• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*	$NetBSD: strtod.c,v 1.45.2.1 2005/04/19 13:35:54 tron Exp $	*/
2 
3 /****************************************************************
4  *
5  * The author of this software is David M. Gay.
6  *
7  * Copyright (c) 1991 by AT&T.
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose without fee is hereby granted, provided that this entire notice
11  * is included in all copies of any software which is or includes a copy
12  * or modification of this software and in all copies of the supporting
13  * documentation for such software.
14  *
15  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
16  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
17  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
18  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
19  *
20  ***************************************************************/
21 
22 /* Please send bug reports to
23 	David M. Gay
24 	AT&T Bell Laboratories, Room 2C-463
25 	600 Mountain Avenue
26 	Murray Hill, NJ 07974-2070
27 	U.S.A.
28 	dmg@research.att.com or research!dmg
29  */
30 
31 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
32  *
33  * This strtod returns a nearest machine number to the input decimal
34  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
35  * broken by the IEEE round-even rule.  Otherwise ties are broken by
36  * biased rounding (add half and chop).
37  *
38  * Inspired loosely by William D. Clinger's paper "How to Read Floating
39  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
40  *
41  * Modifications:
42  *
43  *	1. We only require IEEE, IBM, or VAX double-precision
44  *		arithmetic (not IEEE double-extended).
45  *	2. We get by with floating-point arithmetic in a case that
46  *		Clinger missed -- when we're computing d * 10^n
47  *		for a small integer d and the integer n is not too
48  *		much larger than 22 (the maximum integer k for which
49  *		we can represent 10^k exactly), we may be able to
50  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
51  *	3. Rather than a bit-at-a-time adjustment of the binary
52  *		result in the hard case, we use floating-point
53  *		arithmetic to determine the adjustment to within
54  *		one bit; only in really hard cases do we need to
55  *		compute a second residual.
56  *	4. Because of 3., we don't need a large table of powers of 10
57  *		for ten-to-e (just some small tables, e.g. of 10^k
58  *		for 0 <= k <= 22).
59  */
60 
61 /*
62  * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
63  *	significant byte has the lowest address.
64  * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
65  *	significant byte has the lowest address.
66  * #define Long int on machines with 32-bit ints and 64-bit longs.
67  * #define Sudden_Underflow for IEEE-format machines without gradual
68  *	underflow (i.e., that flush to zero on underflow).
69  * #define IBM for IBM mainframe-style floating-point arithmetic.
70  * #define VAX for VAX-style floating-point arithmetic.
71  * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
72  * #define No_leftright to omit left-right logic in fast floating-point
73  *	computation of dtoa.
74  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
75  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
76  *	that use extended-precision instructions to compute rounded
77  *	products and quotients) with IBM.
78  * #define ROUND_BIASED for IEEE-format with biased rounding.
79  * #define Inaccurate_Divide for IEEE-format with correctly rounded
80  *	products but inaccurate quotients, e.g., for Intel i860.
81  * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision
82  *	integer arithmetic.  Whether this speeds things up or slows things
83  *	down depends on the machine and the number being converted.
84  * #define KR_headers for old-style C function headers.
85  * #define Bad_float_h if your system lacks a float.h or if it does not
86  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
87  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
88  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
89  *	if memory is available and otherwise does something you deem
90  *	appropriate.  If MALLOC is undefined, malloc will be invoked
91  *	directly -- and assumed always to succeed.
92  */
93 
94 #ifdef ANDROID_CHANGES
95 #include <pthread.h>
96 #define mutex_lock(x) pthread_mutex_lock(x)
97 #define mutex_unlock(x) pthread_mutex_unlock(x)
98 #endif
99 
100 #include <sys/cdefs.h>
101 #if defined(LIBC_SCCS) && !defined(lint)
102 __RCSID("$NetBSD: strtod.c,v 1.45.2.1 2005/04/19 13:35:54 tron Exp $");
103 #endif /* LIBC_SCCS and not lint */
104 
105 #define Unsigned_Shifts
106 #if defined(__m68k__) || defined(__sparc__) || defined(__i386__) || \
107     defined(__mips__) || defined(__ns32k__) || defined(__alpha__) || \
108     defined(__powerpc__) || defined(__sh__) || defined(__x86_64__) || \
109     defined(__hppa__) || \
110     (defined(__arm__) && defined(__VFP_FP__))
111 #include <endian.h>
112 #if BYTE_ORDER == BIG_ENDIAN
113 #define IEEE_BIG_ENDIAN
114 #else
115 #define IEEE_LITTLE_ENDIAN
116 #endif
117 #endif
118 
119 #if defined(__arm__) && !defined(__VFP_FP__)
120 /*
121  * Although the CPU is little endian the FP has different
122  * byte and word endianness. The byte order is still little endian
123  * but the word order is big endian.
124  */
125 #define IEEE_BIG_ENDIAN
126 #endif
127 
128 #ifdef __vax__
129 #define VAX
130 #endif
131 
132 #if defined(__hppa__) || defined(__mips__) || defined(__sh__)
133 #define	NAN_WORD0	0x7ff40000
134 #else
135 #define	NAN_WORD0	0x7ff80000
136 #endif
137 #define	NAN_WORD1	0
138 
139 #define Long	int32_t
140 #define ULong	u_int32_t
141 
142 #ifdef DEBUG
143 #include "stdio.h"
144 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
145 #endif
146 
147 #ifdef __cplusplus
148 #include "malloc.h"
149 #include "memory.h"
150 #else
151 #ifndef KR_headers
152 #include "stdlib.h"
153 #include "string.h"
154 #ifndef ANDROID_CHANGES
155 #include "locale.h"
156 #endif /* ANDROID_CHANGES */
157 #else
158 #include "malloc.h"
159 #include "memory.h"
160 #endif
161 #endif
162 #ifndef ANDROID_CHANGES
163 #include "extern.h"
164 #include "reentrant.h"
165 #endif /* ANDROID_CHANGES */
166 
167 #ifdef MALLOC
168 #ifdef KR_headers
169 extern char *MALLOC();
170 #else
171 extern void *MALLOC(size_t);
172 #endif
173 #else
174 #define MALLOC malloc
175 #endif
176 
177 #include "ctype.h"
178 #include "errno.h"
179 #include "float.h"
180 
181 #ifndef __MATH_H__
182 #include "math.h"
183 #endif
184 
185 #ifdef __cplusplus
186 extern "C" {
187 #endif
188 
189 #ifndef CONST
190 #ifdef KR_headers
191 #define CONST /* blank */
192 #else
193 #define CONST const
194 #endif
195 #endif
196 
197 #ifdef Unsigned_Shifts
198 #define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
199 #else
200 #define Sign_Extend(a,b) /*no-op*/
201 #endif
202 
203 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \
204     defined(IBM) != 1
205 Exactly one of IEEE_LITTLE_ENDIAN IEEE_BIG_ENDIAN, VAX, or
206 IBM should be defined.
207 #endif
208 
209 typedef union {
210 	double d;
211 	ULong ul[2];
212 } _double;
213 #define value(x) ((x).d)
214 #ifdef IEEE_LITTLE_ENDIAN
215 #define word0(x) ((x).ul[1])
216 #define word1(x) ((x).ul[0])
217 #else
218 #define word0(x) ((x).ul[0])
219 #define word1(x) ((x).ul[1])
220 #endif
221 
222 /* The following definition of Storeinc is appropriate for MIPS processors.
223  * An alternative that might be better on some machines is
224  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
225  */
226 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm__)
227 #define Storeinc(a,b,c) \
228     (((u_short *)(void *)a)[1] = \
229 	(u_short)b, ((u_short *)(void *)a)[0] = (u_short)c, a++)
230 #else
231 #define Storeinc(a,b,c) \
232     (((u_short *)(void *)a)[0] = \
233 	(u_short)b, ((u_short *)(void *)a)[1] = (u_short)c, a++)
234 #endif
235 
236 /* #define P DBL_MANT_DIG */
237 /* Ten_pmax = floor(P*log(2)/log(5)) */
238 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
239 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
240 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
241 
242 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN)
243 #define Exp_shift  20
244 #define Exp_shift1 20
245 #define Exp_msk1    0x100000
246 #define Exp_msk11   0x100000
247 #define Exp_mask  0x7ff00000
248 #define P 53
249 #define Bias 1023
250 #define IEEE_Arith
251 #define Emin (-1022)
252 #define Exp_1  0x3ff00000
253 #define Exp_11 0x3ff00000
254 #define Ebits 11
255 #define Frac_mask  0xfffff
256 #define Frac_mask1 0xfffff
257 #define Ten_pmax 22
258 #define Bletch 0x10
259 #define Bndry_mask  0xfffff
260 #define Bndry_mask1 0xfffff
261 #define LSB 1
262 #define Sign_bit 0x80000000
263 #define Log2P 1
264 #define Tiny0 0
265 #define Tiny1 1
266 #define Quick_max 14
267 #define Int_max 14
268 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
269 #else
270 #undef  Sudden_Underflow
271 #define Sudden_Underflow
272 #ifdef IBM
273 #define Exp_shift  24
274 #define Exp_shift1 24
275 #define Exp_msk1   0x1000000
276 #define Exp_msk11  0x1000000
277 #define Exp_mask  0x7f000000
278 #define P 14
279 #define Bias 65
280 #define Exp_1  0x41000000
281 #define Exp_11 0x41000000
282 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
283 #define Frac_mask  0xffffff
284 #define Frac_mask1 0xffffff
285 #define Bletch 4
286 #define Ten_pmax 22
287 #define Bndry_mask  0xefffff
288 #define Bndry_mask1 0xffffff
289 #define LSB 1
290 #define Sign_bit 0x80000000
291 #define Log2P 4
292 #define Tiny0 0x100000
293 #define Tiny1 0
294 #define Quick_max 14
295 #define Int_max 15
296 #else /* VAX */
297 #define Exp_shift  23
298 #define Exp_shift1 7
299 #define Exp_msk1    0x80
300 #define Exp_msk11   0x800000
301 #define Exp_mask  0x7f80
302 #define P 56
303 #define Bias 129
304 #define Exp_1  0x40800000
305 #define Exp_11 0x4080
306 #define Ebits 8
307 #define Frac_mask  0x7fffff
308 #define Frac_mask1 0xffff007f
309 #define Ten_pmax 24
310 #define Bletch 2
311 #define Bndry_mask  0xffff007f
312 #define Bndry_mask1 0xffff007f
313 #define LSB 0x10000
314 #define Sign_bit 0x8000
315 #define Log2P 1
316 #define Tiny0 0x80
317 #define Tiny1 0
318 #define Quick_max 15
319 #define Int_max 15
320 #endif
321 #endif
322 
323 #ifndef IEEE_Arith
324 #define ROUND_BIASED
325 #endif
326 
327 #ifdef RND_PRODQUOT
328 #define rounded_product(a,b) a = rnd_prod(a, b)
329 #define rounded_quotient(a,b) a = rnd_quot(a, b)
330 #ifdef KR_headers
331 extern double rnd_prod(), rnd_quot();
332 #else
333 extern double rnd_prod(double, double), rnd_quot(double, double);
334 #endif
335 #else
336 #define rounded_product(a,b) a *= b
337 #define rounded_quotient(a,b) a /= b
338 #endif
339 
340 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
341 #define Big1 0xffffffff
342 
343 #ifndef Just_16
344 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
345  * This makes some inner loops simpler and sometimes saves work
346  * during multiplications, but it often seems to make things slightly
347  * slower.  Hence the default is now to store 32 bits per Long.
