• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the template classes ExplodedNode and ExplodedGraph,
11 //  which represent a path-sensitive, intra-procedural "exploded graph."
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18 #include "clang/AST/Stmt.h"
19 #include "clang/AST/ParentMap.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include <vector>
25 
26 using namespace clang;
27 using namespace ento;
28 
29 //===----------------------------------------------------------------------===//
30 // Node auditing.
31 //===----------------------------------------------------------------------===//
32 
33 // An out of line virtual method to provide a home for the class vtable.
~Auditor()34 ExplodedNode::Auditor::~Auditor() {}
35 
36 #ifndef NDEBUG
37 static ExplodedNode::Auditor* NodeAuditor = 0;
38 #endif
39 
SetAuditor(ExplodedNode::Auditor * A)40 void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
41 #ifndef NDEBUG
42   NodeAuditor = A;
43 #endif
44 }
45 
46 //===----------------------------------------------------------------------===//
47 // Cleanup.
48 //===----------------------------------------------------------------------===//
49 
50 static const unsigned CounterTop = 1000;
51 
ExplodedGraph()52 ExplodedGraph::ExplodedGraph()
53   : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {}
54 
~ExplodedGraph()55 ExplodedGraph::~ExplodedGraph() {}
56 
57 //===----------------------------------------------------------------------===//
58 // Node reclamation.
59 //===----------------------------------------------------------------------===//
60 
shouldCollect(const ExplodedNode * node)61 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
62   // Reclaim all nodes that match *all* the following criteria:
63   //
64   // (1) 1 predecessor (that has one successor)
65   // (2) 1 successor (that has one predecessor)
66   // (3) The ProgramPoint is for a PostStmt.
67   // (4) There is no 'tag' for the ProgramPoint.
68   // (5) The 'store' is the same as the predecessor.
69   // (6) The 'GDM' is the same as the predecessor.
70   // (7) The LocationContext is the same as the predecessor.
71   // (8) The PostStmt isn't for a non-consumed Stmt or Expr.
72   // (9) The successor is not a CallExpr StmtPoint (so that we would be able to
73   //     find it when retrying a call with no inlining).
74   // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well.
75 
76   // Conditions 1 and 2.
77   if (node->pred_size() != 1 || node->succ_size() != 1)
78     return false;
79 
80   const ExplodedNode *pred = *(node->pred_begin());
81   if (pred->succ_size() != 1)
82     return false;
83 
84   const ExplodedNode *succ = *(node->succ_begin());
85   if (succ->pred_size() != 1)
86     return false;
87 
88   // Condition 3.
89   ProgramPoint progPoint = node->getLocation();
90   if (!isa<PostStmt>(progPoint))
91     return false;
92 
93   // Condition 4.
94   PostStmt ps = cast<PostStmt>(progPoint);
95   if (ps.getTag())
96     return false;
97 
98   // Conditions 5, 6, and 7.
99   ProgramStateRef state = node->getState();
100   ProgramStateRef pred_state = pred->getState();
101   if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
102       progPoint.getLocationContext() != pred->getLocationContext())
103     return false;
104 
105   // Condition 8.
106   // Do not collect nodes for non-consumed Stmt or Expr to ensure precise
107   // diagnostic generation; specifically, so that we could anchor arrows
108   // pointing to the beginning of statements (as written in code).
109   if (!isa<Expr>(ps.getStmt()))
110     return false;
111 
112   if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) {
113     ParentMap &PM = progPoint.getLocationContext()->getParentMap();
114     if (!PM.isConsumedExpr(Ex))
115       return false;
116   }
117 
118   // Condition 9.
119   const ProgramPoint SuccLoc = succ->getLocation();
120   if (const StmtPoint *SP = dyn_cast<StmtPoint>(&SuccLoc))
121     if (CallEvent::isCallStmt(SP->getStmt()))
122       return false;
123 
124   return true;
125 }
126 
collectNode(ExplodedNode * node)127 void ExplodedGraph::collectNode(ExplodedNode *node) {
128   // Removing a node means:
129   // (a) changing the predecessors successor to the successor of this node
130   // (b) changing the successors predecessor to the predecessor of this node
131   // (c) Putting 'node' onto freeNodes.
132   assert(node->pred_size() == 1 || node->succ_size() == 1);
133   ExplodedNode *pred = *(node->pred_begin());
134   ExplodedNode *succ = *(node->succ_begin());
135   pred->replaceSuccessor(succ);
136   succ->replacePredecessor(pred);
137   FreeNodes.push_back(node);
138   Nodes.RemoveNode(node);
139   --NumNodes;
140   node->~ExplodedNode();
141 }
142 
reclaimRecentlyAllocatedNodes()143 void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
144   if (ChangedNodes.empty())
145     return;
146 
147   // Only periodically relcaim nodes so that we can build up a set of
148   // nodes that meet the reclamation criteria.  Freshly created nodes
149   // by definition have no successor, and thus cannot be reclaimed (see below).
