1 //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tool implements a just-in-time compiler for LLVM, allowing direct
11 // execution of LLVM bitcode in an efficient manner.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "JIT.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/CodeGen/JITCodeEmitter.h"
23 #include "llvm/CodeGen/MachineCodeInfo.h"
24 #include "llvm/ExecutionEngine/GenericValue.h"
25 #include "llvm/ExecutionEngine/JITEventListener.h"
26 #include "llvm/ExecutionEngine/JITMemoryManager.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetJITInfo.h"
30 #include "llvm/Support/Dwarf.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MutexGuard.h"
34 #include "llvm/Support/DynamicLibrary.h"
35 #include "llvm/Config/config.h"
36
37 using namespace llvm;
38
39 #ifdef __APPLE__
40 // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
41 // of atexit). It passes the address of linker generated symbol __dso_handle
42 // to the function.
43 // This configuration change happened at version 5330.
44 # include <AvailabilityMacros.h>
45 # if defined(MAC_OS_X_VERSION_10_4) && \
46 ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
47 (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
48 __APPLE_CC__ >= 5330))
49 # ifndef HAVE___DSO_HANDLE
50 # define HAVE___DSO_HANDLE 1
51 # endif
52 # endif
53 #endif
54
55 #if HAVE___DSO_HANDLE
56 extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
57 #endif
58
59 namespace {
60
61 static struct RegisterJIT {
RegisterJIT__anonaa3c266e0111::RegisterJIT62 RegisterJIT() { JIT::Register(); }
63 } JITRegistrator;
64
65 }
66
LLVMLinkInJIT()67 extern "C" void LLVMLinkInJIT() {
68 }
69
70 // Determine whether we can register EH tables.
71 #if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
72 !defined(__USING_SJLJ_EXCEPTIONS__))
73 #define HAVE_EHTABLE_SUPPORT 1
74 #else
75 #define HAVE_EHTABLE_SUPPORT 0
76 #endif
77
78 #if HAVE_EHTABLE_SUPPORT
79
80 // libgcc defines the __register_frame function to dynamically register new
81 // dwarf frames for exception handling. This functionality is not portable
82 // across compilers and is only provided by GCC. We use the __register_frame
83 // function here so that code generated by the JIT cooperates with the unwinding
84 // runtime of libgcc. When JITting with exception handling enable, LLVM
85 // generates dwarf frames and registers it to libgcc with __register_frame.
86 //
87 // The __register_frame function works with Linux.
88 //
89 // Unfortunately, this functionality seems to be in libgcc after the unwinding
90 // library of libgcc for darwin was written. The code for darwin overwrites the
91 // value updated by __register_frame with a value fetched with "keymgr".
92 // "keymgr" is an obsolete functionality, which should be rewritten some day.
93 // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
94 // need a workaround in LLVM which uses the "keymgr" to dynamically modify the
95 // values of an opaque key, used by libgcc to find dwarf tables.
96
97 extern "C" void __register_frame(void*);
98 extern "C" void __deregister_frame(void*);
99
100 #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
101 # define USE_KEYMGR 1
102 #else
103 # define USE_KEYMGR 0
104 #endif
105
106 #if USE_KEYMGR
107
108 namespace {
109
110 // LibgccObject - This is the structure defined in libgcc. There is no #include
111 // provided for this structure, so we also define it here. libgcc calls it
112 // "struct object". The structure is undocumented in libgcc.
113 struct LibgccObject {
114 void *unused1;
115 void *unused2;
116 void *unused3;
117
118 /// frame - Pointer to the exception table.
119 void *frame;
120
121 /// encoding - The encoding of the object?
122 union {
123 struct {
124 unsigned long sorted : 1;
125 unsigned long from_array : 1;
126 unsigned long mixed_encoding : 1;
127 unsigned long encoding : 8;
128 unsigned long count : 21;
129 } b;
130 size_t i;
131 } encoding;
132
133 /// fde_end - libgcc defines this field only if some macro is defined. We
134 /// include this field even if it may not there, to make libgcc happy.
135 char *fde_end;
136
137 /// next - At least we know it's a chained list!
138 struct LibgccObject *next;
139 };
140
141 // "kemgr" stuff. Apparently, all frame tables are stored there.
