• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #ifndef lint
35 static char sccsid[] = "@(#)gamma.c	8.1 (Berkeley) 6/4/93";
36 #endif /* not lint */
37 #include <sys/cdefs.h>
38 /* __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_tgamma.c,v 1.7 2005/09/19 11:28:19 bde Exp $"); */
39 
40 /*
41  * This code by P. McIlroy, Oct 1992;
42  *
43  * The financial support of UUNET Communications Services is greatfully
44  * acknowledged.
45  */
46 
47 //#include <math.h>
48 #include "../include/math.h"
49 #include "mathimpl.h"
50 #include <errno.h>
51 
52 /* METHOD:
53  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
54  * 	At negative integers, return +Inf, and set errno.
55  *
56  * x < 6.5:
57  *	Use argument reduction G(x+1) = xG(x) to reach the
58  *	range [1.066124,2.066124].  Use a rational
59  *	approximation centered at the minimum (x0+1) to
60  *	ensure monotonicity.
61  *
62  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
63  *	adjusted for equal-ripples:
64  *
65  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
66  *
67  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
68  *	avoid premature round-off.
69  *
70  * Special values:
71  *	non-positive integer:	Set overflow trap; return +Inf;
72  *	x > 171.63:		Set overflow trap; return +Inf;
73  *	NaN: 			Set invalid trap;  return NaN
74  *
75  * Accuracy: Gamma(x) is accurate to within
76  *	x > 0:  error provably < 0.9ulp.
77  *	Maximum observed in 1,000,000 trials was .87ulp.
78  *	x < 0:
79  *	Maximum observed error < 4ulp in 1,000,000 trials.
80  */
81 
82 static double neg_gam(double);
83 static double small_gam(double);
84 static double smaller_gam(double);
85 static struct Double large_gam(double);
86 static struct Double ratfun_gam(double, double);
87 
88 /*
89  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
90  * [1.066.., 2.066..] accurate to 4.25e-19.
91  */
92 #define LEFT -.3955078125	/* left boundary for rat. approx */
93 #define x0 .461632144968362356785	/* xmin - 1 */
94 
95 #define a0_hi 0.88560319441088874992
96 #define a0_lo -.00000000000000004996427036469019695
97 #define P0	 6.21389571821820863029017800727e-01
98 #define P1	 2.65757198651533466104979197553e-01
99 #define P2	 5.53859446429917461063308081748e-03
100 #define P3	 1.38456698304096573887145282811e-03
101 #define P4	 2.40659950032711365819348969808e-03
102 #define Q0	 1.45019531250000000000000000000e+00
103 #define Q1	 1.06258521948016171343454061571e+00
104 #define Q2	-2.07474561943859936441469926649e-01
105 #define Q3	-1.46734131782005422506287573015e-01
106 #define Q4	 3.07878176156175520361557573779e-02
107 #define Q5	 5.12449347980666221336054633184e-03
108 #define Q6	-1.76012741431666995019222898833e-03
109 #define Q7	 9.35021023573788935372153030556e-05
110 #define Q8	 6.13275507472443958924745652239e-06
111 /*
112  * Constants for large x approximation (x in [6, Inf])
113  * (Accurate to 2.8*10^-19 absolute)
114  */
115 #define lns2pi_hi 0.418945312500000
116 #define lns2pi_lo -.000006779295327258219670263595
117 #define Pa0	 8.33333333333333148296162562474e-02
118 #define Pa1	-2.77777777774548123579378966497e-03
119 #define Pa2	 7.93650778754435631476282786423e-04
120 #define Pa3	-5.95235082566672847950717262222e-04
121 #define Pa4	 8.41428560346653702135821806252e-04
122 #define Pa5	-1.89773526463879200348872089421e-03
123 #define Pa6	 5.69394463439411649408050664078e-03
124 #define Pa7	-1.44705562421428915453880392761e-02
125 
126 static const double zero = 0., one = 1.0, tiny = 1e-300;
127 
128 double
tgamma(x)129 tgamma(x)
130 	double x;
131 {
132 	struct Double u;
133 
134 	if (x >= 6) {
135 		if(x > 171.63)
136 			return(one/zero);
137 		u = large_gam(x);
138 		return(__exp__D(u.a, u.b));
139 	} else if (x >= 1.0 + LEFT + x0)
140 		return (small_gam(x));
141 	else if (x > 1.e-17)
142 		return (smaller_gam(x));
143 	else if (x > -1.e-17) {
144 		if (x == 0.0)
145 			return (one/x);
146 		one+1e-20;		/* Raise inexact flag. */
147 		return (one/x);
148 	} else if (!finite(x))
149 		return (x*x);		/* x = NaN, -Inf */
150 	else
151 		return (neg_gam(x));
152 }
153 /*
154  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
155  */
156 static struct Double
large_gam(x)157 large_gam(x)
158 	double x;
159 {
160 	double z, p;
161 	struct Double t, u, v;
162 
163 	z = one/(x*x);
164 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
165 	p = p/x;
166 
167 	u = __log__D(x);
168 	u.a -= one;
169 	v.a = (x -= .5);
170 	TRUNC(v.a);
171 	v.b = x - v.a;
172 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
173 	t.b = v.b*u.a + x*u.b;
174 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
175 	t.b += lns2pi_lo; t.b += p;
176 	u.a = lns2pi_hi + t.b; u.a += t.a;
177 	u.b = t.a - u.a;
178 	u.b += lns2pi_hi; u.b += t.b;
179 	return (u);
180 }
181 /*
182  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
183  * It also has correct monotonicity.
