• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGObjCRuntime.h"
19 #include "CGDebugInfo.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/Support/CallSite.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
EmitCXXMemberCall(const CXXMethodDecl * MD,llvm::Value * Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * VTT,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd)26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
27                                           llvm::Value *Callee,
28                                           ReturnValueSlot ReturnValue,
29                                           llvm::Value *This,
30                                           llvm::Value *VTT,
31                                           CallExpr::const_arg_iterator ArgBeg,
32                                           CallExpr::const_arg_iterator ArgEnd) {
33   assert(MD->isInstance() &&
34          "Trying to emit a member call expr on a static method!");
35 
36   // C++11 [class.mfct.non-static]p2:
37   //   If a non-static member function of a class X is called for an object that
38   //   is not of type X, or of a type derived from X, the behavior is undefined.
39   EmitTypeCheck(TCK_MemberCall, This,
40                 getContext().getRecordType(MD->getParent()));
41 
42   CallArgList Args;
43 
44   // Push the this ptr.
45   Args.add(RValue::get(This), MD->getThisType(getContext()));
46 
47   // If there is a VTT parameter, emit it.
48   if (VTT) {
49     QualType T = getContext().getPointerType(getContext().VoidPtrTy);
50     Args.add(RValue::get(VTT), T);
51   }
52 
53   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
54   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
55 
56   // And the rest of the call args.
57   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
58 
59   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
60                   Callee, ReturnValue, Args, MD);
61 }
62 
63 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
64 // quite what we want.
skipNoOpCastsAndParens(const Expr * E)65 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
66   while (true) {
67     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
68       E = PE->getSubExpr();
69       continue;
70     }
71 
72     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
73       if (CE->getCastKind() == CK_NoOp) {
74         E = CE->getSubExpr();
75         continue;
76       }
77     }
78     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
79       if (UO->getOpcode() == UO_Extension) {
80         E = UO->getSubExpr();
81         continue;
82       }
83     }
84     return E;
85   }
86 }
87 
88 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
89 /// expr can be devirtualized.
canDevirtualizeMemberFunctionCalls(ASTContext & Context,const Expr * Base,const CXXMethodDecl * MD)90 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
91                                                const Expr *Base,
92                                                const CXXMethodDecl *MD) {
93 
94   // When building with -fapple-kext, all calls must go through the vtable since
95   // the kernel linker can do runtime patching of vtables.
96   if (Context.getLangOpts().AppleKext)
97     return false;
98 
99   // If the most derived class is marked final, we know that no subclass can
100   // override this member function and so we can devirtualize it. For example:
101   //
102   // struct A { virtual void f(); }
103   // struct B final : A { };
104   //
105   // void f(B *b) {
106   //   b->f();
107   // }
108   //
109   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
110   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
111     return true;
112 
113   // If the member function is marked 'final', we know that it can't be
114   // overridden and can therefore devirtualize it.
115   if (MD->hasAttr<FinalAttr>())
116     return true;
117 
118   // Similarly, if the class itself is marked 'final' it can't be overridden
119   // and we can therefore devirtualize the member function call.
120   if (MD->getParent()->hasAttr<FinalAttr>())
121     return true;
122 
123   Base = skipNoOpCastsAndParens(Base);
124   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
125     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
126       // This is a record decl. We know the type and can devirtualize it.
127       return VD->getType()->isRecordType();
128     }
129 
130     return false;
131   }
132 
133   // We can devirtualize calls on an object accessed by a class member access
134   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
135   // a derived class object constructed in the same location.
136   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
137     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
138       return VD->getType()->isRecordType();
139 
140   // We can always devirtualize calls on temporary object expressions.
141   if (isa<CXXConstructExpr>(Base))
142     return true;
143 
144   // And calls on bound temporaries.
145   if (isa<CXXBindTemporaryExpr>(Base))
146     return true;
147 
148   // Check if this is a call expr that returns a record type.
149   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
150     return CE->getCallReturnType()->isRecordType();
151 
152   // We can't devirtualize the call.
153   return false;
154 }
155 
getCXXRecord(const Expr * E)156 static CXXRecordDecl *getCXXRecord(const Expr *E) {
157   QualType T = E->getType();
158   if (const PointerType *PTy = T->getAs<PointerType>())
159     T = PTy->getPointeeType();
160   const RecordType *Ty = T->castAs<RecordType>();
161   return cast<CXXRecordDecl>(Ty->getDecl());
162 }
163 
164 // Note: This function also emit constructor calls to support a MSVC
165 // extensions allowing explicit constructor function call.
EmitCXXMemberCallExpr(const CXXMemberCallExpr * CE,ReturnValueSlot ReturnValue)166 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
167                                               ReturnValueSlot ReturnValue) {
168   const Expr *callee = CE->getCallee()->IgnoreParens();
169 
170   if (isa<BinaryOperator>(callee))
171     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
172 
173   const MemberExpr *ME = cast<MemberExpr>(callee);
174   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
175 
176   CGDebugInfo *DI = getDebugInfo();
177   if (DI && CGM.getCodeGenOpts().DebugInfo == CodeGenOptions::LimitedDebugInfo
178       && !isa<CallExpr>(ME->getBase())) {
179     QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
180     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
181       DI->getOrCreateRecordType(PTy->getPointeeType(),
182                                 MD->getParent()->getLocation());
183     }
184   }
185 
186   if (MD->isStatic()) {
187     // The method is static, emit it as we would a regular call.
188     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
189     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
190                     ReturnValue, CE->arg_begin(), CE->arg_end());
191   }
192 
193   // Compute the object pointer.
194   const Expr *Base = ME->getBase();
195   bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
196 
197   const CXXMethodDecl *DevirtualizedMethod = NULL;
198   if (CanUseVirtualCall &&
199       canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) {
200     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
201     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
202     assert(DevirtualizedMethod);
203     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
204     const Expr *Inner = Base->ignoreParenBaseCasts();
205     if (getCXXRecord(Inner) == DevirtualizedClass)
206       // If the class of the Inner expression is where the dynamic method
207       // is defined, build the this pointer from it.
208       Base = Inner;
209     else if (getCXXRecord(Base) != DevirtualizedClass) {
210       // If the method is defined in a class that is not the best dynamic
211       // one or the one of the full expression, we would have to build
212       // a derived-to-base cast to compute the correct this pointer, but
213       // we don't have support for that yet, so do a virtual call.
214       DevirtualizedMethod = NULL;
215     }
216     // If the return types are not the same, this might be a case where more
217     // code needs to run to compensate for it. For example, the derived
218     // method might return a type that inherits form from the return
219     // type of MD and has a prefix.
220     // For now we just avoid devirtualizing these covariant cases.
221     if (DevirtualizedMethod &&
222         DevirtualizedMethod->getResultType().getCanonicalType() !=
223         MD->getResultType().getCanonicalType())
224       DevirtualizedMethod = NULL;
225   }
226 
227   llvm::Value *This;
228   if (ME->isArrow())
229     This = EmitScalarExpr(Base);
230   else
231     This = EmitLValue(Base).getAddress();
232 
233 
234   if (MD->isTrivial()) {
235     if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
236     if (isa<CXXConstructorDecl>(MD) &&
237         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
238       return RValue::get(0);
239 
240     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
241       // We don't like to generate the trivial copy/move assignment operator
242       // when it isn't necessary; just produce the proper effect here.
243       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
244       EmitAggregateCopy(This, RHS, CE->getType());
245       return RValue::get(This);
246     }
247 
248     if (isa<CXXConstructorDecl>(MD) &&
249         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
250       // Trivial move and copy ctor are the same.
251       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
252       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
253                                      CE->arg_begin(), CE->arg_end());
254       return RValue::get(This);
255     }
256     llvm_unreachable("unknown trivial member function");
257   }
258 
259   // Compute the function type we're calling.