348  */
349 #ifndef Pack_32
350 #define Pack_32
351 #endif
352 #endif
353 
354 #define Kmax 15
355 
356 #ifdef __cplusplus
357 extern "C" double strtod(const char *s00, char **se);
358 extern "C" char *__dtoa(double d, int mode, int ndigits,
359 			int *decpt, int *sign, char **rve);
360 #endif
361 
362  struct
363 Bigint {
364 	struct Bigint *next;
365 	int k, maxwds, sign, wds;
366 	ULong x[1];
367 };
368 
369  typedef struct Bigint Bigint;
370 
371  static Bigint *freelist[Kmax+1];
372 
373 #ifdef ANDROID_CHANGES
374  static pthread_mutex_t freelist_mutex = PTHREAD_MUTEX_INITIALIZER;
375 #else
376 #ifdef _REENTRANT
377  static mutex_t freelist_mutex = MUTEX_INITIALIZER;
378 #endif
379 #endif
380 
381 /* Special value used to indicate an invalid Bigint value,
382  * e.g. when a memory allocation fails. The idea is that we
383  * want to avoid introducing NULL checks everytime a bigint
384  * computation is performed. Also the NULL value can also be
385  * already used to indicate "value not initialized yet" and
386  * returning NULL might alter the execution code path in
387  * case of OOM.
388  */
389 #define  BIGINT_INVALID   ((Bigint *)&bigint_invalid_value)
390 
391 static const Bigint bigint_invalid_value;
392 
393 
394 /* Return BIGINT_INVALID on allocation failure.
395  *
396  * Most of the code here depends on the fact that this function
397  * never returns NULL.
398  */
399  static Bigint *
Balloc(k)400 Balloc
401 #ifdef KR_headers
402 	(k) int k;
403 #else
404 	(int k)
405 #endif
406 {
407 	int x;
408 	Bigint *rv;
409 
410 	mutex_lock(&freelist_mutex);
411 
412 	if ((rv = freelist[k]) != NULL) {
413 		freelist[k] = rv->next;
414 	}
415 	else {
416 		x = 1 << k;
417 		rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long));
418 		if (rv == NULL) {
419 		        rv = BIGINT_INVALID;
420 			goto EXIT;
421 		}
422 		rv->k = k;
423 		rv->maxwds = x;
424 	}
425 	rv->sign = rv->wds = 0;
426 EXIT:
427 	mutex_unlock(&freelist_mutex);
428 
429 	return rv;
430 }
431 
432  static void
Bfree(v)433 Bfree
434 #ifdef KR_headers
435 	(v) Bigint *v;
436 #else
437 	(Bigint *v)
438 #endif
439 {
440 	if (v && v != BIGINT_INVALID) {
441 		mutex_lock(&freelist_mutex);
442 
443 		v->next = freelist[v->k];
444 		freelist[v->k] = v;
445 
446 		mutex_unlock(&freelist_mutex);
447 	}
448 }
449 
450 #define Bcopy_valid(x,y) memcpy(&(x)->sign, &(y)->sign, \
451     (y)->wds*sizeof(Long) + 2*sizeof(int))
452 
453 #define Bcopy(x,y)  Bcopy_ptr(&(x),(y))
454 
455  static void
Bcopy_ptr(Bigint ** px,Bigint * y)456 Bcopy_ptr(Bigint **px, Bigint *y)
457 {
458 	if (*px == BIGINT_INVALID)
459 		return; /* no space to store copy */
460 	if (y == BIGINT_INVALID) {
461 		Bfree(*px); /* invalid input */
462 		*px = BIGINT_INVALID;
463 	} else {
464 		Bcopy_valid(*px,y);
465 	}
466 }
467 
468  static Bigint *
multadd(b,m,a)469 multadd
470 #ifdef KR_headers
471 	(b, m, a) Bigint *b; int m, a;
472 #else
473 	(Bigint *b, int m, int a)	/* multiply by m and add a */
474 #endif
475 {
476 	int i, wds;
477 	ULong *x, y;
478 #ifdef Pack_32
479 	ULong xi, z;
480 #endif
481 	Bigint *b1;
482 
483 	if (b == BIGINT_INVALID)
484 		return b;
485 
486 	wds = b->wds;
487 	x = b->x;
488 	i = 0;
489 	do {
490 #ifdef Pack_32
491 		xi = *x;
492 		y = (xi & 0xffff) * m + a;
493 		z = (xi >> 16) * m + (y >> 16);
494 		a = (int)(z >> 16);
495 		*x++ = (z << 16) + (y & 0xffff);
496 #else
497 		y = *x * m + a;
498 		a = (int)(y >> 16);
499 		*x++ = y & 0xffff;
500 #endif
501 	}
502 	while(++i < wds);
503 	if (a) {
504 		if (wds >= b->maxwds) {
505 			b1 = Balloc(b->k+1);
506 			if (b1 == BIGINT_INVALID) {
507 				Bfree(b);
508 				return b1;
509 			}
510 			Bcopy_valid(b1, b);
511 			Bfree(b);
512 			b = b1;
513 			}
514 		b->x[wds++] = a;
515 		b->wds = wds;
516 	}
517 	return b;
518 }
519 
520  static Bigint *
s2b(s,nd0,nd,y9)521 s2b
522 #ifdef KR_headers
523 	(s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9;
524 #else
525 	(CONST char *s, int nd0, int nd, ULong y9)
526 #endif
527 {
528 	Bigint *b;
529 	int i, k;
530 	Long x, y;
531 
532 	x = (nd + 8) / 9;
533 	for(k = 0, y = 1; x > y; y <<= 1, k++) ;
534 #ifdef Pack_32
535 	b = Balloc(k);
536 	if (b == BIGINT_INVALID)
537 		return b;
538 	b->x[0] = y9;
539 	b->wds = 1;
540 #else
541 	b = Balloc(k+1);
542 	if (b == BIGINT_INVALID)
543 		return b;
544 
545 	b->x[0] = y9 & 0xffff;
546 	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
547 #endif
548 
549 	i = 9;
550 	if (9 < nd0) {
551 		s += 9;
552 		do b = multadd(b, 10, *s++ - '0');
553 			while(++i < nd0);
554 		s++;
555 	}
556 	else
557 		s += 10;
558 	for(; i < nd; i++)
559 		b = multadd(b, 10, *s++ - '0');
560 	return b;
561 }
562 
563  static int
hi0bits(x)564 hi0bits
565 #ifdef KR_headers
566 	(x) ULong x;
567 #else
568 	(ULong x)
569 #endif
570 {
571 	int k = 0;
572 
573 	if (!(x & 0xffff0000)) {
574 		k = 16;
575 		x <<= 16;
576 	}
577 	if (!(x & 0xff000000)) {
578 		k += 8;
579 		x <<= 8;
580 	}
581 	if (!(x & 0xf0000000)) {
582 		k += 4;
583 		x <<= 4;
584 	}
585 	if (!(x & 0xc0000000)) {
586 		k += 2;
587 		x <<= 2;
588 	}
589 	if (!(x & 0x80000000)) {
590 		k++;
591 		if (!(x & 0x40000000))
592 			return 32;
593 	}
594 	return k;
595 }
596 
597  static int
lo0bits(y)598 lo0bits
599 #ifdef KR_headers
600 	(y) ULong *y;
601 #else
602 	(ULong *y)
603 #endif
604 {
605 	int k;
606 	ULong x = *y;
607 
608 	if (x & 7) {
609 		if (x & 1)
610 			return 0;
611 		if (x & 2) {
612 			*y = x >> 1;
613 			return 1;
614 			}
615 		*y = x >> 2;
616 		return 2;
617 	}
618 	k = 0;
619 	if (!(x & 0xffff)) {
620 		k = 16;
621 		x >>= 16;
622 	}
623 	if (!(x & 0xff)) {
624 		k += 8;
625 		x >>= 8;
626 	}
627 	if (!(x & 0xf)) {
628 		k += 4;
629 		x >>= 4;
630 	}
631 	if (!(x & 0x3)) {
632 		k += 2;
633 		x >>= 2;
634 	}
635 	if (!(x & 1)) {
636 		k++;
637 		x >>= 1;
638 		if (!x & 1)
639 			return 32;
640 	}
641 	*y = x;
642 	return k;
643 }
644 
645  static Bigint *
i2b(i)646 i2b
647 #ifdef KR_headers
648 	(i) int i;
649 #else
650 	(int i)
651 #endif
652 {
653 	Bigint *b;
654 
655 	b = Balloc(1);
656 	if (b != BIGINT_INVALID) {
657 		b->x[0] = i;
658 		b->wds = 1;
659 		}
660 	return b;
661 }
662 
663  static Bigint *
mult(a,b)664 mult
665 #ifdef KR_headers
666 	(a, b) Bigint *a, *b;
667 #else
668 	(Bigint *a, Bigint *b)
669 #endif
670 {
671 	Bigint *c;
672 	int k, wa, wb, wc;
673 	ULong carry, y, z;
674 	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
675 #ifdef Pack_32
676 	ULong z2;
677 #endif
678 
679 	if (a == BIGINT_INVALID || b == BIGINT_INVALID)
680 		return BIGINT_INVALID;
681 
682 	if (a->wds < b->wds) {
683 		c = a;
684 		a = b;
685 		b = c;
686 	}
687 	k = a->k;
688 	wa = a->wds;
689 	wb = b->wds;
690 	wc = wa + wb;
691 	if (wc > a->maxwds)
692 		k++;
693 	c = Balloc(k);
694 	if (c == BIGINT_INVALID)
695 		return c;
696 	for(x = c->x, xa = x + wc; x < xa; x++)
697 		*x = 0;
698 	xa = a->x;
699 	xae = xa + wa;
700 	xb = b->x;
701 	xbe = xb + wb;
702 	xc0 = c->x;
703 #ifdef Pack_32
704 	for(; xb < xbe; xb++, xc0++) {
705 		if ((y = *xb & 0xffff) != 0) {
706 			x = xa;
707 			xc = xc0;
708 			carry = 0;
709 			do {
710 				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
711 				carry = z >> 16;
712 				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
713 				carry = z2 >> 16;
714 				Storeinc(xc, z2, z);
715 			}
716 			while(x < xae);
717 			*xc = carry;
718 		}
719 		if ((y = *xb >> 16) != 0) {
720 			x = xa;
721 			xc = xc0;
722 			carry = 0;
723 			z2 = *xc;
724 			do {
725 				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
726 				carry = z >> 16;
727 				Storeinc(xc, z, z2);
728 				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
729 				carry = z2 >> 16;
730 			}
731 			while(x < xae);
732 			*xc = z2;
733 		}
734 	}
735 #else
736 	for(; xb < xbe; xc0++) {
737 		if (y = *xb++) {
738 			x = xa;
739 			xc = xc0;
740 			carry = 0;
741 			do {
742 				z = *x++ * y + *xc + carry;
743 				carry = z >> 16;
744 				*xc++ = z & 0xffff;
