1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the generic AliasAnalysis interface, which is used as the 11 // common interface used by all clients of alias analysis information, and 12 // implemented by all alias analysis implementations. Mod/Ref information is 13 // also captured by this interface. 14 // 15 // Implementations of this interface must implement the various virtual methods, 16 // which automatically provides functionality for the entire suite of client 17 // APIs. 18 // 19 // This API identifies memory regions with the Location class. The pointer 20 // component specifies the base memory address of the region. The Size specifies 21 // the maximum size (in address units) of the memory region, or UnknownSize if 22 // the size is not known. The TBAA tag identifies the "type" of the memory 23 // reference; see the TypeBasedAliasAnalysis class for details. 24 // 25 // Some non-obvious details include: 26 // - Pointers that point to two completely different objects in memory never 27 // alias, regardless of the value of the Size component. 28 // - NoAlias doesn't imply inequal pointers. The most obvious example of this 29 // is two pointers to constant memory. Even if they are equal, constant 30 // memory is never stored to, so there will never be any dependencies. 31 // In this and other situations, the pointers may be both NoAlias and 32 // MustAlias at the same time. The current API can only return one result, 33 // though this is rarely a problem in practice. 34 // 35 //===----------------------------------------------------------------------===// 36 37 #ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H 38 #define LLVM_ANALYSIS_ALIAS_ANALYSIS_H 39 40 #include "llvm/Support/CallSite.h" 41 #include "llvm/ADT/DenseMap.h" 42 43 namespace llvm { 44 45 class LoadInst; 46 class StoreInst; 47 class VAArgInst; 48 class TargetData; 49 class TargetLibraryInfo; 50 class Pass; 51 class AnalysisUsage; 52 class MemTransferInst; 53 class MemIntrinsic; 54 class DominatorTree; 55 56 class AliasAnalysis { 57 protected: 58 const TargetData *TD; 59 const TargetLibraryInfo *TLI; 60 61 private: 62 AliasAnalysis *AA; // Previous Alias Analysis to chain to. 63 64 protected: 65 /// InitializeAliasAnalysis - Subclasses must call this method to initialize 66 /// the AliasAnalysis interface before any other methods are called. This is 67 /// typically called by the run* methods of these subclasses. This may be 68 /// called multiple times. 69 /// 70 void InitializeAliasAnalysis(Pass *P); 71 72 /// getAnalysisUsage - All alias analysis implementations should invoke this 73 /// directly (using AliasAnalysis::getAnalysisUsage(AU)). 74 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 75 76 public: 77 static char ID; // Class identification, replacement for typeinfo AliasAnalysis()78 AliasAnalysis() : TD(0), TLI(0), AA(0) {} 79 virtual ~AliasAnalysis(); // We want to be subclassed 80 81 /// UnknownSize - This is a special value which can be used with the 82 /// size arguments in alias queries to indicate that the caller does not 83 /// know the sizes of the potential memory references. 84 static uint64_t const UnknownSize = ~UINT64_C(0); 85 86 /// getTargetData - Return a pointer to the current TargetData object, or 87 /// null if no TargetData object is available. 88 /// getTargetData()89 const TargetData *getTargetData() const { return TD; } 90 91 /// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo 92 /// object, or null if no TargetLibraryInfo object is available. 93 /// getTargetLibraryInfo()94 const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; } 95 96 /// getTypeStoreSize - Return the TargetData store size for the given type, 97 /// if known, or a conservative value otherwise. 98 /// 99 uint64_t getTypeStoreSize(Type *Ty); 100 101 //===--------------------------------------------------------------------===// 102 /// Alias Queries... 103 /// 104 105 /// Location - A description of a memory location. 106 struct Location { 107 /// Ptr - The address of the start of the location. 108 const Value *Ptr; 109 /// Size - The maximum size of the location, in address-units, or 110 /// UnknownSize if the size is not known. Note that an unknown size does 111 /// not mean the pointer aliases the entire virtual address space, because 112 /// there are restrictions on stepping out of one object and into another. 