260   const CGFunctionInfo *FInfo = 0;
261   if (isa<CXXDestructorDecl>(MD))
262     FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD),
263                                                  Dtor_Complete);
264   else if (isa<CXXConstructorDecl>(MD))
265     FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(
266                                                  cast<CXXConstructorDecl>(MD),
267                                                  Ctor_Complete);
268   else
269     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD);
270 
271   llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo);
272 
273   // C++ [class.virtual]p12:
274   //   Explicit qualification with the scope operator (5.1) suppresses the
275   //   virtual call mechanism.
276   //
277   // We also don't emit a virtual call if the base expression has a record type
278   // because then we know what the type is.
279   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
280 
281   llvm::Value *Callee;
282   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
283     if (UseVirtualCall) {
284       Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
285     } else {
286       if (getContext().getLangOpts().AppleKext &&
287           MD->isVirtual() &&
288           ME->hasQualifier())
289         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
290       else if (!DevirtualizedMethod)
291         Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
292       else {
293         const CXXDestructorDecl *DDtor =
294           cast<CXXDestructorDecl>(DevirtualizedMethod);
295         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
296       }
297     }
298   } else if (const CXXConstructorDecl *Ctor =
299                dyn_cast<CXXConstructorDecl>(MD)) {
300     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
301   } else if (UseVirtualCall) {
302       Callee = BuildVirtualCall(MD, This, Ty);
303   } else {
304     if (getContext().getLangOpts().AppleKext &&
305         MD->isVirtual() &&
306         ME->hasQualifier())
307       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
308     else if (!DevirtualizedMethod)
309       Callee = CGM.GetAddrOfFunction(MD, Ty);
310     else {
311       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
312     }
313   }
314 
315   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
316                            CE->arg_begin(), CE->arg_end());
317 }
318 
319 RValue
EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr * E,ReturnValueSlot ReturnValue)320 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
321                                               ReturnValueSlot ReturnValue) {
322   const BinaryOperator *BO =
323       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
324   const Expr *BaseExpr = BO->getLHS();
325   const Expr *MemFnExpr = BO->getRHS();
326 
327   const MemberPointerType *MPT =
328     MemFnExpr->getType()->castAs<MemberPointerType>();
329 
330   const FunctionProtoType *FPT =
331     MPT->getPointeeType()->castAs<FunctionProtoType>();
332   const CXXRecordDecl *RD =
333     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
334 
335   // Get the member function pointer.
336   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
337 
338   // Emit the 'this' pointer.
339   llvm::Value *This;
340 
341   if (BO->getOpcode() == BO_PtrMemI)
342     This = EmitScalarExpr(BaseExpr);
343   else
344     This = EmitLValue(BaseExpr).getAddress();
345 
346   EmitTypeCheck(TCK_MemberCall, This, QualType(MPT->getClass(), 0));
347 
348   // Ask the ABI to load the callee.  Note that This is modified.
349   llvm::Value *Callee =
350     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
351 
352   CallArgList Args;
353 
354   QualType ThisType =
355     getContext().getPointerType(getContext().getTagDeclType(RD));
356 
357   // Push the this ptr.
358   Args.add(RValue::get(This), ThisType);
359 
360   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
361 
362   // And the rest of the call args
363   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
364   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee,
365                   ReturnValue, Args);
366 }
367 
368 RValue
EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue)369 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
370                                                const CXXMethodDecl *MD,
371                                                ReturnValueSlot ReturnValue) {
372   assert(MD->isInstance() &&
373          "Trying to emit a member call expr on a static method!");
374   LValue LV = EmitLValue(E->getArg(0));
375   llvm::Value *This = LV.getAddress();
376 
377   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
378       MD->isTrivial()) {
379     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
380     QualType Ty = E->getType();
381     EmitAggregateCopy(This, Src, Ty);
382     return RValue::get(This);
383   }
384 
385   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
386   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
387                            E->arg_begin() + 1, E->arg_end());
388 }
389 
EmitCUDAKernelCallExpr(const CUDAKernelCallExpr * E,ReturnValueSlot ReturnValue)390 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
391                                                ReturnValueSlot ReturnValue) {
392   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
393 }
394 
EmitNullBaseClassInitialization(CodeGenFunction & CGF,llvm::Value * DestPtr,const CXXRecordDecl * Base)395 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
396                                             llvm::Value *DestPtr,
397                                             const CXXRecordDecl *Base) {
398   if (Base->isEmpty())
399     return;
400 
401   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
402 
403   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
404   CharUnits Size = Layout.getNonVirtualSize();
405   CharUnits Align = Layout.getNonVirtualAlign();
406 
407   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
408 
409   // If the type contains a pointer to data member we can't memset it to zero.
410   // Instead, create a null constant and copy it to the destination.
411   // TODO: there are other patterns besides zero that we can usefully memset,
412   // like -1, which happens to be the pattern used by member-pointers.
413   // TODO: isZeroInitializable can be over-conservative in the case where a
414   // virtual base contains a member pointer.
415   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
416     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
417 
418     llvm::GlobalVariable *NullVariable =
419       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
420                                /*isConstant=*/true,
421                                llvm::GlobalVariable::PrivateLinkage,
422                                NullConstant, Twine());
423     NullVariable->setAlignment(Align.getQuantity());
424     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
425 
426     // Get and call the appropriate llvm.memcpy overload.
427     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
428     return;
429   }
430 
431   // Otherwise, just memset the whole thing to zero.  This is legal
432   // because in LLVM, all default initializers (other than the ones we just
433   // handled above) are guaranteed to have a bit pattern of all zeros.
434   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
435                            Align.getQuantity());
436 }
437 
438 void
EmitCXXConstructExpr(const CXXConstructExpr * E,AggValueSlot Dest)439 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
440                                       AggValueSlot Dest) {
441   assert(!Dest.isIgnored() && "Must have a destination!");
442   const CXXConstructorDecl *CD = E->getConstructor();
443 
444   // If we require zero initialization before (or instead of) calling the
445   // constructor, as can be the case with a non-user-provided default
446   // constructor, emit the zero initialization now, unless destination is
447   // already zeroed.
448   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
449     switch (E->getConstructionKind()) {
450     case CXXConstructExpr::CK_Delegating:
451     case CXXConstructExpr::CK_Complete:
452       EmitNullInitialization(Dest.getAddr(), E->getType());
453       break;
454     case CXXConstructExpr::CK_VirtualBase:
455     case CXXConstructExpr::CK_NonVirtualBase:
456       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
457       break;
458     }
459   }
460 
461   // If this is a call to a trivial default constructor, do nothing.
462   if (CD->isTrivial() && CD->isDefaultConstructor())
463     return;
464 
465   // Elide the constructor if we're constructing from a temporary.
466   // The temporary check is required because Sema sets this on NRVO
467   // returns.
468   if (getContext().getLangOpts().ElideConstructors && E->isElidable()) {
469     assert(getContext().hasSameUnqualifiedType(E->getType(),
470                                                E->getArg(0)->getType()));
471     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
472       EmitAggExpr(E->getArg(0), Dest);
473       return;
474     }
475   }
476 
477   if (const ConstantArrayType *arrayType
478         = getContext().getAsConstantArrayType(E->getType())) {
479     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
480                                E->arg_begin(), E->arg_end());
481   } else {
482     CXXCtorType Type = Ctor_Complete;
483     bool ForVirtualBase = false;
484 
485     switch (E->getConstructionKind()) {
486      case CXXConstructExpr::CK_Delegating:
487       // We should be emitting a constructor; GlobalDecl will assert this
488       Type = CurGD.getCtorType();
489       break;
490 
491      case CXXConstructExpr::CK_Complete:
492       Type = Ctor_Complete;
493       break;
494 
495      case CXXConstructExpr::CK_VirtualBase:
496       ForVirtualBase = true;
497       // fall-through
498 
499      case CXXConstructExpr::CK_NonVirtualBase:
500       Type = Ctor_Base;
501     }
502 
503     // Call the constructor.
