decl::Var: {
90 const VarDecl &VD = cast<VarDecl>(D);
91 assert(VD.isLocalVarDecl() &&
92 "Should not see file-scope variables inside a function!");
93 return EmitVarDecl(VD);
94 }
95
96 case Decl::Typedef: // typedef int X;
97 case Decl::TypeAlias: { // using X = int; [C++0x]
98 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
99 QualType Ty = TD.getUnderlyingType();
100
101 if (Ty->isVariablyModifiedType())
102 EmitVariablyModifiedType(Ty);
103 }
104 }
105 }
106
107 /// EmitVarDecl - This method handles emission of any variable declaration
108 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
110 switch (D.getStorageClass()) {
111 case SC_None:
112 case SC_Auto:
113 case SC_Register:
114 return EmitAutoVarDecl(D);
115 case SC_Static: {
116 llvm::GlobalValue::LinkageTypes Linkage =
117 llvm::GlobalValue::InternalLinkage;
118
119 // If the function definition has some sort of weak linkage, its
120 // static variables should also be weak so that they get properly
121 // uniqued. We can't do this in C, though, because there's no
122 // standard way to agree on which variables are the same (i.e.
123 // there's no mangling).
124 if (getContext().getLangOpts().CPlusPlus)
125 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
126 Linkage = CurFn->getLinkage();
127
128 return EmitStaticVarDecl(D, Linkage);
129 }
130 case SC_Extern:
131 case SC_PrivateExtern:
132 // Don't emit it now, allow it to be emitted lazily on its first use.
133 return;
134 case SC_OpenCLWorkGroupLocal:
135 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
136 }
137
138 llvm_unreachable("Unknown storage class");
139 }
140
GetStaticDeclName(CodeGenFunction & CGF,const VarDecl & D,const char * Separator)141 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
142 const char *Separator) {
143 CodeGenModule &CGM = CGF.CGM;
144 if (CGF.getContext().getLangOpts().CPlusPlus) {
145 StringRef Name = CGM.getMangledName(&D);
146 return Name.str();
147 }
148
149 std::string ContextName;
150 if (!CGF.CurFuncDecl) {
151 // Better be in a block declared in global scope.
152 const NamedDecl *ND = cast<NamedDecl>(&D);
153 const DeclContext *DC = ND->getDeclContext();
154 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
155 MangleBuffer Name;
156 CGM.getBlockMangledName(GlobalDecl(), Name, BD);
157 ContextName = Name.getString();
158 }
159 else
160 llvm_unreachable("Unknown context for block static var decl");
161 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
162 StringRef Name = CGM.getMangledName(FD);
163 ContextName = Name.str();
164 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
165 ContextName = CGF.CurFn->getName();
166 else
167 llvm_unreachable("Unknown context for static var decl");
168
169 return ContextName + Separator + D.getNameAsString();
170 }
171
172 llvm::GlobalVariable *
CreateStaticVarDecl(const VarDecl & D,const char * Separator,llvm::GlobalValue::LinkageTypes Linkage)173 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
174 const char *Separator,
175 llvm::GlobalValue::LinkageTypes Linkage) {
176 QualType Ty = D.getType();
177 assert(Ty->isConstantSizeType() && "VLAs can't be static");
178
179 // Use the label if the variable is renamed with the asm-label extension.
180 std::string Name;
181 if (D.hasAttr<AsmLabelAttr>())
182 Name = CGM.getMangledName(&D);
183 else
184 Name = GetStaticDeclName(*this, D, Separator);
185
186 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
187 unsigned AddrSpace =
188 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
189 llvm::GlobalVariable *GV =
190 new llvm::GlobalVariable(CGM.getModule(), LTy,
191 Ty.isConstant(getContext()), Linkage,
192 CGM.EmitNullConstant(D.getType()), Name, 0,
193 llvm::GlobalVariable::NotThreadLocal,
194 AddrSpace);
195 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
196 if (Linkage != llvm::GlobalValue::InternalLinkage)
197 GV->setVisibility(CurFn->getVisibility());
198
199 if (D.isThreadSpecified())
200 CGM.setTLSMode(GV, D);
201
202 return GV;
203 }
204
205 /// hasNontrivialDestruction - Determine whether a type's destruction is
206 /// non-trivial. If so, and the variable uses static initialization, we must
207 /// register its destructor to run on exit.
hasNontrivialDestruction(QualType T)208 static bool hasNontrivialDestruction(QualType T) {
209 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
210 return RD && !RD->hasTrivialDestructor();
211 }
212
213 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
214 /// global variable that has already been created for it. If the initializer
215 /// has a different type than GV does, this may free GV and return a different
216 /// one. Otherwise it just returns GV.
217 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)218 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
219 llvm::GlobalVariable *GV) {
220 llvm::Constant *Init = CGM.EmitConstantInit(D, this);
221
222 // If constant emission failed, then this should be a C++ static
223 // initializer.
224 if (!Init) {
225 if (!getContext().getLangOpts().CPlusPlus)
226 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
227 else if (Builder.GetInsertBlock()) {
228 // Since we have a static initializer, this global variable can't
229 // be constant.
230 GV->setConstant(false);
231
232 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
233 }
234 return GV;
235 }
236
237 // The initializer may differ in type from the global. Rewrite
238 // the global to match the initializer. (We have to do this
239 // because some types, like unions, can't be completely represented
240 // in the LLVM type system.)
241 if (GV->getType()->getElementType() != Init->getType()) {
242 llvm::GlobalVariable *OldGV = GV;
243
244 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
245 OldGV->isConstant(),
246 OldGV->getLinkage(), Init, "",
247 /*InsertBefore*/ OldGV,
248 OldGV->getThreadLocalMode(),
249 CGM.getContext().getTargetAddressSpace(D.getType()));
250 GV->setVisibility(OldGV->getVisibility());
251
252 // Steal the name of the old global
253 GV->takeName(OldGV);
254
255 // Replace all uses of the old global with the new global
256 llvm::Constant *NewPtrForOldDecl =
257 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
258 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
259
260 // Erase the old global, since it is no longer used.
261 OldGV->eraseFromParent();
262 }
263
264 GV->setConstant(CGM.isTypeConstant(D.getType(), true));
265 GV->setInitializer(Init);
266
267 if (hasNontrivialDestruction(D.getType())) {
268 // We have a constant initializer, but a nontrivial destructor. We still
269 // need to perform a guarded "initialization" in order to register the
270 // destructor.