113 /// See http://llvm.org/docs/LangRef.html#pointeraliasing 114 uint64_t Size; 115 /// TBAATag - The metadata node which describes the TBAA type of 116 /// the location, or null if there is no known unique tag. 117 const MDNode *TBAATag; 118 119 explicit Location(const Value *P = 0, uint64_t S = UnknownSize, 120 const MDNode *N = 0) PtrLocation121 : Ptr(P), Size(S), TBAATag(N) {} 122 getWithNewPtrLocation123 Location getWithNewPtr(const Value *NewPtr) const { 124 Location Copy(*this); 125 Copy.Ptr = NewPtr; 126 return Copy; 127 } 128 getWithNewSizeLocation129 Location getWithNewSize(uint64_t NewSize) const { 130 Location Copy(*this); 131 Copy.Size = NewSize; 132 return Copy; 133 } 134 getWithoutTBAATagLocation135 Location getWithoutTBAATag() const { 136 Location Copy(*this); 137 Copy.TBAATag = 0; 138 return Copy; 139 } 140 }; 141 142 /// getLocation - Fill in Loc with information about the memory reference by 143 /// the given instruction. 144 Location getLocation(const LoadInst *LI); 145 Location getLocation(const StoreInst *SI); 146 Location getLocation(const VAArgInst *VI); 147 Location getLocation(const AtomicCmpXchgInst *CXI); 148 Location getLocation(const AtomicRMWInst *RMWI); 149 static Location getLocationForSource(const MemTransferInst *MTI); 150 static Location getLocationForDest(const MemIntrinsic *MI); 151 152 /// Alias analysis result - Either we know for sure that it does not alias, we 153 /// know for sure it must alias, or we don't know anything: The two pointers 154 /// _might_ alias. This enum is designed so you can do things like: 155 /// if (AA.alias(P1, P2)) { ... } 156 /// to check to see if two pointers might alias. 157 /// 158 /// See docs/AliasAnalysis.html for more information on the specific meanings 159 /// of these values. 160 /// 161 enum AliasResult { 162 NoAlias = 0, ///< No dependencies. 163 MayAlias, ///< Anything goes. 164 PartialAlias, ///< Pointers differ, but pointees overlap. 165 MustAlias ///< Pointers are equal. 166 }; 167 168 /// alias - The main low level interface to the alias analysis implementation. 169 /// Returns an AliasResult indicating whether the two pointers are aliased to 170 /// each other. This is the interface that must be implemented by specific 171 /// alias analysis implementations. 172 virtual AliasResult alias(const Location &LocA, const Location &LocB); 173 174 /// alias - A convenience wrapper. alias(const Value * V1,uint64_t V1Size,const Value * V2,uint64_t V2Size)175 AliasResult alias(const Value *V1, uint64_t V1Size, 176 const Value *V2, uint64_t V2Size) { 177 return alias(Location(V1, V1Size), Location(V2, V2Size)); 178 } 179 180 /// alias - A convenience wrapper. alias(const Value * V1,const Value * V2)181 AliasResult alias(const Value *V1, const Value *V2) { 182 return alias(V1, UnknownSize, V2, UnknownSize); 183 } 184 185 /// isNoAlias - A trivial helper function to check to see if the specified 186 /// pointers are no-alias. isNoAlias(const Location & LocA,const Location & LocB)187 bool isNoAlias(const Location &LocA, const Location &LocB) { 188 return alias(LocA, LocB) == NoAlias; 189 } 190 191 /// isNoAlias - A convenience wrapper. isNoAlias(const Value * V1,uint64_t V1Size,const Value * V2,uint64_t V2Size)192 bool isNoAlias(const Value *V1, uint64_t V1Size, 193 const Value *V2, uint64_t V2Size) { 194 return isNoAlias(Location(V1, V1Size), Location(V2, V2Size)); 195 } 196 197 /// isNoAlias - A convenience wrapper. isNoAlias(const Value * V1,const Value * V2)198 bool isNoAlias(const Value *V1, const Value *V2) { 199 return isNoAlias(Location(V1), Location(V2)); 200 } 201 202 /// isMustAlias - A convenience wrapper. isMustAlias(const Location & LocA,const Location & LocB)203 bool isMustAlias(const Location &LocA, const Location &LocB) { 204 return alias(LocA, LocB) == MustAlias; 205 } 206 207 /// isMustAlias - A convenience wrapper. isMustAlias(const Value * V1,const Value * V2)208 bool isMustAlias(const Value *V1, const Value *V2) { 209 return alias(V1, 1, V2, 1) == MustAlias; 210 } 211 212 /// pointsToConstantMemory - If the specified memory location is 213 /// known to be constant, return true. If OrLocal is true and the 214 /// specified memory location is known to be "local" (derived from 215 /// an alloca), return true. Otherwise return false. 216 virtual bool pointsToConstantMemory(const Location &Loc, 217 bool OrLocal = false); 218 219 /// pointsToConstantMemory - A convenient wrapper. 