• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008, 2009 Apple Inc. All rights reserved.
3  * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1.  Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  * 2.  Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15  *     its contributors may be used to endorse or promote products derived
16  *     from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #ifndef BytecodeGenerator_h
31 #define BytecodeGenerator_h
32 
33 #include "CodeBlock.h"
34 #include "HashTraits.h"
35 #include "Instruction.h"
36 #include "Label.h"
37 #include "LabelScope.h"
38 #include "Interpreter.h"
39 #include "RegisterID.h"
40 #include "SymbolTable.h"
41 #include "Debugger.h"
42 #include "Nodes.h"
43 #include <wtf/PassRefPtr.h>
44 #include <wtf/SegmentedVector.h>
45 #include <wtf/Vector.h>
46 
47 namespace JSC {
48 
49     class Identifier;
50     class ScopeChainNode;
51 
52     class CallArguments {
53     public:
54         CallArguments(BytecodeGenerator& generator, ArgumentsNode* argumentsNode);
55 
thisRegister()56         RegisterID* thisRegister() { return m_argv[0].get(); }
argumentRegister(unsigned i)57         RegisterID* argumentRegister(unsigned i) { return m_argv[i + 1].get(); }
callFrame()58         unsigned callFrame() { return thisRegister()->index() + count() + RegisterFile::CallFrameHeaderSize; }
count()59         unsigned count() { return m_argv.size(); }
profileHookRegister()60         RegisterID* profileHookRegister() { return m_profileHookRegister.get(); }
argumentsNode()61         ArgumentsNode* argumentsNode() { return m_argumentsNode; }
62 
63     private:
64         RefPtr<RegisterID> m_profileHookRegister;
65         ArgumentsNode* m_argumentsNode;
66         Vector<RefPtr<RegisterID>, 16> m_argv;
67     };
68 
69     struct FinallyContext {
70         Label* finallyAddr;
71         RegisterID* retAddrDst;
72     };
73 
74     struct ControlFlowContext {
75         bool isFinallyBlock;
76         FinallyContext finallyContext;
77     };
78 
79     struct ForInContext {
80         RefPtr<RegisterID> expectedSubscriptRegister;
81         RefPtr<RegisterID> iterRegister;
82         RefPtr<RegisterID> indexRegister;
83         RefPtr<RegisterID> propertyRegister;
84     };
85 
86     class BytecodeGenerator {
87         WTF_MAKE_FAST_ALLOCATED;
88     public:
89         typedef DeclarationStacks::VarStack VarStack;
90         typedef DeclarationStacks::FunctionStack FunctionStack;
91 
92         static void setDumpsGeneratedCode(bool dumpsGeneratedCode);
93         static bool dumpsGeneratedCode();
94 
95         BytecodeGenerator(ProgramNode*, ScopeChainNode*, SymbolTable*, ProgramCodeBlock*);
96         BytecodeGenerator(FunctionBodyNode*, ScopeChainNode*, SymbolTable*, CodeBlock*);
97         BytecodeGenerator(EvalNode*, ScopeChainNode*, SymbolTable*, EvalCodeBlock*);
98 
globalData()99         JSGlobalData* globalData() const { return m_globalData; }
propertyNames()100         const CommonIdentifiers& propertyNames() const { return *m_globalData->propertyNames; }
101 
isConstructor()102         bool isConstructor() { return m_codeBlock->m_isConstructor; }
103 
104         JSObject* generate();
105 
106         // Returns the register corresponding to a local variable, or 0 if no
107         // such register exists. Registers returned by registerFor do not
108         // require explicit reference counting.
109         RegisterID* registerFor(const Identifier&);
110 
111         // Returns the agument number if this is an argument, or 0 if not.
