1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariables analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using a sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H 30 #define LLVM_CODEGEN_LIVEVARIABLES_H 31 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/ADT/BitVector.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/IndexedMap.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/SparseBitVector.h" 42 43 namespace llvm { 44 45 class MachineRegisterInfo; 46 class TargetRegisterInfo; 47 48 class LiveVariables : public MachineFunctionPass { 49 public: 50 static char ID; // Pass identification, replacement for typeid LiveVariables()51 LiveVariables() : MachineFunctionPass(ID) { 52 initializeLiveVariablesPass(*PassRegistry::getPassRegistry()); 53 } 54 55 /// VarInfo - This represents the regions where a virtual register is live in 56 /// the program. We represent this with three different pieces of 57 /// information: the set of blocks in which the instruction is live 58 /// throughout, the set of blocks in which the instruction is actually used, 59 /// and the set of non-phi instructions that are the last users of the value. 60 /// 61 /// In the common case where a value is defined and killed in the same block, 62 /// There is one killing instruction, and AliveBlocks is empty. 63 /// 64 /// Otherwise, the value is live out of the block. If the value is live 65 /// throughout any blocks, these blocks are listed in AliveBlocks. Blocks 66 /// where the liveness range ends are not included in AliveBlocks, instead 67 /// being captured by the Kills set. In these blocks, the value is live into 68 /// the block (unless the value is defined and killed in the same block) and 69 /// lives until the specified instruction. Note that there cannot ever be a 70 /// value whose Kills set contains two instructions from the same basic block. 71 /// 72 /// PHI nodes complicate things a bit. If a PHI node is the last user of a 73 /// value in one of its predecessor blocks, it is not listed in the kills set, 74 /// but does include the predecessor block in the AliveBlocks set (unless that 75 /// block also defines the value). This leads to the (perfectly sensical) 76 /// situation where a value is defined in a block, and the last use is a phi 77 /// node in the successor. In this case, AliveBlocks is empty (the value is 78 /// not live across any blocks) and Kills is empty (phi nodes are not 79 /// included). This is sensical because the value must be live to the end of 80 /// the block, but is not live in any successor blocks. 81 struct VarInfo { 82 /// AliveBlocks - Set of blocks in which this value is alive completely 83 /// through. This is a bit set which uses the basic block number as an 84 /// index. 85 /// 86 SparseBitVector<> AliveBlocks; 87 88 /// Kills - List of MachineInstruction's which are the last use of this 89 /// virtual register (kill it) in their basic block. 90 /// 91 std::vector<MachineInstr*> Kills; 92 93 /// removeKill - Delete a kill corresponding to the specified 94 /// machine instruction. Returns true if there was a kill 95 /// corresponding to this instruction, false otherwise. removeKillVarInfo96 bool removeKill(MachineInstr *MI) { 97 std::vector<MachineInstr*>::iterator 98 I = std::find(Kills.begin(), Kills.end(), MI); 99 if (I == Kills.end()) 100 return false; 101 Kills.erase(I); 102 return true; 103 } 104 105 /// findKill - Find a kill instruction in MBB. Return NULL if none is found. 106 MachineInstr *findKill(const MachineBasicBlock *MBB) const; 107 108 /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through 109 /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in 110 /// MBB, it is not considered live in. 111 bool isLiveIn(const MachineBasicBlock &MBB, 112 unsigned Reg, 113 MachineRegisterInfo &MRI); 114 115 void dump() const; 116 }; 117 118 private: 119 /// VirtRegInfo - This list is a mapping from virtual register number to 120 /// variable information. 121 /// 122 IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo; 123 124 /// PHIJoins - list of virtual registers that are PHI joins. These registers 125 /// may have multiple definitions, and they require special handling when 126 /// building live intervals. 127 SparseBitVector<> PHIJoins; 128 129 /// ReservedRegisters - This vector keeps track of which registers 130 /// are reserved register which are not allocatable by the target machine. 131 /// We can not track liveness for values that are in this set. 132 /// 133 BitVector ReservedRegisters; 134 135 private: // Intermediate data structures 136 MachineFunction *MF; 137 138 MachineRegisterInfo* MRI; 139 140 const TargetRegisterInfo *TRI; 141 142 // PhysRegInfo - Keep track of which instruction was the last def of a 143 // physical register. This is a purely local property, because all physical 144 // register references are presumed dead across basic blocks. 145 MachineInstr **PhysRegDef; 146 147 // PhysRegInfo - Keep track of which instruction was the last use of a 148 // physical register. This is a purely local property, because all physical 149 // register references are presumed dead across basic blocks. 150 MachineInstr **PhysRegUse; 151 152 SmallVector<unsigned, 4> *PHIVarInfo; 153 154 // DistanceMap - Keep track the distance of a MI from the start of the 155 // current basic block. 156 DenseMap<MachineInstr*, unsigned> DistanceMap; 157 158 /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the 159 /// uses. Pay special attention to the sub-register uses which may come below 160 /// the last use of the whole register. 161 bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI); 162 163 /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask. 164 void HandleRegMask(const MachineOperand&); 165 166 void HandlePhysRegUse(unsigned Reg, MachineInstr *MI); 167 void HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 168 SmallVector<unsigned, 4> &Defs); 169 void UpdatePhysRegDefs(MachineInstr *MI, SmallVector<unsigned, 4> &Defs); 170 171 /// FindLastRefOrPartRef - Return the last reference or partial reference of 172 /// the specified register. 