220 bool pointsToConstantMemory(const Value *P, bool OrLocal = false) { 221 return pointsToConstantMemory(Location(P), OrLocal); 222 } 223 224 //===--------------------------------------------------------------------===// 225 /// Simple mod/ref information... 226 /// 227 228 /// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are 229 /// bits which may be or'd together. 230 /// 231 enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 }; 232 233 /// These values define additional bits used to define the 234 /// ModRefBehavior values. 235 enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees }; 236 237 /// ModRefBehavior - Summary of how a function affects memory in the program. 238 /// Loads from constant globals are not considered memory accesses for this 239 /// interface. Also, functions may freely modify stack space local to their 240 /// invocation without having to report it through these interfaces. 241 enum ModRefBehavior { 242 /// DoesNotAccessMemory - This function does not perform any non-local loads 243 /// or stores to memory. 244 /// 245 /// This property corresponds to the GCC 'const' attribute. 246 /// This property corresponds to the LLVM IR 'readnone' attribute. 247 /// This property corresponds to the IntrNoMem LLVM intrinsic flag. 248 DoesNotAccessMemory = Nowhere | NoModRef, 249 250 /// OnlyReadsArgumentPointees - The only memory references in this function 251 /// (if it has any) are non-volatile loads from objects pointed to by its 252 /// pointer-typed arguments, with arbitrary offsets. 253 /// 254 /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag. 255 OnlyReadsArgumentPointees = ArgumentPointees | Ref, 256 257 /// OnlyAccessesArgumentPointees - The only memory references in this 258 /// function (if it has any) are non-volatile loads and stores from objects 259 /// pointed to by its pointer-typed arguments, with arbitrary offsets. 260 /// 261 /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag. 262 OnlyAccessesArgumentPointees = ArgumentPointees | ModRef, 263 264 /// OnlyReadsMemory - This function does not perform any non-local stores or 265 /// volatile loads, but may read from any memory location. 266 /// 267 /// This property corresponds to the GCC 'pure' attribute. 268 /// This property corresponds to the LLVM IR 'readonly' attribute. 269 /// This property corresponds to the IntrReadMem LLVM intrinsic flag. 270 OnlyReadsMemory = Anywhere | Ref, 271 272 /// UnknownModRefBehavior - This indicates that the function could not be 273 /// classified into one of the behaviors above. 274 UnknownModRefBehavior = Anywhere | ModRef 275 }; 276 277 /// getModRefBehavior - Return the behavior when calling the given call site. 278 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); 279 280 /// getModRefBehavior - Return the behavior when calling the given function. 281 /// For use when the call site is not known. 282 virtual ModRefBehavior getModRefBehavior(const Function *F); 283 284 /// doesNotAccessMemory - If the specified call is known to never read or 285 /// write memory, return true. If the call only reads from known-constant 286 /// memory, it is also legal to return true. Calls that unwind the stack 287 /// are legal for this predicate. 288 /// 289 /// Many optimizations (such as CSE and LICM) can be performed on such calls 290 /// without worrying about aliasing properties, and many calls have this 291 /// property (e.g. calls to 'sin' and 'cos'). 292 /// 293 /// This property corresponds to the GCC 'const' attribute. 294 /// doesNotAccessMemory(ImmutableCallSite CS)295 bool doesNotAccessMemory(ImmutableCallSite CS) { 296 return getModRefBehavior(CS) == DoesNotAccessMemory; 297 } 298 299 /// doesNotAccessMemory - If the specified function is known to never read or 300 /// write memory, return true. For use when the call site is not known. 301 /// doesNotAccessMemory(const Function * F)302 bool doesNotAccessMemory(const Function *F) { 303 return getModRefBehavior(F) == DoesNotAccessMemory; 304 } 305 306 /// onlyReadsMemory - If the specified call is known to only read from 307 /// non-volatile memory (or not access memory at all), return true. Calls 308 /// that unwind the stack are legal for this predicate. 309 /// 310 /// This property allows many common optimizations to be performed in the 311 /// absence of interfering store instructions, such as CSE of strlen calls. 312 /// 313 /// This property corresponds to the GCC 'pure' attribute. 