112         int argumentNumberFor(const Identifier&);
113 
114         void setIsNumericCompareFunction(bool isNumericCompareFunction);
115 
116         bool willResolveToArguments(const Identifier&);
117         RegisterID* uncheckedRegisterForArguments();
118 
119         // Behaves as registerFor does, but ignores dynamic scope as
120         // dynamic scope should not interfere with const initialisation
121         RegisterID* constRegisterFor(const Identifier&);
122 
123         // Searches the scope chain in an attempt to  statically locate the requested
124         // property.  Returns false if for any reason the property cannot be safely
125         // optimised at all.  Otherwise it will return the index and depth of the
126         // VariableObject that defines the property.  If the property cannot be found
127         // statically, depth will contain the depth of the scope chain where dynamic
128         // lookup must begin.
129         bool findScopedProperty(const Identifier&, int& index, size_t& depth, bool forWriting, bool& includesDynamicScopes, JSObject*& globalObject);
130 
131         // Returns the register storing "this"
thisRegister()132         RegisterID* thisRegister() { return &m_thisRegister; }
133 
134         bool isLocal(const Identifier&);
135         bool isLocalConstant(const Identifier&);
136 
137         // Returns the next available temporary register. Registers returned by
138         // newTemporary require a modified form of reference counting: any
139         // register with a refcount of 0 is considered "available", meaning that
140         // the next instruction may overwrite it.
141         RegisterID* newTemporary();
142 
143         RegisterID* highestUsedRegister();
144 
145         // The same as newTemporary(), but this function returns "suggestion" if
146         // "suggestion" is a temporary. This function is helpful in situations
147         // where you've put "suggestion" in a RefPtr, but you'd like to allow
148         // the next instruction to overwrite it anyway.
newTemporaryOr(RegisterID * suggestion)149         RegisterID* newTemporaryOr(RegisterID* suggestion) { return suggestion->isTemporary() ? suggestion : newTemporary(); }
150 
151         // Functions for handling of dst register
152 
ignoredResult()153         RegisterID* ignoredResult() { return &m_ignoredResultRegister; }
154 
155         // Returns a place to write intermediate values of an operation
156         // which reuses dst if it is safe to do so.
tempDestination(RegisterID * dst)157         RegisterID* tempDestination(RegisterID* dst)
158         {
159             return (dst && dst != ignoredResult() && dst->isTemporary()) ? dst : newTemporary();
160         }
161 
162         // Returns the place to write the final output of an operation.
163         RegisterID* finalDestination(RegisterID* originalDst, RegisterID* tempDst = 0)
164         {
165             if (originalDst && originalDst != ignoredResult())
166                 return originalDst;
167             ASSERT(tempDst != ignoredResult());
168             if (tempDst && tempDst->isTemporary())
169                 return tempDst;
170             return newTemporary();
171         }
172 
173         // Returns the place to write the final output of an operation.
174         RegisterID* finalDestinationOrIgnored(RegisterID* originalDst, RegisterID* tempDst = 0)
175         {
176             if (originalDst)
177                 return originalDst;
178             ASSERT(tempDst != ignoredResult());
179             if (tempDst && tempDst->isTemporary())
180                 return tempDst;
181             return newTemporary();
182         }
183 
destinationForAssignResult(RegisterID * dst)184         RegisterID* destinationForAssignResult(RegisterID* dst)
185         {
186             if (dst && dst != ignoredResult() && m_codeBlock->needsFullScopeChain())
187                 return dst->isTemporary() ? dst : newTemporary();
188             return 0;
189         }
190 
191         // Moves src to dst if dst is not null and is different from src, otherwise just returns src.
moveToDestinationIfNeeded(RegisterID * dst,RegisterID * src)192         RegisterID* moveToDestinationIfNeeded(RegisterID* dst, RegisterID* src)
193         {
194             return dst == ignoredResult() ? 0 : (dst && dst != src) ? emitMove(dst, src) : src;
195         }
196 
197         PassRefPtr<LabelScope> newLabelScope(LabelScope::Type, const Identifier* = 0);
198         PassRefPtr<Label> newLabel();
199 
200         // The emitNode functions are just syntactic sugar for calling
201         // Node::emitCode. These functions accept a 0 for the register,
202         // meaning that the node should allocate a register, or ignoredResult(),
203         // meaning that the node need not put the result in a register.
