1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGObjCRuntime.h"
19 #include "CGDebugInfo.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/Support/CallSite.h"
22
23 using namespace clang;
24 using namespace CodeGen;
25
EmitCXXMemberCall(const CXXMethodDecl * MD,llvm::Value * Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * VTT,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd)26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
27 llvm::Value *Callee,
28 ReturnValueSlot ReturnValue,
29 llvm::Value *This,
30 llvm::Value *VTT,
31 CallExpr::const_arg_iterator ArgBeg,
32 CallExpr::const_arg_iterator ArgEnd) {
33 assert(MD->isInstance() &&
34 "Trying to emit a member call expr on a static method!");
35
36 // C++11 [class.mfct.non-static]p2:
37 // If a non-static member function of a class X is called for an object that
38 // is not of type X, or of a type derived from X, the behavior is undefined.
39 EmitTypeCheck(TCK_MemberCall, This,
40 getContext().getRecordType(MD->getParent()));
41
42 CallArgList Args;
43
44 // Push the this ptr.
45 Args.add(RValue::get(This), MD->getThisType(getContext()));
46
47 // If there is a VTT parameter, emit it.
48 if (VTT) {
49 QualType T = getContext().getPointerType(getContext().VoidPtrTy);
50 Args.add(RValue::get(VTT), T);
51 }
52
53 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
54 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
55
56 // And the rest of the call args.
57 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
58
59 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
60 Callee, ReturnValue, Args, MD);
61 }
62
63 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
64 // quite what we want.
skipNoOpCastsAndParens(const Expr * E)65 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
66 while (true) {
67 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
68 E = PE->getSubExpr();
69 continue;
70 }
71
72 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
73 if (CE->getCastKind() == CK_NoOp) {
74 E = CE->getSubExpr();
75 continue;
76 }
77 }
78 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
79 if (UO->getOpcode() == UO_Extension) {
80 E = UO->getSubExpr();
81 continue;
82 }
83 }
84 return E;
85 }
86 }
87
88 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
89 /// expr can be devirtualized.
canDevirtualizeMemberFunctionCalls(ASTContext & Context,const Expr * Base,const CXXMethodDecl * MD)90 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
91 const Expr *Base,
92 const CXXMethodDecl *MD) {
93
94 // When building with -fapple-kext, all calls must go through the vtable since
95 // the kernel linker can do runtime patching of vtables.
96 if (Context.getLangOpts().AppleKext)
97 return false;
98
99 // If the most derived class is marked final, we know that no subclass can
100 // override this member function and so we can devirtualize it. For example:
101 //
102 // struct A { virtual void f(); }
103 // struct B final : A { };
104 //
105 // void f(B *b) {
106 // b->f();
107 // }
108 //
109 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
110 if (MostDerivedClassDecl->hasAttr<FinalAttr>())
111 return true;
112
113 // If the member function is marked 'final', we know that it can't be
114 // overridden and can therefore devirtualize it.
115 if (MD->hasAttr<FinalAttr>())
116 return true;
117
118 // Similarly, if the class itself is marked 'final' it can't be overridden
119 // and we can therefore devirtualize the member function call.
120 if (MD->getParent()->hasAttr<FinalAttr>())
121 return true;
122
123 Base = skipNoOpCastsAndParens(Base);
124 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
125 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
126 // This is a record decl. We know the type and can devirtualize it.
127 return VD->getType()->isRecordType();
128 }
129
130 return false;
131 }
132
133 // We can devirtualize calls on an object accessed by a class member access
134 // expression, since by C++11 [basic.life]p6 we know that it can't refer to
135 // a derived class object constructed in the same location.
136 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
137 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
138 return VD->getType()->isRecordType();
139
140 // We can always devirtualize calls on temporary object expressions.
141 if (isa<CXXConstructExpr>(Base))
142 return true;
143
144 // And calls on bound temporaries.
145 if (isa<CXXBindTemporaryExpr>(Base))
146 return true;
147
148 // Check if this is a call expr that returns a record type.
149 if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
150 return CE->getCallReturnType()->isRecordType();
151
152 // We can't devirtualize the call.
153 return false;
154 }
155
getCXXRecord(const Expr * E)156 static CXXRecordDecl *getCXXRecord(const Expr *E) {
157 QualType T = E->getType();
158 if (const PointerType *PTy = T->getAs<PointerType>())
159 T = PTy->getPointeeType();
160 const RecordType *Ty = T->castAs<RecordType>();
161 return cast<CXXRecordDecl>(Ty->getDecl());
162 }
163
164 // Note: This function also emit constructor calls to support a MSVC
165 // extensions allowing explicit constructor function call.
EmitCXXMemberCallExpr(const CXXMemberCallExpr * CE,ReturnValueSlot ReturnValue)166 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
167 ReturnValueSlot ReturnValue) {
168 const Expr *callee = CE->getCallee()->IgnoreParens();
169
170 if (isa<BinaryOperator>(callee))
171 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
172
173 const MemberExpr *ME = cast<MemberExpr>(callee);
174 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
175
176 CGDebugInfo *DI = getDebugInfo();
177 if (DI && CGM.getCodeGenOpts().DebugInfo == CodeGenOptions::LimitedDebugInfo
178 && !isa<CallExpr>(ME->getBase())) {
179 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
180 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
181 DI->getOrCreateRecordType(PTy->getPointeeType(),
182 MD->getParent()->getLocation());
183 }
184 }
185
186 if (MD->isStatic()) {
187 // The method is static, emit it as we would a regular call.
188 llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
189 return EmitCall(getContext().getPointerType(MD->getType()), Callee,
190 ReturnValue, CE->arg_begin(), CE->arg_end());
191 }
192
193 // Compute the object pointer.
194 const Expr *Base = ME->getBase();
195 bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
196
197 const CXXMethodDecl *DevirtualizedMethod = NULL;
198 if (CanUseVirtualCall &&
199 canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) {
200 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
201 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
202 assert(DevirtualizedMethod);
203 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
204 const Expr *Inner = Base->ignoreParenBaseCasts();
205 if (getCXXRecord(Inner) == DevirtualizedClass)
206 // If the class of the Inner expression is where the dynamic method
207 // is defined, build the this pointer from it.