173 MachineInstr *FindLastRefOrPartRef(unsigned Reg); 174 175 /// FindLastPartialDef - Return the last partial def of the specified 176 /// register. Also returns the sub-registers that're defined by the 177 /// instruction. 178 MachineInstr *FindLastPartialDef(unsigned Reg, 179 SmallSet<unsigned,4> &PartDefRegs); 180 181 /// analyzePHINodes - Gather information about the PHI nodes in here. In 182 /// particular, we want to map the variable information of a virtual 183 /// register which is used in a PHI node. We map that to the BB the vreg 184 /// is coming from. 185 void analyzePHINodes(const MachineFunction& Fn); 186 public: 187 188 virtual bool runOnMachineFunction(MachineFunction &MF); 189 190 /// RegisterDefIsDead - Return true if the specified instruction defines the 191 /// specified register, but that definition is dead. 192 bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const; 193 194 //===--------------------------------------------------------------------===// 195 // API to update live variable information 196 197 /// replaceKillInstruction - Update register kill info by replacing a kill 198 /// instruction with a new one. 199 void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 200 MachineInstr *NewMI); 201 202 /// addVirtualRegisterKilled - Add information about the fact that the 203 /// specified register is killed after being used by the specified 204 /// instruction. If AddIfNotFound is true, add a implicit operand if it's 205 /// not found. 206 void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI, 207 bool AddIfNotFound = false) { 208 if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound)) 209 getVarInfo(IncomingReg).Kills.push_back(MI); 210 } 211 212 /// removeVirtualRegisterKilled - Remove the specified kill of the virtual 213 /// register from the live variable information. Returns true if the 214 /// variable was marked as killed by the specified instruction, 215 /// false otherwise. removeVirtualRegisterKilled(unsigned reg,MachineInstr * MI)216 bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) { 217 if (!getVarInfo(reg).removeKill(MI)) 218 return false; 219 220 bool Removed = false; 221 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 222 MachineOperand &MO = MI->getOperand(i); 223 if (MO.isReg() && MO.isKill() && MO.getReg() == reg) { 224 MO.setIsKill(false); 225 Removed = true; 226 break; 227 } 228 } 229 230 assert(Removed && "Register is not used by this instruction!"); 231 (void)Removed; 232 return true; 233 } 234 235 /// removeVirtualRegistersKilled - Remove all killed info for the specified 236 /// instruction. 237 void removeVirtualRegistersKilled(MachineInstr *MI); 238 239 /// addVirtualRegisterDead - Add information about the fact that the specified 240 /// register is dead after being used by the specified instruction. If 241 /// AddIfNotFound is true, add a implicit operand if it's not found. 242 void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI, 243 bool AddIfNotFound = false) { 244 if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound)) 245 getVarInfo(IncomingReg).Kills.push_back(MI); 246 } 247 248 /// removeVirtualRegisterDead - Remove the specified kill of the virtual 249 /// register from the live variable information. Returns true if the 250 /// variable was marked dead at the specified instruction, false 251 /// otherwise. removeVirtualRegisterDead(unsigned reg,MachineInstr * MI)252 bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) { 253 if (!getVarInfo(reg).removeKill(MI)) 254 return false; 255 256 bool Removed = false; 257 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 258 MachineOperand &MO = MI->getOperand(i); 259 if (MO.isReg() && MO.isDef() && MO.getReg() == reg) { 260 MO.setIsDead(false); 261 Removed = true; 262 break; 263 } 264 } 265 assert(Removed && "Register is not defined by this instruction!"); 266 (void)Removed; 267 return true; 268 } 269 270 void getAnalysisUsage(AnalysisUsage &AU) const; 271 releaseMemory()272 virtual void releaseMemory() { 273 VirtRegInfo.clear(); 274 } 275 276 /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL 277 /// register. 278 VarInfo &getVarInfo(unsigned RegIdx); 279 280 void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock, 281 MachineBasicBlock *BB); 282 void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock, 283 MachineBasicBlock *BB, 284 std::vector<MachineBasicBlock*> &WorkList); 285 void HandleVirtRegDef(unsigned reg, MachineInstr *MI); 286 void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 287 MachineInstr *MI); 288 isLiveIn(unsigned Reg,const MachineBasicBlock & MBB)289 bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) { 290 return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI); 291 } 292 293 /// isLiveOut - Determine if Reg is live out from MBB, when not considering 294 /// PHI nodes. This means that Reg is either killed by a successor block or 295 /// passed through one. 296 bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB); 297 298 /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All 299 /// variables that are live out of DomBB and live into SuccBB will be marked 300 /// as passing live through BB. This method assumes that the machine code is 301 /// still in SSA form. 302 void addNewBlock(MachineBasicBlock *BB, 303 MachineBasicBlock *DomBB, 304 MachineBasicBlock *SuccBB); 305 306 /// isPHIJoin - Return true if Reg is a phi join register. isPHIJoin(unsigned Reg)307 bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); } 308 309 /// setPHIJoin - Mark Reg as a phi join register. setPHIJoin(unsigned Reg)310 void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); } 311 }; 312 313 } // End llvm namespace 314 315 #endif 316