142 extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
143 extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
144 #define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */
145
146 /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
147 /// probably contains all dwarf tables that are loaded.
148 struct LibgccObjectInfo {
149
150 /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
151 ///
152 struct LibgccObject* seenObjects;
153
154 /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
155 ///
156 struct LibgccObject* unseenObjects;
157
158 unsigned unused[2];
159 };
160
161 /// darwin_register_frame - Since __register_frame does not work with darwin's
162 /// libgcc,we provide our own function, which "tricks" libgcc by modifying the
163 /// "Dwarf2 object list" key.
DarwinRegisterFrame(void * FrameBegin)164 void DarwinRegisterFrame(void* FrameBegin) {
165 // Get the key.
166 LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
167 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
168 assert(LOI && "This should be preallocated by the runtime");
169
170 // Allocate a new LibgccObject to represent this frame. Deallocation of this
171 // object may be impossible: since darwin code in libgcc was written after
172 // the ability to dynamically register frames, things may crash if we
173 // deallocate it.
174 struct LibgccObject* ob = (struct LibgccObject*)
175 malloc(sizeof(struct LibgccObject));
176
177 // Do like libgcc for the values of the field.
178 ob->unused1 = (void *)-1;
179 ob->unused2 = 0;
180 ob->unused3 = 0;
181 ob->frame = FrameBegin;
182 ob->encoding.i = 0;
183 ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
184
185 // Put the info on both places, as libgcc uses the first or the second
186 // field. Note that we rely on having two pointers here. If fde_end was a
187 // char, things would get complicated.
188 ob->fde_end = (char*)LOI->unseenObjects;
189 ob->next = LOI->unseenObjects;
190
191 // Update the key's unseenObjects list.
192 LOI->unseenObjects = ob;
193
194 // Finally update the "key". Apparently, libgcc requires it.
195 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
196 LOI);
197
198 }
199
200 }
201 #endif // __APPLE__
202 #endif // HAVE_EHTABLE_SUPPORT
203
204 /// createJIT - This is the factory method for creating a JIT for the current
205 /// machine, it does not fall back to the interpreter. This takes ownership
206 /// of the module.
createJIT(Module * M,std::string * ErrorStr,JITMemoryManager * JMM,bool GVsWithCode,TargetMachine * TM)207 ExecutionEngine *JIT::createJIT(Module *M,
208 std::string *ErrorStr,
209 JITMemoryManager *JMM,
210 bool GVsWithCode,
211 TargetMachine *TM) {
212 // Try to register the program as a source of symbols to resolve against.
213 //
214 // FIXME: Don't do this here.
215 sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
216
217 // If the target supports JIT code generation, create the JIT.
218 if (TargetJITInfo *TJ = TM->getJITInfo()) {
219 return new JIT(M, *TM, *TJ, JMM, GVsWithCode);
220 } else {
221 if (ErrorStr)
222 *ErrorStr = "target does not support JIT code generation";
223 return 0;
224 }
225 }
226
227 namespace {
228 /// This class supports the global getPointerToNamedFunction(), which allows
229 /// bugpoint or gdb users to search for a function by name without any context.
230 class JitPool {
231 SmallPtrSet<JIT*, 1> JITs; // Optimize for process containing just 1 JIT.
232 mutable sys::Mutex Lock;
233 public:
Add(JIT * jit)234 void Add(JIT *jit) {
235 MutexGuard guard(Lock);
236 JITs.insert(jit);
237 }
Remove(JIT * jit)238 void Remove(JIT *jit) {
239 MutexGuard guard(Lock);
240 JITs.erase(jit);
241 }
getPointerToNamedFunction(const char * Name) const242 void *getPointerToNamedFunction(const char *Name) const {
243 MutexGuard guard(Lock);
244 assert(JITs.size() != 0 && "No Jit registered");
245 //search function in every instance of JIT
246 for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
247 end = JITs.end();
248 Jit != end; ++Jit) {
249 if (Function *F = (*Jit)->FindFunctionNamed(Name))
250 return (*Jit)->getPointerToFunction(F);
251 }
252 // The function is not available : fallback on the first created (will
253 // search in symbol of the current program/library)
254 return (*JITs.begin())->getPointerToNamedFunction(Name);
255 }
256 };
257 ManagedStatic<JitPool> AllJits;
258 }
259 extern "C" {
260 // getPointerToNamedFunction - This function is used as a global wrapper to
261 // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
262 // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
263 // need to resolve function(s) that are being mis-codegenerated, so we need to
264 // resolve their addresses at runtime, and this is the way to do it.