745 			}
746 			while(x < xae);
747 			*xc = carry;
748 		}
749 	}
750 #endif
751 	for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
752 	c->wds = wc;
753 	return c;
754 }
755 
756  static Bigint *p5s;
757  static pthread_mutex_t p5s_mutex = PTHREAD_MUTEX_INITIALIZER;
758 
759  static Bigint *
pow5mult(b,k)760 pow5mult
761 #ifdef KR_headers
762 	(b, k) Bigint *b; int k;
763 #else
764 	(Bigint *b, int k)
765 #endif
766 {
767 	Bigint *b1, *p5, *p51;
768 	int i;
769 	static const int p05[3] = { 5, 25, 125 };
770 
771 	if (b == BIGINT_INVALID)
772 		return b;
773 
774 	if ((i = k & 3) != 0)
775 		b = multadd(b, p05[i-1], 0);
776 
777 	if (!(k = (unsigned int) k >> 2))
778 		return b;
779 	mutex_lock(&p5s_mutex);
780 	if (!(p5 = p5s)) {
781 		/* first time */
782 		p5 = i2b(625);
783 		if (p5 == BIGINT_INVALID) {
784 			Bfree(b);
785 			mutex_unlock(&p5s_mutex);
786 			return p5;
787 		}
788 		p5s = p5;
789 		p5->next = 0;
790 	}
791 	for(;;) {
792 		if (k & 1) {
793 			b1 = mult(b, p5);
794 			Bfree(b);
795 			b = b1;
796 		}
797 		if (!(k = (unsigned int) k >> 1))
798 			break;
799 		if (!(p51 = p5->next)) {
800 			p51 = mult(p5,p5);
801 			if (p51 == BIGINT_INVALID) {
802 				Bfree(b);
803 				mutex_unlock(&p5s_mutex);
804 				return p51;
805 			}
806 			p5->next = p51;
807 			p51->next = 0;
808 		}
809 		p5 = p51;
810 	}
811 	mutex_unlock(&p5s_mutex);
812 	return b;
813 }
814 
815  static Bigint *
lshift(b,k)816 lshift
817 #ifdef KR_headers
818 	(b, k) Bigint *b; int k;
819 #else
820 	(Bigint *b, int k)
821 #endif
822 {
823 	int i, k1, n, n1;
824 	Bigint *b1;
825 	ULong *x, *x1, *xe, z;
826 
827 	if (b == BIGINT_INVALID)
828 		return b;
829 
830 #ifdef Pack_32
831 	n = (unsigned int)k >> 5;
832 #else
833 	n = (unsigned int)k >> 4;
834 #endif
835 	k1 = b->k;
836 	n1 = n + b->wds + 1;
837 	for(i = b->maxwds; n1 > i; i <<= 1)
838 		k1++;
839 	b1 = Balloc(k1);
840 	if (b1 == BIGINT_INVALID) {
841 		Bfree(b);
842 		return b1;
843 	}
844 	x1 = b1->x;
845 	for(i = 0; i < n; i++)
846 		*x1++ = 0;
847 	x = b->x;
848 	xe = x + b->wds;
849 #ifdef Pack_32
850 	if (k &= 0x1f) {
851 		k1 = 32 - k;
852 		z = 0;
853 		do {
854 			*x1++ = *x << k | z;
855 			z = *x++ >> k1;
856 		}
857 		while(x < xe);
858 		if ((*x1 = z) != 0)
859 			++n1;
860 	}
861 #else
862 	if (k &= 0xf) {
863 		k1 = 16 - k;
864 		z = 0;
865 		do {
866 			*x1++ = *x << k  & 0xffff | z;
867 			z = *x++ >> k1;
868 		}
869 		while(x < xe);
870 		if (*x1 = z)
871 			++n1;
872 	}
873 #endif
874 	else do
875 		*x1++ = *x++;
876 		while(x < xe);
877 	b1->wds = n1 - 1;
878 	Bfree(b);
879 	return b1;
880 }
881 
882  static int
cmp(a,b)883 cmp
884 #ifdef KR_headers
885 	(a, b) Bigint *a, *b;
886 #else
887 	(Bigint *a, Bigint *b)
888 #endif
889 {
890 	ULong *xa, *xa0, *xb, *xb0;
891 	int i, j;
892 
893 	if (a == BIGINT_INVALID || b == BIGINT_INVALID)
894 #ifdef DEBUG
895 		Bug("cmp called with a or b invalid");
896 #else
897 		return 0; /* equal - the best we can do right now */
898 #endif
899 
900 	i = a->wds;
901 	j = b->wds;
902 #ifdef DEBUG
903 	if (i > 1 && !a->x[i-1])
904 		Bug("cmp called with a->x[a->wds-1] == 0");
905 	if (j > 1 && !b->x[j-1])
906 		Bug("cmp called with b->x[b->wds-1] == 0");
907 #endif
908 	if (i -= j)
909 		return i;
910 	xa0 = a->x;
911 	xa = xa0 + j;
912 	xb0 = b->x;
913 	xb = xb0 + j;
914 	for(;;) {
915 		if (*--xa != *--xb)
916 			return *xa < *xb ? -1 : 1;
917 		if (xa <= xa0)
918 			break;
919 	}
920 	return 0;
921 }
922 
923  static Bigint *
diff(a,b)924 diff
925 #ifdef KR_headers
926 	(a, b) Bigint *a, *b;
927 #else
928 	(Bigint *a, Bigint *b)
929 #endif
930 {
931 	Bigint *c;
932 	int i, wa, wb;
933 	Long borrow, y;	/* We need signed shifts here. */
934 	ULong *xa, *xae, *xb, *xbe, *xc;
935 #ifdef Pack_32
936 	Long z;
937 #endif
938 
939 	if (a == BIGINT_INVALID || b == BIGINT_INVALID)
940 		return BIGINT_INVALID;
941 
942 	i = cmp(a,b);
943 	if (!i) {
944 		c = Balloc(0);
945 		if (c != BIGINT_INVALID) {
946 			c->wds = 1;
947 			c->x[0] = 0;
948 			}
949 		return c;
950 	}
951 	if (i < 0) {
952 		c = a;
953 		a = b;
954 		b = c;
955 		i = 1;
956 	}
957 	else
958 		i = 0;
959 	c = Balloc(a->k);
960 	if (c == BIGINT_INVALID)
961 		return c;
962 	c->sign = i;
963 	wa = a->wds;
964 	xa = a->x;
965 	xae = xa + wa;
966 	wb = b->wds;
967 	xb = b->x;
968 	xbe = xb + wb;
969 	xc = c->x;
970 	borrow = 0;
971 #ifdef Pack_32
972 	do {
973 		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
974 		borrow = (ULong)y >> 16;
975 		Sign_Extend(borrow, y);
976 		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
977 		borrow = (ULong)z >> 16;
978 		Sign_Extend(borrow, z);
979 		Storeinc(xc, z, y);
980 	}
981 	while(xb < xbe);
982 	while(xa < xae) {
983 		y = (*xa & 0xffff) + borrow;
984 		borrow = (ULong)y >> 16;
985 		Sign_Extend(borrow, y);
986 		z = (*xa++ >> 16) + borrow;
987 		borrow = (ULong)z >> 16;
988 		Sign_Extend(borrow, z);
989 		Storeinc(xc, z, y);
990 	}
991 #else
992 	do {
993 		y = *xa++ - *xb++ + borrow;
994 		borrow = y >> 16;
995 		Sign_Extend(borrow, y);
996 		*xc++ = y & 0xffff;
997 	}
998 	while(xb < xbe);
999 	while(xa < xae) {
1000 		y = *xa++ + borrow;
1001 		borrow = y >> 16;
1002 		Sign_Extend(borrow, y);
1003 		*xc++ = y & 0xffff;
1004 	}
1005 #endif
1006 	while(!*--xc)
1007 		wa--;
1008 	c->wds = wa;
1009 	return c;
1010 }
1011 
1012  static double
ulp(_x)1013 ulp
1014 #ifdef KR_headers
1015 	(_x) double _x;
1016 #else
1017 	(double _x)
1018 #endif
1019 {
1020 	_double x;
1021 	Long L;
1022 	_double a;
1023 
1024 	value(x) = _x;
1025 	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1026 #ifndef Sudden_Underflow
1027 	if (L > 0) {
1028 #endif
1029 #ifdef IBM
1030 		L |= Exp_msk1 >> 4;
1031 #endif
1032 		word0(a) = L;
1033 		word1(a) = 0;
1034 #ifndef Sudden_Underflow
1035 	}
1036 	else {
1037 		L = (ULong)-L >> Exp_shift;
1038 		if (L < Exp_shift) {
1039 			word0(a) = 0x80000 >> L;
1040 			word1(a) = 0;
1041 		}
1042 		else {
1043 			word0(a) = 0;
1044 			L -= Exp_shift;
1045 			word1(a) = L >= 31 ? 1 : 1 << (31 - L);
1046 		}
1047 	}
1048 #endif
1049 	return value(a);
1050 }
1051 
1052  static double
b2d(a,e)1053 b2d
1054 #ifdef KR_headers
1055 	(a, e) Bigint *a; int *e;
1056 #else
1057 	(Bigint *a, int *e)
1058 #endif
1059 {
1060 	ULong *xa, *xa0, w, y, z;
1061 	int k;
1062 	_double d;
1063 #ifdef VAX
1064 	ULong d0, d1;
1065 #else
1066 #define d0 word0(d)
1067 #define d1 word1(d)
1068 #endif
1069 
1070 	if (a == BIGINT_INVALID)
1071 		return NAN;
1072 
1073 	xa0 = a->x;
1074 	xa = xa0 + a->wds;
1075 	y = *--xa;
1076 #ifdef DEBUG
1077 	if (!y) Bug("zero y in b2d");
1078 #endif
1079 	k = hi0bits(y);
1080 	*e = 32 - k;
1081 #ifdef Pack_32
1082 	if (k < Ebits) {
1083 		d0 = Exp_1 | y >> (Ebits - k);
1084 		w = xa > xa0 ? *--xa : 0;
1085 		d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1086 		goto ret_d;
1087 	}
1088 	z = xa > xa0 ? *--xa : 0;
1089 	if (k -= Ebits) {
1090 		d0 = Exp_1 | y << k | z >> (32 - k);
1091 		y = xa > xa0 ? *--xa : 0;
1092 		d1 = z << k | y >> (32 - k);
1093 	}
1094 	else {
1095 		d0 = Exp_1 | y;
1096 		d1 = z;
1097 	}
1098 #else
1099 	if (k < Ebits + 16) {
1100 		z = xa > xa0 ? *--xa : 0;
1101 		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1102 		w = xa > xa0 ? *--xa : 0;
1103 		y = xa > xa0 ? *--xa : 0;
1104 		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1105 		goto ret_d;
1106 	}
1107 	z = xa > xa0 ? *--xa : 0;
1108 	w = xa > xa0 ? *--xa : 0;
1109 	k -= Ebits + 16;
1110 	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1111 	y = xa > xa0 ? *--xa : 0;
1112 	d1 = w << k + 16 | y << k;
1113 #endif
1114  ret_d:
1115 #ifdef VAX
1116 	word0(d) = d0 >> 16 | d0 << 16;
1117 	word1(d) = d1 >> 16 | d1 << 16;
1118 #else
1119 #undef d0
1120 #undef d1
1121 #endif
1122 	return value(d);
1123 }
1124 
1125  static Bigint *
d2b(_d,e,bits)1126 d2b
1127 #ifdef KR_headers
1128 	(_d, e, bits) double d; int *e, *bits;
1129 #else
1130 	(double _d, int *e, int *bits)
1131 #endif
1132 {