271 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
272 }
273
274 return GV;
275 }
276
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)277 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
278 llvm::GlobalValue::LinkageTypes Linkage) {
279 llvm::Value *&DMEntry = LocalDeclMap[&D];
280 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
281
282 // Check to see if we already have a global variable for this
283 // declaration. This can happen when double-emitting function
284 // bodies, e.g. with complete and base constructors.
285 llvm::Constant *addr =
286 CGM.getStaticLocalDeclAddress(&D);
287
288 llvm::GlobalVariable *var;
289 if (addr) {
290 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts());
291 } else {
292 addr = var = CreateStaticVarDecl(D, ".", Linkage);
293 }
294
295 // Store into LocalDeclMap before generating initializer to handle
296 // circular references.
297 DMEntry = addr;
298 CGM.setStaticLocalDeclAddress(&D, addr);
299
300 // We can't have a VLA here, but we can have a pointer to a VLA,
301 // even though that doesn't really make any sense.
302 // Make sure to evaluate VLA bounds now so that we have them for later.
303 if (D.getType()->isVariablyModifiedType())
304 EmitVariablyModifiedType(D.getType());
305
306 // Save the type in case adding the initializer forces a type change.
307 llvm::Type *expectedType = addr->getType();
308
309 // If this value has an initializer, emit it.
310 if (D.getInit())
311 var = AddInitializerToStaticVarDecl(D, var);
312
313 var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
314
315 if (D.hasAttr<AnnotateAttr>())
316 CGM.AddGlobalAnnotations(&D, var);
317
318 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
319 var->setSection(SA->getName());
320
321 if (D.hasAttr<UsedAttr>())
322 CGM.AddUsedGlobal(var);
323
324 // We may have to cast the constant because of the initializer
325 // mismatch above.
326 //
327 // FIXME: It is really dangerous to store this in the map; if anyone
328 // RAUW's the GV uses of this constant will be invalid.
329 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType);
330 DMEntry = castedAddr;
331 CGM.setStaticLocalDeclAddress(&D, castedAddr);
332
333 // Emit global variable debug descriptor for static vars.
334 CGDebugInfo *DI = getDebugInfo();
335 if (DI &&
336 CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) {
337 DI->setLocation(D.getLocation());
338 DI->EmitGlobalVariable(var, &D);
339 }
340 }
341
342 namespace {
343 struct DestroyObject : EHScopeStack::Cleanup {
DestroyObject__anon1a4f73c80111::DestroyObject344 DestroyObject(llvm::Value *addr, QualType type,
345 CodeGenFunction::Destroyer *destroyer,
346 bool useEHCleanupForArray)
347 : addr(addr), type(type), destroyer(destroyer),
348 useEHCleanupForArray(useEHCleanupForArray) {}
349
350 llvm::Value *addr;
351 QualType type;
352 CodeGenFunction::Destroyer *destroyer;
353 bool useEHCleanupForArray;
354
Emit__anon1a4f73c80111::DestroyObject355 void Emit(CodeGenFunction &CGF, Flags flags) {
356 // Don't use an EH cleanup recursively from an EH cleanup.
357 bool useEHCleanupForArray =
358 flags.isForNormalCleanup() && this->useEHCleanupForArray;
359
360 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
361 }
362 };
363
364 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anon1a4f73c80111::DestroyNRVOVariable365 DestroyNRVOVariable(llvm::Value *addr,
366 const CXXDestructorDecl *Dtor,
367 llvm::Value *NRVOFlag)
368 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
369
370 const CXXDestructorDecl *Dtor;
371 llvm::Value *NRVOFlag;
372 llvm::Value *Loc;
373
Emit__anon1a4f73c80111::DestroyNRVOVariable374 void Emit(CodeGenFunction &CGF, Flags flags) {
375 // Along the exceptions path we always execute the dtor.
376 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
377
378 llvm::BasicBlock *SkipDtorBB = 0;
379 if (NRVO) {
380 // If we exited via NRVO, we skip the destructor call.
381 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
382 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
383 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
384 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
385 CGF.EmitBlock(RunDtorBB);
386 }
387
388 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
389 /*ForVirtualBase=*/false, Loc);
390
391 if (NRVO) CGF.EmitBlock(SkipDtorBB);
392 }
393 };
394
395 struct CallStackRestore : EHScopeStack::Cleanup {
396 llvm::Value *Stack;
CallStackRestore__anon1a4f73c80111::CallStackRestore397 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
Emit__anon1a4f73c80111::CallStackRestore398 void Emit(CodeGenFunction &CGF, Flags flags) {
399 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
400 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
401 CGF.Builder.CreateCall(F, V);
402 }
403 };
404
405 struct ExtendGCLifetime : EHScopeStack::Cleanup {
406 const VarDecl &Var;
ExtendGCLifetime__anon1a4f73c80111::ExtendGCLifetime407 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
408
Emit__anon1a4f73c80111::ExtendGCLifetime409 void Emit(CodeGenFunction &CGF, Flags flags) {
410 // Compute the address of the local variable, in case it's a
411 // byref or something.
412 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
413 Var.getType(), VK_LValue, SourceLocation());
414 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
415 CGF.EmitExtendGCLifetime(value);
416 }
417 };
418
419 struct CallCleanupFunction : EHScopeStack::Cleanup {
420 llvm::Constant *CleanupFn;
421 const CGFunctionInfo &FnInfo;
422 const VarDecl &Var;
423
CallCleanupFunction__anon1a4f73c80111::CallCleanupFunction424 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
425 const VarDecl *Var)
426 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
427
Emit__anon1a4f73c80111::CallCleanupFunction428 void Emit(CodeGenFunction &CGF, Flags flags) {
429 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
430 Var.getType(), VK_LValue, SourceLocation());
431 // Compute the address of the local variable, in case it's a byref
432 // or something.
433 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
434
435 // In some cases, the type of the function argument will be different from
436 // the type of the pointer. An example of this is
437 // void f(void* arg);
438 // __attribute__((cleanup(f))) void *g;
439 //
440 // To fix this we insert a bitcast here.