208 Base = Inner;
209 else if (getCXXRecord(Base) != DevirtualizedClass) {
210 // If the method is defined in a class that is not the best dynamic
211 // one or the one of the full expression, we would have to build
212 // a derived-to-base cast to compute the correct this pointer, but
213 // we don't have support for that yet, so do a virtual call.
214 DevirtualizedMethod = NULL;
215 }
216 // If the return types are not the same, this might be a case where more
217 // code needs to run to compensate for it. For example, the derived
218 // method might return a type that inherits form from the return
219 // type of MD and has a prefix.
220 // For now we just avoid devirtualizing these covariant cases.
221 if (DevirtualizedMethod &&
222 DevirtualizedMethod->getResultType().getCanonicalType() !=
223 MD->getResultType().getCanonicalType())
224 DevirtualizedMethod = NULL;
225 }
226
227 llvm::Value *This;
228 if (ME->isArrow())
229 This = EmitScalarExpr(Base);
230 else
231 This = EmitLValue(Base).getAddress();
232
233
234 if (MD->isTrivial()) {
235 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
236 if (isa<CXXConstructorDecl>(MD) &&
237 cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
238 return RValue::get(0);
239
240 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
241 // We don't like to generate the trivial copy/move assignment operator
242 // when it isn't necessary; just produce the proper effect here.
243 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
244 EmitAggregateCopy(This, RHS, CE->getType());
245 return RValue::get(This);
246 }
247
248 if (isa<CXXConstructorDecl>(MD) &&
249 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
250 // Trivial move and copy ctor are the same.
251 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
252 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
253 CE->arg_begin(), CE->arg_end());
254 return RValue::get(This);
255 }
256 llvm_unreachable("unknown trivial member function");
257 }
258
259 // Compute the function type we're calling.
260 const CGFunctionInfo *FInfo = 0;
261 if (isa<CXXDestructorDecl>(MD))
262 FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD),
263 Dtor_Complete);
264 else if (isa<CXXConstructorDecl>(MD))
265 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(
266 cast<CXXConstructorDecl>(MD),
267 Ctor_Complete);
268 else
269 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD);
270
271 llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo);
272
273 // C++ [class.virtual]p12:
274 // Explicit qualification with the scope operator (5.1) suppresses the
275 // virtual call mechanism.
276 //
277 // We also don't emit a virtual call if the base expression has a record type
278 // because then we know what the type is.
279 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
280
281 llvm::Value *Callee;
282 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
283 if (UseVirtualCall) {
284 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
285 } else {
286 if (getContext().getLangOpts().AppleKext &&
287 MD->isVirtual() &&
288 ME->hasQualifier())
289 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
290 else if (!DevirtualizedMethod)
291 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
292 else {
293 const CXXDestructorDecl *DDtor =
294 cast<CXXDestructorDecl>(DevirtualizedMethod);
295 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
296 }
297 }
298 } else if (const CXXConstructorDecl *Ctor =
299 dyn_cast<CXXConstructorDecl>(MD)) {
300 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
301 } else if (UseVirtualCall) {
302 Callee = BuildVirtualCall(MD, This, Ty);
303 } else {
304 if (getContext().getLangOpts().AppleKext &&
305 MD->isVirtual() &&
306 ME->hasQualifier())
307 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
308 else if (!DevirtualizedMethod)
309 Callee = CGM.GetAddrOfFunction(MD, Ty);
310 else {
311 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
312 }
313 }
314
315 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
316 CE->arg_begin(), CE->arg_end());
317 }
318
319 RValue
EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr * E,ReturnValueSlot ReturnValue)320 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
321 ReturnValueSlot ReturnValue) {
322 const BinaryOperator *BO =
323 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
324 const Expr *BaseExpr = BO->getLHS();
325 const Expr *MemFnExpr = BO->getRHS();
326
327 const MemberPointerType *MPT =
328 MemFnExpr->getType()->castAs<MemberPointerType>();
329
330 const FunctionProtoType *FPT =
331 MPT->getPointeeType()->castAs<FunctionProtoType>();
332 const CXXRecordDecl *RD =
333 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
334
335 // Get the member function pointer.
336 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
337
338 // Emit the 'this' pointer.
339 llvm::Value *This;
340
341 if (BO->getOpcode() == BO_PtrMemI)
342 This = EmitScalarExpr(BaseExpr);
343 else
344 This = EmitLValue(BaseExpr).getAddress();
345
346 EmitTypeCheck(TCK_MemberCall, This, QualType(MPT->getClass(), 0));
347
348 // Ask the ABI to load the callee. Note that This is modified.
349 llvm::Value *Callee =
350 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
351
352 CallArgList Args;
353
354 QualType ThisType =
355 getContext().getPointerType(getContext().getTagDeclType(RD));
356
357 // Push the this ptr.
358 Args.add(RValue::get(This), ThisType);
359
360 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
361
362 // And the rest of the call args
363 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
364 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee,
365 ReturnValue, Args);
366 }
367
368 RValue
EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue)369 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
370 const CXXMethodDecl *MD,
371 ReturnValueSlot ReturnValue) {
372 assert(MD->isInstance() &&
373 "Trying to emit a member call expr on a static method!");
374 LValue LV = EmitLValue(E->getArg(0));
375 llvm::Value *This = LV.getAddress();
376
377 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
378 MD->isTrivial()) {
379 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
380 QualType Ty = E->getType();
381 EmitAggregateCopy(This, Src, Ty);
382 return RValue::get(This);
383 }
384
385 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
386 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
387 E->arg_begin() + 1, E->arg_end());
388 }
389
EmitCUDAKernelCallExpr(const CUDAKernelCallExpr * E,ReturnValueSlot ReturnValue)390 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
391 ReturnValueSlot ReturnValue) {
392 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
393 }
394
EmitNullBaseClassInitialization(CodeGenFunction & CGF,llvm::Value * DestPtr,const CXXRecordDecl * Base)395 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
396 llvm::Value *DestPtr,
397 const CXXRecordDecl *Base) {
398 if (Base->isEmpty())
399 return;
400
401 DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
402
403 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
404 CharUnits Size = Layout.getNonVirtualSize();
405 CharUnits Align = Layout.getNonVirtualAlign();
406
407 llvm::Value *SizeVal = CGF.CGM.getSize(Size);
408
409 // If the type contains a pointer to data member we can't memset it to zero.