314 /// onlyReadsMemory(ImmutableCallSite CS)315 bool onlyReadsMemory(ImmutableCallSite CS) { 316 return onlyReadsMemory(getModRefBehavior(CS)); 317 } 318 319 /// onlyReadsMemory - If the specified function is known to only read from 320 /// non-volatile memory (or not access memory at all), return true. For use 321 /// when the call site is not known. 322 /// onlyReadsMemory(const Function * F)323 bool onlyReadsMemory(const Function *F) { 324 return onlyReadsMemory(getModRefBehavior(F)); 325 } 326 327 /// onlyReadsMemory - Return true if functions with the specified behavior are 328 /// known to only read from non-volatile memory (or not access memory at all). 329 /// onlyReadsMemory(ModRefBehavior MRB)330 static bool onlyReadsMemory(ModRefBehavior MRB) { 331 return !(MRB & Mod); 332 } 333 334 /// onlyAccessesArgPointees - Return true if functions with the specified 335 /// behavior are known to read and write at most from objects pointed to by 336 /// their pointer-typed arguments (with arbitrary offsets). 337 /// onlyAccessesArgPointees(ModRefBehavior MRB)338 static bool onlyAccessesArgPointees(ModRefBehavior MRB) { 339 return !(MRB & Anywhere & ~ArgumentPointees); 340 } 341 342 /// doesAccessArgPointees - Return true if functions with the specified 343 /// behavior are known to potentially read or write from objects pointed 344 /// to be their pointer-typed arguments (with arbitrary offsets). 345 /// doesAccessArgPointees(ModRefBehavior MRB)346 static bool doesAccessArgPointees(ModRefBehavior MRB) { 347 return (MRB & ModRef) && (MRB & ArgumentPointees); 348 } 349 350 /// getModRefInfo - Return information about whether or not an instruction may 351 /// read or write the specified memory location. An instruction 352 /// that doesn't read or write memory may be trivially LICM'd for example. getModRefInfo(const Instruction * I,const Location & Loc)353 ModRefResult getModRefInfo(const Instruction *I, 354 const Location &Loc) { 355 switch (I->getOpcode()) { 356 case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc); 357 case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc); 358 case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc); 359 case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc); 360 case Instruction::AtomicCmpXchg: 361 return getModRefInfo((const AtomicCmpXchgInst*)I, Loc); 362 case Instruction::AtomicRMW: 363 return getModRefInfo((const AtomicRMWInst*)I, Loc); 364 case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc); 365 case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc); 366 default: return NoModRef; 367 } 368 } 369 370 /// getModRefInfo - A convenience wrapper. getModRefInfo(const Instruction * I,const Value * P,uint64_t Size)371 ModRefResult getModRefInfo(const Instruction *I, 372 const Value *P, uint64_t Size) { 373 return getModRefInfo(I, Location(P, Size)); 374 } 375 376 /// getModRefInfo (for call sites) - Return whether information about whether 377 /// a particular call site modifies or reads the specified memory location. 378 virtual ModRefResult getModRefInfo(ImmutableCallSite CS, 379 const Location &Loc); 380 381 /// getModRefInfo (for call sites) - A convenience wrapper. getModRefInfo(ImmutableCallSite CS,const Value * P,uint64_t Size)382 ModRefResult getModRefInfo(ImmutableCallSite CS, 383 const Value *P, uint64_t Size) { 384 return getModRefInfo(CS, Location(P, Size)); 385 } 386 387 /// getModRefInfo (for calls) - Return whether information about whether 388 /// a particular call modifies or reads the specified memory location. getModRefInfo(const CallInst * C,const Location & Loc)389 ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) { 390 return getModRefInfo(ImmutableCallSite(C), Loc); 391 } 392 393 /// getModRefInfo (for calls) - A convenience wrapper. getModRefInfo(const CallInst * C,const Value * P,uint64_t Size)394 ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) { 395 return getModRefInfo(C, Location(P, Size)); 396 } 397 398 /// getModRefInfo (for invokes) - Return whether information about whether 399 /// a particular invoke modifies or reads the specified memory location. getModRefInfo(const InvokeInst * I,const Location & Loc)400 ModRefResult getModRefInfo(const InvokeInst *I, 401 const Location &Loc) { 402 return getModRefInfo(ImmutableCallSite(I), Loc); 403 } 404 405 /// getModRefInfo (for invokes) - A convenience wrapper. getModRefInfo(const InvokeInst * I,const Value * P,uint64_t Size)406 ModRefResult getModRefInfo(const InvokeInst *I, 407 const Value *P, uint64_t Size) { 408 return getModRefInfo(I, Location(P, Size)); 409 } 410 411 /// getModRefInfo (for loads) - Return whether information about whether 412 /// a particular load modifies or reads the specified memory location. 