441 QualType ArgTy = FnInfo.arg_begin()->type;
442 llvm::Value *Arg =
443 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
444
445 CallArgList Args;
446 Args.add(RValue::get(Arg),
447 CGF.getContext().getPointerType(Var.getType()));
448 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
449 }
450 };
451 }
452
453 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
454 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,llvm::Value * addr,Qualifiers::ObjCLifetime lifetime)455 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
456 llvm::Value *addr,
457 Qualifiers::ObjCLifetime lifetime) {
458 switch (lifetime) {
459 case Qualifiers::OCL_None:
460 llvm_unreachable("present but none");
461
462 case Qualifiers::OCL_ExplicitNone:
463 // nothing to do
464 break;
465
466 case Qualifiers::OCL_Strong: {
467 CodeGenFunction::Destroyer *destroyer =
468 (var.hasAttr<ObjCPreciseLifetimeAttr>()
469 ? CodeGenFunction::destroyARCStrongPrecise
470 : CodeGenFunction::destroyARCStrongImprecise);
471
472 CleanupKind cleanupKind = CGF.getARCCleanupKind();
473 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
474 cleanupKind & EHCleanup);
475 break;
476 }
477 case Qualifiers::OCL_Autoreleasing:
478 // nothing to do
479 break;
480
481 case Qualifiers::OCL_Weak:
482 // __weak objects always get EH cleanups; otherwise, exceptions
483 // could cause really nasty crashes instead of mere leaks.
484 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
485 CodeGenFunction::destroyARCWeak,
486 /*useEHCleanup*/ true);
487 break;
488 }
489 }
490
isAccessedBy(const VarDecl & var,const Stmt * s)491 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
492 if (const Expr *e = dyn_cast<Expr>(s)) {
493 // Skip the most common kinds of expressions that make
494 // hierarchy-walking expensive.
495 s = e = e->IgnoreParenCasts();
496
497 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
498 return (ref->getDecl() == &var);
499 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
500 const BlockDecl *block = be->getBlockDecl();
501 for (BlockDecl::capture_const_iterator i = block->capture_begin(),
502 e = block->capture_end(); i != e; ++i) {
503 if (i->getVariable() == &var)
504 return true;
505 }
506 }
507 }
508
509 for (Stmt::const_child_range children = s->children(); children; ++children)
510 // children might be null; as in missing decl or conditional of an if-stmt.
511 if ((*children) && isAccessedBy(var, *children))
512 return true;
513
514 return false;
515 }
516
isAccessedBy(const ValueDecl * decl,const Expr * e)517 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
518 if (!decl) return false;
519 if (!isa<VarDecl>(decl)) return false;
520 const VarDecl *var = cast<VarDecl>(decl);
521 return isAccessedBy(*var, e);
522 }
523
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)524 static void drillIntoBlockVariable(CodeGenFunction &CGF,
525 LValue &lvalue,
526 const VarDecl *var) {
527 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
528 }
529
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)530 void CodeGenFunction::EmitScalarInit(const Expr *init,
531 const ValueDecl *D,
532 LValue lvalue,
533 bool capturedByInit) {
534 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
535 if (!lifetime) {
536 llvm::Value *value = EmitScalarExpr(init);
537 if (capturedByInit)
538 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
539 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
540 return;
541 }
542
543 // If we're emitting a value with lifetime, we have to do the
544 // initialization *before* we leave the cleanup scopes.
545 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
546 enterFullExpression(ewc);
547 init = ewc->getSubExpr();
548 }
549 CodeGenFunction::RunCleanupsScope Scope(*this);
550
551 // We have to maintain the illusion that the variable is
552 // zero-initialized. If the variable might be accessed in its
553 // initializer, zero-initialize before running the initializer, then
554 // actually perform the initialization with an assign.
555 bool accessedByInit = false;
556 if (lifetime != Qualifiers::OCL_ExplicitNone)
557 accessedByInit = (capturedByInit || isAccessedBy(D, init));
558 if (accessedByInit) {
559 LValue tempLV = lvalue;
560 // Drill down to the __block object if necessary.
561 if (capturedByInit) {
562 // We can use a simple GEP for this because it can't have been
563 // moved yet.
564 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
565 getByRefValueLLVMField(cast<VarDecl>(D))));
566 }
567
568 llvm::PointerType *ty
569 = cast<llvm::PointerType>(tempLV.getAddress()->getType());
570 ty = cast<llvm::PointerType>(ty->getElementType());
571
572 llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
573
574 // If __weak, we want to use a barrier under certain conditions.
575 if (lifetime == Qualifiers::OCL_Weak)
576 EmitARCInitWeak(tempLV.getAddress(), zero);
577
578 // Otherwise just do a simple store.
579 else
580 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
581 }
582
583 // Emit the initializer.
584 llvm::Value *value = 0;
585
586 switch (lifetime) {
587 case Qualifiers::OCL_None:
588 llvm_unreachable("present but none");
589
590 case Qualifiers::OCL_ExplicitNone:
591 // nothing to do
592 value = EmitScalarExpr(init);
593 break;
594
595 case Qualifiers::OCL_Strong: {
596 value = EmitARCRetainScalarExpr(init);
597 break;
598 }
599
600 case Qualifiers::OCL_Weak: {
601 // No way to optimize a producing initializer into this. It's not
602 // worth optimizing for, because the value will immediately
603 // disappear in the common case.
604 value = EmitScalarExpr(init);
605
606 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
607 if (accessedByInit)
608 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
609 else
610 EmitARCInitWeak(lvalue.getAddress(), value);
611 return;
612 }
613
614 case Qualifiers::OCL_Autoreleasing:
615 value = EmitARCRetainAutoreleaseScalarExpr(init);
616 break;
617 }
618
619 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
620
621 // If the variable might have been accessed by its initializer, we
622 // might have to initialize with a barrier. We have to do this for
623 // both __weak and __strong, but __weak got filtered out above.
624 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
625 llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
626 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
627 EmitARCRelease(oldValue, /*precise*/ false);
628 return;
629 }
630
631 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
632 }
633
634 /// EmitScalarInit - Initialize the given lvalue with the given object.