410 // Instead, create a null constant and copy it to the destination.
411 // TODO: there are other patterns besides zero that we can usefully memset,
412 // like -1, which happens to be the pattern used by member-pointers.
413 // TODO: isZeroInitializable can be over-conservative in the case where a
414 // virtual base contains a member pointer.
415 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
416 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
417
418 llvm::GlobalVariable *NullVariable =
419 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
420 /*isConstant=*/true,
421 llvm::GlobalVariable::PrivateLinkage,
422 NullConstant, Twine());
423 NullVariable->setAlignment(Align.getQuantity());
424 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
425
426 // Get and call the appropriate llvm.memcpy overload.
427 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
428 return;
429 }
430
431 // Otherwise, just memset the whole thing to zero. This is legal
432 // because in LLVM, all default initializers (other than the ones we just
433 // handled above) are guaranteed to have a bit pattern of all zeros.
434 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
435 Align.getQuantity());
436 }
437
438 void
EmitCXXConstructExpr(const CXXConstructExpr * E,AggValueSlot Dest)439 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
440 AggValueSlot Dest) {
441 assert(!Dest.isIgnored() && "Must have a destination!");
442 const CXXConstructorDecl *CD = E->getConstructor();
443
444 // If we require zero initialization before (or instead of) calling the
445 // constructor, as can be the case with a non-user-provided default
446 // constructor, emit the zero initialization now, unless destination is
447 // already zeroed.
448 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
449 switch (E->getConstructionKind()) {
450 case CXXConstructExpr::CK_Delegating:
451 case CXXConstructExpr::CK_Complete:
452 EmitNullInitialization(Dest.getAddr(), E->getType());
453 break;
454 case CXXConstructExpr::CK_VirtualBase:
455 case CXXConstructExpr::CK_NonVirtualBase:
456 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
457 break;
458 }
459 }
460
461 // If this is a call to a trivial default constructor, do nothing.
462 if (CD->isTrivial() && CD->isDefaultConstructor())
463 return;
464
465 // Elide the constructor if we're constructing from a temporary.
466 // The temporary check is required because Sema sets this on NRVO
467 // returns.
468 if (getContext().getLangOpts().ElideConstructors && E->isElidable()) {
469 assert(getContext().hasSameUnqualifiedType(E->getType(),
470 E->getArg(0)->getType()));
471 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
472 EmitAggExpr(E->getArg(0), Dest);
473 return;
474 }
475 }
476
477 if (const ConstantArrayType *arrayType
478 = getContext().getAsConstantArrayType(E->getType())) {
479 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
480 E->arg_begin(), E->arg_end());
481 } else {
482 CXXCtorType Type = Ctor_Complete;
483 bool ForVirtualBase = false;
484
485 switch (E->getConstructionKind()) {
486 case CXXConstructExpr::CK_Delegating:
487 // We should be emitting a constructor; GlobalDecl will assert this
488 Type = CurGD.getCtorType();
489 break;
490
491 case CXXConstructExpr::CK_Complete:
492 Type = Ctor_Complete;
493 break;
494
495 case CXXConstructExpr::CK_VirtualBase:
496 ForVirtualBase = true;
497 // fall-through
498
499 case CXXConstructExpr::CK_NonVirtualBase:
500 Type = Ctor_Base;
501 }
502
503 // Call the constructor.
504 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
505 E->arg_begin(), E->arg_end());
506 }
507 }
508
509 void
EmitSynthesizedCXXCopyCtor(llvm::Value * Dest,llvm::Value * Src,const Expr * Exp)510 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
511 llvm::Value *Src,
512 const Expr *Exp) {
513 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
514 Exp = E->getSubExpr();
515 assert(isa<CXXConstructExpr>(Exp) &&
516 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
517 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
518 const CXXConstructorDecl *CD = E->getConstructor();
519 RunCleanupsScope Scope(*this);
520
521 // If we require zero initialization before (or instead of) calling the
522 // constructor, as can be the case with a non-user-provided default
523 // constructor, emit the zero initialization now.
524 // FIXME. Do I still need this for a copy ctor synthesis?
525 if (E->requiresZeroInitialization())
526 EmitNullInitialization(Dest, E->getType());
527
528 assert(!getContext().getAsConstantArrayType(E->getType())
529 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
530 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
531 E->arg_begin(), E->arg_end());
532 }
533
CalculateCookiePadding(CodeGenFunction & CGF,const CXXNewExpr * E)534 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
535 const CXXNewExpr *E) {
536 if (!E->isArray())
537 return CharUnits::Zero();
538
539 // No cookie is required if the operator new[] being used is the
540 // reserved placement operator new[].
541 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
542 return CharUnits::Zero();
543
544 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
545 }
546
EmitCXXNewAllocSize(CodeGenFunction & CGF,const CXXNewExpr * e,unsigned minElements,llvm::Value * & numElements,llvm::Value * & sizeWithoutCookie)547 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
548 const CXXNewExpr *e,
549 unsigned minElements,
550 llvm::Value *&numElements,
551 llvm::Value *&sizeWithoutCookie) {
552 QualType type = e->getAllocatedType();
553
554 if (!e->isArray()) {
555 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
556 sizeWithoutCookie
557 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
558 return sizeWithoutCookie;
559 }
560
561 // The width of size_t.
562 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
563
564 // Figure out the cookie size.
565 llvm::APInt cookieSize(sizeWidth,
566 CalculateCookiePadding(CGF, e).getQuantity());
567
568 // Emit the array size expression.