504     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
505                            E->arg_begin(), E->arg_end());
506   }
507 }
508 
509 void
EmitSynthesizedCXXCopyCtor(llvm::Value * Dest,llvm::Value * Src,const Expr * Exp)510 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
511                                             llvm::Value *Src,
512                                             const Expr *Exp) {
513   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
514     Exp = E->getSubExpr();
515   assert(isa<CXXConstructExpr>(Exp) &&
516          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
517   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
518   const CXXConstructorDecl *CD = E->getConstructor();
519   RunCleanupsScope Scope(*this);
520 
521   // If we require zero initialization before (or instead of) calling the
522   // constructor, as can be the case with a non-user-provided default
523   // constructor, emit the zero initialization now.
524   // FIXME. Do I still need this for a copy ctor synthesis?
525   if (E->requiresZeroInitialization())
526     EmitNullInitialization(Dest, E->getType());
527 
528   assert(!getContext().getAsConstantArrayType(E->getType())
529          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
530   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
531                                  E->arg_begin(), E->arg_end());
532 }
533 
CalculateCookiePadding(CodeGenFunction & CGF,const CXXNewExpr * E)534 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
535                                         const CXXNewExpr *E) {
536   if (!E->isArray())
537     return CharUnits::Zero();
538 
539   // No cookie is required if the operator new[] being used is the
540   // reserved placement operator new[].
541   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
542     return CharUnits::Zero();
543 
544   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
545 }
546 
EmitCXXNewAllocSize(CodeGenFunction & CGF,const CXXNewExpr * e,unsigned minElements,llvm::Value * & numElements,llvm::Value * & sizeWithoutCookie)547 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
548                                         const CXXNewExpr *e,
549                                         unsigned minElements,
550                                         llvm::Value *&numElements,
551                                         llvm::Value *&sizeWithoutCookie) {
552   QualType type = e->getAllocatedType();
553 
554   if (!e->isArray()) {
555     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
556     sizeWithoutCookie
557       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
558     return sizeWithoutCookie;
559   }
560 
561   // The width of size_t.
562   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
563 
564   // Figure out the cookie size.
565   llvm::APInt cookieSize(sizeWidth,
566                          CalculateCookiePadding(CGF, e).getQuantity());
567 
568   // Emit the array size expression.
569   // We multiply the size of all dimensions for NumElements.
570   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
571   numElements = CGF.EmitScalarExpr(e->getArraySize());
572   assert(isa<llvm::IntegerType>(numElements->getType()));
573 
574   // The number of elements can be have an arbitrary integer type;
575   // essentially, we need to multiply it by a constant factor, add a
576   // cookie size, and verify that the result is representable as a
577   // size_t.  That's just a gloss, though, and it's wrong in one
578   // important way: if the count is negative, it's an error even if
579   // the cookie size would bring the total size >= 0.
580   bool isSigned
581     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
582   llvm::IntegerType *numElementsType
583     = cast<llvm::IntegerType>(numElements->getType());
584   unsigned numElementsWidth = numElementsType->getBitWidth();
585 
586   // Compute the constant factor.
587   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
588   while (const ConstantArrayType *CAT
589              = CGF.getContext().getAsConstantArrayType(type)) {
590     type = CAT->getElementType();
591     arraySizeMultiplier *= CAT->getSize();
592   }
593 
594   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
595   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
596   typeSizeMultiplier *= arraySizeMultiplier;
597 
598   // This will be a size_t.
599   llvm::Value *size;
600 
601   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
602   // Don't bloat the -O0 code.
603   if (llvm::ConstantInt *numElementsC =
604         dyn_cast<llvm::ConstantInt>(numElements)) {
605     const llvm::APInt &count = numElementsC->getValue();
606 
607     bool hasAnyOverflow = false;
608 
609     // If 'count' was a negative number, it's an overflow.
610     if (isSigned && count.isNegative())
611       hasAnyOverflow = true;
612 
613     // We want to do all this arithmetic in size_t.  If numElements is
614     // wider than that, check whether it's already too big, and if so,
615     // overflow.
616     else if (numElementsWidth > sizeWidth &&
617              numElementsWidth - sizeWidth > count.countLeadingZeros())
618       hasAnyOverflow = true;
619 
620     // Okay, compute a count at the right width.
621     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
622 
623     // If there is a brace-initializer, we cannot allocate fewer elements than
624     // there are initializers. If we do, that's treated like an overflow.
625     if (adjustedCount.ult(minElements))
626       hasAnyOverflow = true;
627 
628     // Scale numElements by that.  This might overflow, but we don't
629     // care because it only overflows if allocationSize does, too, and
630     // if that overflows then we shouldn't use this.
631     numElements = llvm::ConstantInt::get(CGF.SizeTy,
632                                          adjustedCount * arraySizeMultiplier);
633 
634     // Compute the size before cookie, and track whether it overflowed.
635     bool overflow;
636     llvm::APInt allocationSize
637       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
638     hasAnyOverflow |= overflow;
639 
640     // Add in the cookie, and check whether it's overflowed.
641     if (cookieSize != 0) {
642       // Save the current size without a cookie.  This shouldn't be
643       // used if there was overflow.
644       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
645 
646       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
647       hasAnyOverflow |= overflow;
648     }
649 
650     // On overflow, produce a -1 so operator new will fail.
651     if (hasAnyOverflow) {
652       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
653     } else {
654       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
655     }
656 
657   // Otherwise, we might need to use the overflow intrinsics.
658   } else {
659     // There are up to five conditions we need to test for:
660     // 1) if isSigned, we need to check whether numElements is negative;
661     // 2) if numElementsWidth > sizeWidth, we need to check whether
662     //   numElements is larger than something representable in size_t;
663     // 3) if minElements > 0, we need to check whether numElements is smaller
664     //    than that.
665     // 4) we need to compute
666     //      sizeWithoutCookie := numElements * typeSizeMultiplier
667     //    and check whether it overflows; and
668     // 5) if we need a cookie, we need to compute
669     //      size := sizeWithoutCookie + cookieSize
670     //    and check whether it overflows.
671 
672     llvm::Value *hasOverflow = 0;
673 
674     // If numElementsWidth > sizeWidth, then one way or another, we're
675     // going to have to do a comparison for (2), and this happens to
676     // take care of (1), too.
677     if (numElementsWidth > sizeWidth) {
678       llvm::APInt threshold(numElementsWidth, 1);
679       threshold <<= sizeWidth;
680 
681       llvm::Value *thresholdV
682         = llvm::ConstantInt::get(numElementsType, threshold);
683 
684       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
685       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
686 
687     // Otherwise, if we're signed, we want to sext up to size_t.
688     } else if (isSigned) {
689       if (numElementsWidth < sizeWidth)
690         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
691 
692       // If there's a non-1 type size multiplier, then we can do the
693       // signedness check at the same time as we do the multiply
694       // because a negative number times anything will cause an
695       // unsigned overflow.  Otherwise, we have to do it here. But at least
696       // in this case, we can subsume the >= minElements check.
697       if (typeSizeMultiplier == 1)
698         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
699                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
700 
701     // Otherwise, zext up to size_t if necessary.
702     } else if (numElementsWidth < sizeWidth) {
703       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
704     }
705 
706     assert(numElements->getType() == CGF.SizeTy);
707 
708     if (minElements) {
709       // Don't allow allocation of fewer elements than we have initializers.
710       if (!hasOverflow) {
711         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
712                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
713       } else if (numElementsWidth > sizeWidth) {
714         // The other existing overflow subsumes this check.