EmitScalarInit(llvm::Value * init,LValue lvalue)635 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
636 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
637 if (!lifetime)
638 return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
639
640 switch (lifetime) {
641 case Qualifiers::OCL_None:
642 llvm_unreachable("present but none");
643
644 case Qualifiers::OCL_ExplicitNone:
645 // nothing to do
646 break;
647
648 case Qualifiers::OCL_Strong:
649 init = EmitARCRetain(lvalue.getType(), init);
650 break;
651
652 case Qualifiers::OCL_Weak:
653 // Initialize and then skip the primitive store.
654 EmitARCInitWeak(lvalue.getAddress(), init);
655 return;
656
657 case Qualifiers::OCL_Autoreleasing:
658 init = EmitARCRetainAutorelease(lvalue.getType(), init);
659 break;
660 }
661
662 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
663 }
664
665 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
666 /// non-zero parts of the specified initializer with equal or fewer than
667 /// NumStores scalar stores.
canEmitInitWithFewStoresAfterMemset(llvm::Constant * Init,unsigned & NumStores)668 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
669 unsigned &NumStores) {
670 // Zero and Undef never requires any extra stores.
671 if (isa<llvm::ConstantAggregateZero>(Init) ||
672 isa<llvm::ConstantPointerNull>(Init) ||
673 isa<llvm::UndefValue>(Init))
674 return true;
675 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
676 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
677 isa<llvm::ConstantExpr>(Init))
678 return Init->isNullValue() || NumStores--;
679
680 // See if we can emit each element.
681 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
682 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
683 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
684 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
685 return false;
686 }
687 return true;
688 }
689
690 if (llvm::ConstantDataSequential *CDS =
691 dyn_cast<llvm::ConstantDataSequential>(Init)) {
692 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
693 llvm::Constant *Elt = CDS->getElementAsConstant(i);
694 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
695 return false;
696 }
697 return true;
698 }
699
700 // Anything else is hard and scary.
701 return false;
702 }
703
704 /// emitStoresForInitAfterMemset - For inits that
705 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
706 /// stores that would be required.
emitStoresForInitAfterMemset(llvm::Constant * Init,llvm::Value * Loc,bool isVolatile,CGBuilderTy & Builder)707 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
708 bool isVolatile, CGBuilderTy &Builder) {
709 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
710 "called emitStoresForInitAfterMemset for zero or undef value.");
711
712 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
713 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
714 isa<llvm::ConstantExpr>(Init)) {
715 Builder.CreateStore(Init, Loc, isVolatile);
716 return;
717 }
718
719 if (llvm::ConstantDataSequential *CDS =
720 dyn_cast<llvm::ConstantDataSequential>(Init)) {
721 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
722 llvm::Constant *Elt = CDS->getElementAsConstant(i);
723
724 // If necessary, get a pointer to the element and emit it.
725 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
726 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
727 isVolatile, Builder);
728 }
729 return;
730 }
731
732 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
733 "Unknown value type!");
734
735 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
736 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
737
738 // If necessary, get a pointer to the element and emit it.
739 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
740 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
741 isVolatile, Builder);
742 }
743 }
744
745
746 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
747 /// plus some stores to initialize a local variable instead of using a memcpy
748 /// from a constant global. It is beneficial to use memset if the global is all
749 /// zeros, or mostly zeros and large.
shouldUseMemSetPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)750 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
751 uint64_t GlobalSize) {
752 // If a global is all zeros, always use a memset.
753 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
754
755
756 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
757 // do it if it will require 6 or fewer scalar stores.
758 // TODO: Should budget depends on the size? Avoiding a large global warrants
759 // plopping in more stores.
760 unsigned StoreBudget = 6;
761 uint64_t SizeLimit = 32;
762
763 return GlobalSize > SizeLimit &&
764 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
765 }
766
767
768 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
769 /// variable declaration with auto, register, or no storage class specifier.
770 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)771 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
772 AutoVarEmission emission = EmitAutoVarAlloca(D);
773 EmitAutoVarInit(emission);
774 EmitAutoVarCleanups(emission);
775 }
776
777 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
778 /// local variable. Does not emit initalization or destruction.
779 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)780 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
781 QualType Ty = D.getType();
782
783 AutoVarEmission emission(D);
784
785 bool isByRef = D.hasAttr<BlocksAttr>();
786 emission.IsByRef = isByRef;
787
788 CharUnits alignment = getContext().getDeclAlign(&D);
789 emission.Alignment = alignment;
790
791 // If the type is variably-modified, emit all the VLA sizes for it.
792 if (Ty->isVariablyModifiedType())
793 EmitVariablyModifiedType(Ty);
794
795 llvm::Value *DeclPtr;
796 if (Ty->isConstantSizeType()) {
797 if (!Target.useGlobalsForAutomaticVariables()) {
798 bool NRVO = getContext().getLangOpts().ElideConstructors &&
799 D.isNRVOVariable();
800
801 // If this value is a POD array or struct with a statically
802 // determinable constant initializer, there are optimizations we can do.
803 //
804 // TODO: We should constant-evaluate the initializer of any variable,
805 // as long as it is initialized by a constant expression. Currently,
806 // isConstantInitializer produces wrong answers for structs with
807 // reference or bitfield members, and a few other cases, and checking
808 // for POD-ness protects us from some of these.
809 if (D.getInit() &&
810 (Ty->isArrayType() || Ty->isRecordType()) &&
811 (Ty.isPODType(getContext()) ||
812 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
813 D.getInit()->isConstantInitializer(getContext(), false)) {
814
815 // If the variable's a const type, and it's neither an NRVO
816 // candidate nor a __block variable and has no mutable members,
817 // emit it as a global instead.
818 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
819 CGM.isTypeConstant(Ty, true)) {
820 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
821
822 emission.Address = 0; // signal this condition to later callbacks
823 assert(emission.wasEmittedAsGlobal());
824 return emission;
825 }
826
827 // Otherwise, tell the initialization code that we're in this case.
828 emission.IsConstantAggregate = true;
829 }
830
831 // A normal fixed sized variable becomes an alloca in the entry block,
832 // unless it's an NRVO variable.
833 llvm::Type *LTy = ConvertTypeForMem(Ty);
834
835 if (NRVO) {
836 // The named return value optimization: allocate this variable in the
837 // return slot, so that we can elide the copy when returning this
838 // variable (C++0x [class.copy]p34).