150   assert(reclaimCounter > 0);
151   if (--reclaimCounter != 0)
152     return;
153   reclaimCounter = CounterTop;
154 
155   for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
156        it != et; ++it) {
157     ExplodedNode *node = *it;
158     if (shouldCollect(node))
159       collectNode(node);
160   }
161   ChangedNodes.clear();
162 }
163 
164 //===----------------------------------------------------------------------===//
165 // ExplodedNode.
166 //===----------------------------------------------------------------------===//
167 
168 // An NodeGroup's storage type is actually very much like a TinyPtrVector:
169 // it can be either a pointer to a single ExplodedNode, or a pointer to a
170 // BumpVector allocated with the ExplodedGraph's allocator. This allows the
171 // common case of single-node NodeGroups to be implemented with no extra memory.
172 //
173 // Consequently, each of the NodeGroup methods have up to four cases to handle:
174 // 1. The flag is set and this group does not actually contain any nodes.
175 // 2. The group is empty, in which case the storage value is null.
176 // 3. The group contains a single node.
177 // 4. The group contains more than one node.
178 typedef BumpVector<ExplodedNode *> ExplodedNodeVector;
179 typedef llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *> GroupStorage;
180 
addPredecessor(ExplodedNode * V,ExplodedGraph & G)181 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
182   assert (!V->isSink());
183   Preds.addNode(V, G);
184   V->Succs.addNode(this, G);
185 #ifndef NDEBUG
186   if (NodeAuditor) NodeAuditor->AddEdge(V, this);
187 #endif
188 }
189 
replaceNode(ExplodedNode * node)190 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
191   assert(!getFlag());
192 
193   GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
194   assert(Storage.is<ExplodedNode *>());
195   Storage = node;
196   assert(Storage.is<ExplodedNode *>());
197 }
198 
addNode(ExplodedNode * N,ExplodedGraph & G)199 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
200   assert(!getFlag());
201 
202   GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
203   if (Storage.isNull()) {
204     Storage = N;
205     assert(Storage.is<ExplodedNode *>());
206     return;
207   }
208 
209   ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>();
210 
211   if (!V) {
212     // Switch from single-node to multi-node representation.
213     ExplodedNode *Old = Storage.get<ExplodedNode *>();
214 
215     BumpVectorContext &Ctx = G.getNodeAllocator();
216     V = G.getAllocator().Allocate<ExplodedNodeVector>();
217     new (V) ExplodedNodeVector(Ctx, 4);
218     V->push_back(Old, Ctx);
219 
220     Storage = V;
221     assert(!getFlag());
222     assert(Storage.is<ExplodedNodeVector *>());
223   }
224 
225   V->push_back(N, G.getNodeAllocator());
226 }
227 
size() const228 unsigned ExplodedNode::NodeGroup::size() const {
229   if (getFlag())
230     return 0;
231 
232   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
233   if (Storage.isNull())
234     return 0;
235   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
236     return V->size();
237   return 1;
238 }
239 
begin() const240 ExplodedNode * const *ExplodedNode::NodeGroup::begin() const {
241   if (getFlag())
242     return 0;
243 
244   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
245   if (Storage.isNull())
246     return 0;
247   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
248     return V->begin();
249   return Storage.getAddrOfPtr1();
250 }
251 
end() const252 ExplodedNode * const *ExplodedNode::NodeGroup::end() const {
253   if (getFlag())
254     return 0;
255 
256   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
257   if (Storage.isNull())
258     return 0;
259   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
260     return V->end();
261   return Storage.getAddrOfPtr1() + 1;
262 }
263 
getNode(const ProgramPoint & L,ProgramStateRef State,bool IsSink,bool * IsNew)264 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
265                                      ProgramStateRef State,
266                                      bool IsSink,
267                                      bool* IsNew) {
268   // Profile 'State' to determine if we already have an existing node.
269   llvm::FoldingSetNodeID profile;
270   void *InsertPos = 0;
271 
272   NodeTy::Profile(profile, L, State, IsSink);
273   NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
274 
275   if (!V) {
276     if (!FreeNodes.empty()) {
277       V = FreeNodes.back();
278       FreeNodes.pop_back();
279     }
280     else {
281       // Allocate a new node.
282       V = (NodeTy*) getAllocator().Allocate<NodeTy>();
283     }
284 
285     new (V) NodeTy(L, State, IsSink);
286 
287     if (reclaimNodes)
288       ChangedNodes.push_back(V);
289 
290     // Insert the node into the node set and return it.
