• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariables analysis pass.  For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
16 //
17 // This class computes live variables using a sparse implementation based on
18 // the machine code SSA form.  This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function.  It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block).  If a physical
24 // register is not register allocatable, it is not tracked.  This is useful for
25 // things like the stack pointer and condition codes.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30 #define LLVM_CODEGEN_LIVEVARIABLES_H
31 
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/ADT/BitVector.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/IndexedMap.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/SparseBitVector.h"
42 
43 namespace llvm {
44 
45 class MachineRegisterInfo;
46 class TargetRegisterInfo;
47 
48 class LiveVariables : public MachineFunctionPass {
49 public:
50   static char ID; // Pass identification, replacement for typeid
LiveVariables()51   LiveVariables() : MachineFunctionPass(ID) {
52     initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
53   }
54 
55   /// VarInfo - This represents the regions where a virtual register is live in
56   /// the program.  We represent this with three different pieces of
57   /// information: the set of blocks in which the instruction is live
58   /// throughout, the set of blocks in which the instruction is actually used,
59   /// and the set of non-phi instructions that are the last users of the value.
60   ///
61   /// In the common case where a value is defined and killed in the same block,
62   /// There is one killing instruction, and AliveBlocks is empty.
63   ///
64   /// Otherwise, the value is live out of the block.  If the value is live
65   /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
66   /// where the liveness range ends are not included in AliveBlocks, instead
67   /// being captured by the Kills set.  In these blocks, the value is live into
68   /// the block (unless the value is defined and killed in the same block) and
69   /// lives until the specified instruction.  Note that there cannot ever be a
70   /// value whose Kills set contains two instructions from the same basic block.
71   ///
72   /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
73   /// value in one of its predecessor blocks, it is not listed in the kills set,
74   /// but does include the predecessor block in the AliveBlocks set (unless that
75   /// block also defines the value).  This leads to the (perfectly sensical)
76   /// situation where a value is defined in a block, and the last use is a phi
77   /// node in the successor.  In this case, AliveBlocks is empty (the value is
78   /// not live across any  blocks) and Kills is empty (phi nodes are not
79   /// included). This is sensical because the value must be live to the end of
80   /// the block, but is not live in any successor blocks.
81   struct VarInfo {
82     /// AliveBlocks - Set of blocks in which this value is alive completely
83     /// through.  This is a bit set which uses the basic block number as an
84     /// index.
85     ///
86     SparseBitVector<> AliveBlocks;
87 
88     /// Kills - List of MachineInstruction's which are the last use of this
89     /// virtual register (kill it) in their basic block.
90     ///
91     std::vector<MachineInstr*> Kills;
92 
93     /// removeKill - Delete a kill corresponding to the specified
94     /// machine instruction. Returns true if there was a kill
95     /// corresponding to this instruction, false otherwise.
removeKillVarInfo96     bool removeKill(MachineInstr *MI) {
97       std::vector<MachineInstr*>::iterator
98         I = std::find(Kills.begin(), Kills.end(), MI);
99       if (I == Kills.end())
100         return false;
101       Kills.erase(I);
102       return true;
103     }
104 
105     /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
106     MachineInstr *findKill(const MachineBasicBlock *MBB) const;
107 
108     /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
109     /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
110     /// MBB, it is not considered live in.
111     bool isLiveIn(const MachineBasicBlock &MBB,
112                   unsigned Reg,
113                   MachineRegisterInfo &MRI);
114 
115     void dump() const;
116   };
117 
118 private:
119   /// VirtRegInfo - This list is a mapping from virtual register number to
120   /// variable information.
121   ///
122   IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
123 
124   /// PHIJoins - list of virtual registers that are PHI joins. These registers
125   /// may have multiple definitions, and they require special handling when
126   /// building live intervals.
127   SparseBitVector<> PHIJoins;
128 
129   /// ReservedRegisters - This vector keeps track of which registers
130   /// are reserved register which are not allocatable by the target machine.
131   /// We can not track liveness for values that are in this set.
132   ///
133   BitVector ReservedRegisters;
134 
135 private:   // Intermediate data structures
136   MachineFunction *MF;
137 
138   MachineRegisterInfo* MRI;
139 
140   const TargetRegisterInfo *TRI;
141 
142   // PhysRegInfo - Keep track of which instruction was the last def of a
143   // physical register. This is a purely local property, because all physical
144   // register references are presumed dead across basic blocks.
145   MachineInstr **PhysRegDef;
146 
147   // PhysRegInfo - Keep track of which instruction was the last use of a
148   // physical register. This is a purely local property, because all physical
149   // register references are presumed dead across basic blocks.
150   MachineInstr **PhysRegUse;
151 
152   SmallVector<unsigned, 4> *PHIVarInfo;
153 
154   // DistanceMap - Keep track the distance of a MI from the start of the
155   // current basic block.
156   DenseMap<MachineInstr*, unsigned> DistanceMap;
157 
158   /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
159   /// uses. Pay special attention to the sub-register uses which may come below
160   /// the last use of the whole register.
