1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitCall and visitInvoke functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombine.h"
15 #include "llvm/Support/CallSite.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Transforms/Utils/BuildLibCalls.h"
19 #include "llvm/Transforms/Utils/Local.h"
20 using namespace llvm;
21
22 /// getPromotedType - Return the specified type promoted as it would be to pass
23 /// though a va_arg area.
getPromotedType(Type * Ty)24 static Type *getPromotedType(Type *Ty) {
25 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
26 if (ITy->getBitWidth() < 32)
27 return Type::getInt32Ty(Ty->getContext());
28 }
29 return Ty;
30 }
31
32
SimplifyMemTransfer(MemIntrinsic * MI)33 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
34 unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
35 unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
36 unsigned MinAlign = std::min(DstAlign, SrcAlign);
37 unsigned CopyAlign = MI->getAlignment();
38
39 if (CopyAlign < MinAlign) {
40 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
41 MinAlign, false));
42 return MI;
43 }
44
45 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
46 // load/store.
47 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
48 if (MemOpLength == 0) return 0;
49
50 // Source and destination pointer types are always "i8*" for intrinsic. See
51 // if the size is something we can handle with a single primitive load/store.
52 // A single load+store correctly handles overlapping memory in the memmove
53 // case.
54 uint64_t Size = MemOpLength->getLimitedValue();
55 assert(Size && "0-sized memory transfering should be removed already.");
56
57 if (Size > 8 || (Size&(Size-1)))
58 return 0; // If not 1/2/4/8 bytes, exit.
59
60 // Use an integer load+store unless we can find something better.
61 unsigned SrcAddrSp =
62 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
63 unsigned DstAddrSp =
64 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
65
66 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
67 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
68 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
69
70 // Memcpy forces the use of i8* for the source and destination. That means
71 // that if you're using memcpy to move one double around, you'll get a cast
72 // from double* to i8*. We'd much rather use a double load+store rather than
73 // an i64 load+store, here because this improves the odds that the source or
74 // dest address will be promotable. See if we can find a better type than the
75 // integer datatype.
76 Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
77 if (StrippedDest != MI->getArgOperand(0)) {
78 Type *SrcETy = cast<PointerType>(StrippedDest->getType())
79 ->getElementType();
80 if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
81 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
82 // down through these levels if so.
83 while (!SrcETy->isSingleValueType()) {
84 if (StructType *STy = dyn_cast<StructType>(SrcETy)) {
85 if (STy->getNumElements() == 1)
86 SrcETy = STy->getElementType(0);
87 else
88 break;
89 } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
90 if (ATy->getNumElements() == 1)
91 SrcETy = ATy->getElementType();
92 else
93 break;
94 } else
95 break;
96 }
97
98 if (SrcETy->isSingleValueType()) {
99 NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
100 NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
101 }
102 }
103 }
104
105
106 // If the memcpy/memmove provides better alignment info than we can
107 // infer, use it.
108 SrcAlign = std::max(SrcAlign, CopyAlign);
109 DstAlign = std::max(DstAlign, CopyAlign);
110
111 Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
112 Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
113 LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
114 L->setAlignment(SrcAlign);
115 StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
116 S->setAlignment(DstAlign);
117
118 // Set the size of the copy to 0, it will be deleted on the next iteration.
119 MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
120 return MI;
121 }
122
SimplifyMemSet(MemSetInst * MI)123 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
124 unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
125 if (MI->getAlignment() < Alignment) {
126 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
127 Alignment, false));
128 return MI;
129 }
130
131 // Extract the length and alignment and fill if they are constant.
132 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
133 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
134 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
135 return 0;
136 uint64_t Len = LenC->getLimitedValue();
137 Alignment = MI->getAlignment();
138 assert(Len && "0-sized memory setting should be removed already.");
139
140 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
141 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
142 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
143
144 Value *Dest = MI->getDest();
145 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
146 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
147 Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
148
149 // Alignment 0 is identity for alignment 1 for memset, but not store.
150 if (Alignment == 0) Alignment = 1;
151
152 // Extract the fill value and store.
153 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
154 StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
155 MI->isVolatile());
156 S->setAlignment(Alignment);
157
158 // Set the size of the copy to 0, it will be deleted on the next iteration.
159 MI->setLength(Constant::getNullValue(LenC->getType()));
160 return MI;
161 }
162
163 return 0;
164 }
165
166 /// visitCallInst - CallInst simplification. This mostly only handles folding
167 /// of intrinsic instructions. For normal calls, it allows visitCallSite to do
168 /// the heavy lifting.
169 ///
visitCallInst(CallInst & CI)170 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
171 if (isFreeCall(&CI, TLI))
172 return visitFree(CI);
173
174 // If the caller function is nounwind, mark the call as nounwind, even if the
175 // callee isn't.
176 if (CI.getParent()->getParent()->doesNotThrow() &&
177 !CI.doesNotThrow()) {
178 CI.setDoesNotThrow();
179 return &CI;
180 }
181
182 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
183 if (!II) return visitCallSite(&CI);
184
185 // Intrinsics cannot occur in an invoke, so handle them here instead of in
186 // visitCallSite.
187 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
188 bool Changed = false;
189
190 // memmove/cpy/set of zero bytes is a noop.
191 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
192 if (NumBytes->isNullValue())
193 return EraseInstFromFunction(CI);
194
195 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
196 if (CI->getZExtValue() == 1) {
197 // Replace the instruction with just byte operations. We would
198 // transform other cases to loads/stores, but we don't know if
199 // alignment is sufficient.
200 }
201 }
202
203 // No other transformations apply to volatile transfers.
204 if (MI->isVolatile())
205 return 0;
206
207 // If we have a memmove and the source operation is a constant global,
208 // then the source and dest pointers can't alias, so we can change this
209 // into a call to memcpy.