715         // We do an unsigned comparison, since any signed value < -1 is
716         // taken care of either above or below.
717         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
718                           CGF.Builder.CreateICmpULT(numElements,
719                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
720       }
721     }
722 
723     size = numElements;
724 
725     // Multiply by the type size if necessary.  This multiplier
726     // includes all the factors for nested arrays.
727     //
728     // This step also causes numElements to be scaled up by the
729     // nested-array factor if necessary.  Overflow on this computation
730     // can be ignored because the result shouldn't be used if
731     // allocation fails.
732     if (typeSizeMultiplier != 1) {
733       llvm::Value *umul_with_overflow
734         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
735 
736       llvm::Value *tsmV =
737         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
738       llvm::Value *result =
739         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
740 
741       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
742       if (hasOverflow)
743         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
744       else
745         hasOverflow = overflowed;
746 
747       size = CGF.Builder.CreateExtractValue(result, 0);
748 
749       // Also scale up numElements by the array size multiplier.
750       if (arraySizeMultiplier != 1) {
751         // If the base element type size is 1, then we can re-use the
752         // multiply we just did.
753         if (typeSize.isOne()) {
754           assert(arraySizeMultiplier == typeSizeMultiplier);
755           numElements = size;
756 
757         // Otherwise we need a separate multiply.
758         } else {
759           llvm::Value *asmV =
760             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
761           numElements = CGF.Builder.CreateMul(numElements, asmV);
762         }
763       }
764     } else {
765       // numElements doesn't need to be scaled.
766       assert(arraySizeMultiplier == 1);
767     }
768 
769     // Add in the cookie size if necessary.
770     if (cookieSize != 0) {
771       sizeWithoutCookie = size;
772 
773       llvm::Value *uadd_with_overflow
774         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
775 
776       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
777       llvm::Value *result =
778         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
779 
780       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
781       if (hasOverflow)
782         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
783       else
784         hasOverflow = overflowed;
785 
786       size = CGF.Builder.CreateExtractValue(result, 0);
787     }
788 
789     // If we had any possibility of dynamic overflow, make a select to
790     // overwrite 'size' with an all-ones value, which should cause
791     // operator new to throw.
792     if (hasOverflow)
793       size = CGF.Builder.CreateSelect(hasOverflow,
794                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
795                                       size);
796   }
797 
798   if (cookieSize == 0)
799     sizeWithoutCookie = size;
800   else
801     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
802 
803   return size;
804 }
805 
StoreAnyExprIntoOneUnit(CodeGenFunction & CGF,const Expr * Init,QualType AllocType,llvm::Value * NewPtr)806 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
807                                     QualType AllocType, llvm::Value *NewPtr) {
808 
809   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
810   if (!CGF.hasAggregateLLVMType(AllocType))
811     CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
812                                                    Alignment),
813                        false);
814   else if (AllocType->isAnyComplexType())
815     CGF.EmitComplexExprIntoAddr(Init, NewPtr,
816                                 AllocType.isVolatileQualified());
817   else {
818     AggValueSlot Slot
819       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
820                               AggValueSlot::IsDestructed,
821                               AggValueSlot::DoesNotNeedGCBarriers,
822                               AggValueSlot::IsNotAliased);
823     CGF.EmitAggExpr(Init, Slot);
824 
825     CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init);
826   }
827 }
828 
829 void
EmitNewArrayInitializer(const CXXNewExpr * E,QualType elementType,llvm::Value * beginPtr,llvm::Value * numElements)830 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
831                                          QualType elementType,
832                                          llvm::Value *beginPtr,
833                                          llvm::Value *numElements) {
834   if (!E->hasInitializer())
835     return; // We have a POD type.
836 
837   llvm::Value *explicitPtr = beginPtr;
838   // Find the end of the array, hoisted out of the loop.
839   llvm::Value *endPtr =
840     Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
841 
842   unsigned initializerElements = 0;
843 
844   const Expr *Init = E->getInitializer();
845   llvm::AllocaInst *endOfInit = 0;
846   QualType::DestructionKind dtorKind = elementType.isDestructedType();
847   EHScopeStack::stable_iterator cleanup;
848   llvm::Instruction *cleanupDominator = 0;
849   // If the initializer is an initializer list, first do the explicit elements.
850   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
851     initializerElements = ILE->getNumInits();
852 
853     // Enter a partial-destruction cleanup if necessary.
854     if (needsEHCleanup(dtorKind)) {
855       // In principle we could tell the cleanup where we are more
856       // directly, but the control flow can get so varied here that it
857       // would actually be quite complex.  Therefore we go through an
858       // alloca.
859       endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
860       cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
861       pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
862                                        getDestroyer(dtorKind));
863       cleanup = EHStack.stable_begin();
864     }
865 
866     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
867       // Tell the cleanup that it needs to destroy up to this
868       // element.  TODO: some of these stores can be trivially
869       // observed to be unnecessary.
870       if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
871       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr);
872       explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next");
873     }
874 
875     // The remaining elements are filled with the array filler expression.
876     Init = ILE->getArrayFiller();
877   }
878 
879   // Create the continuation block.
880   llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
881 
882   // If the number of elements isn't constant, we have to now check if there is
883   // anything left to initialize.
884   if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
885     // If all elements have already been initialized, skip the whole loop.
886     if (constNum->getZExtValue() <= initializerElements) {
887       // If there was a cleanup, deactivate it.
888       if (cleanupDominator)
889         DeactivateCleanupBlock(cleanup, cleanupDominator);
890       return;
891     }
892   } else {
893     llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
894     llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
895                                                 "array.isempty");
896     Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
897     EmitBlock(nonEmptyBB);
898   }
899 
900   // Enter the loop.
901   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
902   llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
903 
904   EmitBlock(loopBB);
905 
906   // Set up the current-element phi.
907   llvm::PHINode *curPtr =
908     Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
909   curPtr->addIncoming(explicitPtr, entryBB);
910 
911   // Store the new cleanup position for irregular cleanups.
912   if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
913 
914   // Enter a partial-destruction cleanup if necessary.
915   if (!cleanupDominator && needsEHCleanup(dtorKind)) {
916     pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
917                                    getDestroyer(dtorKind));
918     cleanup = EHStack.stable_begin();
919     cleanupDominator = Builder.CreateUnreachable();
920   }
921 
922   // Emit the initializer into this element.
923   StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
924 
925   // Leave the cleanup if we entered one.
926   if (cleanupDominator) {
927     DeactivateCleanupBlock(cleanup, cleanupDominator);
928     cleanupDominator->eraseFromParent();
929   }
930 
931   // Advance to the next element.
932   llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
933 
934   // Check whether we've gotten to the end of the array and, if so,
935   // exit the loop.
936   llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
937   Builder.CreateCondBr(isEnd, contBB, loopBB);
938   curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
939 
940   EmitBlock(contBB);
941 }
942 
EmitZeroMemSet(CodeGenFunction & CGF,QualType T,llvm::Value * NewPtr,llvm::Value * Size)943 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
944                            llvm::Value *NewPtr, llvm::Value *Size) {
945   CGF.EmitCastToVoidPtr(NewPtr);
946   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
947   CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
948                            Alignment.getQuantity(), false);
949 }
950 
EmitNewInitializer(CodeGenFunction & CGF,const CXXNewExpr * E,QualType ElementType,llvm::Value * NewPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)951 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
952                                QualType ElementType,
953                                llvm::Value *NewPtr,
954                                llvm::Value *NumElements,
955                                llvm::Value *AllocSizeWithoutCookie) {
956   const Expr *Init = E->getInitializer();
957   if (E->isArray()) {
958     if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
959       CXXConstructorDecl *Ctor = CCE->getConstructor();
960       if (Ctor->isTrivial()) {
961         // If new expression did not specify value-initialization, then there
962         // is no initialization.