1133 	Bigint *b;
1134 	int de, i, k;
1135 	ULong *x, y, z;
1136 	_double d;
1137 #ifdef VAX
1138 	ULong d0, d1;
1139 #endif
1140 
1141 	value(d) = _d;
1142 #ifdef VAX
1143 	d0 = word0(d) >> 16 | word0(d) << 16;
1144 	d1 = word1(d) >> 16 | word1(d) << 16;
1145 #else
1146 #define d0 word0(d)
1147 #define d1 word1(d)
1148 #endif
1149 
1150 #ifdef Pack_32
1151 	b = Balloc(1);
1152 #else
1153 	b = Balloc(2);
1154 #endif
1155 	if (b == BIGINT_INVALID)
1156 		return b;
1157 	x = b->x;
1158 
1159 	z = d0 & Frac_mask;
1160 	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
1161 #ifdef Sudden_Underflow
1162 	de = (int)(d0 >> Exp_shift);
1163 #ifndef IBM
1164 	z |= Exp_msk11;
1165 #endif
1166 #else
1167 	if ((de = (int)(d0 >> Exp_shift)) != 0)
1168 		z |= Exp_msk1;
1169 #endif
1170 #ifdef Pack_32
1171 	if ((y = d1) != 0) {
1172 		if ((k = lo0bits(&y)) != 0) {
1173 			x[0] = y | z << (32 - k);
1174 			z >>= k;
1175 		}
1176 		else
1177 			x[0] = y;
1178 		i = b->wds = (x[1] = z) ? 2 : 1;
1179 	}
1180 	else {
1181 #ifdef DEBUG
1182 		if (!z)
1183 			Bug("Zero passed to d2b");
1184 #endif
1185 		k = lo0bits(&z);
1186 		x[0] = z;
1187 		i = b->wds = 1;
1188 		k += 32;
1189 	}
1190 #else
1191 	if (y = d1) {
1192 		if (k = lo0bits(&y))
1193 			if (k >= 16) {
1194 				x[0] = y | z << 32 - k & 0xffff;
1195 				x[1] = z >> k - 16 & 0xffff;
1196 				x[2] = z >> k;
1197 				i = 2;
1198 			}
1199 			else {
1200 				x[0] = y & 0xffff;
1201 				x[1] = y >> 16 | z << 16 - k & 0xffff;
1202 				x[2] = z >> k & 0xffff;
1203 				x[3] = z >> k+16;
1204 				i = 3;
1205 			}
1206 		else {
1207 			x[0] = y & 0xffff;
1208 			x[1] = y >> 16;
1209 			x[2] = z & 0xffff;
1210 			x[3] = z >> 16;
1211 			i = 3;
1212 		}
1213 	}
1214 	else {
1215 #ifdef DEBUG
1216 		if (!z)
1217 			Bug("Zero passed to d2b");
1218 #endif
1219 		k = lo0bits(&z);
1220 		if (k >= 16) {
1221 			x[0] = z;
1222 			i = 0;
1223 		}
1224 		else {
1225 			x[0] = z & 0xffff;
1226 			x[1] = z >> 16;
1227 			i = 1;
1228 		}
1229 		k += 32;
1230 	}
1231 	while(!x[i])
1232 		--i;
1233 	b->wds = i + 1;
1234 #endif
1235 #ifndef Sudden_Underflow
1236 	if (de) {
1237 #endif
1238 #ifdef IBM
1239 		*e = (de - Bias - (P-1) << 2) + k;
1240 		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1241 #else
1242 		*e = de - Bias - (P-1) + k;
1243 		*bits = P - k;
1244 #endif
1245 #ifndef Sudden_Underflow
1246 	}
1247 	else {
1248 		*e = de - Bias - (P-1) + 1 + k;
1249 #ifdef Pack_32
1250 		*bits = 32*i - hi0bits(x[i-1]);
1251 #else
1252 		*bits = (i+2)*16 - hi0bits(x[i]);
1253 #endif
1254 		}
1255 #endif
1256 	return b;
1257 }
1258 #undef d0
1259 #undef d1
1260 
1261  static double
ratio(a,b)1262 ratio
1263 #ifdef KR_headers
1264 	(a, b) Bigint *a, *b;
1265 #else
1266 	(Bigint *a, Bigint *b)
1267 #endif
1268 {
1269 	_double da, db;
1270 	int k, ka, kb;
1271 
1272 	if (a == BIGINT_INVALID || b == BIGINT_INVALID)
1273 		return NAN; /* for lack of better value ? */
1274 
1275 	value(da) = b2d(a, &ka);
1276 	value(db) = b2d(b, &kb);
1277 #ifdef Pack_32
1278 	k = ka - kb + 32*(a->wds - b->wds);
1279 #else
1280 	k = ka - kb + 16*(a->wds - b->wds);
1281 #endif
1282 #ifdef IBM
1283 	if (k > 0) {
1284 		word0(da) += (k >> 2)*Exp_msk1;
1285 		if (k &= 3)
1286 			da *= 1 << k;
1287 	}
1288 	else {
1289 		k = -k;
1290 		word0(db) += (k >> 2)*Exp_msk1;
1291 		if (k &= 3)
1292 			db *= 1 << k;
1293 	}
1294 #else
1295 	if (k > 0)
1296 		word0(da) += k*Exp_msk1;
1297 	else {
1298 		k = -k;
1299 		word0(db) += k*Exp_msk1;
1300 	}
1301 #endif
1302 	return value(da) / value(db);
1303 }
1304 
1305 static CONST double
1306 tens[] = {
1307 		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1308 		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1309 		1e20, 1e21, 1e22
1310 #ifdef VAX
1311 		, 1e23, 1e24
1312 #endif
1313 };
1314 
1315 #ifdef IEEE_Arith
1316 static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1317 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1318 #define n_bigtens 5
1319 #else
1320 #ifdef IBM
1321 static CONST double bigtens[] = { 1e16, 1e32, 1e64 };
1322 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1323 #define n_bigtens 3
1324 #else
1325 static CONST double bigtens[] = { 1e16, 1e32 };
1326 static CONST double tinytens[] = { 1e-16, 1e-32 };
1327 #define n_bigtens 2
1328 #endif
1329 #endif
1330 
1331  double
strtod(s00,se)1332 strtod
1333 #ifdef KR_headers
1334 	(s00, se) CONST char *s00; char **se;
1335 #else
1336 	(CONST char *s00, char **se)
1337 #endif
1338 {
1339 	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1340 		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1341 	CONST char *s, *s0, *s1;
1342 	double aadj, aadj1, adj;
1343 	_double rv, rv0;
1344 	Long L;
1345 	ULong y, z;
1346 	Bigint *bb1, *bd0;
1347 	Bigint *bb = NULL, *bd = NULL, *bs = NULL, *delta = NULL;/* pacify gcc */
1348 
1349 #ifdef ANDROID_CHANGES
1350 	CONST char decimal_point = '.';
1351 #else /* ANDROID_CHANGES */
1352 #ifndef KR_headers
1353 	CONST char decimal_point = localeconv()->decimal_point[0];
1354 #else
1355 	CONST char decimal_point = '.';
1356 #endif
1357 
1358 #endif /* ANDROID_CHANGES */
1359 
1360 	sign = nz0 = nz = 0;
1361 	value(rv) = 0.;
1362 
1363 
1364 	for(s = s00; isspace((unsigned char) *s); s++)
1365 		;
1366 
1367 	if (*s == '-') {
1368 		sign = 1;
1369 		s++;
1370 	} else if (*s == '+') {
1371 		s++;
1372 	}
1373 
1374 	if (*s == '\0') {
1375 		s = s00;
1376 		goto ret;
1377 	}
1378 
1379 	/* "INF" or "INFINITY" */
1380 	if (tolower((unsigned char)*s) == 'i' && strncasecmp(s, "inf", 3) == 0) {
1381 		if (strncasecmp(s + 3, "inity", 5) == 0)
1382 			s += 8;
1383 		else
1384 			s += 3;
1385 
1386 		value(rv) = HUGE_VAL;
1387 		goto ret;
1388 	}
1389 
1390 #ifdef IEEE_Arith
1391 	/* "NAN" or "NAN(n-char-sequence-opt)" */
1392 	if (tolower((unsigned char)*s) == 'n' && strncasecmp(s, "nan", 3) == 0) {
1393 		/* Build a quiet NaN. */
1394 		word0(rv) = NAN_WORD0;
1395 		word1(rv) = NAN_WORD1;
1396 		s+= 3;
1397 
1398 		/* Don't interpret (n-char-sequence-opt), for now. */
1399 		if (*s == '(') {
1400 			s0 = s;
1401 			for (s++; *s != ')' && *s != '\0'; s++)
1402 				;
1403 			if (*s == ')')
1404 				s++;	/* Skip over closing paren ... */
1405 			else
1406 				s = s0;	/* ... otherwise go back. */
1407 		}
1408 
1409 		goto ret;
1410 	}
1411 #endif
1412 
1413 	if (*s == '0') {
1414 		nz0 = 1;
1415 		while(*++s == '0') ;
1416 		if (!*s)
1417 			goto ret;
1418 	}
1419 	s0 = s;
1420 	y = z = 0;
1421 	for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1422 		if (nd < 9)
1423 			y = 10*y + c - '0';
1424 		else if (nd < 16)
1425 			z = 10*z + c - '0';
1426 	nd0 = nd;
1427 	if (c == decimal_point) {
1428 		c = *++s;
1429 		if (!nd) {
1430 			for(; c == '0'; c = *++s)
1431 				nz++;
1432 			if (c > '0' && c <= '9') {
1433 				s0 = s;
1434 				nf += nz;
1435 				nz = 0;
1436 				goto have_dig;
1437 				}
1438 			goto dig_done;
1439 		}
1440 		for(; c >= '0' && c <= '9'; c = *++s) {
1441  have_dig:
1442 			nz++;
1443 			if (c -= '0') {
1444 				nf += nz;
1445 				for(i = 1; i < nz; i++)
1446 					if (nd++ < 9)
1447 						y *= 10;
1448 					else if (nd <= DBL_DIG + 1)
1449 						z *= 10;
1450 				if (nd++ < 9)
1451 					y = 10*y + c;
1452 				else if (nd <= DBL_DIG + 1)
1453 					z = 10*z + c;
1454 				nz = 0;
1455 			}
1456 		}
1457 	}
1458  dig_done:
1459 	e = 0;
1460 	if (c == 'e' || c == 'E') {
1461 		if (!nd && !nz && !nz0) {
1462 			s = s00;
1463 			goto ret;
1464 		}
1465 		s00 = s;
1466 		esign = 0;
1467 		switch(c = *++s) {
1468 			case '-':
1469 				esign = 1;
1470 				/* FALLTHROUGH */
1471 			case '+':
1472 				c = *++s;
1473 		}
1474 		if (c >= '0' && c <= '9') {
1475 			while(c == '0')
1476 				c = *++s;
1477 			if (c > '0' && c <= '9') {
1478 				L = c - '0';
1479 				s1 = s;
1480 				while((c = *++s) >= '0' && c <= '9')
1481 					L = 10*L + c - '0';
1482 				if (s - s1 > 8 || L > 19999)
1483 					/* Avoid confusion from exponents
1484 					 * so large that e might overflow.