839 DeclPtr = ReturnValue;
840
841 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
842 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
843 // Create a flag that is used to indicate when the NRVO was applied
844 // to this variable. Set it to zero to indicate that NRVO was not
845 // applied.
846 llvm::Value *Zero = Builder.getFalse();
847 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
848 EnsureInsertPoint();
849 Builder.CreateStore(Zero, NRVOFlag);
850
851 // Record the NRVO flag for this variable.
852 NRVOFlags[&D] = NRVOFlag;
853 emission.NRVOFlag = NRVOFlag;
854 }
855 }
856 } else {
857 if (isByRef)
858 LTy = BuildByRefType(&D);
859
860 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
861 Alloc->setName(D.getName());
862
863 CharUnits allocaAlignment = alignment;
864 if (isByRef)
865 allocaAlignment = std::max(allocaAlignment,
866 getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
867 Alloc->setAlignment(allocaAlignment.getQuantity());
868 DeclPtr = Alloc;
869 }
870 } else {
871 // Targets that don't support recursion emit locals as globals.
872 const char *Class =
873 D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
874 DeclPtr = CreateStaticVarDecl(D, Class,
875 llvm::GlobalValue::InternalLinkage);
876 }
877 } else {
878 EnsureInsertPoint();
879
880 if (!DidCallStackSave) {
881 // Save the stack.
882 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
883
884 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
885 llvm::Value *V = Builder.CreateCall(F);
886
887 Builder.CreateStore(V, Stack);
888
889 DidCallStackSave = true;
890
891 // Push a cleanup block and restore the stack there.
892 // FIXME: in general circumstances, this should be an EH cleanup.
893 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
894 }
895
896 llvm::Value *elementCount;
897 QualType elementType;
898 llvm::tie(elementCount, elementType) = getVLASize(Ty);
899
900 llvm::Type *llvmTy = ConvertTypeForMem(elementType);
901
902 // Allocate memory for the array.
903 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
904 vla->setAlignment(alignment.getQuantity());
905
906 DeclPtr = vla;
907 }
908
909 llvm::Value *&DMEntry = LocalDeclMap[&D];
910 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
911 DMEntry = DeclPtr;
912 emission.Address = DeclPtr;
913
914 // Emit debug info for local var declaration.
915 if (HaveInsertPoint())
916 if (CGDebugInfo *DI = getDebugInfo()) {
917 if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) {
918 DI->setLocation(D.getLocation());
919 if (Target.useGlobalsForAutomaticVariables()) {
920 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr),
921 &D);
922 } else
923 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
924 }
925 }
926
927 if (D.hasAttr<AnnotateAttr>())
928 EmitVarAnnotations(&D, emission.Address);
929
930 return emission;
931 }
932
933 /// Determines whether the given __block variable is potentially
934 /// captured by the given expression.
isCapturedBy(const VarDecl & var,const Expr * e)935 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
936 // Skip the most common kinds of expressions that make
937 // hierarchy-walking expensive.
938 e = e->IgnoreParenCasts();
939
940 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
941 const BlockDecl *block = be->getBlockDecl();
942 for (BlockDecl::capture_const_iterator i = block->capture_begin(),
943 e = block->capture_end(); i != e; ++i) {
944 if (i->getVariable() == &var)
945 return true;
946 }
947
948 // No need to walk into the subexpressions.
949 return false;
950 }
951
952 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
953 const CompoundStmt *CS = SE->getSubStmt();
954 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
955 BE = CS->body_end(); BI != BE; ++BI)
956 if (Expr *E = dyn_cast<Expr>((*BI))) {
957 if (isCapturedBy(var, E))
958 return true;
959 }
960 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
961 // special case declarations
962 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
963 I != E; ++I) {
964 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
965 Expr *Init = VD->getInit();
966 if (Init && isCapturedBy(var, Init))
967 return true;
968 }
969 }
970 }
971 else
972 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
973 // Later, provide code to poke into statements for capture analysis.
974 return true;
975 return false;
976 }
977
978 for (Stmt::const_child_range children = e->children(); children; ++children)
979 if (isCapturedBy(var, cast<Expr>(*children)))
980 return true;
981
982 return false;
983 }
984
985 /// \brief Determine whether the given initializer is trivial in the sense
986 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)987 static bool isTrivialInitializer(const Expr *Init) {
988 if (!Init)
989 return true;
990
991 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
992 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
993 if (Constructor->isTrivial() &&
994 Constructor->isDefaultConstructor() &&
995 !Construct->requiresZeroInitialization())
996 return true;
997
998 return false;
999 }
EmitAutoVarInit(const AutoVarEmission & emission)1000 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1001 assert(emission.Variable && "emission was not valid!");
1002
1003 // If this was emitted as a global constant, we're done.
1004 if (emission.wasEmittedAsGlobal()) return;
1005
1006 const VarDecl &D = *emission.Variable;
1007 QualType type = D.getType();
1008
1009 // If this local has an initializer, emit it now.
1010 const Expr *Init = D.getInit();
1011
1012 // If we are at an unreachable point, we don't need to emit the initializer
1013 // unless it contains a label.
1014 if (!HaveInsertPoint()) {
1015 if (!Init || !ContainsLabel(Init)) return;
1016 EnsureInsertPoint();
1017 }
1018
1019 // Initialize the structure of a __block variable.
1020 if (emission.IsByRef)
1021 emitByrefStructureInit(emission);
1022
1023 if (isTrivialInitializer(Init))
1024 return;
1025
1026 CharUnits alignment = emission.Alignment;
1027
1028 // Check whether this is a byref variable that's potentially
1029 // captured and moved by its own initializer. If so, we'll need to
1030 // emit the initializer first, then copy into the variable.
1031 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1032
1033 llvm::Value *Loc =
1034 capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1035
1036 llvm::Constant *constant = 0;
1037 if (emission.IsConstantAggregate) {
1038 assert(!capturedByInit && "constant init contains a capturing block?");
1039 constant = CGM.EmitConstantInit(D, this);
1040 }
1041
1042 if (!constant) {
1043 LValue lv = MakeAddrLValue(Loc, type, alignment);
1044 lv.setNonGC(true);
1045 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1046 }
1047
1048 // If this is a simple aggregate initialization, we can optimize it
1049 // in various ways.