getPointerToNamedFunction(const char * Name)265 void *getPointerToNamedFunction(const char *Name) {
266 return AllJits->getPointerToNamedFunction(Name);
267 }
268 }
269
JIT(Module * M,TargetMachine & tm,TargetJITInfo & tji,JITMemoryManager * jmm,bool GVsWithCode)270 JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
271 JITMemoryManager *jmm, bool GVsWithCode)
272 : ExecutionEngine(M), TM(tm), TJI(tji),
273 JMM(jmm ? jmm : JITMemoryManager::CreateDefaultMemManager()),
274 AllocateGVsWithCode(GVsWithCode), isAlreadyCodeGenerating(false) {
275 setTargetData(TM.getTargetData());
276
277 jitstate = new JITState(M);
278
279 // Initialize JCE
280 JCE = createEmitter(*this, JMM, TM);
281
282 // Register in global list of all JITs.
283 AllJits->Add(this);
284
285 // Add target data
286 MutexGuard locked(lock);
287 FunctionPassManager &PM = jitstate->getPM(locked);
288 PM.add(new TargetData(*TM.getTargetData()));
289
290 // Turn the machine code intermediate representation into bytes in memory that
291 // may be executed.
292 if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
293 report_fatal_error("Target does not support machine code emission!");
294 }
295
296 // Register routine for informing unwinding runtime about new EH frames
297 #if HAVE_EHTABLE_SUPPORT
298 #if USE_KEYMGR
299 struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
300 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
301
302 // The key is created on demand, and libgcc creates it the first time an
303 // exception occurs. Since we need the key to register frames, we create
304 // it now.
305 if (!LOI)
306 LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
307 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
308 InstallExceptionTableRegister(DarwinRegisterFrame);
309 // Not sure about how to deregister on Darwin.
310 #else
311 InstallExceptionTableRegister(__register_frame);
312 InstallExceptionTableDeregister(__deregister_frame);
313 #endif // __APPLE__
314 #endif // HAVE_EHTABLE_SUPPORT
315
316 // Initialize passes.
317 PM.doInitialization();
318 }
319
~JIT()320 JIT::~JIT() {
321 // Unregister all exception tables registered by this JIT.
322 DeregisterAllTables();
323 // Cleanup.
324 AllJits->Remove(this);
325 delete jitstate;
326 delete JCE;
327 // JMM is a ownership of JCE, so we no need delete JMM here.
328 delete &TM;
329 }
330
331 /// addModule - Add a new Module to the JIT. If we previously removed the last
332 /// Module, we need re-initialize jitstate with a valid Module.
addModule(Module * M)333 void JIT::addModule(Module *M) {
334 MutexGuard locked(lock);
335
336 if (Modules.empty()) {
337 assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
338
339 jitstate = new JITState(M);
340
341 FunctionPassManager &PM = jitstate->getPM(locked);
342 PM.add(new TargetData(*TM.getTargetData()));
343
344 // Turn the machine code intermediate representation into bytes in memory
345 // that may be executed.
346 if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
347 report_fatal_error("Target does not support machine code emission!");
348 }
349
350 // Initialize passes.
351 PM.doInitialization();
352 }
353
354 ExecutionEngine::addModule(M);
355 }
356
357 /// removeModule - If we are removing the last Module, invalidate the jitstate
358 /// since the PassManager it contains references a released Module.
removeModule(Module * M)359 bool JIT::removeModule(Module *M) {
360 bool result = ExecutionEngine::removeModule(M);
361
362 MutexGuard locked(lock);
363
364 if (jitstate && jitstate->getModule() == M) {
365 delete jitstate;
366 jitstate = 0;
367 }
368
369 if (!jitstate && !Modules.empty()) {
370 jitstate = new JITState(Modules[0]);
371
372 FunctionPassManager &PM = jitstate->getPM(locked);
373 PM.add(new TargetData(*TM.getTargetData()));
374
375 // Turn the machine code intermediate representation into bytes in memory
376 // that may be executed.