210 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
211 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
212 if (GVSrc->isConstant()) {
213 Module *M = CI.getParent()->getParent()->getParent();
214 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
215 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
216 CI.getArgOperand(1)->getType(),
217 CI.getArgOperand(2)->getType() };
218 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
219 Changed = true;
220 }
221 }
222
223 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
224 // memmove(x,x,size) -> noop.
225 if (MTI->getSource() == MTI->getDest())
226 return EraseInstFromFunction(CI);
227 }
228
229 // If we can determine a pointer alignment that is bigger than currently
230 // set, update the alignment.
231 if (isa<MemTransferInst>(MI)) {
232 if (Instruction *I = SimplifyMemTransfer(MI))
233 return I;
234 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
235 if (Instruction *I = SimplifyMemSet(MSI))
236 return I;
237 }
238
239 if (Changed) return II;
240 }
241
242 switch (II->getIntrinsicID()) {
243 default: break;
244 case Intrinsic::objectsize: {
245 uint64_t Size;
246 if (getObjectSize(II->getArgOperand(0), Size, TD, TLI))
247 return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
248 return 0;
249 }
250 case Intrinsic::bswap:
251 // bswap(bswap(x)) -> x
252 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
253 if (Operand->getIntrinsicID() == Intrinsic::bswap)
254 return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
255
256 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
257 if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
258 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
259 if (Operand->getIntrinsicID() == Intrinsic::bswap) {
260 unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
261 TI->getType()->getPrimitiveSizeInBits();
262 Value *CV = ConstantInt::get(Operand->getType(), C);
263 Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
264 return new TruncInst(V, TI->getType());
265 }
266 }
267
268 break;
269 case Intrinsic::powi:
270 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
271 // powi(x, 0) -> 1.0
272 if (Power->isZero())
273 return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
274 // powi(x, 1) -> x
275 if (Power->isOne())
276 return ReplaceInstUsesWith(CI, II->getArgOperand(0));
277 // powi(x, -1) -> 1/x
278 if (Power->isAllOnesValue())
279 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
280 II->getArgOperand(0));
281 }
282 break;
283 case Intrinsic::cttz: {
284 // If all bits below the first known one are known zero,
285 // this value is constant.
286 IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
287 // FIXME: Try to simplify vectors of integers.
288 if (!IT) break;
289 uint32_t BitWidth = IT->getBitWidth();
290 APInt KnownZero(BitWidth, 0);
291 APInt KnownOne(BitWidth, 0);
292 ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
293 unsigned TrailingZeros = KnownOne.countTrailingZeros();
294 APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
295 if ((Mask & KnownZero) == Mask)
296 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
297 APInt(BitWidth, TrailingZeros)));
298
299 }
300 break;
301 case Intrinsic::ctlz: {
302 // If all bits above the first known one are known zero,
303 // this value is constant.
304 IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
305 // FIXME: Try to simplify vectors of integers.
306 if (!IT) break;
307 uint32_t BitWidth = IT->getBitWidth();
308 APInt KnownZero(BitWidth, 0);
309 APInt KnownOne(BitWidth, 0);
310 ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
311 unsigned LeadingZeros = KnownOne.countLeadingZeros();
312 APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
313 if ((Mask & KnownZero) == Mask)
314 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
315 APInt(BitWidth, LeadingZeros)));
316
317 }
318 break;
319 case Intrinsic::uadd_with_overflow: {
320 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
321 IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
322 uint32_t BitWidth = IT->getBitWidth();
323 APInt LHSKnownZero(BitWidth, 0);
324 APInt LHSKnownOne(BitWidth, 0);
325 ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
326 bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
327 bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
328
329 if (LHSKnownNegative || LHSKnownPositive) {
330 APInt RHSKnownZero(BitWidth, 0);
331 APInt RHSKnownOne(BitWidth, 0);
332 ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
333 bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
334 bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
335 if (LHSKnownNegative && RHSKnownNegative) {
336 // The sign bit is set in both cases: this MUST overflow.
337 // Create a simple add instruction, and insert it into the struct.
338 Value *Add = Builder->CreateAdd(LHS, RHS);
339 Add->takeName(&CI);
340 Constant *V[] = {
341 UndefValue::get(LHS->getType()),
342 ConstantInt::getTrue(II->getContext())
343 };
344 StructType *ST = cast<StructType>(II->getType());
345 Constant *Struct = ConstantStruct::get(ST, V);
346 return InsertValueInst::Create(Struct, Add, 0);
347 }
348
349 if (LHSKnownPositive && RHSKnownPositive) {
350 // The sign bit is clear in both cases: this CANNOT overflow.
351 // Create a simple add instruction, and insert it into the struct.
352 Value *Add = Builder->CreateNUWAdd(LHS, RHS);
353 Add->takeName(&CI);
354 Constant *V[] = {
355 UndefValue::get(LHS->getType()),
356 ConstantInt::getFalse(II->getContext())
357 };
358 StructType *ST = cast<StructType>(II->getType());
359 Constant *Struct = ConstantStruct::get(ST, V);
360 return InsertValueInst::Create(Struct, Add, 0);
361 }
362 }
363 }
364 // FALL THROUGH uadd into sadd
365 case Intrinsic::sadd_with_overflow:
366 // Canonicalize constants into the RHS.