204         // Other emit functions do not accept 0 or ignoredResult().
emitNode(RegisterID * dst,Node * n)205         RegisterID* emitNode(RegisterID* dst, Node* n)
206         {
207             // Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary.
208             ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount());
209             addLineInfo(n->lineNo());
210             return m_stack.recursionCheck()
211                 ? n->emitBytecode(*this, dst)
212                 : emitThrowExpressionTooDeepException();
213         }
214 
emitNode(Node * n)215         RegisterID* emitNode(Node* n)
216         {
217             return emitNode(0, n);
218         }
219 
emitNodeInConditionContext(ExpressionNode * n,Label * trueTarget,Label * falseTarget,bool fallThroughMeansTrue)220         void emitNodeInConditionContext(ExpressionNode* n, Label* trueTarget, Label* falseTarget, bool fallThroughMeansTrue)
221         {
222             addLineInfo(n->lineNo());
223             if (m_stack.recursionCheck())
224                 n->emitBytecodeInConditionContext(*this, trueTarget, falseTarget, fallThroughMeansTrue);
225             else
226                 emitThrowExpressionTooDeepException();
227         }
228 
emitExpressionInfo(unsigned divot,unsigned startOffset,unsigned endOffset)229         void emitExpressionInfo(unsigned divot, unsigned startOffset, unsigned endOffset)
230         {
231             if (!m_shouldEmitRichSourceInfo)
232                 return;
233 
234             divot -= m_codeBlock->sourceOffset();
235             if (divot > ExpressionRangeInfo::MaxDivot) {
236                 // Overflow has occurred, we can only give line number info for errors for this region
237                 divot = 0;
238                 startOffset = 0;
239                 endOffset = 0;
240             } else if (startOffset > ExpressionRangeInfo::MaxOffset) {
241                 // If the start offset is out of bounds we clear both offsets
242                 // so we only get the divot marker.  Error message will have to be reduced
243                 // to line and column number.
244                 startOffset = 0;
245                 endOffset = 0;
246             } else if (endOffset > ExpressionRangeInfo::MaxOffset) {
247                 // The end offset is only used for additional context, and is much more likely
248                 // to overflow (eg. function call arguments) so we are willing to drop it without
249                 // dropping the rest of the range.
250                 endOffset = 0;
251             }
252 
253             ExpressionRangeInfo info;
254             info.instructionOffset = instructions().size();
255             info.divotPoint = divot;
256             info.startOffset = startOffset;
257             info.endOffset = endOffset;
258             m_codeBlock->addExpressionInfo(info);
259         }
260 
leftHandSideNeedsCopy(bool rightHasAssignments,bool rightIsPure)261         ALWAYS_INLINE bool leftHandSideNeedsCopy(bool rightHasAssignments, bool rightIsPure)
262         {
263             return (m_codeType != FunctionCode || m_codeBlock->needsFullScopeChain() || rightHasAssignments) && !rightIsPure;
264         }
265 
emitNodeForLeftHandSide(ExpressionNode * n,bool rightHasAssignments,bool rightIsPure)266         ALWAYS_INLINE PassRefPtr<RegisterID> emitNodeForLeftHandSide(ExpressionNode* n, bool rightHasAssignments, bool rightIsPure)
267         {
268             if (leftHandSideNeedsCopy(rightHasAssignments, rightIsPure)) {
269                 PassRefPtr<RegisterID> dst = newTemporary();
270                 emitNode(dst.get(), n);
271                 return dst;
272             }
273 
274             return PassRefPtr<RegisterID>(emitNode(n));
275         }
276 
277         RegisterID* emitLoad(RegisterID* dst, bool);
278         RegisterID* emitLoad(RegisterID* dst, double);