569 // We multiply the size of all dimensions for NumElements.
570 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
571 numElements = CGF.EmitScalarExpr(e->getArraySize());
572 assert(isa<llvm::IntegerType>(numElements->getType()));
573
574 // The number of elements can be have an arbitrary integer type;
575 // essentially, we need to multiply it by a constant factor, add a
576 // cookie size, and verify that the result is representable as a
577 // size_t. That's just a gloss, though, and it's wrong in one
578 // important way: if the count is negative, it's an error even if
579 // the cookie size would bring the total size >= 0.
580 bool isSigned
581 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
582 llvm::IntegerType *numElementsType
583 = cast<llvm::IntegerType>(numElements->getType());
584 unsigned numElementsWidth = numElementsType->getBitWidth();
585
586 // Compute the constant factor.
587 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
588 while (const ConstantArrayType *CAT
589 = CGF.getContext().getAsConstantArrayType(type)) {
590 type = CAT->getElementType();
591 arraySizeMultiplier *= CAT->getSize();
592 }
593
594 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
595 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
596 typeSizeMultiplier *= arraySizeMultiplier;
597
598 // This will be a size_t.
599 llvm::Value *size;
600
601 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
602 // Don't bloat the -O0 code.
603 if (llvm::ConstantInt *numElementsC =
604 dyn_cast<llvm::ConstantInt>(numElements)) {
605 const llvm::APInt &count = numElementsC->getValue();
606
607 bool hasAnyOverflow = false;
608
609 // If 'count' was a negative number, it's an overflow.
610 if (isSigned && count.isNegative())
611 hasAnyOverflow = true;
612
613 // We want to do all this arithmetic in size_t. If numElements is
614 // wider than that, check whether it's already too big, and if so,
615 // overflow.
616 else if (numElementsWidth > sizeWidth &&
617 numElementsWidth - sizeWidth > count.countLeadingZeros())
618 hasAnyOverflow = true;
619
620 // Okay, compute a count at the right width.
621 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
622
623 // If there is a brace-initializer, we cannot allocate fewer elements than
624 // there are initializers. If we do, that's treated like an overflow.
625 if (adjustedCount.ult(minElements))
626 hasAnyOverflow = true;
627
628 // Scale numElements by that. This might overflow, but we don't
629 // care because it only overflows if allocationSize does, too, and
630 // if that overflows then we shouldn't use this.
631 numElements = llvm::ConstantInt::get(CGF.SizeTy,
632 adjustedCount * arraySizeMultiplier);
633
634 // Compute the size before cookie, and track whether it overflowed.
635 bool overflow;
636 llvm::APInt allocationSize
637 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
638 hasAnyOverflow |= overflow;
639
640 // Add in the cookie, and check whether it's overflowed.
641 if (cookieSize != 0) {
642 // Save the current size without a cookie. This shouldn't be
643 // used if there was overflow.
644 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
645
646 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
647 hasAnyOverflow |= overflow;
648 }
649
650 // On overflow, produce a -1 so operator new will fail.
651 if (hasAnyOverflow) {
652 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
653 } else {
654 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
655 }
656
657 // Otherwise, we might need to use the overflow intrinsics.
658 } else {
659 // There are up to five conditions we need to test for:
660 // 1) if isSigned, we need to check whether numElements is negative;
661 // 2) if numElementsWidth > sizeWidth, we need to check whether
662 // numElements is larger than something representable in size_t;
663 // 3) if minElements > 0, we need to check whether numElements is smaller
664 // than that.
665 // 4) we need to compute
666 // sizeWithoutCookie := numElements * typeSizeMultiplier
667 // and check whether it overflows; and
668 // 5) if we need a cookie, we need to compute
669 // size := sizeWithoutCookie + cookieSize
670 // and check whether it overflows.
671
672 llvm::Value *hasOverflow = 0;
673
674 // If numElementsWidth > sizeWidth, then one way or another, we're
675 // going to have to do a comparison for (2), and this happens to
676 // take care of (1), too.
677 if (numElementsWidth > sizeWidth) {
678 llvm::APInt threshold(numElementsWidth, 1);
679 threshold <<= sizeWidth;
680
681 llvm::Value *thresholdV
682 = llvm::ConstantInt::get(numElementsType, threshold);
683
684 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
685 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
686
687 // Otherwise, if we're signed, we want to sext up to size_t.
688 } else if (isSigned) {
689 if (numElementsWidth < sizeWidth)
690 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
691
692 // If there's a non-1 type size multiplier, then we can do the
693 // signedness check at the same time as we do the multiply
694 // because a negative number times anything will cause an
695 // unsigned overflow. Otherwise, we have to do it here. But at least
696 // in this case, we can subsume the >= minElements check.
697 if (typeSizeMultiplier == 1)
698 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
699 llvm::ConstantInt::get(CGF.SizeTy, minElements));
700
701 // Otherwise, zext up to size_t if necessary.
702 } else if (numElementsWidth < sizeWidth) {
703 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
704 }
705
706 assert(numElements->getType() == CGF.SizeTy);
707
708 if (minElements) {
709 // Don't allow allocation of fewer elements than we have initializers.
710 if (!hasOverflow) {
711 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
712 llvm::ConstantInt::get(CGF.SizeTy, minElements));
713 } else if (numElementsWidth > sizeWidth) {
714 // The other existing overflow subsumes this check.
715 // We do an unsigned comparison, since any signed value < -1 is
716 // taken care of either above or below.
717 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
718 CGF.Builder.CreateICmpULT(numElements,
719 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
720 }
721 }
722
723 size = numElements;
724
725 // Multiply by the type size if necessary. This multiplier
726 // includes all the factors for nested arrays.
727 //
728 // This step also causes numElements to be scaled up by the
729 // nested-array factor if necessary. Overflow on this computation
730 // can be ignored because the result shouldn't be used if
731 // allocation fails.