367 if (isa<Constant>(II->getArgOperand(0)) &&
368 !isa<Constant>(II->getArgOperand(1))) {
369 Value *LHS = II->getArgOperand(0);
370 II->setArgOperand(0, II->getArgOperand(1));
371 II->setArgOperand(1, LHS);
372 return II;
373 }
374
375 // X + undef -> undef
376 if (isa<UndefValue>(II->getArgOperand(1)))
377 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
378
379 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
380 // X + 0 -> {X, false}
381 if (RHS->isZero()) {
382 Constant *V[] = {
383 UndefValue::get(II->getArgOperand(0)->getType()),
384 ConstantInt::getFalse(II->getContext())
385 };
386 Constant *Struct =
387 ConstantStruct::get(cast<StructType>(II->getType()), V);
388 return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
389 }
390 }
391 break;
392 case Intrinsic::usub_with_overflow:
393 case Intrinsic::ssub_with_overflow:
394 // undef - X -> undef
395 // X - undef -> undef
396 if (isa<UndefValue>(II->getArgOperand(0)) ||
397 isa<UndefValue>(II->getArgOperand(1)))
398 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
399
400 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
401 // X - 0 -> {X, false}
402 if (RHS->isZero()) {
403 Constant *V[] = {
404 UndefValue::get(II->getArgOperand(0)->getType()),
405 ConstantInt::getFalse(II->getContext())
406 };
407 Constant *Struct =
408 ConstantStruct::get(cast<StructType>(II->getType()), V);
409 return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
410 }
411 }
412 break;
413 case Intrinsic::umul_with_overflow: {
414 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
415 unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
416
417 APInt LHSKnownZero(BitWidth, 0);
418 APInt LHSKnownOne(BitWidth, 0);
419 ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
420 APInt RHSKnownZero(BitWidth, 0);
421 APInt RHSKnownOne(BitWidth, 0);
422 ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
423
424 // Get the largest possible values for each operand.
425 APInt LHSMax = ~LHSKnownZero;
426 APInt RHSMax = ~RHSKnownZero;
427
428 // If multiplying the maximum values does not overflow then we can turn
429 // this into a plain NUW mul.
430 bool Overflow;
431 LHSMax.umul_ov(RHSMax, Overflow);
432 if (!Overflow) {
433 Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
434 Constant *V[] = {
435 UndefValue::get(LHS->getType()),
436 Builder->getFalse()
437 };
438 Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
439 return InsertValueInst::Create(Struct, Mul, 0);
440 }
441 } // FALL THROUGH
442 case Intrinsic::smul_with_overflow:
443 // Canonicalize constants into the RHS.
444 if (isa<Constant>(II->getArgOperand(0)) &&
445 !isa<Constant>(II->getArgOperand(1))) {
446 Value *LHS = II->getArgOperand(0);
447 II->setArgOperand(0, II->getArgOperand(1));
448 II->setArgOperand(1, LHS);
449 return II;
450 }
451
452 // X * undef -> undef
453 if (isa<UndefValue>(II->getArgOperand(1)))
454 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
455
456 if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
457 // X*0 -> {0, false}
458 if (RHSI->isZero())
459 return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
460
461 // X * 1 -> {X, false}
462 if (RHSI->equalsInt(1)) {
463 Constant *V[] = {
464 UndefValue::get(II->getArgOperand(0)->getType()),
465 ConstantInt::getFalse(II->getContext())
466 };
467 Constant *Struct =
468 ConstantStruct::get(cast<StructType>(II->getType()), V);
469 return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
470 }
471 }
472 break;
473 case Intrinsic::ppc_altivec_lvx:
474 case Intrinsic::ppc_altivec_lvxl:
475 // Turn PPC lvx -> load if the pointer is known aligned.
476 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
477 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
478 PointerType::getUnqual(II->getType()));
479 return new LoadInst(Ptr);
480 }
481 break;
482 case Intrinsic::ppc_altivec_stvx:
483 case Intrinsic::ppc_altivec_stvxl:
484 // Turn stvx -> store if the pointer is known aligned.
485 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
486 Type *OpPtrTy =
487 PointerType::getUnqual(II->getArgOperand(0)->getType());
488 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
489 return new StoreInst(II->getArgOperand(0), Ptr);
490 }
491 break;
492 case Intrinsic::x86_sse_storeu_ps:
493 case Intrinsic::x86_sse2_storeu_pd:
494 case Intrinsic::x86_sse2_storeu_dq:
495 // Turn X86 storeu -> store if the pointer is known aligned.
496 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
497 Type *OpPtrTy =
498 PointerType::getUnqual(II->getArgOperand(1)->getType());
499 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
500 return new StoreInst(II->getArgOperand(1), Ptr);
501 }
502 break;
503
504 case Intrinsic::x86_sse_cvtss2si:
505 case Intrinsic::x86_sse_cvtss2si64:
506 case Intrinsic::x86_sse_cvttss2si:
507 case Intrinsic::x86_sse_cvttss2si64:
508 case Intrinsic::x86_sse2_cvtsd2si:
509 case Intrinsic::x86_sse2_cvtsd2si64:
510 case Intrinsic::x86_sse2_cvttsd2si:
511 case Intrinsic::x86_sse2_cvttsd2si64: {
512 // These intrinsics only demand the 0th element of their input vectors. If
513 // we can simplify the input based on that, do so now.
514 unsigned VWidth =
515 cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
516 APInt DemandedElts(VWidth, 1);
517 APInt UndefElts(VWidth, 0);
518 if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
519 DemandedElts, UndefElts)) {
520 II->setArgOperand(0, V);
521 return II;
522 }
523 break;
524 }
525
526
527 case Intrinsic::x86_sse41_pmovsxbw:
528 case Intrinsic::x86_sse41_pmovsxwd:
529 case Intrinsic::x86_sse41_pmovsxdq:
530 case Intrinsic::x86_sse41_pmovzxbw:
531 case Intrinsic::x86_sse41_pmovzxwd:
532 case Intrinsic::x86_sse41_pmovzxdq: {
533 // pmov{s|z}x ignores the upper half of their input vectors.