377 if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
378 report_fatal_error("Target does not support machine code emission!");
379 }
380
381 // Initialize passes.
382 PM.doInitialization();
383 }
384 return result;
385 }
386
387 /// run - Start execution with the specified function and arguments.
388 ///
runFunction(Function * F,const std::vector<GenericValue> & ArgValues)389 GenericValue JIT::runFunction(Function *F,
390 const std::vector<GenericValue> &ArgValues) {
391 assert(F && "Function *F was null at entry to run()");
392
393 void *FPtr = getPointerToFunction(F);
394 assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
395 FunctionType *FTy = F->getFunctionType();
396 Type *RetTy = FTy->getReturnType();
397
398 assert((FTy->getNumParams() == ArgValues.size() ||
399 (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
400 "Wrong number of arguments passed into function!");
401 assert(FTy->getNumParams() == ArgValues.size() &&
402 "This doesn't support passing arguments through varargs (yet)!");
403
404 // Handle some common cases first. These cases correspond to common `main'
405 // prototypes.
406 if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
407 switch (ArgValues.size()) {
408 case 3:
409 if (FTy->getParamType(0)->isIntegerTy(32) &&
410 FTy->getParamType(1)->isPointerTy() &&
411 FTy->getParamType(2)->isPointerTy()) {
412 int (*PF)(int, char **, const char **) =
413 (int(*)(int, char **, const char **))(intptr_t)FPtr;
414
415 // Call the function.
416 GenericValue rv;
417 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
418 (char **)GVTOP(ArgValues[1]),
419 (const char **)GVTOP(ArgValues[2])));
420 return rv;
421 }
422 break;
423 case 2:
424 if (FTy->getParamType(0)->isIntegerTy(32) &&
425 FTy->getParamType(1)->isPointerTy()) {
426 int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
427
428 // Call the function.
429 GenericValue rv;
430 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
431 (char **)GVTOP(ArgValues[1])));
432 return rv;
433 }
434 break;
435 case 1:
436 if (FTy->getParamType(0)->isIntegerTy(32)) {
437 GenericValue rv;
438 int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
439 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
440 return rv;
441 }
442 if (FTy->getParamType(0)->isPointerTy()) {
443 GenericValue rv;
444 int (*PF)(char *) = (int(*)(char *))(intptr_t)FPtr;
445 rv.IntVal = APInt(32, PF((char*)GVTOP(ArgValues[0])));
446 return rv;
447 }
448 break;
449 }
450 }
451
452 // Handle cases where no arguments are passed first.
453 if (ArgValues.empty()) {
454 GenericValue rv;
455 switch (RetTy->getTypeID()) {
456 default: llvm_unreachable("Unknown return type for function call!");
457 case Type::IntegerTyID: {
458 unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
459 if (BitWidth == 1)
460 rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
461 else if (BitWidth <= 8)
462 rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
463 else if (BitWidth <= 16)
464 rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
465 else if (BitWidth <= 32)
466 rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
467 else if (BitWidth <= 64)
468 rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
469 else
470 llvm_unreachable("Integer types > 64 bits not supported");
471 return rv;
472 }
473 case Type::VoidTyID:
474 rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
475 return rv;
476 case Type::FloatTyID:
477 rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
478 return rv;
479 case Type::DoubleTyID:
480 rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
481 return rv;
482 case Type::X86_FP80TyID:
483 case Type::FP128TyID:
484 case Type::PPC_FP128TyID:
485 llvm_unreachable("long double not supported yet");
486 case Type::PointerTyID:
487 return PTOGV(((void*(*)())(intptr_t)FPtr)());
488 }
489 }
490
491 // Okay, this is not one of our quick and easy cases. Because we don't have a
492 // full FFI, we have to codegen a nullary stub function that just calls the
493 // function we are interested in, passing in constants for all of the
494 // arguments. Make this function and return.
495
496 // First, create the function.
497 FunctionType *STy=FunctionType::get(RetTy, false);
498 Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
499 F->getParent());
500
501 // Insert a basic block.
502 BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
503
504 // Convert all of the GenericValue arguments over to constants. Note that we
505 // currently don't support varargs.