1050 bool isVolatile = type.isVolatileQualified();
1051
1052 llvm::Value *SizeVal =
1053 llvm::ConstantInt::get(IntPtrTy,
1054 getContext().getTypeSizeInChars(type).getQuantity());
1055
1056 llvm::Type *BP = Int8PtrTy;
1057 if (Loc->getType() != BP)
1058 Loc = Builder.CreateBitCast(Loc, BP);
1059
1060 // If the initializer is all or mostly zeros, codegen with memset then do
1061 // a few stores afterward.
1062 if (shouldUseMemSetPlusStoresToInitialize(constant,
1063 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
1064 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1065 alignment.getQuantity(), isVolatile);
1066 // Zero and undef don't require a stores.
1067 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1068 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1069 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1070 }
1071 } else {
1072 // Otherwise, create a temporary global with the initializer then
1073 // memcpy from the global to the alloca.
1074 std::string Name = GetStaticDeclName(*this, D, ".");
1075 llvm::GlobalVariable *GV =
1076 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1077 llvm::GlobalValue::PrivateLinkage,
1078 constant, Name);
1079 GV->setAlignment(alignment.getQuantity());
1080 GV->setUnnamedAddr(true);
1081
1082 llvm::Value *SrcPtr = GV;
1083 if (SrcPtr->getType() != BP)
1084 SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1085
1086 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1087 isVolatile);
1088 }
1089 }
1090
1091 /// Emit an expression as an initializer for a variable at the given
1092 /// location. The expression is not necessarily the normal
1093 /// initializer for the variable, and the address is not necessarily
1094 /// its normal location.
1095 ///
1096 /// \param init the initializing expression
1097 /// \param var the variable to act as if we're initializing
1098 /// \param loc the address to initialize; its type is a pointer
1099 /// to the LLVM mapping of the variable's type
1100 /// \param alignment the alignment of the address
1101 /// \param capturedByInit true if the variable is a __block variable
1102 /// whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1103 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1104 const ValueDecl *D,
1105 LValue lvalue,
1106 bool capturedByInit) {
1107 QualType type = D->getType();
1108
1109 if (type->isReferenceType()) {
1110 RValue rvalue = EmitReferenceBindingToExpr(init, D);
1111 if (capturedByInit)
1112 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1113 EmitStoreThroughLValue(rvalue, lvalue, true);
1114 } else if (!hasAggregateLLVMType(type)) {
1115 EmitScalarInit(init, D, lvalue, capturedByInit);
1116 } else if (type->isAnyComplexType()) {
1117 ComplexPairTy complex = EmitComplexExpr(init);
1118 if (capturedByInit)
1119 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1120 StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1121 } else {
1122 // TODO: how can we delay here if D is captured by its initializer?
1123 EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1124 AggValueSlot::IsDestructed,
1125 AggValueSlot::DoesNotNeedGCBarriers,
1126 AggValueSlot::IsNotAliased));
1127 MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init);
1128 }
1129 }
1130
1131 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1132 void CodeGenFunction::emitAutoVarTypeCleanup(
1133 const CodeGenFunction::AutoVarEmission &emission,
1134 QualType::DestructionKind dtorKind) {
1135 assert(dtorKind != QualType::DK_none);
1136
1137 // Note that for __block variables, we want to destroy the
1138 // original stack object, not the possibly forwarded object.
1139 llvm::Value *addr = emission.getObjectAddress(*this);
1140
1141 const VarDecl *var = emission.Variable;
1142 QualType type = var->getType();
1143
1144 CleanupKind cleanupKind = NormalAndEHCleanup;
1145 CodeGenFunction::Destroyer *destroyer = 0;
1146
1147 switch (dtorKind) {
1148 case QualType::DK_none:
1149 llvm_unreachable("no cleanup for trivially-destructible variable");
1150
1151 case QualType::DK_cxx_destructor:
1152 // If there's an NRVO flag on the emission, we need a different
1153 // cleanup.
1154 if (emission.NRVOFlag) {
1155 assert(!type->isArrayType());
1156 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1157 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1158 emission.NRVOFlag);
1159 return;
1160 }
1161 break;
1162
1163 case QualType::DK_objc_strong_lifetime:
1164 // Suppress cleanups for pseudo-strong variables.
1165 if (var->isARCPseudoStrong()) return;
1166
1167 // Otherwise, consider whether to use an EH cleanup or not.
1168 cleanupKind = getARCCleanupKind();
1169
1170 // Use the imprecise destroyer by default.
1171 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1172 destroyer = CodeGenFunction::destroyARCStrongImprecise;
1173 break;
1174
1175 case QualType::DK_objc_weak_lifetime:
1176 break;
1177 }
1178
1179 // If we haven't chosen a more specific destroyer, use the default.
1180 if (!destroyer) destroyer = getDestroyer(dtorKind);
1181
1182 // Use an EH cleanup in array destructors iff the destructor itself
1183 // is being pushed as an EH cleanup.
1184 bool useEHCleanup = (cleanupKind & EHCleanup);
1185 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1186 useEHCleanup);
1187 }
1188
EmitAutoVarCleanups(const AutoVarEmission & emission)1189 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1190 assert(emission.Variable && "emission was not valid!");
1191
1192 // If this was emitted as a global constant, we're done.
1193 if (emission.wasEmittedAsGlobal()) return;
1194
1195 // If we don't have an insertion point, we're done. Sema prevents
1196 // us from jumping into any of these scopes anyway.
1197 if (!HaveInsertPoint()) return;
1198
1199 const VarDecl &D = *emission.Variable;
1200
1201 // Check the type for a cleanup.
1202 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1203 emitAutoVarTypeCleanup(emission, dtorKind);
1204
1205 // In GC mode, honor objc_precise_lifetime.
1206 if (getLangOpts().getGC() != LangOptions::NonGC &&
1207 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1208 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1209 }
1210
1211 // Handle the cleanup attribute.
1212 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1213 const FunctionDecl *FD = CA->getFunctionDecl();
1214
1215 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1216 assert(F && "Could not find function!");
1217
1218 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1219 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1220 }
1221
1222 // If this is a block variable, call _Block_object_destroy
1223 // (on the unforwarded address).