534 unsigned VWidth =
535 cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
536 unsigned LowHalfElts = VWidth / 2;
537 APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
538 APInt UndefElts(VWidth, 0);
539 if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
540 InputDemandedElts,
541 UndefElts)) {
542 II->setArgOperand(0, TmpV);
543 return II;
544 }
545 break;
546 }
547
548 case Intrinsic::ppc_altivec_vperm:
549 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
550 if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
551 assert(Mask->getType()->getVectorNumElements() == 16 &&
552 "Bad type for intrinsic!");
553
554 // Check that all of the elements are integer constants or undefs.
555 bool AllEltsOk = true;
556 for (unsigned i = 0; i != 16; ++i) {
557 Constant *Elt = Mask->getAggregateElement(i);
558 if (Elt == 0 ||
559 !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
560 AllEltsOk = false;
561 break;
562 }
563 }
564
565 if (AllEltsOk) {
566 // Cast the input vectors to byte vectors.
567 Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
568 Mask->getType());
569 Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
570 Mask->getType());
571 Value *Result = UndefValue::get(Op0->getType());
572
573 // Only extract each element once.
574 Value *ExtractedElts[32];
575 memset(ExtractedElts, 0, sizeof(ExtractedElts));
576
577 for (unsigned i = 0; i != 16; ++i) {
578 if (isa<UndefValue>(Mask->getAggregateElement(i)))
579 continue;
580 unsigned Idx =
581 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
582 Idx &= 31; // Match the hardware behavior.
583
584 if (ExtractedElts[Idx] == 0) {
585 ExtractedElts[Idx] =
586 Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
587 Builder->getInt32(Idx&15));
588 }
589
590 // Insert this value into the result vector.
591 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
592 Builder->getInt32(i));
593 }
594 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
595 }
596 }
597 break;
598
599 case Intrinsic::arm_neon_vld1:
600 case Intrinsic::arm_neon_vld2:
601 case Intrinsic::arm_neon_vld3:
602 case Intrinsic::arm_neon_vld4:
603 case Intrinsic::arm_neon_vld2lane:
604 case Intrinsic::arm_neon_vld3lane:
605 case Intrinsic::arm_neon_vld4lane:
606 case Intrinsic::arm_neon_vst1:
607 case Intrinsic::arm_neon_vst2:
608 case Intrinsic::arm_neon_vst3:
609 case Intrinsic::arm_neon_vst4:
610 case Intrinsic::arm_neon_vst2lane:
611 case Intrinsic::arm_neon_vst3lane:
612 case Intrinsic::arm_neon_vst4lane: {
613 unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
614 unsigned AlignArg = II->getNumArgOperands() - 1;
615 ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
616 if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
617 II->setArgOperand(AlignArg,
618 ConstantInt::get(Type::getInt32Ty(II->getContext()),
619 MemAlign, false));
620 return II;
621 }
622 break;
623 }
624
625 case Intrinsic::arm_neon_vmulls:
626 case Intrinsic::arm_neon_vmullu: {
627 Value *Arg0 = II->getArgOperand(0);
628 Value *Arg1 = II->getArgOperand(1);
629
630 // Handle mul by zero first:
631 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
632 return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
633 }
634
635 // Check for constant LHS & RHS - in this case we just simplify.
636 bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu);
637 VectorType *NewVT = cast<VectorType>(II->getType());
638 unsigned NewWidth = NewVT->getElementType()->getIntegerBitWidth();
639 if (ConstantDataVector *CV0 = dyn_cast<ConstantDataVector>(Arg0)) {
640 if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
641 VectorType* VT = cast<VectorType>(CV0->getType());
642 SmallVector<Constant*, 4> NewElems;
643 for (unsigned i = 0; i < VT->getNumElements(); ++i) {
644 APInt CV0E =
645 (cast<ConstantInt>(CV0->getAggregateElement(i)))->getValue();
646 CV0E = Zext ? CV0E.zext(NewWidth) : CV0E.sext(NewWidth);
647 APInt CV1E =
648 (cast<ConstantInt>(CV1->getAggregateElement(i)))->getValue();
649 CV1E = Zext ? CV1E.zext(NewWidth) : CV1E.sext(NewWidth);
650 NewElems.push_back(
651 ConstantInt::get(NewVT->getElementType(), CV0E * CV1E));
652 }
653 return ReplaceInstUsesWith(CI, ConstantVector::get(NewElems));
654 }
655
656 // Couldn't simplify - cannonicalize constant to the RHS.
657 std::swap(Arg0, Arg1);
658 }
659
660 // Handle mul by one:
661 if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
662 if (ConstantInt *Splat =
663 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) {
664 if (Splat->isOne()) {
665 if (Zext)
666 return CastInst::CreateZExtOrBitCast(Arg0, II->getType());
667 // else
668 return CastInst::CreateSExtOrBitCast(Arg0, II->getType());
669 }
670 }
671 }
672
673 break;
674 }
675
676 case Intrinsic::stackrestore: {
677 // If the save is right next to the restore, remove the restore. This can
678 // happen when variable allocas are DCE'd.
679 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
680 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
681 BasicBlock::iterator BI = SS;
682 if (&*++BI == II)
683 return EraseInstFromFunction(CI);
684 }
685 }
686
687 // Scan down this block to see if there is another stack restore in the
688 // same block without an intervening call/alloca.
689 BasicBlock::iterator BI = II;
690 TerminatorInst *TI = II->getParent()->getTerminator();
691 bool CannotRemove = false;
692 for (++BI; &*BI != TI; ++BI) {
693 if (isa<AllocaInst>(BI)) {
694 CannotRemove = true;
695 break;
696 }
697 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
698 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
699 // If there is a stackrestore below this one, remove this one.
700 if (II->getIntrinsicID() == Intrinsic::stackrestore)
701 return EraseInstFromFunction(CI);
702 // Otherwise, ignore the intrinsic.