1485 					 */
1486 					e = 19999; /* safe for 16 bit ints */
1487 				else
1488 					e = (int)L;
1489 				if (esign)
1490 					e = -e;
1491 			}
1492 			else
1493 				e = 0;
1494 		}
1495 		else
1496 			s = s00;
1497 	}
1498 	if (!nd) {
1499 		if (!nz && !nz0)
1500 			s = s00;
1501 		goto ret;
1502 	}
1503 	e1 = e -= nf;
1504 
1505 	/* Now we have nd0 digits, starting at s0, followed by a
1506 	 * decimal point, followed by nd-nd0 digits.  The number we're
1507 	 * after is the integer represented by those digits times
1508 	 * 10**e */
1509 
1510 	if (!nd0)
1511 		nd0 = nd;
1512 	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1513 	value(rv) = y;
1514 	if (k > 9)
1515 		value(rv) = tens[k - 9] * value(rv) + z;
1516 	bd0 = 0;
1517 	if (nd <= DBL_DIG
1518 #ifndef RND_PRODQUOT
1519 		&& FLT_ROUNDS == 1
1520 #endif
1521 		) {
1522 		if (!e)
1523 			goto ret;
1524 		if (e > 0) {
1525 			if (e <= Ten_pmax) {
1526 #ifdef VAX
1527 				goto vax_ovfl_check;
1528 #else
1529 				/* value(rv) = */ rounded_product(value(rv),
1530 				    tens[e]);
1531 				goto ret;
1532 #endif
1533 			}
1534 			i = DBL_DIG - nd;
1535 			if (e <= Ten_pmax + i) {
1536 				/* A fancier test would sometimes let us do
1537 				 * this for larger i values.
1538 				 */
1539 				e -= i;
1540 				value(rv) *= tens[i];
1541 #ifdef VAX
1542 				/* VAX exponent range is so narrow we must
1543 				 * worry about overflow here...
1544 				 */
1545  vax_ovfl_check:
1546 				word0(rv) -= P*Exp_msk1;
1547 				/* value(rv) = */ rounded_product(value(rv),
1548 				    tens[e]);
1549 				if ((word0(rv) & Exp_mask)
1550 				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1551 					goto ovfl;
1552 				word0(rv) += P*Exp_msk1;
1553 #else
1554 				/* value(rv) = */ rounded_product(value(rv),
1555 				    tens[e]);
1556 #endif
1557 				goto ret;
1558 			}
1559 		}
1560 #ifndef Inaccurate_Divide
1561 		else if (e >= -Ten_pmax) {
1562 			/* value(rv) = */ rounded_quotient(value(rv),
1563 			    tens[-e]);
1564 			goto ret;
1565 		}
1566 #endif
1567 	}
1568 	e1 += nd - k;
1569 
1570 	/* Get starting approximation = rv * 10**e1 */
1571 
1572 	if (e1 > 0) {
1573 		if ((i = e1 & 15) != 0)
1574 			value(rv) *= tens[i];
1575 		if (e1 &= ~15) {
1576 			if (e1 > DBL_MAX_10_EXP) {
1577  ovfl:
1578 				errno = ERANGE;
1579 				value(rv) = HUGE_VAL;
1580 				if (bd0)
1581 					goto retfree;
1582 				goto ret;
1583 			}
1584 			if ((e1 = (unsigned int)e1 >> 4) != 0) {
1585 				for(j = 0; e1 > 1; j++,
1586 				    e1 = (unsigned int)e1 >> 1)
1587 					if (e1 & 1)
1588 						value(rv) *= bigtens[j];
1589 			/* The last multiplication could overflow. */
1590 				word0(rv) -= P*Exp_msk1;
1591 				value(rv) *= bigtens[j];
1592 				if ((z = word0(rv) & Exp_mask)
1593 				 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1594 					goto ovfl;
1595 				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1596 					/* set to largest number */
1597 					/* (Can't trust DBL_MAX) */
1598 					word0(rv) = Big0;
1599 					word1(rv) = Big1;
1600 					}
1601 				else
1602 					word0(rv) += P*Exp_msk1;
1603 			}
1604 		}
1605 	}
1606 	else if (e1 < 0) {
1607 		e1 = -e1;
1608 		if ((i = e1 & 15) != 0)
1609 			value(rv) /= tens[i];
1610 		if (e1 &= ~15) {
1611 			e1 = (unsigned int)e1 >> 4;
1612 			if (e1 >= 1 << n_bigtens)
1613 				goto undfl;
1614 			for(j = 0; e1 > 1; j++,
1615 			    e1 = (unsigned int)e1 >> 1)
1616 				if (e1 & 1)
1617 					value(rv) *= tinytens[j];
1618 			/* The last multiplication could underflow. */
1619 			value(rv0) = value(rv);
1620 			value(rv) *= tinytens[j];
1621 			if (!value(rv)) {
1622 				value(rv) = 2.*value(rv0);
1623 				value(rv) *= tinytens[j];
1624 				if (!value(rv)) {
1625  undfl:
1626 					value(rv) = 0.;
1627 					errno = ERANGE;
1628 					if (bd0)
1629 						goto retfree;
1630 					goto ret;
1631 				}
1632 				word0(rv) = Tiny0;
1633 				word1(rv) = Tiny1;
1634 				/* The refinement below will clean
1635 				 * this approximation up.
1636 				 */
1637 			}
1638 		}
1639 	}
1640 
1641 	/* Now the hard part -- adjusting rv to the correct value.*/
1642 
1643 	/* Put digits into bd: true value = bd * 10^e */
1644 
1645 	bd0 = s2b(s0, nd0, nd, y);
1646 
1647 	for(;;) {
1648 		bd = Balloc(bd0->k);
1649 		Bcopy(bd, bd0);
1650 		bb = d2b(value(rv), &bbe, &bbbits);	/* rv = bb * 2^bbe */
1651 		bs = i2b(1);
1652 
1653 		if (e >= 0) {
1654 			bb2 = bb5 = 0;
1655 			bd2 = bd5 = e;
1656 		}
1657 		else {
1658 			bb2 = bb5 = -e;
1659 			bd2 = bd5 = 0;
1660 		}
1661 		if (bbe >= 0)
1662 			bb2 += bbe;
1663 		else
1664 			bd2 -= bbe;
1665 		bs2 = bb2;
1666 #ifdef Sudden_Underflow
1667 #ifdef IBM
1668 		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1669 #else
1670 		j = P + 1 - bbbits;
1671 #endif
1672 #else
1673 		i = bbe + bbbits - 1;	/* logb(rv) */
1674 		if (i < Emin)	/* denormal */
1675 			j = bbe + (P-Emin);
1676 		else
1677 			j = P + 1 - bbbits;
1678 #endif
1679 		bb2 += j;
1680 		bd2 += j;
1681 		i = bb2 < bd2 ? bb2 : bd2;
1682 		if (i > bs2)
1683 			i = bs2;
1684 		if (i > 0) {
1685 			bb2 -= i;
1686 			bd2 -= i;
1687 			bs2 -= i;
1688 		}
1689 		if (bb5 > 0) {
1690 			bs = pow5mult(bs, bb5);
1691 			bb1 = mult(bs, bb);
1692 			Bfree(bb);
1693 			bb = bb1;
1694 		}
1695 		if (bb2 > 0)
1696 			bb = lshift(bb, bb2);
1697 		if (bd5 > 0)
1698 			bd = pow5mult(bd, bd5);
1699 		if (bd2 > 0)
1700 			bd = lshift(bd, bd2);
1701 		if (bs2 > 0)
1702 			bs = lshift(bs, bs2);
1703 		delta = diff(bb, bd);
1704 		dsign = delta->sign;
1705 		delta->sign = 0;
1706 		i = cmp(delta, bs);
1707 		if (i < 0) {
1708 			/* Error is less than half an ulp -- check for
1709 			 * special case of mantissa a power of two.