161   bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
162 
163   /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
164   void HandleRegMask(const MachineOperand&);
165 
166   void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
167   void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
168                         SmallVector<unsigned, 4> &Defs);
169   void UpdatePhysRegDefs(MachineInstr *MI, SmallVector<unsigned, 4> &Defs);
170 
171   /// FindLastRefOrPartRef - Return the last reference or partial reference of
172   /// the specified register.
173   MachineInstr *FindLastRefOrPartRef(unsigned Reg);
174 
175   /// FindLastPartialDef - Return the last partial def of the specified
176   /// register. Also returns the sub-registers that're defined by the
177   /// instruction.
178   MachineInstr *FindLastPartialDef(unsigned Reg,
179                                    SmallSet<unsigned,4> &PartDefRegs);
180 
181   /// analyzePHINodes - Gather information about the PHI nodes in here. In
182   /// particular, we want to map the variable information of a virtual
183   /// register which is used in a PHI node. We map that to the BB the vreg
184   /// is coming from.
185   void analyzePHINodes(const MachineFunction& Fn);
186 public:
187 
188   virtual bool runOnMachineFunction(MachineFunction &MF);
189 
190   /// RegisterDefIsDead - Return true if the specified instruction defines the
191   /// specified register, but that definition is dead.
192   bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
193 
194   //===--------------------------------------------------------------------===//
195   //  API to update live variable information
196 
197   /// replaceKillInstruction - Update register kill info by replacing a kill
198   /// instruction with a new one.
199   void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
200                               MachineInstr *NewMI);
201 
202   /// addVirtualRegisterKilled - Add information about the fact that the
203   /// specified register is killed after being used by the specified
204   /// instruction. If AddIfNotFound is true, add a implicit operand if it's
205   /// not found.
206   void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
207                                 bool AddIfNotFound = false) {
208     if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
209       getVarInfo(IncomingReg).Kills.push_back(MI);
210   }
211 
212   /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
213   /// register from the live variable information. Returns true if the
214   /// variable was marked as killed by the specified instruction,
215   /// false otherwise.
removeVirtualRegisterKilled(unsigned reg,MachineInstr * MI)216   bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) {
217     if (!getVarInfo(reg).removeKill(MI))
218       return false;
219 
220     bool Removed = false;
221     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
222       MachineOperand &MO = MI->getOperand(i);
223       if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
224         MO.setIsKill(false);
225         Removed = true;
226         break;
227       }
228     }
229 
230     assert(Removed && "Register is not used by this instruction!");
231     (void)Removed;
232     return true;
233   }
234 
235   /// removeVirtualRegistersKilled - Remove all killed info for the specified
236   /// instruction.
237   void removeVirtualRegistersKilled(MachineInstr *MI);
238 
239   /// addVirtualRegisterDead - Add information about the fact that the specified
240   /// register is dead after being used by the specified instruction. If
241   /// AddIfNotFound is true, add a implicit operand if it's not found.
242   void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI,
243                               bool AddIfNotFound = false) {
244     if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound))
245       getVarInfo(IncomingReg).Kills.push_back(MI);
246   }
247 
248   /// removeVirtualRegisterDead - Remove the specified kill of the virtual
249   /// register from the live variable information. Returns true if the
250   /// variable was marked dead at the specified instruction, false
251   /// otherwise.
removeVirtualRegisterDead(unsigned reg,MachineInstr * MI)252   bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) {
253     if (!getVarInfo(reg).removeKill(MI))
254       return false;
255 
256     bool Removed = false;
257     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
258       MachineOperand &MO = MI->getOperand(i);
259       if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
260         MO.setIsDead(false);
261         Removed = true;
262         break;
263       }
264     }
265     assert(Removed && "Register is not defined by this instruction!");
266     (void)Removed;
267     return true;
268   }
269 
270   void getAnalysisUsage(AnalysisUsage &AU) const;
271 
releaseMemory()272   virtual void releaseMemory() {
273     VirtRegInfo.clear();
274   }
275 
276   /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
277   /// register.
278   VarInfo &getVarInfo(unsigned RegIdx);
279 
280   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
281                                MachineBasicBlock *BB);
282   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
283                                MachineBasicBlock *BB,
284                                std::vector<MachineBasicBlock*> &WorkList);
285   void HandleVirtRegDef(unsigned reg, MachineInstr *MI);
286   void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
287                         MachineInstr *MI);
288 
isLiveIn(unsigned Reg,const MachineBasicBlock & MBB)289   bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
290     return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
291   }
292 
293   /// isLiveOut - Determine if Reg is live out from MBB, when not considering
294   /// PHI nodes. This means that Reg is either killed by a successor block or
295   /// passed through one.
296   bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
297 
298   /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
299   /// variables that are live out of DomBB and live into SuccBB will be marked
300   /// as passing live through BB. This method assumes that the machine code is
301   /// still in SSA form.
302   void addNewBlock(MachineBasicBlock *BB,
303                    MachineBasicBlock *DomBB,
304                    MachineBasicBlock *SuccBB);
305 
306   /// isPHIJoin - Return true if Reg is a phi join register.
isPHIJoin(unsigned Reg)307   bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
308 
309   /// setPHIJoin - Mark Reg as a phi join register.
setPHIJoin(unsigned Reg)310   void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
311 };
312 
313 } // End llvm namespace
314 
315 #endif
316