703 } else {
704 // If we found a non-intrinsic call, we can't remove the stack
705 // restore.
706 CannotRemove = true;
707 break;
708 }
709 }
710 }
711
712 // If the stack restore is in a return, resume, or unwind block and if there
713 // are no allocas or calls between the restore and the return, nuke the
714 // restore.
715 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
716 return EraseInstFromFunction(CI);
717 break;
718 }
719 }
720
721 return visitCallSite(II);
722 }
723
724 // InvokeInst simplification
725 //
visitInvokeInst(InvokeInst & II)726 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
727 return visitCallSite(&II);
728 }
729
730 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
731 /// passed through the varargs area, we can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallSite CS,const CastInst * const CI,const TargetData * const TD,const int ix)732 static bool isSafeToEliminateVarargsCast(const CallSite CS,
733 const CastInst * const CI,
734 const TargetData * const TD,
735 const int ix) {
736 if (!CI->isLosslessCast())
737 return false;
738
739 // The size of ByVal arguments is derived from the type, so we
740 // can't change to a type with a different size. If the size were
741 // passed explicitly we could avoid this check.
742 if (!CS.isByValArgument(ix))
743 return true;
744
745 Type* SrcTy =
746 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
747 Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
748 if (!SrcTy->isSized() || !DstTy->isSized())
749 return false;
750 if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
751 return false;
752 return true;
753 }
754
755 namespace {
756 class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
757 InstCombiner *IC;
758 protected:
replaceCall(Value * With)759 void replaceCall(Value *With) {
760 NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
761 }
isFoldable(unsigned SizeCIOp,unsigned SizeArgOp,bool isString) const762 bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
763 if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
764 return true;
765 if (ConstantInt *SizeCI =
766 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
767 if (SizeCI->isAllOnesValue())
768 return true;
769 if (isString) {
770 uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
771 // If the length is 0 we don't know how long it is and so we can't
772 // remove the check.
773 if (Len == 0) return false;
774 return SizeCI->getZExtValue() >= Len;
775 }
776 if (ConstantInt *Arg = dyn_cast<ConstantInt>(
777 CI->getArgOperand(SizeArgOp)))
778 return SizeCI->getZExtValue() >= Arg->getZExtValue();
779 }
780 return false;
781 }
782 public:
InstCombineFortifiedLibCalls(InstCombiner * IC)783 InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
784 Instruction *NewInstruction;
785 };
786 } // end anonymous namespace
787
788 // Try to fold some different type of calls here.
789 // Currently we're only working with the checking functions, memcpy_chk,
790 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
791 // strcat_chk and strncat_chk.
tryOptimizeCall(CallInst * CI,const TargetData * TD)792 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
793 if (CI->getCalledFunction() == 0) return 0;
794
795 InstCombineFortifiedLibCalls Simplifier(this);
796 Simplifier.fold(CI, TD, TLI);
797 return Simplifier.NewInstruction;
798 }
799
FindInitTrampolineFromAlloca(Value * TrampMem)800 static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
801 // Strip off at most one level of pointer casts, looking for an alloca. This
802 // is good enough in practice and simpler than handling any number of casts.
803 Value *Underlying = TrampMem->stripPointerCasts();
804 if (Underlying != TrampMem &&
805 (!Underlying->hasOneUse() || *Underlying->use_begin() != TrampMem))
806 return 0;
807 if (!isa<AllocaInst>(Underlying))
808 return 0;
809
810 IntrinsicInst *InitTrampoline = 0;
811 for (Value::use_iterator I = TrampMem->use_begin(), E = TrampMem->use_end();
812 I != E; I++) {
813 IntrinsicInst *II = dyn_cast<IntrinsicInst>(*I);
814 if (!II)
815 return 0;
816 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
817 if (InitTrampoline)
818 // More than one init_trampoline writes to this value. Give up.
819 return 0;
820 InitTrampoline = II;
821 continue;
822 }
823 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
824 // Allow any number of calls to adjust.trampoline.
825 continue;
826 return 0;
827 }
828
829 // No call to init.trampoline found.
830 if (!InitTrampoline)
831 return 0;
832
833 // Check that the alloca is being used in the expected way.
834 if (InitTrampoline->getOperand(0) != TrampMem)
835 return 0;
836
837 return InitTrampoline;
838 }
839
FindInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)840 static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
841 Value *TrampMem) {
842 // Visit all the previous instructions in the basic block, and try to find a
843 // init.trampoline which has a direct path to the adjust.trampoline.
844 for (BasicBlock::iterator I = AdjustTramp,
845 E = AdjustTramp->getParent()->begin(); I != E; ) {
846 Instruction *Inst = --I;
847 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
848 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
849 II->getOperand(0) == TrampMem)
850 return II;
851 if (Inst->mayWriteToMemory())
852 return 0;
853 }
854 return 0;
855 }
856
857 // Given a call to llvm.adjust.trampoline, find and return the corresponding
858 // call to llvm.init.trampoline if the call to the trampoline can be optimized
859 // to a direct call to a function. Otherwise return NULL.
860 //
FindInitTrampoline(Value * Callee)861 static IntrinsicInst *FindInitTrampoline(Value *Callee) {
862 Callee = Callee->stripPointerCasts();
863 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
864 if (!AdjustTramp ||
865 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
866 return 0;
867
868 Value *TrampMem = AdjustTramp->getOperand(0);
869
870 if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
871 return IT;
872 if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
873 return IT;
874 return 0;
875 }
876
877 // visitCallSite - Improvements for call and invoke instructions.
878 //
visitCallSite(CallSite CS)879 Instruction *InstCombiner::visitCallSite(CallSite CS) {
880 if (isAllocLikeFn(CS.getInstruction(), TLI))
881 return visitAllocSite(*CS.getInstruction());
882
883 bool Changed = false;
884
885 // If the callee is a pointer to a function, attempt to move any casts to the
886 // arguments of the call/invoke.