963         if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
964           return;
965 
966         if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
967           // Optimization: since zero initialization will just set the memory
968           // to all zeroes, generate a single memset to do it in one shot.
969           EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
970           return;
971         }
972       }
973 
974       CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
975                                      CCE->arg_begin(),  CCE->arg_end(),
976                                      CCE->requiresZeroInitialization());
977       return;
978     } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
979                CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
980       // Optimization: since zero initialization will just set the memory
981       // to all zeroes, generate a single memset to do it in one shot.
982       EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
983       return;
984     }
985     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
986     return;
987   }
988 
989   if (!Init)
990     return;
991 
992   StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
993 }
994 
995 namespace {
996   /// A cleanup to call the given 'operator delete' function upon
997   /// abnormal exit from a new expression.
998   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
999     size_t NumPlacementArgs;
1000     const FunctionDecl *OperatorDelete;
1001     llvm::Value *Ptr;
1002     llvm::Value *AllocSize;
1003 
getPlacementArgs()1004     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1005 
1006   public:
getExtraSize(size_t NumPlacementArgs)1007     static size_t getExtraSize(size_t NumPlacementArgs) {
1008       return NumPlacementArgs * sizeof(RValue);
1009     }
1010 
CallDeleteDuringNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,llvm::Value * Ptr,llvm::Value * AllocSize)1011     CallDeleteDuringNew(size_t NumPlacementArgs,
1012                         const FunctionDecl *OperatorDelete,
1013                         llvm::Value *Ptr,
1014                         llvm::Value *AllocSize)
1015       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1016         Ptr(Ptr), AllocSize(AllocSize) {}
1017 
setPlacementArg(unsigned I,RValue Arg)1018     void setPlacementArg(unsigned I, RValue Arg) {
1019       assert(I < NumPlacementArgs && "index out of range");
1020       getPlacementArgs()[I] = Arg;
1021     }
1022 
Emit(CodeGenFunction & CGF,Flags flags)1023     void Emit(CodeGenFunction &CGF, Flags flags) {
1024       const FunctionProtoType *FPT
1025         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1026       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1027              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1028 
1029       CallArgList DeleteArgs;
1030 
1031       // The first argument is always a void*.
1032       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1033       DeleteArgs.add(RValue::get(Ptr), *AI++);
1034 
1035       // A member 'operator delete' can take an extra 'size_t' argument.
1036       if (FPT->getNumArgs() == NumPlacementArgs + 2)
1037         DeleteArgs.add(RValue::get(AllocSize), *AI++);
1038 
1039       // Pass the rest of the arguments, which must match exactly.
1040       for (unsigned I = 0; I != NumPlacementArgs; ++I)
1041         DeleteArgs.add(getPlacementArgs()[I], *AI++);
1042 
1043       // Call 'operator delete'.
1044       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT),
1045                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
1046                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
1047     }
1048   };
1049 
1050   /// A cleanup to call the given 'operator delete' function upon
1051   /// abnormal exit from a new expression when the new expression is
1052   /// conditional.
1053   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1054     size_t NumPlacementArgs;
1055     const FunctionDecl *OperatorDelete;
1056     DominatingValue<RValue>::saved_type Ptr;
1057     DominatingValue<RValue>::saved_type AllocSize;
1058 
getPlacementArgs()1059     DominatingValue<RValue>::saved_type *getPlacementArgs() {
1060       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1061     }
1062 
1063   public:
getExtraSize(size_t NumPlacementArgs)1064     static size_t getExtraSize(size_t NumPlacementArgs) {
1065       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1066     }
1067 
CallDeleteDuringConditionalNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,DominatingValue<RValue>::saved_type Ptr,DominatingValue<RValue>::saved_type AllocSize)1068     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1069                                    const FunctionDecl *OperatorDelete,
1070                                    DominatingValue<RValue>::saved_type Ptr,
1071                               DominatingValue<RValue>::saved_type AllocSize)
1072       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1073         Ptr(Ptr), AllocSize(AllocSize) {}
1074 
setPlacementArg(unsigned I,DominatingValue<RValue>::saved_type Arg)1075     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1076       assert(I < NumPlacementArgs && "index out of range");
1077       getPlacementArgs()[I] = Arg;
1078     }
1079 
Emit(CodeGenFunction & CGF,Flags flags)1080     void Emit(CodeGenFunction &CGF, Flags flags) {
1081       const FunctionProtoType *FPT
1082         = OperatorDelete->getType()->getAs<FunctionProtoType>();
1083       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1084              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1085 
1086       CallArgList DeleteArgs;
1087 
1088       // The first argument is always a void*.
1089       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1090       DeleteArgs.add(Ptr.restore(CGF), *AI++);
1091 
1092       // A member 'operator delete' can take an extra 'size_t' argument.
1093       if (FPT->getNumArgs() == NumPlacementArgs + 2) {
1094         RValue RV = AllocSize.restore(CGF);
1095         DeleteArgs.add(RV, *AI++);
1096       }
1097 
1098       // Pass the rest of the arguments, which must match exactly.
1099       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1100         RValue RV = getPlacementArgs()[I].restore(CGF);
1101         DeleteArgs.add(RV, *AI++);
1102       }
1103 
1104       // Call 'operator delete'.
1105       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT),
1106                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
1107                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
1108     }
1109   };
1110 }
1111 
1112 /// Enter a cleanup to call 'operator delete' if the initializer in a
1113 /// new-expression throws.
EnterNewDeleteCleanup(CodeGenFunction & CGF,const CXXNewExpr * E,llvm::Value * NewPtr,llvm::Value * AllocSize,const CallArgList & NewArgs)1114 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1115                                   const CXXNewExpr *E,
1116                                   llvm::Value *NewPtr,
1117                                   llvm::Value *AllocSize,
1118                                   const CallArgList &NewArgs) {
1119   // If we're not inside a conditional branch, then the cleanup will
1120   // dominate and we can do the easier (and more efficient) thing.
1121   if (!CGF.isInConditionalBranch()) {
1122     CallDeleteDuringNew *Cleanup = CGF.EHStack
1123       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1124                                                  E->getNumPlacementArgs(),
1125                                                  E->getOperatorDelete(),
1126                                                  NewPtr, AllocSize);
1127     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1128       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1129 
1130     return;
1131   }
1132 
1133   // Otherwise, we need to save all this stuff.
1134   DominatingValue<RValue>::saved_type SavedNewPtr =
1135     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1136   DominatingValue<RValue>::saved_type SavedAllocSize =
1137     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1138 
1139   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1140     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1141                                                  E->getNumPlacementArgs(),
1142                                                  E->getOperatorDelete(),
1143                                                  SavedNewPtr,
1144                                                  SavedAllocSize);
1145   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1146     Cleanup->setPlacementArg(I,
1147                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1148 
1149   CGF.initFullExprCleanup();
1150 }
1151 
EmitCXXNewExpr(const CXXNewExpr * E)1152 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1153   // The element type being allocated.
1154   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1155 
1156   // 1. Build a call to the allocation function.
1157   FunctionDecl *allocator = E->getOperatorNew();
1158   const FunctionProtoType *allocatorType =
1159     allocator->getType()->castAs<FunctionProtoType>();
1160 
1161   CallArgList allocatorArgs;
1162 
1163   // The allocation size is the first argument.
1164   QualType sizeType = getContext().getSizeType();
1165 
1166   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1167   unsigned minElements = 0;
1168   if (E->isArray() && E->hasInitializer()) {
1169     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1170       minElements = ILE->getNumInits();
1171   }
1172 
1173   llvm::Value *numElements = 0;
1174   llvm::Value *allocSizeWithoutCookie = 0;
1175   llvm::Value *allocSize =
1176     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1177                         allocSizeWithoutCookie);
1178 
1179   allocatorArgs.add(RValue::get(allocSize), sizeType);
1180 
1181   // Emit the rest of the arguments.