506 SmallVector<Value*, 8> Args;
507 for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
508 Constant *C = 0;
509 Type *ArgTy = FTy->getParamType(i);
510 const GenericValue &AV = ArgValues[i];
511 switch (ArgTy->getTypeID()) {
512 default: llvm_unreachable("Unknown argument type for function call!");
513 case Type::IntegerTyID:
514 C = ConstantInt::get(F->getContext(), AV.IntVal);
515 break;
516 case Type::FloatTyID:
517 C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
518 break;
519 case Type::DoubleTyID:
520 C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
521 break;
522 case Type::PPC_FP128TyID:
523 case Type::X86_FP80TyID:
524 case Type::FP128TyID:
525 C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
526 break;
527 case Type::PointerTyID:
528 void *ArgPtr = GVTOP(AV);
529 if (sizeof(void*) == 4)
530 C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
531 (int)(intptr_t)ArgPtr);
532 else
533 C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
534 (intptr_t)ArgPtr);
535 // Cast the integer to pointer
536 C = ConstantExpr::getIntToPtr(C, ArgTy);
537 break;
538 }
539 Args.push_back(C);
540 }
541
542 CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
543 TheCall->setCallingConv(F->getCallingConv());
544 TheCall->setTailCall();
545 if (!TheCall->getType()->isVoidTy())
546 // Return result of the call.
547 ReturnInst::Create(F->getContext(), TheCall, StubBB);
548 else
549 ReturnInst::Create(F->getContext(), StubBB); // Just return void.
550
551 // Finally, call our nullary stub function.
552 GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
553 // Erase it, since no other function can have a reference to it.
554 Stub->eraseFromParent();
555 // And return the result.
556 return Result;
557 }
558
RegisterJITEventListener(JITEventListener * L)559 void JIT::RegisterJITEventListener(JITEventListener *L) {
560 if (L == NULL)
561 return;
562 MutexGuard locked(lock);
563 EventListeners.push_back(L);
564 }
UnregisterJITEventListener(JITEventListener * L)565 void JIT::UnregisterJITEventListener(JITEventListener *L) {
566 if (L == NULL)
567 return;
568 MutexGuard locked(lock);
569 std::vector<JITEventListener*>::reverse_iterator I=
570 std::find(EventListeners.rbegin(), EventListeners.rend(), L);
571 if (I != EventListeners.rend()) {
572 std::swap(*I, EventListeners.back());
573 EventListeners.pop_back();
574 }
575 }
NotifyFunctionEmitted(const Function & F,void * Code,size_t Size,const JITEvent_EmittedFunctionDetails & Details)576 void JIT::NotifyFunctionEmitted(
577 const Function &F,
578 void *Code, size_t Size,
579 const JITEvent_EmittedFunctionDetails &Details) {
580 MutexGuard locked(lock);
581 for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
582 EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
583 }
584 }
585
NotifyFreeingMachineCode(void * OldPtr)586 void JIT::NotifyFreeingMachineCode(void *OldPtr) {
587 MutexGuard locked(lock);
588 for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
589 EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
590 }
591 }
592
593 /// runJITOnFunction - Run the FunctionPassManager full of
594 /// just-in-time compilation passes on F, hopefully filling in
595 /// GlobalAddress[F] with the address of F's machine code.
596 ///
runJITOnFunction(Function * F,MachineCodeInfo * MCI)597 void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
598 MutexGuard locked(lock);
599
600 class MCIListener : public JITEventListener {
601 MachineCodeInfo *const MCI;
602 public:
603 MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
604 virtual void NotifyFunctionEmitted(const Function &,
605 void *Code, size_t Size,
606 const EmittedFunctionDetails &) {
607 MCI->setAddress(Code);
608 MCI->setSize(Size);
609 }
610 };
611 MCIListener MCIL(MCI);
612 if (MCI)
613 RegisterJITEventListener(&MCIL);
614
615 runJITOnFunctionUnlocked(F, locked);
616
617 if (MCI)
618 UnregisterJITEventListener(&MCIL);
619 }
620
runJITOnFunctionUnlocked(Function * F,const MutexGuard & locked)621 void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
622 assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
623
624 jitTheFunction(F, locked);
625
626 // If the function referred to another function that had not yet been
627 // read from bitcode, and we are jitting non-lazily, emit it now.