413 ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc); 414 415 /// getModRefInfo (for loads) - A convenience wrapper. getModRefInfo(const LoadInst * L,const Value * P,uint64_t Size)416 ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) { 417 return getModRefInfo(L, Location(P, Size)); 418 } 419 420 /// getModRefInfo (for stores) - Return whether information about whether 421 /// a particular store modifies or reads the specified memory location. 422 ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc); 423 424 /// getModRefInfo (for stores) - A convenience wrapper. getModRefInfo(const StoreInst * S,const Value * P,uint64_t Size)425 ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){ 426 return getModRefInfo(S, Location(P, Size)); 427 } 428 429 /// getModRefInfo (for fences) - Return whether information about whether 430 /// a particular store modifies or reads the specified memory location. getModRefInfo(const FenceInst * S,const Location & Loc)431 ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) { 432 // Conservatively correct. (We could possibly be a bit smarter if 433 // Loc is a alloca that doesn't escape.) 434 return ModRef; 435 } 436 437 /// getModRefInfo (for fences) - A convenience wrapper. getModRefInfo(const FenceInst * S,const Value * P,uint64_t Size)438 ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){ 439 return getModRefInfo(S, Location(P, Size)); 440 } 441 442 /// getModRefInfo (for cmpxchges) - Return whether information about whether 443 /// a particular cmpxchg modifies or reads the specified memory location. 444 ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc); 445 446 /// getModRefInfo (for cmpxchges) - A convenience wrapper. getModRefInfo(const AtomicCmpXchgInst * CX,const Value * P,unsigned Size)447 ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, 448 const Value *P, unsigned Size) { 449 return getModRefInfo(CX, Location(P, Size)); 450 } 451 452 /// getModRefInfo (for atomicrmws) - Return whether information about whether 453 /// a particular atomicrmw modifies or reads the specified memory location. 454 ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc); 455 456 /// getModRefInfo (for atomicrmws) - A convenience wrapper. getModRefInfo(const AtomicRMWInst * RMW,const Value * P,unsigned Size)457 ModRefResult getModRefInfo(const AtomicRMWInst *RMW, 458 const Value *P, unsigned Size) { 459 return getModRefInfo(RMW, Location(P, Size)); 460 } 461 462 /// getModRefInfo (for va_args) - Return whether information about whether 463 /// a particular va_arg modifies or reads the specified memory location. 464 ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc); 465 466 /// getModRefInfo (for va_args) - A convenience wrapper. getModRefInfo(const VAArgInst * I,const Value * P,uint64_t Size)467 ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){ 468 return getModRefInfo(I, Location(P, Size)); 469 } 470 471 /// getModRefInfo - Return information about whether two call sites may refer 472 /// to the same set of memory locations. See 473 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo 474 /// for details. 475 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, 476 ImmutableCallSite CS2); 477 478 /// callCapturesBefore - Return information about whether a particular call 479 /// site modifies or reads the specified memory location. 480 ModRefResult callCapturesBefore(const Instruction *I, 481 const AliasAnalysis::Location &MemLoc, 482 DominatorTree *DT); 483 484 /// callCapturesBefore - A convenience wrapper. callCapturesBefore(const Instruction * I,const Value * P,uint64_t Size,DominatorTree * DT)485 ModRefResult callCapturesBefore(const Instruction *I, const Value *P, 486 uint64_t Size, DominatorTree *DT) { 487 return callCapturesBefore(I, Location(P, Size), DT); 488 } 489 490 //===--------------------------------------------------------------------===// 491 /// Higher level methods for querying mod/ref information. 