1182   // FIXME: Ideally, this should just use EmitCallArgs.
1183   CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
1184 
1185   // First, use the types from the function type.
1186   // We start at 1 here because the first argument (the allocation size)
1187   // has already been emitted.
1188   for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
1189        ++i, ++placementArg) {
1190     QualType argType = allocatorType->getArgType(i);
1191 
1192     assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
1193                                                placementArg->getType()) &&
1194            "type mismatch in call argument!");
1195 
1196     EmitCallArg(allocatorArgs, *placementArg, argType);
1197   }
1198 
1199   // Either we've emitted all the call args, or we have a call to a
1200   // variadic function.
1201   assert((placementArg == E->placement_arg_end() ||
1202           allocatorType->isVariadic()) &&
1203          "Extra arguments to non-variadic function!");
1204 
1205   // If we still have any arguments, emit them using the type of the argument.
1206   for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
1207        placementArg != placementArgsEnd; ++placementArg) {
1208     EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
1209   }
1210 
1211   // Emit the allocation call.  If the allocator is a global placement
1212   // operator, just "inline" it directly.
1213   RValue RV;
1214   if (allocator->isReservedGlobalPlacementOperator()) {
1215     assert(allocatorArgs.size() == 2);
1216     RV = allocatorArgs[1].RV;
1217     // TODO: kill any unnecessary computations done for the size
1218     // argument.
1219   } else {
1220     RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs,
1221                                                          allocatorType),
1222                   CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
1223                   allocatorArgs, allocator);
1224   }
1225 
1226   // Emit a null check on the allocation result if the allocation
1227   // function is allowed to return null (because it has a non-throwing
1228   // exception spec; for this part, we inline
1229   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1230   // interesting initializer.
1231   bool nullCheck = allocatorType->isNothrow(getContext()) &&
1232     (!allocType.isPODType(getContext()) || E->hasInitializer());
1233 
1234   llvm::BasicBlock *nullCheckBB = 0;
1235   llvm::BasicBlock *contBB = 0;
1236 
1237   llvm::Value *allocation = RV.getScalarVal();
1238   unsigned AS =
1239     cast<llvm::PointerType>(allocation->getType())->getAddressSpace();
1240 
1241   // The null-check means that the initializer is conditionally
1242   // evaluated.
1243   ConditionalEvaluation conditional(*this);
1244 
1245   if (nullCheck) {
1246     conditional.begin(*this);
1247 
1248     nullCheckBB = Builder.GetInsertBlock();
1249     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1250     contBB = createBasicBlock("new.cont");
1251 
1252     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1253     Builder.CreateCondBr(isNull, contBB, notNullBB);
1254     EmitBlock(notNullBB);
1255   }
1256 
1257   // If there's an operator delete, enter a cleanup to call it if an
1258   // exception is thrown.
1259   EHScopeStack::stable_iterator operatorDeleteCleanup;
1260   llvm::Instruction *cleanupDominator = 0;
1261   if (E->getOperatorDelete() &&
1262       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1263     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1264     operatorDeleteCleanup = EHStack.stable_begin();
1265     cleanupDominator = Builder.CreateUnreachable();
1266   }
1267 
1268   assert((allocSize == allocSizeWithoutCookie) ==
1269          CalculateCookiePadding(*this, E).isZero());
1270   if (allocSize != allocSizeWithoutCookie) {
1271     assert(E->isArray());
1272     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1273                                                        numElements,
1274                                                        E, allocType);
1275   }
1276 
1277   llvm::Type *elementPtrTy
1278     = ConvertTypeForMem(allocType)->getPointerTo(AS);
1279   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1280 
1281   EmitNewInitializer(*this, E, allocType, result, numElements,
1282                      allocSizeWithoutCookie);
1283   if (E->isArray()) {
1284     // NewPtr is a pointer to the base element type.  If we're
1285     // allocating an array of arrays, we'll need to cast back to the
1286     // array pointer type.
1287     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1288     if (result->getType() != resultType)
1289       result = Builder.CreateBitCast(result, resultType);
1290   }
1291 
1292   // Deactivate the 'operator delete' cleanup if we finished
1293   // initialization.
1294   if (operatorDeleteCleanup.isValid()) {
1295     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1296     cleanupDominator->eraseFromParent();
1297   }
1298 
1299   if (nullCheck) {
1300     conditional.end(*this);
1301 
1302     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1303     EmitBlock(contBB);
1304 
1305     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1306     PHI->addIncoming(result, notNullBB);
1307     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1308                      nullCheckBB);
1309 
1310     result = PHI;
1311   }
1312 
1313   return result;
1314 }
1315 
EmitDeleteCall(const FunctionDecl * DeleteFD,llvm::Value * Ptr,QualType DeleteTy)1316 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1317                                      llvm::Value *Ptr,
1318                                      QualType DeleteTy) {
1319   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1320 
1321   const FunctionProtoType *DeleteFTy =
1322     DeleteFD->getType()->getAs<FunctionProtoType>();
1323 
1324   CallArgList DeleteArgs;
1325 
1326   // Check if we need to pass the size to the delete operator.
1327   llvm::Value *Size = 0;
1328   QualType SizeTy;
1329   if (DeleteFTy->getNumArgs() == 2) {
1330     SizeTy = DeleteFTy->getArgType(1);
1331     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1332     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1333                                   DeleteTypeSize.getQuantity());
1334   }
1335 
1336   QualType ArgTy = DeleteFTy->getArgType(0);
1337   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1338   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1339 
1340   if (Size)
1341     DeleteArgs.add(RValue::get(Size), SizeTy);
1342 
1343   // Emit the call to delete.
1344   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy),
1345            CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
1346            DeleteArgs, DeleteFD);
1347 }
1348 
1349 namespace {
1350   /// Calls the given 'operator delete' on a single object.
1351   struct CallObjectDelete : EHScopeStack::Cleanup {
1352     llvm::Value *Ptr;
1353     const FunctionDecl *OperatorDelete;
1354     QualType ElementType;
1355 
CallObjectDelete__anone677e7a20211::CallObjectDelete1356     CallObjectDelete(llvm::Value *Ptr,
1357                      const FunctionDecl *OperatorDelete,
1358                      QualType ElementType)
1359       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1360 
Emit__anone677e7a20211::CallObjectDelete1361     void Emit(CodeGenFunction &CGF, Flags flags) {
1362       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1363     }
1364   };
1365 }
1366 
1367 /// Emit the code for deleting a single object.
EmitObjectDelete(CodeGenFunction & CGF,const FunctionDecl * OperatorDelete,llvm::Value * Ptr,QualType ElementType,bool UseGlobalDelete)1368 static void EmitObjectDelete(CodeGenFunction &CGF,
1369                              const FunctionDecl *OperatorDelete,
1370                              llvm::Value *Ptr,
1371                              QualType ElementType,
1372                              bool UseGlobalDelete) {
1373   // Find the destructor for the type, if applicable.  If the
1374   // destructor is virtual, we'll just emit the vcall and return.
1375   const CXXDestructorDecl *Dtor = 0;
1376   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1377     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1378     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1379       Dtor = RD->getDestructor();
1380 
1381       if (Dtor->isVirtual()) {
1382         if (UseGlobalDelete) {
1383           // If we're supposed to call the global delete, make sure we do so
1384           // even if the destructor throws.
1385           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1386                                                     Ptr, OperatorDelete,
1387                                                     ElementType);
1388         }
1389 
1390         llvm::Type *Ty =
1391           CGF.getTypes().GetFunctionType(
1392                          CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete));
1393 
1394         llvm::Value *Callee
1395           = CGF.BuildVirtualCall(Dtor,
1396                                  UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
1397                                  Ptr, Ty);
1398         CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
1399                               0, 0);
1400 
1401         if (UseGlobalDelete) {
1402           CGF.PopCleanupBlock();
1403         }
1404 
1405         return;
1406       }
1407     }
1408   }
1409 
1410   // Make sure that we call delete even if the dtor throws.