887 Value *Callee = CS.getCalledValue();
888 if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
889 return 0;
890
891 if (Function *CalleeF = dyn_cast<Function>(Callee))
892 // If the call and callee calling conventions don't match, this call must
893 // be unreachable, as the call is undefined.
894 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
895 // Only do this for calls to a function with a body. A prototype may
896 // not actually end up matching the implementation's calling conv for a
897 // variety of reasons (e.g. it may be written in assembly).
898 !CalleeF->isDeclaration()) {
899 Instruction *OldCall = CS.getInstruction();
900 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
901 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
902 OldCall);
903 // If OldCall dues not return void then replaceAllUsesWith undef.
904 // This allows ValueHandlers and custom metadata to adjust itself.
905 if (!OldCall->getType()->isVoidTy())
906 ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
907 if (isa<CallInst>(OldCall))
908 return EraseInstFromFunction(*OldCall);
909
910 // We cannot remove an invoke, because it would change the CFG, just
911 // change the callee to a null pointer.
912 cast<InvokeInst>(OldCall)->setCalledFunction(
913 Constant::getNullValue(CalleeF->getType()));
914 return 0;
915 }
916
917 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
918 // If CS does not return void then replaceAllUsesWith undef.
919 // This allows ValueHandlers and custom metadata to adjust itself.
920 if (!CS.getInstruction()->getType()->isVoidTy())
921 ReplaceInstUsesWith(*CS.getInstruction(),
922 UndefValue::get(CS.getInstruction()->getType()));
923
924 if (isa<InvokeInst>(CS.getInstruction())) {
925 // Can't remove an invoke because we cannot change the CFG.
926 return 0;
927 }
928
929 // This instruction is not reachable, just remove it. We insert a store to
930 // undef so that we know that this code is not reachable, despite the fact
931 // that we can't modify the CFG here.
932 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
933 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
934 CS.getInstruction());
935
936 return EraseInstFromFunction(*CS.getInstruction());
937 }
938
939 if (IntrinsicInst *II = FindInitTrampoline(Callee))
940 return transformCallThroughTrampoline(CS, II);
941
942 PointerType *PTy = cast<PointerType>(Callee->getType());
943 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
944 if (FTy->isVarArg()) {
945 int ix = FTy->getNumParams();
946 // See if we can optimize any arguments passed through the varargs area of
947 // the call.
948 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
949 E = CS.arg_end(); I != E; ++I, ++ix) {
950 CastInst *CI = dyn_cast<CastInst>(*I);
951 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
952 *I = CI->getOperand(0);
953 Changed = true;
954 }
955 }
956 }
957
958 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
959 // Inline asm calls cannot throw - mark them 'nounwind'.
960 CS.setDoesNotThrow();
961 Changed = true;
962 }
963
964 // Try to optimize the call if possible, we require TargetData for most of
965 // this. None of these calls are seen as possibly dead so go ahead and
966 // delete the instruction now.
967 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
968 Instruction *I = tryOptimizeCall(CI, TD);
969 // If we changed something return the result, etc. Otherwise let
970 // the fallthrough check.
971 if (I) return EraseInstFromFunction(*I);
972 }
973
974 return Changed ? CS.getInstruction() : 0;
975 }
976
977 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
978 // attempt to move the cast to the arguments of the call/invoke.
979 //
transformConstExprCastCall(CallSite CS)980 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
981 Function *Callee =
982 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
983 if (Callee == 0)
984 return false;
985 Instruction *Caller = CS.getInstruction();
986 const AttrListPtr &CallerPAL = CS.getAttributes();
987
988 // Okay, this is a cast from a function to a different type. Unless doing so
989 // would cause a type conversion of one of our arguments, change this call to
990 // be a direct call with arguments casted to the appropriate types.
991 //
992 FunctionType *FT = Callee->getFunctionType();
993 Type *OldRetTy = Caller->getType();
994 Type *NewRetTy = FT->getReturnType();
995
996 if (NewRetTy->isStructTy())
997 return false; // TODO: Handle multiple return values.
998
999 // Check to see if we are changing the return type...
1000 if (OldRetTy != NewRetTy) {
1001 if (Callee->isDeclaration() &&
1002 // Conversion is ok if changing from one pointer type to another or from
1003 // a pointer to an integer of the same size.
1004 !((OldRetTy->isPointerTy() || !TD ||
1005 OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
1006 (NewRetTy->isPointerTy() || !TD ||
1007 NewRetTy == TD->getIntPtrType(Caller->getContext()))))
1008 return false; // Cannot transform this return value.
1009
1010 if (!Caller->use_empty() &&
1011 // void -> non-void is handled specially
1012 !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
1013 return false; // Cannot transform this return value.
1014
1015 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1016 Attributes RAttrs = CallerPAL.getRetAttributes();
1017 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
1018 return false; // Attribute not compatible with transformed value.
1019 }
1020
1021 // If the callsite is an invoke instruction, and the return value is used by
1022 // a PHI node in a successor, we cannot change the return type of the call
1023 // because there is no place to put the cast instruction (without breaking
1024 // the critical edge). Bail out in this case.
1025 if (!Caller->use_empty())
1026 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1027 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
1028 UI != E; ++UI)
1029 if (PHINode *PN = dyn_cast<PHINode>(*UI))
1030 if (PN->getParent() == II->getNormalDest() ||
1031 PN->getParent() == II->getUnwindDest())
1032 return false;
1033 }
1034
1035 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
1036 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1037
1038 CallSite::arg_iterator AI = CS.arg_begin();
1039 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1040 Type *ParamTy = FT->getParamType(i);
1041 Type *ActTy = (*AI)->getType();
1042
1043 if (!CastInst::isCastable(ActTy, ParamTy))
1044 return false; // Cannot transform this parameter value.