492 /// 493 494 /// canBasicBlockModify - Return true if it is possible for execution of the 495 /// specified basic block to modify the value pointed to by Ptr. 496 bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc); 497 498 /// canBasicBlockModify - A convenience wrapper. canBasicBlockModify(const BasicBlock & BB,const Value * P,uint64_t Size)499 bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){ 500 return canBasicBlockModify(BB, Location(P, Size)); 501 } 502 503 /// canInstructionRangeModify - Return true if it is possible for the 504 /// execution of the specified instructions to modify the value pointed to by 505 /// Ptr. The instructions to consider are all of the instructions in the 506 /// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block. 507 bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2, 508 const Location &Loc); 509 510 /// canInstructionRangeModify - A convenience wrapper. canInstructionRangeModify(const Instruction & I1,const Instruction & I2,const Value * Ptr,uint64_t Size)511 bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2, 512 const Value *Ptr, uint64_t Size) { 513 return canInstructionRangeModify(I1, I2, Location(Ptr, Size)); 514 } 515 516 //===--------------------------------------------------------------------===// 517 /// Methods that clients should call when they transform the program to allow 518 /// alias analyses to update their internal data structures. Note that these 519 /// methods may be called on any instruction, regardless of whether or not 520 /// they have pointer-analysis implications. 521 /// 522 523 /// deleteValue - This method should be called whenever an LLVM Value is 524 /// deleted from the program, for example when an instruction is found to be 525 /// redundant and is eliminated. 526 /// 527 virtual void deleteValue(Value *V); 528 529 /// copyValue - This method should be used whenever a preexisting value in the 530 /// program is copied or cloned, introducing a new value. Note that analysis 531 /// implementations should tolerate clients that use this method to introduce 532 /// the same value multiple times: if the analysis already knows about a 533 /// value, it should ignore the request. 534 /// 535 virtual void copyValue(Value *From, Value *To); 536 537 /// addEscapingUse - This method should be used whenever an escaping use is 538 /// added to a pointer value. Analysis implementations may either return 539 /// conservative responses for that value in the future, or may recompute 540 /// some or all internal state to continue providing precise responses. 541 /// 542 /// Escaping uses are considered by anything _except_ the following: 543 /// - GEPs or bitcasts of the pointer 544 /// - Loads through the pointer 545 /// - Stores through (but not of) the pointer 546 virtual void addEscapingUse(Use &U); 547 548 /// replaceWithNewValue - This method is the obvious combination of the two 549 /// above, and it provided as a helper to simplify client code. 550 /// replaceWithNewValue(Value * Old,Value * New)551 void replaceWithNewValue(Value *Old, Value *New) { 552 copyValue(Old, New); 553 deleteValue(Old); 554 } 555 }; 556 557 // Specialize DenseMapInfo for Location. 558 template<> 559 struct DenseMapInfo<AliasAnalysis::Location> { 560 static inline AliasAnalysis::Location getEmptyKey() { 561 return 562 AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(), 563 0, 0); 564 } 565 static inline AliasAnalysis::Location getTombstoneKey() { 566 return 567 AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(), 568 0, 0); 569 } 570 static unsigned getHashValue(const AliasAnalysis::Location &Val) { 571 return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^ 572 DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^ 573 DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag); 574 } 575 static bool isEqual(const AliasAnalysis::Location &LHS, 576 const AliasAnalysis::Location &RHS) { 577 return LHS.Ptr == RHS.Ptr && 578 LHS.Size == RHS.Size && 579 LHS.TBAATag == RHS.TBAATag; 580 } 581 }; 582 583 /// isNoAliasCall - Return true if this pointer is returned by a noalias 584 /// function. 585 bool isNoAliasCall(const Value *V); 586 587 /// isIdentifiedObject - Return true if this pointer refers to a distinct and 588 /// identifiable object. This returns true for: 589 /// Global Variables and Functions (but not Global Aliases) 590 /// Allocas and Mallocs 591 /// ByVal and NoAlias Arguments 592 /// NoAlias returns 593 /// 594 bool isIdentifiedObject(const Value *V); 595 596 /// isKnownNonNull - Return true if this pointer couldn't possibly be null by 597 /// its definition. This returns true for allocas, non-extern-weak globals and 598 /// byval arguments. 599 bool isKnownNonNull(const Value *V); 600 601 } // End llvm namespace 602 603 #endif 604