184  */
185 static double
small_gam(x)186 small_gam(x)
187 	double x;
188 {
189 	double y, ym1, t;
190 	struct Double yy, r;
191 	y = x - one;
192 	ym1 = y - one;
193 	if (y <= 1.0 + (LEFT + x0)) {
194 		yy = ratfun_gam(y - x0, 0);
195 		return (yy.a + yy.b);
196 	}
197 	r.a = y;
198 	TRUNC(r.a);
199 	yy.a = r.a - one;
200 	y = ym1;
201 	yy.b = r.b = y - yy.a;
202 	/* Argument reduction: G(x+1) = x*G(x) */
203 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
204 		t = r.a*yy.a;
205 		r.b = r.a*yy.b + y*r.b;
206 		r.a = t;
207 		TRUNC(r.a);
208 		r.b += (t - r.a);
209 	}
210 	/* Return r*tgamma(y). */
211 	yy = ratfun_gam(y - x0, 0);
212 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
213 	y += yy.a*r.a;
214 	return (y);
215 }
216 /*
217  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
218  */
219 static double
smaller_gam(x)220 smaller_gam(x)
221 	double x;
222 {
223 	double t, d;
224 	struct Double r, xx;
225 	if (x < x0 + LEFT) {
226 		t = x, TRUNC(t);
227 		d = (t+x)*(x-t);
228 		t *= t;
229 		xx.a = (t + x), TRUNC(xx.a);
230 		xx.b = x - xx.a; xx.b += t; xx.b += d;
231 		t = (one-x0); t += x;
232 		d = (one-x0); d -= t; d += x;
233 		x = xx.a + xx.b;
234 	} else {
235 		xx.a =  x, TRUNC(xx.a);
236 		xx.b = x - xx.a;
237 		t = x - x0;
238 		d = (-x0 -t); d += x;
239 	}
240 	r = ratfun_gam(t, d);
241 	d = r.a/x, TRUNC(d);
242 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
243 	return (d + r.a/x);
244 }
245 /*
246  * returns (z+c)^2 * P(z)/Q(z) + a0
247  */
248 static struct Double
ratfun_gam(z,c)249 ratfun_gam(z, c)
250 	double z, c;
251 {
252 	double p, q;
253 	struct Double r, t;
254 
255 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
256 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
257 
258 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
259 	p = p/q;
260 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
261 	t.b = (z - t.a) + c;
262 	t.b *= (t.a + z);
263 	q = (t.a *= t.a);		/* t = (z+c)^2 */
264 	TRUNC(t.a);
265 	t.b += (q - t.a);
266 	r.a = p, TRUNC(r.a);		/* r = P/Q */
267 	r.b = p - r.a;
268 	t.b = t.b*p + t.a*r.b + a0_lo;
269 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
270 	r.a = t.a + a0_hi, TRUNC(r.a);
271 	r.b = ((a0_hi-r.a) + t.a) + t.b;
272 	return (r);			/* r = a0 + t */
273 }
274 
275 static double
neg_gam(x)276 neg_gam(x)
277 	double x;
278 {
279 	int sgn = 1;
280 	struct Double lg, lsine;
281 	double y, z;
282 
283 	y = floor(x + .5);
284 	if (y == x)		/* Negative integer. */
285 		return (one/zero);
286 	z = fabs(x - y);
287 	y = .5*ceil(x);
288 	if (y == ceil(y))
289 		sgn = -1;
290 	if (z < .25)
291 		z = sin(M_PI*z);
292 	else
293 		z = cos(M_PI*(0.5-z));
294 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
295 	if (x < -170) {
296 		if (x < -190)
297 			return ((double)sgn*tiny*tiny);
298 		y = one - x;		/* exact: 128 < |x| < 255 */
299 		lg = large_gam(y);
300 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
301 		lg.a -= lsine.a;		/* exact (opposite signs) */
302 		lg.b -= lsine.b;
303 		y = -(lg.a + lg.b);
304 		z = (y + lg.a) + lg.b;
305 		y = __exp__D(y, z);
306 		if (sgn < 0) y = -y;
307 		return (y);
308 	}
309 	y = one-x;
310 	if (one-y == x)
311 		y = tgamma(y);
312 	else		/* 1-x is inexact */
313 		y = -x*tgamma(-x);
314 	if (sgn < 0) y = -y;
315 	return (M_PI / (y*z));
316 }
317