1045
1046 Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
1047 if (Attrs & Attribute::typeIncompatible(ParamTy))
1048 return false; // Attribute not compatible with transformed value.
1049
1050 // If the parameter is passed as a byval argument, then we have to have a
1051 // sized type and the sized type has to have the same size as the old type.
1052 if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
1053 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
1054 if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
1055 return false;
1056
1057 Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
1058 if (TD->getTypeAllocSize(CurElTy) !=
1059 TD->getTypeAllocSize(ParamPTy->getElementType()))
1060 return false;
1061 }
1062
1063 // Converting from one pointer type to another or between a pointer and an
1064 // integer of the same size is safe even if we do not have a body.
1065 bool isConvertible = ActTy == ParamTy ||
1066 (TD && ((ParamTy->isPointerTy() ||
1067 ParamTy == TD->getIntPtrType(Caller->getContext())) &&
1068 (ActTy->isPointerTy() ||
1069 ActTy == TD->getIntPtrType(Caller->getContext()))));
1070 if (Callee->isDeclaration() && !isConvertible) return false;
1071 }
1072
1073 if (Callee->isDeclaration()) {
1074 // Do not delete arguments unless we have a function body.
1075 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1076 return false;
1077
1078 // If the callee is just a declaration, don't change the varargsness of the
1079 // call. We don't want to introduce a varargs call where one doesn't
1080 // already exist.
1081 PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1082 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1083 return false;
1084
1085 // If both the callee and the cast type are varargs, we still have to make
1086 // sure the number of fixed parameters are the same or we have the same
1087 // ABI issues as if we introduce a varargs call.
1088 if (FT->isVarArg() &&
1089 cast<FunctionType>(APTy->getElementType())->isVarArg() &&
1090 FT->getNumParams() !=
1091 cast<FunctionType>(APTy->getElementType())->getNumParams())
1092 return false;
1093 }
1094
1095 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1096 !CallerPAL.isEmpty())
1097 // In this case we have more arguments than the new function type, but we
1098 // won't be dropping them. Check that these extra arguments have attributes
1099 // that are compatible with being a vararg call argument.
1100 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1101 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1102 break;
1103 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1104 if (PAttrs & Attribute::VarArgsIncompatible)
1105 return false;
1106 }
1107
1108
1109 // Okay, we decided that this is a safe thing to do: go ahead and start
1110 // inserting cast instructions as necessary.
1111 std::vector<Value*> Args;
1112 Args.reserve(NumActualArgs);
1113 SmallVector<AttributeWithIndex, 8> attrVec;
1114 attrVec.reserve(NumCommonArgs);
1115
1116 // Get any return attributes.
1117 Attributes RAttrs = CallerPAL.getRetAttributes();
1118
1119 // If the return value is not being used, the type may not be compatible
1120 // with the existing attributes. Wipe out any problematic attributes.
1121 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1122
1123 // Add the new return attributes.
1124 if (RAttrs)
1125 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1126
1127 AI = CS.arg_begin();
1128 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1129 Type *ParamTy = FT->getParamType(i);
1130 if ((*AI)->getType() == ParamTy) {
1131 Args.push_back(*AI);
1132 } else {
1133 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1134 false, ParamTy, false);
1135 Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy));
1136 }
1137
1138 // Add any parameter attributes.
1139 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1140 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1141 }
1142
1143 // If the function takes more arguments than the call was taking, add them
1144 // now.
1145 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1146 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1147
1148 // If we are removing arguments to the function, emit an obnoxious warning.
1149 if (FT->getNumParams() < NumActualArgs) {
1150 if (!FT->isVarArg()) {
1151 errs() << "WARNING: While resolving call to function '"
1152 << Callee->getName() << "' arguments were dropped!\n";
1153 } else {
1154 // Add all of the arguments in their promoted form to the arg list.
1155 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1156 Type *PTy = getPromotedType((*AI)->getType());
1157 if (PTy != (*AI)->getType()) {
1158 // Must promote to pass through va_arg area!
1159 Instruction::CastOps opcode =
1160 CastInst::getCastOpcode(*AI, false, PTy, false);
1161 Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
1162 } else {
1163 Args.push_back(*AI);
1164 }
1165
1166 // Add any parameter attributes.
1167 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1168 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1169 }
1170 }
1171 }
1172
1173 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
1174 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1175
1176 if (NewRetTy->isVoidTy())
1177 Caller->setName(""); // Void type should not have a name.
1178
1179 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec);
1180
1181 Instruction *NC;
1182 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1183 NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1184 II->getUnwindDest(), Args);
1185 NC->takeName(II);
1186 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1187 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1188 } else {
1189 CallInst *CI = cast<CallInst>(Caller);
1190 NC = Builder->CreateCall(Callee, Args);
1191 NC->takeName(CI);
1192 if (CI->isTailCall())
1193 cast<CallInst>(NC)->setTailCall();
1194 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1195 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1196 }
1197
1198 // Insert a cast of the return type as necessary.
1199 Value *NV = NC;
1200 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1201 if (!NV->getType()->isVoidTy()) {
1202 Instruction::CastOps opcode =
1203 CastInst::getCastOpcode(NC, false, OldRetTy, false);
1204 NV = NC = CastInst::Create(opcode, NC, OldRetTy);
1205 NC->setDebugLoc(Caller->getDebugLoc());
1206
1207 // If this is an invoke instruction, we should insert it after the first
1208 // non-phi, instruction in the normal successor block.
1209 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1210 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
1211 InsertNewInstBefore(NC, *I);
1212 } else {
1213 // Otherwise, it's a call, just insert cast right after the call.