279         RegisterID* emitLoad(RegisterID* dst, const Identifier&);
280         RegisterID* emitLoad(RegisterID* dst, JSValue);
281 
282         RegisterID* emitUnaryOp(OpcodeID, RegisterID* dst, RegisterID* src);
283         RegisterID* emitBinaryOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes);
284         RegisterID* emitEqualityOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2);
285         RegisterID* emitUnaryNoDstOp(OpcodeID, RegisterID* src);
286 
287         RegisterID* emitNewObject(RegisterID* dst);
288         RegisterID* emitNewArray(RegisterID* dst, ElementNode*); // stops at first elision
289 
290         RegisterID* emitNewFunction(RegisterID* dst, FunctionBodyNode* body);
291         RegisterID* emitLazyNewFunction(RegisterID* dst, FunctionBodyNode* body);
292         RegisterID* emitNewFunctionInternal(RegisterID* dst, unsigned index, bool shouldNullCheck);
293         RegisterID* emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func);
294         RegisterID* emitNewRegExp(RegisterID* dst, PassRefPtr<RegExp> regExp);
295 
296         RegisterID* emitMove(RegisterID* dst, RegisterID* src);
297 
emitToJSNumber(RegisterID * dst,RegisterID * src)298         RegisterID* emitToJSNumber(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_to_jsnumber, dst, src); }
299         RegisterID* emitPreInc(RegisterID* srcDst);
300         RegisterID* emitPreDec(RegisterID* srcDst);
301         RegisterID* emitPostInc(RegisterID* dst, RegisterID* srcDst);
302         RegisterID* emitPostDec(RegisterID* dst, RegisterID* srcDst);
303 
304         void emitCheckHasInstance(RegisterID* base);
305         RegisterID* emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* base, RegisterID* basePrototype);
emitTypeOf(RegisterID * dst,RegisterID * src)306         RegisterID* emitTypeOf(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_typeof, dst, src); }
emitIn(RegisterID * dst,RegisterID * property,RegisterID * base)307         RegisterID* emitIn(RegisterID* dst, RegisterID* property, RegisterID* base) { return emitBinaryOp(op_in, dst, property, base, OperandTypes()); }
308 
309         RegisterID* emitResolve(RegisterID* dst, const Identifier& property);
310         RegisterID* emitGetScopedVar(RegisterID* dst, size_t skip, int index, JSValue globalObject);
311         RegisterID* emitPutScopedVar(size_t skip, int index, RegisterID* value, JSValue globalObject);
312 
313         RegisterID* emitResolveBase(RegisterID* dst, const Identifier& property);
314         RegisterID* emitResolveBaseForPut(RegisterID* dst, const Identifier& property);
315         RegisterID* emitResolveWithBase(RegisterID* baseDst, RegisterID* propDst, const Identifier& property);
316 
317         void emitMethodCheck();
318 
319         RegisterID* emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property);
320         RegisterID* emitGetArgumentsLength(RegisterID* dst, RegisterID* base);
321         RegisterID* emitPutById(RegisterID* base, const Identifier& property, RegisterID* value);
322         RegisterID* emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value);
323         RegisterID* emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier&);
324         RegisterID* emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
325         RegisterID* emitGetArgumentByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
326         RegisterID* emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value);
327         RegisterID* emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
328         RegisterID* emitPutByIndex(RegisterID* base, unsigned index, RegisterID* value);
329         RegisterID* emitPutGetter(RegisterID* base, const Identifier& property, RegisterID* value);
330         RegisterID* emitPutSetter(RegisterID* base, const Identifier& property, RegisterID* value);
331 