1411   // This doesn't have to a conditional cleanup because we're going
1412   // to pop it off in a second.
1413   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1414                                             Ptr, OperatorDelete, ElementType);
1415 
1416   if (Dtor)
1417     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1418                               /*ForVirtualBase=*/false, Ptr);
1419   else if (CGF.getLangOpts().ObjCAutoRefCount &&
1420            ElementType->isObjCLifetimeType()) {
1421     switch (ElementType.getObjCLifetime()) {
1422     case Qualifiers::OCL_None:
1423     case Qualifiers::OCL_ExplicitNone:
1424     case Qualifiers::OCL_Autoreleasing:
1425       break;
1426 
1427     case Qualifiers::OCL_Strong: {
1428       // Load the pointer value.
1429       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1430                                              ElementType.isVolatileQualified());
1431 
1432       CGF.EmitARCRelease(PtrValue, /*precise*/ true);
1433       break;
1434     }
1435 
1436     case Qualifiers::OCL_Weak:
1437       CGF.EmitARCDestroyWeak(Ptr);
1438       break;
1439     }
1440   }
1441 
1442   CGF.PopCleanupBlock();
1443 }
1444 
1445 namespace {
1446   /// Calls the given 'operator delete' on an array of objects.
1447   struct CallArrayDelete : EHScopeStack::Cleanup {
1448     llvm::Value *Ptr;
1449     const FunctionDecl *OperatorDelete;
1450     llvm::Value *NumElements;
1451     QualType ElementType;
1452     CharUnits CookieSize;
1453 
CallArrayDelete__anone677e7a20311::CallArrayDelete1454     CallArrayDelete(llvm::Value *Ptr,
1455                     const FunctionDecl *OperatorDelete,
1456                     llvm::Value *NumElements,
1457                     QualType ElementType,
1458                     CharUnits CookieSize)
1459       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1460         ElementType(ElementType), CookieSize(CookieSize) {}
1461 
Emit__anone677e7a20311::CallArrayDelete1462     void Emit(CodeGenFunction &CGF, Flags flags) {
1463       const FunctionProtoType *DeleteFTy =
1464         OperatorDelete->getType()->getAs<FunctionProtoType>();
1465       assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1466 
1467       CallArgList Args;
1468 
1469       // Pass the pointer as the first argument.
1470       QualType VoidPtrTy = DeleteFTy->getArgType(0);
1471       llvm::Value *DeletePtr
1472         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1473       Args.add(RValue::get(DeletePtr), VoidPtrTy);
1474 
1475       // Pass the original requested size as the second argument.
1476       if (DeleteFTy->getNumArgs() == 2) {
1477         QualType size_t = DeleteFTy->getArgType(1);
1478         llvm::IntegerType *SizeTy
1479           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1480 
1481         CharUnits ElementTypeSize =
1482           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1483 
1484         // The size of an element, multiplied by the number of elements.
1485         llvm::Value *Size
1486           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1487         Size = CGF.Builder.CreateMul(Size, NumElements);
1488 
1489         // Plus the size of the cookie if applicable.
1490         if (!CookieSize.isZero()) {
1491           llvm::Value *CookieSizeV
1492             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1493           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1494         }
1495 
1496         Args.add(RValue::get(Size), size_t);
1497       }
1498 
1499       // Emit the call to delete.
1500       CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy),
1501                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
1502                    ReturnValueSlot(), Args, OperatorDelete);
1503     }
1504   };
1505 }
1506 
1507 /// Emit the code for deleting an array of objects.
EmitArrayDelete(CodeGenFunction & CGF,const CXXDeleteExpr * E,llvm::Value * deletedPtr,QualType elementType)1508 static void EmitArrayDelete(CodeGenFunction &CGF,
1509                             const CXXDeleteExpr *E,
1510                             llvm::Value *deletedPtr,
1511                             QualType elementType) {
1512   llvm::Value *numElements = 0;
1513   llvm::Value *allocatedPtr = 0;
1514   CharUnits cookieSize;
1515   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1516                                       numElements, allocatedPtr, cookieSize);
1517 
1518   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1519 
1520   // Make sure that we call delete even if one of the dtors throws.
1521   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1522   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1523                                            allocatedPtr, operatorDelete,
1524                                            numElements, elementType,
1525                                            cookieSize);
1526 
1527   // Destroy the elements.
1528   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1529     assert(numElements && "no element count for a type with a destructor!");
1530 
1531     llvm::Value *arrayEnd =
1532       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1533 
1534     // Note that it is legal to allocate a zero-length array, and we
1535     // can never fold the check away because the length should always
1536     // come from a cookie.
1537     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1538                          CGF.getDestroyer(dtorKind),
1539                          /*checkZeroLength*/ true,
1540                          CGF.needsEHCleanup(dtorKind));
1541   }
1542 
1543   // Pop the cleanup block.
1544   CGF.PopCleanupBlock();
1545 }
1546 
EmitCXXDeleteExpr(const CXXDeleteExpr * E)1547 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1548   const Expr *Arg = E->getArgument();
1549   llvm::Value *Ptr = EmitScalarExpr(Arg);
1550 
1551   // Null check the pointer.
1552   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1553   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1554 
1555   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1556 
1557   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1558   EmitBlock(DeleteNotNull);
1559 
1560   // We might be deleting a pointer to array.  If so, GEP down to the
1561   // first non-array element.
1562   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1563   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1564   if (DeleteTy->isConstantArrayType()) {
1565     llvm::Value *Zero = Builder.getInt32(0);
1566     SmallVector<llvm::Value*,8> GEP;
1567 
1568     GEP.push_back(Zero); // point at the outermost array
1569 
1570     // For each layer of array type we're pointing at:
1571     while (const ConstantArrayType *Arr
1572              = getContext().getAsConstantArrayType(DeleteTy)) {
1573       // 1. Unpeel the array type.
1574       DeleteTy = Arr->getElementType();
1575 
1576       // 2. GEP to the first element of the array.
1577       GEP.push_back(Zero);
1578     }
1579 
1580     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1581   }
1582 
1583   assert(ConvertTypeForMem(DeleteTy) ==
1584          cast<llvm::PointerType>(Ptr->getType())->getElementType());
1585 
1586   if (E->isArrayForm()) {
1587     EmitArrayDelete(*this, E, Ptr, DeleteTy);
1588   } else {
1589     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1590                      E->isGlobalDelete());
1591   }
1592 
1593   EmitBlock(DeleteEnd);
1594 }
1595 
getBadTypeidFn(CodeGenFunction & CGF)1596 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1597   // void __cxa_bad_typeid();
1598   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1599 
1600   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1601 }
1602 
EmitBadTypeidCall(CodeGenFunction & CGF)1603 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1604   llvm::Value *Fn = getBadTypeidFn(CGF);
1605   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1606   CGF.Builder.CreateUnreachable();
1607 }
1608 
EmitTypeidFromVTable(CodeGenFunction & CGF,const Expr * E,llvm::Type * StdTypeInfoPtrTy)1609 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1610                                          const Expr *E,
1611                                          llvm::Type *StdTypeInfoPtrTy) {
1612   // Get the vtable pointer.
1613   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1614 
1615   // C++ [expr.typeid]p2:
1616   //   If the glvalue expression is obtained by applying the unary * operator to
1617   //   a pointer and the pointer is a null pointer value, the typeid expression
1618   //   throws the std::bad_typeid exception.