732 if (typeSizeMultiplier != 1) {
733 llvm::Value *umul_with_overflow
734 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
735
736 llvm::Value *tsmV =
737 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
738 llvm::Value *result =
739 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
740
741 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
742 if (hasOverflow)
743 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
744 else
745 hasOverflow = overflowed;
746
747 size = CGF.Builder.CreateExtractValue(result, 0);
748
749 // Also scale up numElements by the array size multiplier.
750 if (arraySizeMultiplier != 1) {
751 // If the base element type size is 1, then we can re-use the
752 // multiply we just did.
753 if (typeSize.isOne()) {
754 assert(arraySizeMultiplier == typeSizeMultiplier);
755 numElements = size;
756
757 // Otherwise we need a separate multiply.
758 } else {
759 llvm::Value *asmV =
760 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
761 numElements = CGF.Builder.CreateMul(numElements, asmV);
762 }
763 }
764 } else {
765 // numElements doesn't need to be scaled.
766 assert(arraySizeMultiplier == 1);
767 }
768
769 // Add in the cookie size if necessary.
770 if (cookieSize != 0) {
771 sizeWithoutCookie = size;
772
773 llvm::Value *uadd_with_overflow
774 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
775
776 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
777 llvm::Value *result =
778 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
779
780 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
781 if (hasOverflow)
782 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
783 else
784 hasOverflow = overflowed;
785
786 size = CGF.Builder.CreateExtractValue(result, 0);
787 }
788
789 // If we had any possibility of dynamic overflow, make a select to
790 // overwrite 'size' with an all-ones value, which should cause
791 // operator new to throw.
792 if (hasOverflow)
793 size = CGF.Builder.CreateSelect(hasOverflow,
794 llvm::Constant::getAllOnesValue(CGF.SizeTy),
795 size);
796 }
797
798 if (cookieSize == 0)
799 sizeWithoutCookie = size;
800 else
801 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
802
803 return size;
804 }
805
StoreAnyExprIntoOneUnit(CodeGenFunction & CGF,const Expr * Init,QualType AllocType,llvm::Value * NewPtr)806 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
807 QualType AllocType, llvm::Value *NewPtr) {
808
809 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
810 if (!CGF.hasAggregateLLVMType(AllocType))
811 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
812 Alignment),
813 false);
814 else if (AllocType->isAnyComplexType())
815 CGF.EmitComplexExprIntoAddr(Init, NewPtr,
816 AllocType.isVolatileQualified());
817 else {
818 AggValueSlot Slot
819 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
820 AggValueSlot::IsDestructed,
821 AggValueSlot::DoesNotNeedGCBarriers,
822 AggValueSlot::IsNotAliased);
823 CGF.EmitAggExpr(Init, Slot);
824
825 CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init);
826 }
827 }
828
829 void
EmitNewArrayInitializer(const CXXNewExpr * E,QualType elementType,llvm::Value * beginPtr,llvm::Value * numElements)830 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
831 QualType elementType,
832 llvm::Value *beginPtr,
833 llvm::Value *numElements) {
834 if (!E->hasInitializer())
835 return; // We have a POD type.
836
837 llvm::Value *explicitPtr = beginPtr;
838 // Find the end of the array, hoisted out of the loop.
839 llvm::Value *endPtr =
840 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
841
842 unsigned initializerElements = 0;
843
844 const Expr *Init = E->getInitializer();
845 llvm::AllocaInst *endOfInit = 0;
846 QualType::DestructionKind dtorKind = elementType.isDestructedType();
847 EHScopeStack::stable_iterator cleanup;
848 llvm::Instruction *cleanupDominator = 0;
849 // If the initializer is an initializer list, first do the explicit elements.
850 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
851 initializerElements = ILE->getNumInits();
852
853 // Enter a partial-destruction cleanup if necessary.
854 if (needsEHCleanup(dtorKind)) {
855 // In principle we could tell the cleanup where we are more
856 // directly, but the control flow can get so varied here that it
857 // would actually be quite complex. Therefore we go through an
858 // alloca.
859 endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
860 cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
861 pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
862 getDestroyer(dtorKind));
863 cleanup = EHStack.stable_begin();
864 }
865
866 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
867 // Tell the cleanup that it needs to destroy up to this
868 // element. TODO: some of these stores can be trivially
869 // observed to be unnecessary.
870 if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
871 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr);
872 explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next");
873 }
874
875 // The remaining elements are filled with the array filler expression.
876 Init = ILE->getArrayFiller();
877 }
878
879 // Create the continuation block.
880 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
881
882 // If the number of elements isn't constant, we have to now check if there is
883 // anything left to initialize.
884 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
885 // If all elements have already been initialized, skip the whole loop.
886 if (constNum->getZExtValue() <= initializerElements) {
887 // If there was a cleanup, deactivate it.
888 if (cleanupDominator)
889 DeactivateCleanupBlock(cleanup, cleanupDominator);
890 return;
891 }
892 } else {
893 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
894 llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
895 "array.isempty");
896 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
897 EmitBlock(nonEmptyBB);
898 }
899
900 // Enter the loop.
901 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
902 llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
903
904 EmitBlock(loopBB);
905
906 // Set up the current-element phi.
907 llvm::PHINode *curPtr =
908 Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
909 curPtr->addIncoming(explicitPtr, entryBB);
910
911 // Store the new cleanup position for irregular cleanups.
912 if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
913
914 // Enter a partial-destruction cleanup if necessary.
915 if (!cleanupDominator && needsEHCleanup(dtorKind)) {
916 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
917 getDestroyer(dtorKind));
918 cleanup = EHStack.stable_begin();
919 cleanupDominator = Builder.CreateUnreachable();
920 }
921
922 // Emit the initializer into this element.
923 StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
924
925 // Leave the cleanup if we entered one.
926 if (cleanupDominator) {
927 DeactivateCleanupBlock(cleanup, cleanupDominator);
928 cleanupDominator->eraseFromParent();
929 }
930
931 // Advance to the next element.
932 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
933
934 // Check whether we've gotten to the end of the array and, if so,
935 // exit the loop.