332         RegisterID* emitCall(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
333         RegisterID* emitCallEval(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
334         RegisterID* emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* argCount, unsigned divot, unsigned startOffset, unsigned endOffset);
335         RegisterID* emitLoadVarargs(RegisterID* argCountDst, RegisterID* thisRegister, RegisterID* args);
336 
337         RegisterID* emitReturn(RegisterID* src);
emitEnd(RegisterID * src)338         RegisterID* emitEnd(RegisterID* src) { return emitUnaryNoDstOp(op_end, src); }
339 
340         RegisterID* emitConstruct(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
341         RegisterID* emitStrcat(RegisterID* dst, RegisterID* src, int count);
342         void emitToPrimitive(RegisterID* dst, RegisterID* src);
343 
344         PassRefPtr<Label> emitLabel(Label*);
345         PassRefPtr<Label> emitJump(Label* target);
346         PassRefPtr<Label> emitJumpIfTrue(RegisterID* cond, Label* target);
347         PassRefPtr<Label> emitJumpIfFalse(RegisterID* cond, Label* target);
348         PassRefPtr<Label> emitJumpIfNotFunctionCall(RegisterID* cond, Label* target);
349         PassRefPtr<Label> emitJumpIfNotFunctionApply(RegisterID* cond, Label* target);
350         PassRefPtr<Label> emitJumpScopes(Label* target, int targetScopeDepth);
351 
352         PassRefPtr<Label> emitJumpSubroutine(RegisterID* retAddrDst, Label*);
353         void emitSubroutineReturn(RegisterID* retAddrSrc);
354 
355         RegisterID* emitGetPropertyNames(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, Label* breakTarget);
356         RegisterID* emitNextPropertyName(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, RegisterID* iter, Label* target);
357 
358         RegisterID* emitCatch(RegisterID*, Label* start, Label* end);
emitThrow(RegisterID * exc)359         void emitThrow(RegisterID* exc)
360         {
361             m_usesExceptions = true;
362             emitUnaryNoDstOp(op_throw, exc);
363         }
364 
365         void emitThrowReferenceError(const UString& message);
366 
367         void emitPushNewScope(RegisterID* dst, const Identifier& property, RegisterID* value);
368 
369         RegisterID* emitPushScope(RegisterID* scope);
370         void emitPopScope();
371 
372         void emitDebugHook(DebugHookID, int firstLine, int lastLine);
373 
scopeDepth()374         int scopeDepth() { return m_dynamicScopeDepth + m_finallyDepth; }
hasFinaliser()375         bool hasFinaliser() { return m_finallyDepth != 0; }
376 
377         void pushFinallyContext(Label* target, RegisterID* returnAddrDst);
378         void popFinallyContext();
379 
pushOptimisedForIn(RegisterID * expectedBase,RegisterID * iter,RegisterID * index,RegisterID * propertyRegister)380         void pushOptimisedForIn(RegisterID* expectedBase, RegisterID* iter, RegisterID* index, RegisterID* propertyRegister)
381         {
382             ForInContext context = { expectedBase, iter, index, propertyRegister };
383             m_forInContextStack.append(context);
384         }
385 
popOptimisedForIn()386         void popOptimisedForIn()
387         {
388             m_forInContextStack.removeLast();
389         }
390 
391         LabelScope* breakTarget(const Identifier&);
392         LabelScope* continueTarget(const Identifier&);
393 
394         void beginSwitch(RegisterID*, SwitchInfo::SwitchType);
395         void endSwitch(uint32_t clauseCount, RefPtr<Label>*, ExpressionNode**, Label* defaultLabel, int32_t min, int32_t range);
396 
codeType()397         CodeType codeType() const { return m_codeType; }
398 
shouldEmitProfileHooks()399         bool shouldEmitProfileHooks() { return m_shouldEmitProfileHooks; }
400 
isStrictMode()401         bool isStrictMode() const { return m_codeBlock->isStrictMode(); }
402 
403     private:
404         void emitOpcode(OpcodeID);