1224 if (emission.IsByRef)
1225 enterByrefCleanup(emission);
1226 }
1227
1228 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)1229 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1230 switch (kind) {
1231 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1232 case QualType::DK_cxx_destructor:
1233 return destroyCXXObject;
1234 case QualType::DK_objc_strong_lifetime:
1235 return destroyARCStrongPrecise;
1236 case QualType::DK_objc_weak_lifetime:
1237 return destroyARCWeak;
1238 }
1239 llvm_unreachable("Unknown DestructionKind");
1240 }
1241
1242 /// pushDestroy - Push the standard destructor for the given type.
pushDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1243 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1244 llvm::Value *addr, QualType type) {
1245 assert(dtorKind && "cannot push destructor for trivial type");
1246
1247 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1248 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1249 cleanupKind & EHCleanup);
1250 }
1251
pushDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1252 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1253 QualType type, Destroyer *destroyer,
1254 bool useEHCleanupForArray) {
1255 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1256 destroyer, useEHCleanupForArray);
1257 }
1258
1259 /// emitDestroy - Immediately perform the destruction of the given
1260 /// object.
1261 ///
1262 /// \param addr - the address of the object; a type*
1263 /// \param type - the type of the object; if an array type, all
1264 /// objects are destroyed in reverse order
1265 /// \param destroyer - the function to call to destroy individual
1266 /// elements
1267 /// \param useEHCleanupForArray - whether an EH cleanup should be
1268 /// used when destroying array elements, in case one of the
1269 /// destructions throws an exception
emitDestroy(llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1270 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1271 Destroyer *destroyer,
1272 bool useEHCleanupForArray) {
1273 const ArrayType *arrayType = getContext().getAsArrayType(type);
1274 if (!arrayType)
1275 return destroyer(*this, addr, type);
1276
1277 llvm::Value *begin = addr;
1278 llvm::Value *length = emitArrayLength(arrayType, type, begin);
1279
1280 // Normally we have to check whether the array is zero-length.
1281 bool checkZeroLength = true;
1282
1283 // But if the array length is constant, we can suppress that.
1284 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1285 // ...and if it's constant zero, we can just skip the entire thing.
1286 if (constLength->isZero()) return;
1287 checkZeroLength = false;
1288 }
1289
1290 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1291 emitArrayDestroy(begin, end, type, destroyer,
1292 checkZeroLength, useEHCleanupForArray);
1293 }
1294
1295 /// emitArrayDestroy - Destroys all the elements of the given array,
1296 /// beginning from last to first. The array cannot be zero-length.
1297 ///
1298 /// \param begin - a type* denoting the first element of the array
1299 /// \param end - a type* denoting one past the end of the array
1300 /// \param type - the element type of the array
1301 /// \param destroyer - the function to call to destroy elements
1302 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1303 /// the remaining elements in case the destruction of a single
1304 /// element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType type,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)1305 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1306 llvm::Value *end,
1307 QualType type,
1308 Destroyer *destroyer,
1309 bool checkZeroLength,
1310 bool useEHCleanup) {
1311 assert(!type->isArrayType());
1312
1313 // The basic structure here is a do-while loop, because we don't
1314 // need to check for the zero-element case.
1315 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1316 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1317
1318 if (checkZeroLength) {
1319 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1320 "arraydestroy.isempty");
1321 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1322 }
1323
1324 // Enter the loop body, making that address the current address.
1325 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1326 EmitBlock(bodyBB);
1327 llvm::PHINode *elementPast =
1328 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1329 elementPast->addIncoming(end, entryBB);
1330
1331 // Shift the address back by one element.
1332 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1333 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1334 "arraydestroy.element");
1335
1336 if (useEHCleanup)
1337 pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1338
1339 // Perform the actual destruction there.
1340 destroyer(*this, element, type);
1341
1342 if (useEHCleanup)
1343 PopCleanupBlock();
1344
1345 // Check whether we've reached the end.
1346 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1347 Builder.CreateCondBr(done, doneBB, bodyBB);
1348 elementPast->addIncoming(element, Builder.GetInsertBlock());
1349
1350 // Done.
1351 EmitBlock(doneBB);
1352 }
1353
1354 /// Perform partial array destruction as if in an EH cleanup. Unlike
1355 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CodeGenFunction::Destroyer * destroyer)1356 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1357 llvm::Value *begin, llvm::Value *end,
1358 QualType type,
1359 CodeGenFunction::Destroyer *destroyer) {
1360 // If the element type is itself an array, drill down.
1361 unsigned arrayDepth = 0;
1362 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1363 // VLAs don't require a GEP index to walk into.
1364 if (!isa<VariableArrayType>(arrayType))
1365 arrayDepth++;
1366 type = arrayType->getElementType();
1367 }
1368
1369 if (arrayDepth) {
1370 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1371
1372 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1373 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1374 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1375 }
1376
1377 // Destroy the array. We don't ever need an EH cleanup because we
1378 // assume that we're in an EH cleanup ourselves, so a throwing
1379 // destructor causes an immediate terminate.
1380 CGF.emitArrayDestroy(begin, end, type, destroyer,
1381 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1382 }
1383
1384 namespace {
1385 /// RegularPartialArrayDestroy - a cleanup which performs a partial
1386 /// array destroy where the end pointer is regularly determined and
1387 /// does not need to be loaded from a local.
1388 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1389 llvm::Value *ArrayBegin;
1390 llvm::Value *ArrayEnd;
1391 QualType ElementType;
1392 CodeGenFunction::Destroyer *Destroyer;
1393 public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CodeGenFunction::Destroyer * destroyer)1394 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1395 QualType elementType,
1396 CodeGenFunction::Destroyer *destroyer)
1397 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1398 ElementType(elementType), Destroyer(destroyer) {}
1399
Emit(CodeGenFunction & CGF,Flags flags)1400 void Emit(CodeGenFunction &CGF, Flags flags) {
1401 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1402 ElementType, Destroyer);
1403 }
1404 };
1405
1406 /// IrregularPartialArrayDestroy - a cleanup which performs a
1407 /// partial array destroy where the end pointer is irregularly
1408 /// determined and must be loaded from a local.