936 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
937 Builder.CreateCondBr(isEnd, contBB, loopBB);
938 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
939
940 EmitBlock(contBB);
941 }
942
EmitZeroMemSet(CodeGenFunction & CGF,QualType T,llvm::Value * NewPtr,llvm::Value * Size)943 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
944 llvm::Value *NewPtr, llvm::Value *Size) {
945 CGF.EmitCastToVoidPtr(NewPtr);
946 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
947 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
948 Alignment.getQuantity(), false);
949 }
950
EmitNewInitializer(CodeGenFunction & CGF,const CXXNewExpr * E,QualType ElementType,llvm::Value * NewPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)951 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
952 QualType ElementType,
953 llvm::Value *NewPtr,
954 llvm::Value *NumElements,
955 llvm::Value *AllocSizeWithoutCookie) {
956 const Expr *Init = E->getInitializer();
957 if (E->isArray()) {
958 if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
959 CXXConstructorDecl *Ctor = CCE->getConstructor();
960 if (Ctor->isTrivial()) {
961 // If new expression did not specify value-initialization, then there
962 // is no initialization.
963 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
964 return;
965
966 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
967 // Optimization: since zero initialization will just set the memory
968 // to all zeroes, generate a single memset to do it in one shot.
969 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
970 return;
971 }
972 }
973
974 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
975 CCE->arg_begin(), CCE->arg_end(),
976 CCE->requiresZeroInitialization());
977 return;
978 } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
979 CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
980 // Optimization: since zero initialization will just set the memory
981 // to all zeroes, generate a single memset to do it in one shot.
982 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
983 return;
984 }
985 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
986 return;
987 }
988
989 if (!Init)
990 return;
991
992 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
993 }
994
995 namespace {
996 /// A cleanup to call the given 'operator delete' function upon
997 /// abnormal exit from a new expression.
998 class CallDeleteDuringNew : public EHScopeStack::Cleanup {
999 size_t NumPlacementArgs;
1000 const FunctionDecl *OperatorDelete;
1001 llvm::Value *Ptr;
1002 llvm::Value *AllocSize;
1003
getPlacementArgs()1004 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1005
1006 public:
getExtraSize(size_t NumPlacementArgs)1007 static size_t getExtraSize(size_t NumPlacementArgs) {
1008 return NumPlacementArgs * sizeof(RValue);
1009 }
1010
CallDeleteDuringNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,llvm::Value * Ptr,llvm::Value * AllocSize)1011 CallDeleteDuringNew(size_t NumPlacementArgs,
1012 const FunctionDecl *OperatorDelete,
1013 llvm::Value *Ptr,
1014 llvm::Value *AllocSize)
1015 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1016 Ptr(Ptr), AllocSize(AllocSize) {}
1017
setPlacementArg(unsigned I,RValue Arg)1018 void setPlacementArg(unsigned I, RValue Arg) {
1019 assert(I < NumPlacementArgs && "index out of range");
1020 getPlacementArgs()[I] = Arg;
1021 }
1022
Emit(CodeGenFunction & CGF,Flags flags)1023 void Emit(CodeGenFunction &CGF, Flags flags) {
1024 const FunctionProtoType *FPT
1025 = OperatorDelete->getType()->getAs<FunctionProtoType>();
1026 assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1027 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1028
1029 CallArgList DeleteArgs;
1030
1031 // The first argument is always a void*.
1032 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1033 DeleteArgs.add(RValue::get(Ptr), *AI++);
1034
1035 // A member 'operator delete' can take an extra 'size_t' argument.
1036 if (FPT->getNumArgs() == NumPlacementArgs + 2)
1037 DeleteArgs.add(RValue::get(AllocSize), *AI++);
1038
1039 // Pass the rest of the arguments, which must match exactly.
1040 for (unsigned I = 0; I != NumPlacementArgs; ++I)
1041 DeleteArgs.add(getPlacementArgs()[I], *AI++);
1042
1043 // Call 'operator delete'.
1044 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT),
1045 CGF.CGM.GetAddrOfFunction(OperatorDelete),
1046 ReturnValueSlot(), DeleteArgs, OperatorDelete);
1047 }
1048 };
1049
1050 /// A cleanup to call the given 'operator delete' function upon
1051 /// abnormal exit from a new expression when the new expression is
1052 /// conditional.
1053 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1054 size_t NumPlacementArgs;
1055 const FunctionDecl *OperatorDelete;
1056 DominatingValue<RValue>::saved_type Ptr;
1057 DominatingValue<RValue>::saved_type AllocSize;
1058
getPlacementArgs()1059 DominatingValue<RValue>::saved_type *getPlacementArgs() {
1060 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1061 }
1062
1063 public:
getExtraSize(size_t NumPlacementArgs)1064 static size_t getExtraSize(size_t NumPlacementArgs) {
1065 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1066 }
1067
CallDeleteDuringConditionalNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,DominatingValue<RValue>::saved_type Ptr,DominatingValue<RValue>::saved_type AllocSize)1068 CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1069 const FunctionDecl *OperatorDelete,
1070 DominatingValue<RValue>::saved_type Ptr,
1071 DominatingValue<RValue>::saved_type AllocSize)
1072 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1073 Ptr(Ptr), AllocSize(AllocSize) {}
1074
setPlacementArg(unsigned I,DominatingValue<RValue>::saved_type Arg)1075 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1076 assert(I < NumPlacementArgs && "index out of range");
1077 getPlacementArgs()[I] = Arg;
1078 }
1079
Emit(CodeGenFunction & CGF,Flags flags)1080 void Emit(CodeGenFunction &CGF, Flags flags) {
1081 const FunctionProtoType *FPT
1082 = OperatorDelete->getType()->getAs<FunctionProtoType>();
1083 assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1084 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1085
1086 CallArgList DeleteArgs;
1087
1088 // The first argument is always a void*.
1089 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1090 DeleteArgs.add(Ptr.restore(CGF), *AI++);
1091
1092 // A member 'operator delete' can take an extra 'size_t' argument.