405         void retrieveLastBinaryOp(int& dstIndex, int& src1Index, int& src2Index);
406         void retrieveLastUnaryOp(int& dstIndex, int& srcIndex);
407         ALWAYS_INLINE void rewindBinaryOp();
408         ALWAYS_INLINE void rewindUnaryOp();
409 
410         PassRefPtr<Label> emitComplexJumpScopes(Label* target, ControlFlowContext* topScope, ControlFlowContext* bottomScope);
411 
412         typedef HashMap<EncodedJSValue, unsigned, EncodedJSValueHash, EncodedJSValueHashTraits> JSValueMap;
413 
414         struct IdentifierMapIndexHashTraits {
415             typedef int TraitType;
416             typedef IdentifierMapIndexHashTraits StorageTraits;
emptyValueIdentifierMapIndexHashTraits417             static int emptyValue() { return std::numeric_limits<int>::max(); }
418             static const bool emptyValueIsZero = false;
419             static const bool needsDestruction = false;
420             static const bool needsRef = false;
421         };
422 
423         typedef HashMap<RefPtr<StringImpl>, int, IdentifierRepHash, HashTraits<RefPtr<StringImpl> >, IdentifierMapIndexHashTraits> IdentifierMap;
424         typedef HashMap<double, JSValue> NumberMap;
425         typedef HashMap<StringImpl*, JSString*, IdentifierRepHash> IdentifierStringMap;
426 
427         RegisterID* emitCall(OpcodeID, RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
428 
429         RegisterID* newRegister();
430 
431         // Adds a var slot and maps it to the name ident in symbolTable().
addVar(const Identifier & ident,bool isConstant)432         RegisterID* addVar(const Identifier& ident, bool isConstant)
433         {
434             RegisterID* local;
435             addVar(ident, isConstant, local);
436             return local;
437         }
438 
439         // Ditto. Returns true if a new RegisterID was added, false if a pre-existing RegisterID was re-used.
440         bool addVar(const Identifier&, bool isConstant, RegisterID*&);
441 
442         // Adds an anonymous var slot. To give this slot a name, add it to symbolTable().
addVar()443         RegisterID* addVar()
444         {
445             ++m_codeBlock->m_numVars;
446             return newRegister();
447         }
448 
449         // Returns the RegisterID corresponding to ident.
addGlobalVar(const Identifier & ident,bool isConstant)450         RegisterID* addGlobalVar(const Identifier& ident, bool isConstant)
451         {
452             RegisterID* local;
453             addGlobalVar(ident, isConstant, local);
454             return local;
455         }
456         // Returns true if a new RegisterID was added, false if a pre-existing RegisterID was re-used.
457         bool addGlobalVar(const Identifier&, bool isConstant, RegisterID*&);
458 
459         void addParameter(const Identifier&, int parameterIndex);
460 
461         void preserveLastVar();
462 
registerFor(int index)463         RegisterID& registerFor(int index)
464         {
465             if (index >= 0)
466                 return m_calleeRegisters[index];
467 
468             if (m_parameters.size()) {
469                 ASSERT(!m_globals.size());
470                 return m_parameters[index + m_parameters.size() + RegisterFile::CallFrameHeaderSize];
471             }
472 
473             return m_globals[-index - 1];
474         }
475 
476         unsigned addConstant(const Identifier&);
477         RegisterID* addConstantValue(JSValue);
478         unsigned addRegExp(PassRefPtr<RegExp>);
479 
makeFunction(ExecState * exec,FunctionBodyNode * body)480         FunctionExecutable* makeFunction(ExecState* exec, FunctionBodyNode* body)
481         {
482             return FunctionExecutable::create(exec, body->ident(), body->source(), body->usesArguments(), body->parameters(), body->isStrictMode(), body->lineNo(), body->lastLine());
483         }
484 