1409 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1410 llvm::Value *ArrayBegin;
1411 llvm::Value *ArrayEndPointer;
1412 QualType ElementType;
1413 CodeGenFunction::Destroyer *Destroyer;
1414 public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,CodeGenFunction::Destroyer * destroyer)1415 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1416 llvm::Value *arrayEndPointer,
1417 QualType elementType,
1418 CodeGenFunction::Destroyer *destroyer)
1419 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1420 ElementType(elementType), Destroyer(destroyer) {}
1421
Emit(CodeGenFunction & CGF,Flags flags)1422 void Emit(CodeGenFunction &CGF, Flags flags) {
1423 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1424 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1425 ElementType, Destroyer);
1426 }
1427 };
1428 }
1429
1430 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1431 /// already-constructed elements of the given array. The cleanup
1432 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1433 ///
1434 /// \param elementType - the immediate element type of the array;
1435 /// possibly still an array type
1436 /// \param array - a value of type elementType*
1437 /// \param destructionKind - the kind of destruction required
1438 /// \param initializedElementCount - a value of type size_t* holding
1439 /// the number of successfully-constructed elements
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,Destroyer * destroyer)1440 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1441 llvm::Value *arrayEndPointer,
1442 QualType elementType,
1443 Destroyer *destroyer) {
1444 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1445 arrayBegin, arrayEndPointer,
1446 elementType, destroyer);
1447 }
1448
1449 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1450 /// already-constructed elements of the given array. The cleanup
1451 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1452 ///
1453 /// \param elementType - the immediate element type of the array;
1454 /// possibly still an array type
1455 /// \param array - a value of type elementType*
1456 /// \param destructionKind - the kind of destruction required
1457 /// \param initializedElementCount - a value of type size_t* holding
1458 /// the number of successfully-constructed elements
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,Destroyer * destroyer)1459 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1460 llvm::Value *arrayEnd,
1461 QualType elementType,
1462 Destroyer *destroyer) {
1463 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1464 arrayBegin, arrayEnd,
1465 elementType, destroyer);
1466 }
1467
1468 namespace {
1469 /// A cleanup to perform a release of an object at the end of a
1470 /// function. This is used to balance out the incoming +1 of a
1471 /// ns_consumed argument when we can't reasonably do that just by
1472 /// not doing the initial retain for a __block argument.
1473 struct ConsumeARCParameter : EHScopeStack::Cleanup {
ConsumeARCParameter__anon1a4f73c80311::ConsumeARCParameter1474 ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1475
1476 llvm::Value *Param;
1477
Emit__anon1a4f73c80311::ConsumeARCParameter1478 void Emit(CodeGenFunction &CGF, Flags flags) {
1479 CGF.EmitARCRelease(Param, /*precise*/ false);
1480 }
1481 };
1482 }
1483
1484 /// Emit an alloca (or GlobalValue depending on target)
1485 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,llvm::Value * Arg,unsigned ArgNo)1486 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1487 unsigned ArgNo) {
1488 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1489 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1490 "Invalid argument to EmitParmDecl");
1491
1492 Arg->setName(D.getName());
1493
1494 // Use better IR generation for certain implicit parameters.
1495 if (isa<ImplicitParamDecl>(D)) {
1496 // The only implicit argument a block has is its literal.
1497 if (BlockInfo) {
1498 LocalDeclMap[&D] = Arg;
1499
1500 if (CGDebugInfo *DI = getDebugInfo()) {
1501 if (CGM.getCodeGenOpts().DebugInfo >=
1502 CodeGenOptions::LimitedDebugInfo) {
1503 DI->setLocation(D.getLocation());
1504 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1505 }
1506 }
1507
1508 return;
1509 }
1510 }
1511
1512 QualType Ty = D.getType();
1513
1514 llvm::Value *DeclPtr;
1515 // If this is an aggregate or variable sized value, reuse the input pointer.
1516 if (!Ty->isConstantSizeType() ||
1517 CodeGenFunction::hasAggregateLLVMType(Ty)) {
1518 DeclPtr = Arg;
1519 } else {
1520 // Otherwise, create a temporary to hold the value.
1521 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1522 D.getName() + ".addr");
1523 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1524 DeclPtr = Alloc;
1525
1526 bool doStore = true;
1527
1528 Qualifiers qs = Ty.getQualifiers();
1529
1530 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1531 // We honor __attribute__((ns_consumed)) for types with lifetime.
1532 // For __strong, it's handled by just skipping the initial retain;
1533 // otherwise we have to balance out the initial +1 with an extra
1534 // cleanup to do the release at the end of the function.
1535 bool isConsumed = D.hasAttr<NSConsumedAttr>();
1536
1537 // 'self' is always formally __strong, but if this is not an
1538 // init method then we don't want to retain it.
1539 if (D.isARCPseudoStrong()) {
1540 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1541 assert(&D == method->getSelfDecl());
1542 assert(lt == Qualifiers::OCL_Strong);
1543 assert(qs.hasConst());
1544 assert(method->getMethodFamily() != OMF_init);
1545 (void) method;
1546 lt = Qualifiers::OCL_ExplicitNone;
1547 }
1548
1549 if (lt == Qualifiers::OCL_Strong) {
1550 if (!isConsumed)
1551 // Don't use objc_retainBlock for block pointers, because we
1552 // don't want to Block_copy something just because we got it
1553 // as a parameter.
1554 Arg = EmitARCRetainNonBlock(Arg);
1555 } else {
1556 // Push the cleanup for a consumed parameter.
1557 if (isConsumed)
1558 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1559
1560 if (lt == Qualifiers::OCL_Weak) {
1561 EmitARCInitWeak(DeclPtr, Arg);
1562 doStore = false; // The weak init is a store, no need to do two.
1563 }
1564 }
1565
1566 // Enter the cleanup scope.
1567 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1568 }
1569
1570 // Store the initial value into the alloca.
1571 if (doStore) {
1572 LValue lv = MakeAddrLValue(DeclPtr, Ty,
1573 getContext().getDeclAlign(&D));
1574 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1575 }
1576 }
1577
1578 llvm::Value *&DMEntry = LocalDeclMap[&D];
1579 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1580 DMEntry = DeclPtr;
1581
1582 // Emit debug info for param declaration.
1583 if (CGDebugInfo *DI = getDebugInfo()) {
1584 if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) {
1585 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1586 }
1587 }
1588
1589 if (D.hasAttr<AnnotateAttr>())
1590 EmitVarAnnotations(&D, DeclPtr);
1591 }
1592