1093 if (FPT->getNumArgs() == NumPlacementArgs + 2) {
1094 RValue RV = AllocSize.restore(CGF);
1095 DeleteArgs.add(RV, *AI++);
1096 }
1097
1098 // Pass the rest of the arguments, which must match exactly.
1099 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1100 RValue RV = getPlacementArgs()[I].restore(CGF);
1101 DeleteArgs.add(RV, *AI++);
1102 }
1103
1104 // Call 'operator delete'.
1105 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT),
1106 CGF.CGM.GetAddrOfFunction(OperatorDelete),
1107 ReturnValueSlot(), DeleteArgs, OperatorDelete);
1108 }
1109 };
1110 }
1111
1112 /// Enter a cleanup to call 'operator delete' if the initializer in a
1113 /// new-expression throws.
EnterNewDeleteCleanup(CodeGenFunction & CGF,const CXXNewExpr * E,llvm::Value * NewPtr,llvm::Value * AllocSize,const CallArgList & NewArgs)1114 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1115 const CXXNewExpr *E,
1116 llvm::Value *NewPtr,
1117 llvm::Value *AllocSize,
1118 const CallArgList &NewArgs) {
1119 // If we're not inside a conditional branch, then the cleanup will
1120 // dominate and we can do the easier (and more efficient) thing.
1121 if (!CGF.isInConditionalBranch()) {
1122 CallDeleteDuringNew *Cleanup = CGF.EHStack
1123 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1124 E->getNumPlacementArgs(),
1125 E->getOperatorDelete(),
1126 NewPtr, AllocSize);
1127 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1128 Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1129
1130 return;
1131 }
1132
1133 // Otherwise, we need to save all this stuff.
1134 DominatingValue<RValue>::saved_type SavedNewPtr =
1135 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1136 DominatingValue<RValue>::saved_type SavedAllocSize =
1137 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1138
1139 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1140 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1141 E->getNumPlacementArgs(),
1142 E->getOperatorDelete(),
1143 SavedNewPtr,
1144 SavedAllocSize);
1145 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1146 Cleanup->setPlacementArg(I,
1147 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1148
1149 CGF.initFullExprCleanup();
1150 }
1151
EmitCXXNewExpr(const CXXNewExpr * E)1152 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1153 // The element type being allocated.
1154 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1155
1156 // 1. Build a call to the allocation function.
1157 FunctionDecl *allocator = E->getOperatorNew();
1158 const FunctionProtoType *allocatorType =
1159 allocator->getType()->castAs<FunctionProtoType>();
1160
1161 CallArgList allocatorArgs;
1162
1163 // The allocation size is the first argument.
1164 QualType sizeType = getContext().getSizeType();
1165
1166 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1167 unsigned minElements = 0;
1168 if (E->isArray() && E->hasInitializer()) {
1169 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1170 minElements = ILE->getNumInits();
1171 }
1172
1173 llvm::Value *numElements = 0;
1174 llvm::Value *allocSizeWithoutCookie = 0;
1175 llvm::Value *allocSize =
1176 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1177 allocSizeWithoutCookie);
1178
1179 allocatorArgs.add(RValue::get(allocSize), sizeType);
1180
1181 // Emit the rest of the arguments.
1182 // FIXME: Ideally, this should just use EmitCallArgs.
1183 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
1184
1185 // First, use the types from the function type.
1186 // We start at 1 here because the first argument (the allocation size)
1187 // has already been emitted.
1188 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
1189 ++i, ++placementArg) {
1190 QualType argType = allocatorType->getArgType(i);
1191
1192 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
1193 placementArg->getType()) &&
1194 "type mismatch in call argument!");
1195
1196 EmitCallArg(allocatorArgs, *placementArg, argType);
1197 }
1198
1199 // Either we've emitted all the call args, or we have a call to a
1200 // variadic function.
1201 assert((placementArg == E->placement_arg_end() ||
1202 allocatorType->isVariadic()) &&
1203 "Extra arguments to non-variadic function!");
1204
1205 // If we still have any arguments, emit them using the type of the argument.
1206 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
1207 placementArg != placementArgsEnd; ++placementArg) {
1208 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
1209 }
1210
1211 // Emit the allocation call. If the allocator is a global placement
1212 // operator, just "inline" it directly.
1213 RValue RV;
1214 if (allocator->isReservedGlobalPlacementOperator()) {
1215 assert(allocatorArgs.size() == 2);
1216 RV = allocatorArgs[1].RV;
1217 // TODO: kill any unnecessary computations done for the size
1218 // argument.
1219 } else {
1220 RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs,
1221 allocatorType),
1222 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
1223 allocatorArgs, allocator);
1224 }
1225
1226 // Emit a null check on the allocation result if the allocation
1227 // function is allowed to return null (because it has a non-throwing
1228 // exception spec; for this part, we inline
1229 // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1230 // interesting initializer.
1231 bool nullCheck = allocatorType->isNothrow(getContext()) &&
1232 (!allocType.isPODType(getContext()) || E->hasInitializer());
1233
1234 llvm::BasicBlock *nullCheckBB = 0;
1235 llvm::BasicBlock *contBB = 0;
1236
1237 llvm::Value *allocation = RV.getScalarVal();
1238 unsigned AS =
1239 cast<llvm::PointerType>(allocation->getType())->getAddressSpace();
1240
1241 // The null-check means that the initializer is conditionally
1242 // evaluated.
1243 ConditionalEvaluation conditional(*this);
1244
1245 if (nullCheck) {
1246 conditional.begin(*this);
1247
1248 nullCheckBB = Builder.GetInsertBlock();
1249 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1250 contBB = createBasicBlock("new.cont");
1251
1252 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1253 Builder.CreateCondBr(isNull, contBB, notNullBB);
1254 EmitBlock(notNullBB);
1255 }
1256
1257 // If there's an operator delete, enter a cleanup to call it if an
1258 // exception is thrown.