makeFunction(JSGlobalData * globalData,FunctionBodyNode * body)485         FunctionExecutable* makeFunction(JSGlobalData* globalData, FunctionBodyNode* body)
486         {
487             return FunctionExecutable::create(globalData, body->ident(), body->source(), body->usesArguments(), body->parameters(), body->isStrictMode(), body->lineNo(), body->lastLine());
488         }
489 
addLineInfo(unsigned lineNo)490         void addLineInfo(unsigned lineNo)
491         {
492 #if !ENABLE(OPCODE_SAMPLING)
493             if (m_shouldEmitRichSourceInfo)
494 #endif
495                 m_codeBlock->addLineInfo(instructions().size(), lineNo);
496         }
497 
498         RegisterID* emitInitLazyRegister(RegisterID*);
499 
instructions()500         Vector<Instruction>& instructions() { return m_codeBlock->instructions(); }
symbolTable()501         SymbolTable& symbolTable() { return *m_symbolTable; }
502 
shouldOptimizeLocals()503         bool shouldOptimizeLocals() { return (m_codeType != EvalCode) && !m_dynamicScopeDepth; }
canOptimizeNonLocals()504         bool canOptimizeNonLocals() { return (m_codeType == FunctionCode) && !m_dynamicScopeDepth && !m_codeBlock->usesEval(); }
505 
506         RegisterID* emitThrowExpressionTooDeepException();
507 
508         void createArgumentsIfNecessary();
509         void createActivationIfNecessary();
510         RegisterID* createLazyRegisterIfNecessary(RegisterID*);
511 
512         bool m_shouldEmitDebugHooks;
513         bool m_shouldEmitProfileHooks;
514         bool m_shouldEmitRichSourceInfo;
515 
516         Strong<ScopeChainNode> m_scopeChain;
517         SymbolTable* m_symbolTable;
518 
519         ScopeNode* m_scopeNode;
520         CodeBlock* m_codeBlock;
521 
522         // Some of these objects keep pointers to one another. They are arranged
523         // to ensure a sane destruction order that avoids references to freed memory.
524         HashSet<RefPtr<StringImpl>, IdentifierRepHash> m_functions;
525         RegisterID m_ignoredResultRegister;
526         RegisterID m_thisRegister;
527         RegisterID* m_activationRegister;
528         SegmentedVector<RegisterID, 32> m_constantPoolRegisters;
529         SegmentedVector<RegisterID, 32> m_calleeRegisters;
530         SegmentedVector<RegisterID, 32> m_parameters;
531         SegmentedVector<RegisterID, 32> m_globals;
532         SegmentedVector<Label, 32> m_labels;
533         SegmentedVector<LabelScope, 8> m_labelScopes;
534         RefPtr<RegisterID> m_lastVar;
535         int m_finallyDepth;
536         int m_dynamicScopeDepth;
537         int m_baseScopeDepth;
538         CodeType m_codeType;
539 
540         Vector<ControlFlowContext> m_scopeContextStack;
541         Vector<SwitchInfo> m_switchContextStack;
542         Vector<ForInContext> m_forInContextStack;
543 
544         int m_nextGlobalIndex;
545         int m_firstConstantIndex;
546         int m_nextConstantOffset;
547         unsigned m_globalConstantIndex;
548 
549         int m_globalVarStorageOffset;
550 
551         bool m_hasCreatedActivation;
552         int m_firstLazyFunction;
553         int m_lastLazyFunction;
554         HashMap<unsigned int, FunctionBodyNode*, WTF::IntHash<unsigned int>, WTF::UnsignedWithZeroKeyHashTraits<unsigned int> > m_lazyFunctions;
555         typedef HashMap<FunctionBodyNode*, unsigned> FunctionOffsetMap;
556         FunctionOffsetMap m_functionOffsets;
557 
558         // Constant pool
559         IdentifierMap m_identifierMap;
560         JSValueMap m_jsValueMap;
561         NumberMap m_numberMap;
562         IdentifierStringMap m_stringMap;
563 
564         JSGlobalData* m_globalData;
565 
566         OpcodeID m_lastOpcodeID;
567 #ifndef NDEBUG
568         size_t m_lastOpcodePosition;
569 #endif
570 
571         StackBounds m_stack;
572 
573         bool m_usesExceptions;
574         bool m_expressionTooDeep;
575     };
576 
577 }
578 
579 #endif // BytecodeGenerator_h
580