628 while (!jitstate->getPendingFunctions(locked).empty()) {
629 Function *PF = jitstate->getPendingFunctions(locked).back();
630 jitstate->getPendingFunctions(locked).pop_back();
631
632 assert(!PF->hasAvailableExternallyLinkage() &&
633 "Externally-defined function should not be in pending list.");
634
635 jitTheFunction(PF, locked);
636
637 // Now that the function has been jitted, ask the JITEmitter to rewrite
638 // the stub with real address of the function.
639 updateFunctionStub(PF);
640 }
641 }
642
jitTheFunction(Function * F,const MutexGuard & locked)643 void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
644 isAlreadyCodeGenerating = true;
645 jitstate->getPM(locked).run(*F);
646 isAlreadyCodeGenerating = false;
647
648 // clear basic block addresses after this function is done
649 getBasicBlockAddressMap(locked).clear();
650 }
651
652 /// getPointerToFunction - This method is used to get the address of the
653 /// specified function, compiling it if necessary.
654 ///
getPointerToFunction(Function * F)655 void *JIT::getPointerToFunction(Function *F) {
656
657 if (void *Addr = getPointerToGlobalIfAvailable(F))
658 return Addr; // Check if function already code gen'd
659
660 MutexGuard locked(lock);
661
662 // Now that this thread owns the lock, make sure we read in the function if it
663 // exists in this Module.
664 std::string ErrorMsg;
665 if (F->Materialize(&ErrorMsg)) {
666 report_fatal_error("Error reading function '" + F->getName()+
667 "' from bitcode file: " + ErrorMsg);
668 }
669
670 // ... and check if another thread has already code gen'd the function.
671 if (void *Addr = getPointerToGlobalIfAvailable(F))
672 return Addr;
673
674 if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
675 bool AbortOnFailure = !F->hasExternalWeakLinkage();
676 void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
677 addGlobalMapping(F, Addr);
678 return Addr;
679 }
680
681 runJITOnFunctionUnlocked(F, locked);
682
683 void *Addr = getPointerToGlobalIfAvailable(F);
684 assert(Addr && "Code generation didn't add function to GlobalAddress table!");
685 return Addr;
686 }
687
addPointerToBasicBlock(const BasicBlock * BB,void * Addr)688 void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
689 MutexGuard locked(lock);
690
691 BasicBlockAddressMapTy::iterator I =
692 getBasicBlockAddressMap(locked).find(BB);
693 if (I == getBasicBlockAddressMap(locked).end()) {
694 getBasicBlockAddressMap(locked)[BB] = Addr;
695 } else {
696 // ignore repeats: some BBs can be split into few MBBs?
697 }
698 }
699
clearPointerToBasicBlock(const BasicBlock * BB)700 void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
701 MutexGuard locked(lock);
702 getBasicBlockAddressMap(locked).erase(BB);
703 }
704
getPointerToBasicBlock(BasicBlock * BB)705 void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
706 // make sure it's function is compiled by JIT
707 (void)getPointerToFunction(BB->getParent());
708
709 // resolve basic block address
710 MutexGuard locked(lock);
711
712 BasicBlockAddressMapTy::iterator I =
713 getBasicBlockAddressMap(locked).find(BB);
714 if (I != getBasicBlockAddressMap(locked).end()) {
715 return I->second;
716 } else {
717 llvm_unreachable("JIT does not have BB address for address-of-label, was"
718 " it eliminated by optimizer?");
719 }
720 }
721
getPointerToNamedFunction(const std::string & Name,bool AbortOnFailure)722 void *JIT::getPointerToNamedFunction(const std::string &Name,
723 bool AbortOnFailure){
724 if (!isSymbolSearchingDisabled()) {
725 void *ptr = JMM->getPointerToNamedFunction(Name, false);
726 if (ptr)
727 return ptr;
728 }
729
730 /// If a LazyFunctionCreator is installed, use it to get/create the function.