1619   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1620     if (UO->getOpcode() == UO_Deref) {
1621       llvm::BasicBlock *BadTypeidBlock =
1622         CGF.createBasicBlock("typeid.bad_typeid");
1623       llvm::BasicBlock *EndBlock =
1624         CGF.createBasicBlock("typeid.end");
1625 
1626       llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1627       CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1628 
1629       CGF.EmitBlock(BadTypeidBlock);
1630       EmitBadTypeidCall(CGF);
1631       CGF.EmitBlock(EndBlock);
1632     }
1633   }
1634 
1635   llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1636                                         StdTypeInfoPtrTy->getPointerTo());
1637 
1638   // Load the type info.
1639   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1640   return CGF.Builder.CreateLoad(Value);
1641 }
1642 
EmitCXXTypeidExpr(const CXXTypeidExpr * E)1643 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1644   llvm::Type *StdTypeInfoPtrTy =
1645     ConvertType(E->getType())->getPointerTo();
1646 
1647   if (E->isTypeOperand()) {
1648     llvm::Constant *TypeInfo =
1649       CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
1650     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1651   }
1652 
1653   // C++ [expr.typeid]p2:
1654   //   When typeid is applied to a glvalue expression whose type is a
1655   //   polymorphic class type, the result refers to a std::type_info object
1656   //   representing the type of the most derived object (that is, the dynamic
1657   //   type) to which the glvalue refers.
1658   if (E->isPotentiallyEvaluated())
1659     return EmitTypeidFromVTable(*this, E->getExprOperand(),
1660                                 StdTypeInfoPtrTy);
1661 
1662   QualType OperandTy = E->getExprOperand()->getType();
1663   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1664                                StdTypeInfoPtrTy);
1665 }
1666 
getDynamicCastFn(CodeGenFunction & CGF)1667 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1668   // void *__dynamic_cast(const void *sub,
1669   //                      const abi::__class_type_info *src,
1670   //                      const abi::__class_type_info *dst,
1671   //                      std::ptrdiff_t src2dst_offset);
1672 
1673   llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
1674   llvm::Type *PtrDiffTy =
1675     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1676 
1677   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1678 
1679   llvm::FunctionType *FTy =
1680     llvm::FunctionType::get(Int8PtrTy, Args, false);
1681 
1682   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
1683 }
1684 
getBadCastFn(CodeGenFunction & CGF)1685 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1686   // void __cxa_bad_cast();
1687   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1688   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1689 }
1690 
EmitBadCastCall(CodeGenFunction & CGF)1691 static void EmitBadCastCall(CodeGenFunction &CGF) {
1692   llvm::Value *Fn = getBadCastFn(CGF);
1693   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1694   CGF.Builder.CreateUnreachable();
1695 }
1696 
1697 static llvm::Value *
EmitDynamicCastCall(CodeGenFunction & CGF,llvm::Value * Value,QualType SrcTy,QualType DestTy,llvm::BasicBlock * CastEnd)1698 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1699                     QualType SrcTy, QualType DestTy,
1700                     llvm::BasicBlock *CastEnd) {
1701   llvm::Type *PtrDiffLTy =
1702     CGF.ConvertType(CGF.getContext().getPointerDiffType());
1703   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1704 
1705   if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1706     if (PTy->getPointeeType()->isVoidType()) {
1707       // C++ [expr.dynamic.cast]p7:
1708       //   If T is "pointer to cv void," then the result is a pointer to the
1709       //   most derived object pointed to by v.
1710 
1711       // Get the vtable pointer.
1712       llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1713 
1714       // Get the offset-to-top from the vtable.
1715       llvm::Value *OffsetToTop =
1716         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1717       OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1718 
1719       // Finally, add the offset to the pointer.
1720       Value = CGF.EmitCastToVoidPtr(Value);
1721       Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1722 
1723       return CGF.Builder.CreateBitCast(Value, DestLTy);
1724     }
1725   }
1726 
1727   QualType SrcRecordTy;
1728   QualType DestRecordTy;
1729 
1730   if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1731     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1732     DestRecordTy = DestPTy->getPointeeType();
1733   } else {
1734     SrcRecordTy = SrcTy;
1735     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1736   }
1737 
1738   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1739   assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1740 
1741   llvm::Value *SrcRTTI =
1742     CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1743   llvm::Value *DestRTTI =
1744     CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1745 
1746   // FIXME: Actually compute a hint here.
1747   llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);
1748 
1749   // Emit the call to __dynamic_cast.
1750   Value = CGF.EmitCastToVoidPtr(Value);
1751   Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
1752                                   SrcRTTI, DestRTTI, OffsetHint);
1753   Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1754 
1755   /// C++ [expr.dynamic.cast]p9:
1756   ///   A failed cast to reference type throws std::bad_cast
1757   if (DestTy->isReferenceType()) {
1758     llvm::BasicBlock *BadCastBlock =
1759       CGF.createBasicBlock("dynamic_cast.bad_cast");
1760 
1761     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1762     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1763 
1764     CGF.EmitBlock(BadCastBlock);
1765     EmitBadCastCall(CGF);
1766   }
1767 
1768   return Value;
1769 }
1770 
EmitDynamicCastToNull(CodeGenFunction & CGF,QualType DestTy)1771 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1772                                           QualType DestTy) {
1773   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1774   if (DestTy->isPointerType())
1775     return llvm::Constant::getNullValue(DestLTy);
1776 
1777   /// C++ [expr.dynamic.cast]p9:
1778   ///   A failed cast to reference type throws std::bad_cast
1779   EmitBadCastCall(CGF);
1780 
1781   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1782   return llvm::UndefValue::get(DestLTy);
1783 }
1784 
EmitDynamicCast(llvm::Value * Value,const CXXDynamicCastExpr * DCE)1785 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1786                                               const CXXDynamicCastExpr *DCE) {
1787   QualType DestTy = DCE->getTypeAsWritten();
1788 
1789   if (DCE->isAlwaysNull())
1790     return EmitDynamicCastToNull(*this, DestTy);
1791 
1792   QualType SrcTy = DCE->getSubExpr()->getType();
1793 
1794   // C++ [expr.dynamic.cast]p4:
1795   //   If the value of v is a null pointer value in the pointer case, the result
1796   //   is the null pointer value of type T.
1797   bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1798 
1799   llvm::BasicBlock *CastNull = 0;
1800   llvm::BasicBlock *CastNotNull = 0;
1801   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1802 
1803   if (ShouldNullCheckSrcValue) {
1804     CastNull = createBasicBlock("dynamic_cast.null");
1805     CastNotNull = createBasicBlock("dynamic_cast.notnull");
1806 
1807     llvm::Value *IsNull = Builder.CreateIsNull(Value);
1808     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1809     EmitBlock(CastNotNull);
1810   }
1811 
1812   Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1813 
1814   if (ShouldNullCheckSrcValue) {
1815     EmitBranch(CastEnd);
1816 
1817     EmitBlock(CastNull);
1818     EmitBranch(CastEnd);
1819   }
1820 
1821   EmitBlock(CastEnd);
1822 
1823   if (ShouldNullCheckSrcValue) {
1824     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1825     PHI->addIncoming(Value, CastNotNull);
1826     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1827 
1828     Value = PHI;
1829   }
1830 
1831   return Value;
1832 }
1833 
EmitLambdaExpr(const LambdaExpr * E,AggValueSlot Slot)1834 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1835   RunCleanupsScope Scope(*this);
1836   LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
1837                                  Slot.getAlignment());
1838 
1839   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1840   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1841                                          e = E->capture_init_end();
1842        i != e; ++i, ++CurField) {
1843     // Emit initialization
1844 
1845     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1846     ArrayRef<VarDecl *> ArrayIndexes;
1847     if (CurField->getType()->isArrayType())
1848       ArrayIndexes = E->getCaptureInitIndexVars(i);
1849     EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1850   }
1851 }
1852