291     Nodes.InsertNode(V, InsertPos);
292     ++NumNodes;
293 
294     if (IsNew) *IsNew = true;
295   }
296   else
297     if (IsNew) *IsNew = false;
298 
299   return V;
300 }
301 
302 std::pair<ExplodedGraph*, InterExplodedGraphMap*>
Trim(const NodeTy * const * NBeg,const NodeTy * const * NEnd,llvm::DenseMap<const void *,const void * > * InverseMap) const303 ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
304                llvm::DenseMap<const void*, const void*> *InverseMap) const {
305 
306   if (NBeg == NEnd)
307     return std::make_pair((ExplodedGraph*) 0,
308                           (InterExplodedGraphMap*) 0);
309 
310   assert (NBeg < NEnd);
311 
312   OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
313 
314   ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
315 
316   return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
317 }
318 
319 ExplodedGraph*
TrimInternal(const ExplodedNode * const * BeginSources,const ExplodedNode * const * EndSources,InterExplodedGraphMap * M,llvm::DenseMap<const void *,const void * > * InverseMap) const320 ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
321                             const ExplodedNode* const* EndSources,
322                             InterExplodedGraphMap* M,
323                    llvm::DenseMap<const void*, const void*> *InverseMap) const {
324 
325   typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
326   Pass1Ty Pass1;
327 
328   typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
329   Pass2Ty& Pass2 = M->M;
330 
331   SmallVector<const ExplodedNode*, 10> WL1, WL2;
332 
333   // ===- Pass 1 (reverse DFS) -===
334   for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
335     assert(*I);
336     WL1.push_back(*I);
337   }
338 
339   // Process the first worklist until it is empty.  Because it is a std::list
340   // it acts like a FIFO queue.
341   while (!WL1.empty()) {
342     const ExplodedNode *N = WL1.back();
343     WL1.pop_back();
344 
345     // Have we already visited this node?  If so, continue to the next one.
346     if (Pass1.count(N))
347       continue;
348 
349     // Otherwise, mark this node as visited.
350     Pass1.insert(N);
351 
352     // If this is a root enqueue it to the second worklist.
353     if (N->Preds.empty()) {
354       WL2.push_back(N);
355       continue;
356     }
357 
358     // Visit our predecessors and enqueue them.
359     for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
360          I != E; ++I)
361       WL1.push_back(*I);
362   }
363 
364   // We didn't hit a root? Return with a null pointer for the new graph.
365   if (WL2.empty())
366     return 0;
367 
368   // Create an empty graph.
369   ExplodedGraph* G = MakeEmptyGraph();
370 
371   // ===- Pass 2 (forward DFS to construct the new graph) -===
372   while (!WL2.empty()) {
373     const ExplodedNode *N = WL2.back();
374     WL2.pop_back();
375 
376     // Skip this node if we have already processed it.
377     if (Pass2.find(N) != Pass2.end())
378       continue;
379 
380     // Create the corresponding node in the new graph and record the mapping
381     // from the old node to the new node.
382     ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
383     Pass2[N] = NewN;
384 
385     // Also record the reverse mapping from the new node to the old node.
386     if (InverseMap) (*InverseMap)[NewN] = N;
387 
388     // If this node is a root, designate it as such in the graph.
389     if (N->Preds.empty())
390       G->addRoot(NewN);
391 
392     // In the case that some of the intended predecessors of NewN have already
393     // been created, we should hook them up as predecessors.
394 
395     // Walk through the predecessors of 'N' and hook up their corresponding
396     // nodes in the new graph (if any) to the freshly created node.
397     for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
398          I != E; ++I) {
399       Pass2Ty::iterator PI = Pass2.find(*I);
400       if (PI == Pass2.end())
401         continue;
402 
403       NewN->addPredecessor(PI->second, *G);
404     }
405 
406     // In the case that some of the intended successors of NewN have already
407     // been created, we should hook them up as successors.  Otherwise, enqueue
408     // the new nodes from the original graph that should have nodes created
409     // in the new graph.
410     for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end();
411          I != E; ++I) {
412       Pass2Ty::iterator PI = Pass2.find(*I);
413       if (PI != Pass2.end()) {
414         PI->second->addPredecessor(NewN, *G);
415         continue;
416       }
417 
418       // Enqueue nodes to the worklist that were marked during pass 1.
419       if (Pass1.count(*I))
420         WL2.push_back(*I);
421     }
422   }
423 
424   return G;
425 }
426 
anchor()427 void InterExplodedGraphMap::anchor() { }
428 
429 ExplodedNode*
getMappedNode(const ExplodedNode * N) const430 InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
431   llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
432     M.find(N);
433 
434   return I == M.end() ? 0 : I->second;
435 }
436 
437