1710 			 */
1711 			if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1712 				break;
1713 			delta = lshift(delta,Log2P);
1714 			if (cmp(delta, bs) > 0)
1715 				goto drop_down;
1716 			break;
1717 		}
1718 		if (i == 0) {
1719 			/* exactly half-way between */
1720 			if (dsign) {
1721 				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1722 				 &&  word1(rv) == 0xffffffff) {
1723 					/*boundary case -- increment exponent*/
1724 					word0(rv) = (word0(rv) & Exp_mask)
1725 						+ Exp_msk1
1726 #ifdef IBM
1727 						| Exp_msk1 >> 4
1728 #endif
1729 						;
1730 					word1(rv) = 0;
1731 					break;
1732 				}
1733 			}
1734 			else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1735  drop_down:
1736 				/* boundary case -- decrement exponent */
1737 #ifdef Sudden_Underflow
1738 				L = word0(rv) & Exp_mask;
1739 #ifdef IBM
1740 				if (L <  Exp_msk1)
1741 #else
1742 				if (L <= Exp_msk1)
1743 #endif
1744 					goto undfl;
1745 				L -= Exp_msk1;
1746 #else
1747 				L = (word0(rv) & Exp_mask) - Exp_msk1;
1748 #endif
1749 				word0(rv) = L | Bndry_mask1;
1750 				word1(rv) = 0xffffffff;
1751 #ifdef IBM
1752 				goto cont;
1753 #else
1754 				break;
1755 #endif
1756 			}
1757 #ifndef ROUND_BIASED
1758 			if (!(word1(rv) & LSB))
1759 				break;
1760 #endif
1761 			if (dsign)
1762 				value(rv) += ulp(value(rv));
1763 #ifndef ROUND_BIASED
1764 			else {
1765 				value(rv) -= ulp(value(rv));
1766 #ifndef Sudden_Underflow
1767 				if (!value(rv))
1768 					goto undfl;
1769 #endif
1770 			}
1771 #endif
1772 			break;
1773 		}
1774 		if ((aadj = ratio(delta, bs)) <= 2.) {
1775 			if (dsign)
1776 				aadj = aadj1 = 1.;
1777 			else if (word1(rv) || word0(rv) & Bndry_mask) {
1778 #ifndef Sudden_Underflow
1779 				if (word1(rv) == Tiny1 && !word0(rv))
1780 					goto undfl;
1781 #endif
1782 				aadj = 1.;
1783 				aadj1 = -1.;
1784 			}
1785 			else {
1786 				/* special case -- power of FLT_RADIX to be */
1787 				/* rounded down... */
1788 
1789 				if (aadj < 2./FLT_RADIX)
1790 					aadj = 1./FLT_RADIX;
1791 				else
1792 					aadj *= 0.5;
1793 				aadj1 = -aadj;
1794 				}
1795 		}
1796 		else {
1797 			aadj *= 0.5;
1798 			aadj1 = dsign ? aadj : -aadj;
1799 #ifdef Check_FLT_ROUNDS
1800 			switch(FLT_ROUNDS) {
1801 				case 2: /* towards +infinity */
1802 					aadj1 -= 0.5;
1803 					break;
1804 				case 0: /* towards 0 */
1805 				case 3: /* towards -infinity */
1806 					aadj1 += 0.5;
1807 			}
1808 #else
1809 			if (FLT_ROUNDS == 0)
1810 				aadj1 += 0.5;
1811 #endif
1812 		}
1813 		y = word0(rv) & Exp_mask;
1814 
1815 		/* Check for overflow */
1816 
1817 		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1818 			value(rv0) = value(rv);
1819 			word0(rv) -= P*Exp_msk1;
1820 			adj = aadj1 * ulp(value(rv));
1821 			value(rv) += adj;
1822 			if ((word0(rv) & Exp_mask) >=
1823 					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1824 				if (word0(rv0) == Big0 && word1(rv0) == Big1)
1825 					goto ovfl;
1826 				word0(rv) = Big0;
1827 				word1(rv) = Big1;
1828 				goto cont;
1829 			}
1830 			else
1831 				word0(rv) += P*Exp_msk1;
1832 		}
1833 		else {
1834 #ifdef Sudden_Underflow
1835 			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1836 				value(rv0) = value(rv);
1837 				word0(rv) += P*Exp_msk1;
1838 				adj = aadj1 * ulp(value(rv));
1839 				value(rv) += adj;
1840 #ifdef IBM
1841 				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
1842 #else
1843 				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1844 #endif
1845 				{
1846 					if (word0(rv0) == Tiny0
1847 					 && word1(rv0) == Tiny1)
1848 						goto undfl;
1849 					word0(rv) = Tiny0;
1850 					word1(rv) = Tiny1;
1851 					goto cont;
1852 				}
1853 				else
1854 					word0(rv) -= P*Exp_msk1;
1855 				}
1856 			else {
1857 				adj = aadj1 * ulp(value(rv));
1858 				value(rv) += adj;
1859 			}
1860 #else
1861 			/* Compute adj so that the IEEE rounding rules will
1862 			 * correctly round rv + adj in some half-way cases.
1863 			 * If rv * ulp(rv) is denormalized (i.e.,
1864 			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1865 			 * trouble from bits lost to denormalization;
1866 			 * example: 1.2e-307 .
1867 			 */
1868 			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1869 				aadj1 = (double)(int)(aadj + 0.5);
1870 				if (!dsign)
1871 					aadj1 = -aadj1;
1872 			}
1873 			adj = aadj1 * ulp(value(rv));
1874 			value(rv) += adj;
1875 #endif
1876 		}
1877 		z = word0(rv) & Exp_mask;
1878 		if (y == z) {
1879 			/* Can we stop now? */
1880 			L = aadj;
1881 			aadj -= L;
1882 			/* The tolerances below are conservative. */
1883 			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1884 				if (aadj < .4999999 || aadj > .5000001)
1885 					break;
1886 			}
1887 			else if (aadj < .4999999/FLT_RADIX)
1888 				break;
1889 		}
1890  cont:
1891 		Bfree(bb);
1892 		Bfree(bd);
1893 		Bfree(bs);
1894 		Bfree(delta);
1895 	}
1896  retfree:
1897 	Bfree(bb);
1898 	Bfree(bd);
1899 	Bfree(bs);
1900 	Bfree(bd0);
1901 	Bfree(delta);
1902  ret:
1903 	if (se)
1904 		/* LINTED interface specification */
1905 		*se = (char *)s;
1906 	return sign ? -value(rv) : value(rv);
1907 }
1908 
1909  static int
quorem(b,S)1910 quorem
1911 #ifdef KR_headers
1912 	(b, S) Bigint *b, *S;
1913 #else
1914 	(Bigint *b, Bigint *S)
1915 #endif
1916 {
1917 	int n;
1918 	Long borrow, y;
1919 	ULong carry, q, ys;
1920 	ULong *bx, *bxe, *sx, *sxe;
1921 #ifdef Pack_32
1922 	Long z;
1923 	ULong si, zs;
1924 #endif
1925 
1926 	if (b == BIGINT_INVALID || S == BIGINT_INVALID)
1927 		return 0;
1928 
1929 	n = S->wds;
1930 #ifdef DEBUG
1931 	/*debug*/ if (b->wds > n)
1932 	/*debug*/	Bug("oversize b in quorem");
1933 #endif
1934 	if (b->wds < n)
1935 		return 0;
1936 	sx = S->x;
1937 	sxe = sx + --n;
1938 	bx = b->x;
1939 	bxe = bx + n;
1940 	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
1941 #ifdef DEBUG
1942 	/*debug*/ if (q > 9)
1943 	/*debug*/	Bug("oversized quotient in quorem");
1944 #endif
1945 	if (q) {
1946 		borrow = 0;
1947 		carry = 0;
1948 		do {
1949 #ifdef Pack_32
1950 			si = *sx++;
1951 			ys = (si & 0xffff) * q + carry;
1952 			zs = (si >> 16) * q + (ys >> 16);
1953 			carry = zs >> 16;
1954 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1955 			borrow = (ULong)y >> 16;
1956 			Sign_Extend(borrow, y);
1957 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1958 			borrow = (ULong)z >> 16;
1959 			Sign_Extend(borrow, z);
1960 			Storeinc(bx, z, y);
1961 #else
1962 			ys = *sx++ * q + carry;
1963 			carry = ys >> 16;
1964 			y = *bx - (ys & 0xffff) + borrow;
1965 			borrow = y >> 16;
1966 			Sign_Extend(borrow, y);
1967 			*bx++ = y & 0xffff;
1968 #endif
1969 		}
1970 		while(sx <= sxe);
1971 		if (!*bxe) {
1972 			bx = b->x;
1973 			while(--bxe > bx && !*bxe)
1974 				--n;
1975 			b->wds = n;
1976 		}
1977 	}
1978 	if (cmp(b, S) >= 0) {
1979 		q++;
1980 		borrow = 0;
1981 		carry = 0;
1982 		bx = b->x;
1983 		sx = S->x;
1984 		do {
1985 #ifdef Pack_32
1986 			si = *sx++;
1987 			ys = (si & 0xffff) + carry;
1988 			zs = (si >> 16) + (ys >> 16);
1989 			carry = zs >> 16;
1990 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1991 			borrow = (ULong)y >> 16;
1992 			Sign_Extend(borrow, y);
1993 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1994 			borrow = (ULong)z >> 16;
1995 			Sign_Extend(borrow, z);
1996 			Storeinc(bx, z, y);
1997 #else
1998 			ys = *sx++ + carry;
1999 			carry = ys >> 16;
2000 			y = *bx - (ys & 0xffff) + borrow;
2001 			borrow = y >> 16;
2002 			Sign_Extend(borrow, y);
2003 			*bx++ = y & 0xffff;
2004 #endif
2005 		}
2006 		while(sx <= sxe);
2007 		bx = b->x;
2008 		bxe = bx + n;
2009 		if (!*bxe) {
2010 			while(--bxe > bx && !*bxe)
2011 				--n;
2012 			b->wds = n;
2013 		}
2014 	}
2015 	return q;
2016 }
2017 
2018 /* freedtoa(s) must be used to free values s returned by dtoa
2019  * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2020  * but for consistency with earlier versions of dtoa, it is optional
2021  * when MULTIPLE_THREADS is not defined.
2022  */
2023 
2024 void
2025 #ifdef KR_headers
freedtoa(s)2026 freedtoa(s) char *s;
2027 #else
2028 freedtoa(char *s)
2029 #endif
2030 {
2031 	free(s);
2032 }
2033 
2034 
2035 
2036 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2037  *
2038  * Inspired by "How to Print Floating-Point Numbers Accurately" by
2039  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
2040  *
2041  * Modifications:
2042  *	1. Rather than iterating, we use a simple numeric overestimate
2043  *	   to determine k = floor(log10(d)).  We scale relevant
2044  *	   quantities using O(log2(k)) rather than O(k) multiplications.
2045  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2046  *	   try to generate digits strictly left to right.  Instead, we
2047  *	   compute with fewer bits and propagate the carry if necessary
2048  *	   when rounding the final digit up.  This is often faster.
2049  *	3. Under the assumption that input will be rounded nearest,
2050  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2051  *	   That is, we allow equality in stopping tests when the
2052  *	   round-nearest rule will give the same floating-point value
2053  *	   as would satisfaction of the stopping test with strict
2054  *	   inequality.
2055  *	4. We remove common factors of powers of 2 from relevant
2056  *	   quantities.
2057  *	5. When converting floating-point integers less than 1e16,
2058  *	   we use floating-point arithmetic rather than resorting
2059  *	   to multiple-precision integers.