1214 InsertNewInstBefore(NC, *Caller);
1215 }
1216 Worklist.AddUsersToWorkList(*Caller);
1217 } else {
1218 NV = UndefValue::get(Caller->getType());
1219 }
1220 }
1221
1222 if (!Caller->use_empty())
1223 ReplaceInstUsesWith(*Caller, NV);
1224
1225 EraseInstFromFunction(*Caller);
1226 return true;
1227 }
1228
1229 // transformCallThroughTrampoline - Turn a call to a function created by
1230 // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
1231 // underlying function.
1232 //
1233 Instruction *
transformCallThroughTrampoline(CallSite CS,IntrinsicInst * Tramp)1234 InstCombiner::transformCallThroughTrampoline(CallSite CS,
1235 IntrinsicInst *Tramp) {
1236 Value *Callee = CS.getCalledValue();
1237 PointerType *PTy = cast<PointerType>(Callee->getType());
1238 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1239 const AttrListPtr &Attrs = CS.getAttributes();
1240
1241 // If the call already has the 'nest' attribute somewhere then give up -
1242 // otherwise 'nest' would occur twice after splicing in the chain.
1243 if (Attrs.hasAttrSomewhere(Attribute::Nest))
1244 return 0;
1245
1246 assert(Tramp &&
1247 "transformCallThroughTrampoline called with incorrect CallSite.");
1248
1249 Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1250 PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1251 FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1252
1253 const AttrListPtr &NestAttrs = NestF->getAttributes();
1254 if (!NestAttrs.isEmpty()) {
1255 unsigned NestIdx = 1;
1256 Type *NestTy = 0;
1257 Attributes NestAttr = Attribute::None;
1258
1259 // Look for a parameter marked with the 'nest' attribute.
1260 for (FunctionType::param_iterator I = NestFTy->param_begin(),
1261 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1262 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1263 // Record the parameter type and any other attributes.
1264 NestTy = *I;
1265 NestAttr = NestAttrs.getParamAttributes(NestIdx);
1266 break;
1267 }
1268
1269 if (NestTy) {
1270 Instruction *Caller = CS.getInstruction();
1271 std::vector<Value*> NewArgs;
1272 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1273
1274 SmallVector<AttributeWithIndex, 8> NewAttrs;
1275 NewAttrs.reserve(Attrs.getNumSlots() + 1);
1276
1277 // Insert the nest argument into the call argument list, which may
1278 // mean appending it. Likewise for attributes.
1279
1280 // Add any result attributes.
1281 if (Attributes Attr = Attrs.getRetAttributes())
1282 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1283
1284 {
1285 unsigned Idx = 1;
1286 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1287 do {
1288 if (Idx == NestIdx) {
1289 // Add the chain argument and attributes.
1290 Value *NestVal = Tramp->getArgOperand(2);
1291 if (NestVal->getType() != NestTy)
1292 NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1293 NewArgs.push_back(NestVal);
1294 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1295 }
1296
1297 if (I == E)
1298 break;
1299
1300 // Add the original argument and attributes.
1301 NewArgs.push_back(*I);
1302 if (Attributes Attr = Attrs.getParamAttributes(Idx))
1303 NewAttrs.push_back
1304 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1305
1306 ++Idx, ++I;
1307 } while (1);
1308 }
1309
1310 // Add any function attributes.
1311 if (Attributes Attr = Attrs.getFnAttributes())
1312 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1313
1314 // The trampoline may have been bitcast to a bogus type (FTy).
1315 // Handle this by synthesizing a new function type, equal to FTy
1316 // with the chain parameter inserted.
1317
1318 std::vector<Type*> NewTypes;
1319 NewTypes.reserve(FTy->getNumParams()+1);
1320
1321 // Insert the chain's type into the list of parameter types, which may
1322 // mean appending it.
1323 {
1324 unsigned Idx = 1;
1325 FunctionType::param_iterator I = FTy->param_begin(),
1326 E = FTy->param_end();
1327
1328 do {
1329 if (Idx == NestIdx)
1330 // Add the chain's type.
1331 NewTypes.push_back(NestTy);
1332
1333 if (I == E)
1334 break;
1335
1336 // Add the original type.
1337 NewTypes.push_back(*I);
1338
1339 ++Idx, ++I;
1340 } while (1);
1341 }
1342
1343 // Replace the trampoline call with a direct call. Let the generic
1344 // code sort out any function type mismatches.
1345 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1346 FTy->isVarArg());
1347 Constant *NewCallee =
1348 NestF->getType() == PointerType::getUnqual(NewFTy) ?
1349 NestF : ConstantExpr::getBitCast(NestF,
1350 PointerType::getUnqual(NewFTy));
1351 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs);
1352
1353 Instruction *NewCaller;
1354 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1355 NewCaller = InvokeInst::Create(NewCallee,
1356 II->getNormalDest(), II->getUnwindDest(),
1357 NewArgs);
1358 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1359 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1360 } else {
1361 NewCaller = CallInst::Create(NewCallee, NewArgs);
1362 if (cast<CallInst>(Caller)->isTailCall())
1363 cast<CallInst>(NewCaller)->setTailCall();
1364 cast<CallInst>(NewCaller)->
1365 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1366 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1367 }
1368
1369 return NewCaller;
1370 }
1371 }
1372
1373 // Replace the trampoline call with a direct call. Since there is no 'nest'
1374 // parameter, there is no need to adjust the argument list. Let the generic
1375 // code sort out any function type mismatches.
1376 Constant *NewCallee =
1377 NestF->getType() == PTy ? NestF :
1378 ConstantExpr::getBitCast(NestF, PTy);
1379 CS.setCalledFunction(NewCallee);
1380 return CS.getInstruction();
1381 }
1382