731 if (LazyFunctionCreator)
732 if (void *RP = LazyFunctionCreator(Name))
733 return RP;
734
735 if (AbortOnFailure) {
736 report_fatal_error("Program used external function '"+Name+
737 "' which could not be resolved!");
738 }
739 return 0;
740 }
741
742
743 /// getOrEmitGlobalVariable - Return the address of the specified global
744 /// variable, possibly emitting it to memory if needed. This is used by the
745 /// Emitter.
getOrEmitGlobalVariable(const GlobalVariable * GV)746 void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
747 MutexGuard locked(lock);
748
749 void *Ptr = getPointerToGlobalIfAvailable(GV);
750 if (Ptr) return Ptr;
751
752 // If the global is external, just remember the address.
753 if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
754 #if HAVE___DSO_HANDLE
755 if (GV->getName() == "__dso_handle")
756 return (void*)&__dso_handle;
757 #endif
758 Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
759 if (Ptr == 0) {
760 report_fatal_error("Could not resolve external global address: "
761 +GV->getName());
762 }
763 addGlobalMapping(GV, Ptr);
764 } else {
765 // If the global hasn't been emitted to memory yet, allocate space and
766 // emit it into memory.
767 Ptr = getMemoryForGV(GV);
768 addGlobalMapping(GV, Ptr);
769 EmitGlobalVariable(GV); // Initialize the variable.
770 }
771 return Ptr;
772 }
773
774 /// recompileAndRelinkFunction - This method is used to force a function
775 /// which has already been compiled, to be compiled again, possibly
776 /// after it has been modified. Then the entry to the old copy is overwritten
777 /// with a branch to the new copy. If there was no old copy, this acts
778 /// just like JIT::getPointerToFunction().
779 ///
recompileAndRelinkFunction(Function * F)780 void *JIT::recompileAndRelinkFunction(Function *F) {
781 void *OldAddr = getPointerToGlobalIfAvailable(F);
782
783 // If it's not already compiled there is no reason to patch it up.
784 if (OldAddr == 0) { return getPointerToFunction(F); }
785
786 // Delete the old function mapping.
787 addGlobalMapping(F, 0);
788
789 // Recodegen the function
790 runJITOnFunction(F);
791
792 // Update state, forward the old function to the new function.
793 void *Addr = getPointerToGlobalIfAvailable(F);
794 assert(Addr && "Code generation didn't add function to GlobalAddress table!");
795 TJI.replaceMachineCodeForFunction(OldAddr, Addr);
796 return Addr;
797 }
798
799 /// getMemoryForGV - This method abstracts memory allocation of global
800 /// variable so that the JIT can allocate thread local variables depending
801 /// on the target.
802 ///
getMemoryForGV(const GlobalVariable * GV)803 char* JIT::getMemoryForGV(const GlobalVariable* GV) {
804 char *Ptr;
805
806 // GlobalVariable's which are not "constant" will cause trouble in a server
807 // situation. It's returned in the same block of memory as code which may
808 // not be writable.
809 if (isGVCompilationDisabled() && !GV->isConstant()) {
810 report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
811 }
812
813 // Some applications require globals and code to live together, so they may
814 // be allocated into the same buffer, but in general globals are allocated
815 // through the memory manager which puts them near the code but not in the
816 // same buffer.
817 Type *GlobalType = GV->getType()->getElementType();
818 size_t S = getTargetData()->getTypeAllocSize(GlobalType);
819 size_t A = getTargetData()->getPreferredAlignment(GV);
820 if (GV->isThreadLocal()) {
821 MutexGuard locked(lock);
822 Ptr = TJI.allocateThreadLocalMemory(S);
823 } else if (TJI.allocateSeparateGVMemory()) {
824 if (A <= 8) {
825 Ptr = (char*)malloc(S);
826 } else {
827 // Allocate S+A bytes of memory, then use an aligned pointer within that
828 // space.
829 Ptr = (char*)malloc(S+A);
830 unsigned MisAligned = ((intptr_t)Ptr & (A-1));
831 Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
832 }
833 } else if (AllocateGVsWithCode) {
834 Ptr = (char*)JCE->allocateSpace(S, A);
835 } else {
836 Ptr = (char*)JCE->allocateGlobal(S, A);
837 }
838 return Ptr;
839 }
840
addPendingFunction(Function * F)841 void JIT::addPendingFunction(Function *F) {
842 MutexGuard locked(lock);
843 jitstate->getPendingFunctions(locked).push_back(F);
844 }
845
846
~JITEventListener()847 JITEventListener::~JITEventListener() {}
848