2060  *	6. When asked to produce fewer than 15 digits, we first try
2061  *	   to get by with floating-point arithmetic; we resort to
2062  *	   multiple-precision integer arithmetic only if we cannot
2063  *	   guarantee that the floating-point calculation has given
2064  *	   the correctly rounded result.  For k requested digits and
2065  *	   "uniformly" distributed input, the probability is
2066  *	   something like 10^(k-15) that we must resort to the Long
2067  *	   calculation.
2068  */
2069 
2070 __LIBC_HIDDEN__  char *
__dtoa(_d,mode,ndigits,decpt,sign,rve)2071 __dtoa
2072 #ifdef KR_headers
2073 	(_d, mode, ndigits, decpt, sign, rve)
2074 	double _d; int mode, ndigits, *decpt, *sign; char **rve;
2075 #else
2076 	(double _d, int mode, int ndigits, int *decpt, int *sign, char **rve)
2077 #endif
2078 {
2079  /*	Arguments ndigits, decpt, sign are similar to those
2080 	of ecvt and fcvt; trailing zeros are suppressed from
2081 	the returned string.  If not null, *rve is set to point
2082 	to the end of the return value.  If d is +-Infinity or NaN,
2083 	then *decpt is set to 9999.
2084 
2085 	mode:
2086 		0 ==> shortest string that yields d when read in
2087 			and rounded to nearest.
2088 		1 ==> like 0, but with Steele & White stopping rule;
2089 			e.g. with IEEE P754 arithmetic , mode 0 gives
2090 			1e23 whereas mode 1 gives 9.999999999999999e22.
2091 		2 ==> max(1,ndigits) significant digits.  This gives a
2092 			return value similar to that of ecvt, except
2093 			that trailing zeros are suppressed.
2094 		3 ==> through ndigits past the decimal point.  This
2095 			gives a return value similar to that from fcvt,
2096 			except that trailing zeros are suppressed, and
2097 			ndigits can be negative.
2098 		4-9 should give the same return values as 2-3, i.e.,
2099 			4 <= mode <= 9 ==> same return as mode
2100 			2 + (mode & 1).  These modes are mainly for
2101 			debugging; often they run slower but sometimes
2102 			faster than modes 2-3.
2103 		4,5,8,9 ==> left-to-right digit generation.
2104 		6-9 ==> don't try fast floating-point estimate
2105 			(if applicable).
2106 
2107 		Values of mode other than 0-9 are treated as mode 0.
2108 
2109 		Sufficient space is allocated to the return value
2110 		to hold the suppressed trailing zeros.
2111 	*/
2112 
2113 	int bbits, b2, b5, be, dig, i, ieps, ilim0,
2114 		j, jj1, k, k0, k_check, leftright, m2, m5, s2, s5,
2115 		try_quick;
2116 	int ilim = 0, ilim1 = 0, spec_case = 0;	/* pacify gcc */
2117 	Long L;
2118 #ifndef Sudden_Underflow
2119 	int denorm;
2120 	ULong x;
2121 #endif
2122 	Bigint *b, *b1, *delta, *mhi, *S;
2123 	Bigint *mlo = NULL; /* pacify gcc */
2124 	double ds;
2125 	char *s, *s0;
2126 	Bigint *result = NULL;
2127 	int result_k = 0;
2128 	_double d, d2, eps;
2129 
2130 	value(d) = _d;
2131 
2132 	if (word0(d) & Sign_bit) {
2133 		/* set sign for everything, including 0's and NaNs */
2134 		*sign = 1;
2135 		word0(d) &= ~Sign_bit;	/* clear sign bit */
2136 	}
2137 	else
2138 		*sign = 0;
2139 
2140 #if defined(IEEE_Arith) + defined(VAX)
2141 #ifdef IEEE_Arith
2142 	if ((word0(d) & Exp_mask) == Exp_mask)
2143 #else
2144 	if (word0(d)  == 0x8000)
2145 #endif
2146 	{
2147 		/* Infinity or NaN */
2148 		*decpt = 9999;
2149 		s =
2150 #ifdef IEEE_Arith
2151 			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
2152 #endif
2153 				"NaN";
2154 		result = Balloc(strlen(s)+1);
2155 		if (result == BIGINT_INVALID)
2156 			return NULL;
2157 		s0 = (char *)(void *)result;
2158 		strcpy(s0, s);
2159 		if (rve)
2160 			*rve =
2161 #ifdef IEEE_Arith
2162 				s0[3] ? s0 + 8 :
2163 #endif
2164 				s0 + 3;
2165 		return s0;
2166 	}
2167 #endif
2168 #ifdef IBM
2169 	value(d) += 0; /* normalize */
2170 #endif
2171 	if (!value(d)) {
2172 		*decpt = 1;
2173 		result = Balloc(2);
2174 		if (result == BIGINT_INVALID)
2175 			return NULL;
2176 		s0 = (char *)(void *)result;
2177 		strcpy(s0, "0");
2178 		if (rve)
2179 			*rve = s0 + 1;
2180 		return s0;
2181 	}
2182 
2183 	b = d2b(value(d), &be, &bbits);
2184 #ifdef Sudden_Underflow
2185 	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
2186 #else
2187 	if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
2188 #endif
2189 		value(d2) = value(d);
2190 		word0(d2) &= Frac_mask1;
2191 		word0(d2) |= Exp_11;
2192 #ifdef IBM
2193 		if (j = 11 - hi0bits(word0(d2) & Frac_mask))
2194 			value(d2) /= 1 << j;
2195 #endif
2196 
2197 		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
2198 		 * log10(x)	 =  log(x) / log(10)
2199 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2200 		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2201 		 *
2202 		 * This suggests computing an approximation k to log10(d) by
2203 		 *
2204 		 * k = (i - Bias)*0.301029995663981
2205 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2206 		 *
2207 		 * We want k to be too large rather than too small.
2208 		 * The error in the first-order Taylor series approximation
2209 		 * is in our favor, so we just round up the constant enough
2210 		 * to compensate for any error in the multiplication of
2211 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2212 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2213 		 * adding 1e-13 to the constant term more than suffices.
2214 		 * Hence we adjust the constant term to 0.1760912590558.
2215 		 * (We could get a more accurate k by invoking log10,
2216 		 *  but this is probably not worthwhile.)
2217 		 */
2218 
2219 		i -= Bias;
2220 #ifdef IBM
2221 		i <<= 2;
2222 		i += j;
2223 #endif
2224 #ifndef Sudden_Underflow
2225 		denorm = 0;
2226 	}
2227 	else {
2228 		/* d is denormalized */
2229 
2230 		i = bbits + be + (Bias + (P-1) - 1);
2231 		x = i > 32  ? word0(d) << (64 - i) | word1(d) >> (i - 32)
2232 			    : word1(d) << (32 - i);
2233 		value(d2) = x;
2234 		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
2235 		i -= (Bias + (P-1) - 1) + 1;
2236 		denorm = 1;
2237 	}
2238 #endif
2239 	ds = (value(d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2240 	    i*0.301029995663981;
2241 	k = (int)ds;
2242 	if (ds < 0. && ds != k)
2243 		k--;	/* want k = floor(ds) */
2244 	k_check = 1;
2245 	if (k >= 0 && k <= Ten_pmax) {
2246 		if (value(d) < tens[k])
2247 			k--;
2248 		k_check = 0;
2249 	}
2250 	j = bbits - i - 1;
2251 	if (j >= 0) {
2252 		b2 = 0;
2253 		s2 = j;
2254 	}
2255 	else {
2256 		b2 = -j;
2257 		s2 = 0;
2258 	}
2259 	if (k >= 0) {
2260 		b5 = 0;
2261 		s5 = k;
2262 		s2 += k;
2263 	}
2264 	else {
2265 		b2 -= k;
2266 		b5 = -k;
2267 		s5 = 0;
2268 	}
2269 	if (mode < 0 || mode > 9)
2270 		mode = 0;
2271 	try_quick = 1;
2272 	if (mode > 5) {
2273 		mode -= 4;
2274 		try_quick = 0;
2275 	}
2276 	leftright = 1;
2277 	switch(mode) {
2278 		case 0:
2279 		case 1:
2280 			ilim = ilim1 = -1;
2281 			i = 18;
2282 			ndigits = 0;
2283 			break;
2284 		case 2:
2285 			leftright = 0;
2286 			/* FALLTHROUGH */
2287 		case 4:
2288 			if (ndigits <= 0)
2289 				ndigits = 1;
2290 			ilim = ilim1 = i = ndigits;
2291 			break;
2292 		case 3:
2293 			leftright = 0;
2294 			/* FALLTHROUGH */
2295 		case 5:
2296 			i = ndigits + k + 1;
2297 			ilim = i;
2298 			ilim1 = i - 1;
2299 			if (i <= 0)
2300 				i = 1;
2301 	}
2302 	j = sizeof(ULong);
2303         for(result_k = 0; (int)(sizeof(Bigint) - sizeof(ULong)) + j <= i;
2304 		j <<= 1) result_k++;
2305         // this is really a ugly hack, the code uses Balloc
2306         // instead of malloc, but casts the result into a char*
2307         // it seems the only reason to do that is due to the
2308         // complicated way the block size need to be computed
2309         // buuurk....
2310 	result = Balloc(result_k);
2311 	if (result == BIGINT_INVALID) {
2312 		Bfree(b);
2313 		return NULL;
2314 	}
2315 	s = s0 = (char *)(void *)result;
2316 
2317 	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2318 
2319 		/* Try to get by with floating-point arithmetic. */
2320 
2321 		i = 0;
2322 		value(d2) = value(d);
2323 		k0 = k;
2324 		ilim0 = ilim;
2325 		ieps = 2; /* conservative */
2326 		if (k > 0) {
2327 			ds = tens[k&0xf];
2328 			j = (unsigned int)k >> 4;
2329 			if (j & Bletch) {
2330 				/* prevent overflows */
2331 				j &= Bletch - 1;
2332 				value(d) /= bigtens[n_bigtens-1];
2333 				ieps++;
2334 				}
2335 			for(; j; j = (unsigned int)j >> 1, i++)
2336 				if (j & 1) {
2337 					ieps++;
2338 					ds *= bigtens[i];
2339 					}
2340 			value(d) /= ds;
2341 		}
2342 		else if ((jj1 = -k) != 0) {
2343 			value(d) *= tens[jj1 & 0xf];
2344 			for(j = (unsigned int)jj1 >> 4; j;
2345 			    j = (unsigned int)j >> 1, i++)
2346 				if (j & 1) {
2347 					ieps++;
2348 					value(d) *= bigtens[i];
2349 				}
2350 		}
2351 		if (k_check && value(d) < 1. && ilim > 0) {
2352 			if (ilim1 <= 0)
2353 				goto fast_failed;
2354 			ilim = ilim1;
2355 			k--;
2356 			value(d) *= 10.;
2357 			ieps++;
2358 		}
2359 		value(eps) = ieps*value(d) + 7.;
2360 		word0(eps) -= (P-1)*Exp_msk1;
2361 		if (ilim == 0) {
2362 			S = mhi = 0;
2363 			value(d) -= 5.;
2364 			if (value(d) > value(eps))
2365 				goto one_digit;
2366 			if (value(d) < -value(eps))
2367 				goto no_digits;
2368 			goto fast_failed;
2369 		}
2370 #ifndef No_leftright
2371 		if (leftright) {
2372 			/* Use Steele & White method of only
2373 			 * generating digits needed.
2374 			 */
2375 			value(eps) = 0.5/tens[ilim-1] - value(eps);
2376 			for(i = 0;;) {
2377 				L = value(d);
2378 				value(d) -= L;
2379 				*s++ = '0' + (int)L;
2380 				if (value(d) < value(eps))
2381 					goto ret1;
2382 				if (1. - value(d) < value(eps))
2383 					goto bump_up;
2384 				if (++i >= ilim)
2385 					break;
2386 				value(eps) *= 10.;
2387 				value(d) *= 10.;
2388 				}
2389 		}
2390 		else {
2391 #endif
2392 			/* Generate ilim digits, then fix them up. */
2393 			value(eps) *= tens[ilim-1];
2394 			for(i = 1;; i++, value(d) *= 10.) {
2395 				L = value(d);
2396 				value(d) -= L;
2397 				*s++ = '0' + (int)L;
2398 				if (i == ilim) {
2399 					if (value(d) > 0.5 + value(eps))
2400 						goto bump_up;
2401 					else if (value(d) < 0.5 - value(eps)) {
2402 						while(*--s == '0');
2403 						s++;
2404 						goto ret1;
2405 						}
2406 					break;
2407 				}
2408 			}
2409 #ifndef No_leftright
2410 		}
2411 #endif
2412  fast_failed:
2413 		s = s0;
2414 		value(d) = value(d2);
2415 		k = k0;
2416 		ilim = ilim0;
2417 	}
2418 
2419 	/* Do we have a "small" integer? */
2420 
2421 	if (be >= 0 && k <= Int_max) {
2422 		/* Yes. */
2423 		ds = tens[k];
2424 		if (ndigits < 0 && ilim <= 0) {
2425 			S = mhi = 0;
2426 			if (ilim < 0 || value(d) <= 5*ds)
2427 				goto no_digits;
2428 			goto one_digit;
2429 		}
2430 		for(i = 1;; i++) {
2431 			L = value(d) / ds;
2432 			value(d) -= L*ds;
2433 #ifdef Check_FLT_ROUNDS
2434 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
2435 			if (value(d) < 0) {
2436 				L--;
2437 				value(d) += ds;
2438 			}
2439 #endif
2440 			*s++ = '0' + (int)L;
2441 			if (i == ilim) {
2442 				value(d) += value(d);
2443 				if (value(d) > ds || (value(d) == ds && L & 1)) {
2444  bump_up:
2445 					while(*--s == '9')
2446 						if (s == s0) {
2447 							k++;
2448 							*s = '0';
2449 							break;
2450 						}
2451 					++*s++;
2452 				}
2453 				break;
2454 			}
2455 			if (!(value(d) *= 10.))
2456 				break;
2457 			}
2458 		goto ret1;
2459 	}
2460 
2461 	m2 = b2;
2462 	m5 = b5;
2463 	mhi = mlo = 0;
2464 	if (leftright) {
2465 		if (mode < 2) {
2466 			i =
2467 #ifndef Sudden_Underflow
2468 				denorm ? be + (Bias + (P-1) - 1 + 1) :
2469 #endif
2470 #ifdef IBM
2471 				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2472 #else
2473 				1 + P - bbits;
2474 #endif
2475 		}
2476 		else {
2477 			j = ilim - 1;
2478 			if (m5 >= j)
2479 				m5 -= j;
2480 			else {
2481 				s5 += j -= m5;
2482 				b5 += j;
2483 				m5 = 0;
2484 			}
2485 			if ((i = ilim) < 0) {
2486 				m2 -= i;
2487 				i = 0;
2488 			}
2489 		}
2490 		b2 += i;
2491 		s2 += i;
2492 		mhi = i2b(1);
2493 	}
2494 	if (m2 > 0 && s2 > 0) {
2495 		i = m2 < s2 ? m2 : s2;
2496 		b2 -= i;
2497 		m2 -= i;
2498 		s2 -= i;
2499 	}
2500 	if (b5 > 0) {
2501 		if (leftright) {
2502 			if (m5 > 0) {
2503 				mhi = pow5mult(mhi, m5);
2504 				b1 = mult(mhi, b);
2505 				Bfree(b);
2506 				b = b1;
2507 			}
2508 			if ((j = b5 - m5) != 0)
2509 				b = pow5mult(b, j);
2510 			}
2511 		else
2512 			b = pow5mult(b, b5);
2513 	}
2514 	S = i2b(1);
2515 	if (s5 > 0)
2516 		S = pow5mult(S, s5);
2517 
2518 	/* Check for special case that d is a normalized power of 2. */
2519 
2520 	if (mode < 2) {
2521 		if (!word1(d) && !(word0(d) & Bndry_mask)
2522 #ifndef Sudden_Underflow
2523 		 && word0(d) & Exp_mask
2524 #endif
2525 				) {
2526 			/* The special case */
2527 			b2 += Log2P;
2528 			s2 += Log2P;
2529 			spec_case = 1;
2530 			}
2531 		else
2532 			spec_case = 0;
2533 	}
2534 
2535 	/* Arrange for convenient computation of quotients:
2536 	 * shift left if necessary so divisor has 4 leading 0 bits.
2537 	 *
2538 	 * Perhaps we should just compute leading 28 bits of S once
2539 	 * and for all and pass them and a shift to quorem, so it
2540 	 * can do shifts and ors to compute the numerator for q.
2541 	 */
2542 	if (S == BIGINT_INVALID) {
2543 		i = 0;
2544 	} else {
2545 #ifdef Pack_32
2546 		if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
2547 			i = 32 - i;
2548 #else
2549 		if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
2550 			i = 16 - i;
2551 #endif
2552 	}
2553 
2554 	if (i > 4) {
2555 		i -= 4;
2556 		b2 += i;
2557 		m2 += i;
2558 		s2 += i;
2559 	}
2560 	else if (i < 4) {
2561 		i += 28;
2562 		b2 += i;
2563 		m2 += i;
2564 		s2 += i;
2565 	}
2566 	if (b2 > 0)
2567 		b = lshift(b, b2);
2568 	if (s2 > 0)
2569 		S = lshift(S, s2);
2570 	if (k_check) {
2571 		if (cmp(b,S) < 0) {
2572 			k--;
2573 			b = multadd(b, 10, 0);	/* we botched the k estimate */
2574 			if (leftright)
2575 				mhi = multadd(mhi, 10, 0);
2576 			ilim = ilim1;
2577 			}
2578 	}
2579 	if (ilim <= 0 && mode > 2) {
2580 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2581 			/* no digits, fcvt style */
2582  no_digits:
2583 			k = -1 - ndigits;
2584 			goto ret;
2585 		}
2586  one_digit:
2587 		*s++ = '1';
2588 		k++;
2589 		goto ret;
2590 	}
2591 	if (leftright) {
2592 		if (m2 > 0)
2593 			mhi = lshift(mhi, m2);
2594 
2595 		/* Compute mlo -- check for special case
2596 		 * that d is a normalized power of 2.
2597 		 */
2598 
2599 		mlo = mhi;
2600 		if (spec_case) {
2601 			mhi = Balloc(mhi->k);
2602 			Bcopy(mhi, mlo);
2603 			mhi = lshift(mhi, Log2P);
2604 		}
2605 
2606 		for(i = 1;;i++) {
2607 			dig = quorem(b,S) + '0';
2608 			/* Do we yet have the shortest decimal string
2609 			 * that will round to d?
2610 			 */
2611 			j = cmp(b, mlo);
2612 			delta = diff(S, mhi);
2613 			jj1 = delta->sign ? 1 : cmp(b, delta);
2614 			Bfree(delta);
2615 #ifndef ROUND_BIASED
2616 			if (jj1 == 0 && !mode && !(word1(d) & 1)) {
2617 				if (dig == '9')
2618 					goto round_9_up;
2619 				if (j > 0)
2620 					dig++;
2621 				*s++ = dig;
2622 				goto ret;
2623 			}
2624 #endif
2625 			if (j < 0 || (j == 0 && !mode
2626 #ifndef ROUND_BIASED
2627 							&& !(word1(d) & 1)
2628 #endif
2629 					)) {
2630 				if (jj1 > 0) {
2631 					b = lshift(b, 1);
2632 					jj1 = cmp(b, S);
2633 					if ((jj1 > 0 || (jj1 == 0 && dig & 1))
2634 					&& dig++ == '9')
2635 						goto round_9_up;
2636 					}
2637 				*s++ = dig;
2638 				goto ret;
2639 			}
2640 			if (jj1 > 0) {
2641 				if (dig == '9') { /* possible if i == 1 */
2642  round_9_up:
2643 					*s++ = '9';
2644 					goto roundoff;
2645 					}
2646 				*s++ = dig + 1;
2647 				goto ret;
2648 			}
2649 			*s++ = dig;
2650 			if (i == ilim)
2651 				break;
2652 			b = multadd(b, 10, 0);
2653 			if (mlo == mhi)
2654 				mlo = mhi = multadd(mhi, 10, 0);
2655 			else {
2656 				mlo = multadd(mlo, 10, 0);
2657 				mhi = multadd(mhi, 10, 0);
2658 			}
2659 		}
2660 	}
2661 	else
2662 		for(i = 1;; i++) {
2663 			*s++ = dig = quorem(b,S) + '0';
2664 			if (i >= ilim)
2665 				break;
2666 			b = multadd(b, 10, 0);
2667 		}
2668 
2669 	/* Round off last digit */
2670 
2671 	b = lshift(b, 1);
2672 	j = cmp(b, S);
2673 	if (j > 0 || (j == 0 && dig & 1)) {
2674  roundoff:
2675 		while(*--s == '9')
2676 			if (s == s0) {
2677 				k++;
2678 				*s++ = '1';
2679 				goto ret;
2680 				}
2681 		++*s++;
2682 	}
2683 	else {
2684 		while(*--s == '0');
2685 		s++;
2686 	}
2687  ret:
2688 	Bfree(S);
2689 	if (mhi) {
2690 		if (mlo && mlo != mhi)
2691 			Bfree(mlo);
2692 		Bfree(mhi);
2693 	}
2694  ret1:
2695 	Bfree(b);
2696 	if (s == s0) {				/* don't return empty string */
2697 		*s++ = '0';
2698 		k = 0;
2699 	}
2700 	*s = 0;
2701 	*decpt = k + 1;
2702 	if (rve)
2703 		*rve = s;
2704 	return s0;
2705 }
2706 #ifdef __cplusplus
2707 }
2708 #endif
2709