1259 EHScopeStack::stable_iterator operatorDeleteCleanup;
1260 llvm::Instruction *cleanupDominator = 0;
1261 if (E->getOperatorDelete() &&
1262 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1263 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1264 operatorDeleteCleanup = EHStack.stable_begin();
1265 cleanupDominator = Builder.CreateUnreachable();
1266 }
1267
1268 assert((allocSize == allocSizeWithoutCookie) ==
1269 CalculateCookiePadding(*this, E).isZero());
1270 if (allocSize != allocSizeWithoutCookie) {
1271 assert(E->isArray());
1272 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1273 numElements,
1274 E, allocType);
1275 }
1276
1277 llvm::Type *elementPtrTy
1278 = ConvertTypeForMem(allocType)->getPointerTo(AS);
1279 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1280
1281 EmitNewInitializer(*this, E, allocType, result, numElements,
1282 allocSizeWithoutCookie);
1283 if (E->isArray()) {
1284 // NewPtr is a pointer to the base element type. If we're
1285 // allocating an array of arrays, we'll need to cast back to the
1286 // array pointer type.
1287 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1288 if (result->getType() != resultType)
1289 result = Builder.CreateBitCast(result, resultType);
1290 }
1291
1292 // Deactivate the 'operator delete' cleanup if we finished
1293 // initialization.
1294 if (operatorDeleteCleanup.isValid()) {
1295 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1296 cleanupDominator->eraseFromParent();
1297 }
1298
1299 if (nullCheck) {
1300 conditional.end(*this);
1301
1302 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1303 EmitBlock(contBB);
1304
1305 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1306 PHI->addIncoming(result, notNullBB);
1307 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1308 nullCheckBB);
1309
1310 result = PHI;
1311 }
1312
1313 return result;
1314 }
1315
EmitDeleteCall(const FunctionDecl * DeleteFD,llvm::Value * Ptr,QualType DeleteTy)1316 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1317 llvm::Value *Ptr,
1318 QualType DeleteTy) {
1319 assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1320
1321 const FunctionProtoType *DeleteFTy =
1322 DeleteFD->getType()->getAs<FunctionProtoType>();
1323
1324 CallArgList DeleteArgs;
1325
1326 // Check if we need to pass the size to the delete operator.
1327 llvm::Value *Size = 0;
1328 QualType SizeTy;
1329 if (DeleteFTy->getNumArgs() == 2) {
1330 SizeTy = DeleteFTy->getArgType(1);
1331 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1332 Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1333 DeleteTypeSize.getQuantity());
1334 }
1335
1336 QualType ArgTy = DeleteFTy->getArgType(0);
1337 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1338 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1339
1340 if (Size)
1341 DeleteArgs.add(RValue::get(Size), SizeTy);
1342
1343 // Emit the call to delete.
1344 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy),
1345 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
1346 DeleteArgs, DeleteFD);
1347 }
1348
1349 namespace {
1350 /// Calls the given 'operator delete' on a single object.
1351 struct CallObjectDelete : EHScopeStack::Cleanup {
1352 llvm::Value *Ptr;
1353 const FunctionDecl *OperatorDelete;
1354 QualType ElementType;
1355
CallObjectDelete__anone677e7a20211::CallObjectDelete1356 CallObjectDelete(llvm::Value *Ptr,
1357 const FunctionDecl *OperatorDelete,
1358 QualType ElementType)
1359 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1360
Emit__anone677e7a20211::CallObjectDelete1361 void Emit(CodeGenFunction &CGF, Flags flags) {
1362 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1363 }
1364 };
1365 }
1366
1367 /// Emit the code for deleting a single object.
EmitObjectDelete(CodeGenFunction & CGF,const FunctionDecl * OperatorDelete,llvm::Value * Ptr,QualType ElementType,bool UseGlobalDelete)1368 static void EmitObjectDelete(CodeGenFunction &CGF,
1369 const FunctionDecl *OperatorDelete,
1370 llvm::Value *Ptr,
1371 QualType ElementType,
1372 bool UseGlobalDelete) {
1373 // Find the destructor for the type, if applicable. If the
1374 // destructor is virtual, we'll just emit the vcall and return.
1375 const CXXDestructorDecl *Dtor = 0;
1376 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1377 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1378 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1379 Dtor = RD->getDestructor();
1380
1381 if (Dtor->isVirtual()) {
1382 if (UseGlobalDelete) {
1383 // If we're supposed to call the global delete, make sure we do so
1384 // even if the destructor throws.
1385 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1386 Ptr, OperatorDelete,
1387 ElementType);
1388 }
1389
1390 llvm::Type *Ty =
1391 CGF.getTypes().GetFunctionType(
1392 CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete));
1393
1394 llvm::Value *Callee
1395 = CGF.BuildVirtualCall(Dtor,
1396 UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
1397 Ptr, Ty);
1398 CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
1399 0, 0);
1400
1401 if (UseGlobalDelete) {
1402 CGF.PopCleanupBlock();
1403 }
1404
1405 return;
1406 }
1407 }
1408 }
1409
1410 // Make sure that we call delete even if the dtor throws.
1411 // This doesn't have to a conditional cleanup because we're going
1412 // to pop it off in a second.
1413 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1414 Ptr, OperatorDelete, ElementType);
1415
1416 if (Dtor)
1417 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1418 /*ForVirtualBase=*/false, Ptr);
1419 else if (CGF.getLangOpts().ObjCAutoRefCount &&
1420 ElementType->isObjCLifetimeType()) {
1421 switch (ElementType.getObjCLifetime()) {
1422 case Qualifiers::OCL_None:
1423 case Qualifiers::OCL_ExplicitNone:
1424 case Qualifiers::OCL_Autoreleasing:
1425 break;
1426
1427 case Qualifiers::OCL_Strong: {
1428 // Load the pointer value.
1429 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1430 ElementType.isVolatileQualified());
1431
1432 CGF.EmitARCRelease(PtrValue, /*precise*/ true);
1433 break;
1434 }
1435
1436 case Qualifiers::OCL_Weak:
1437 CGF.EmitARCDestroyWeak(Ptr);
1438 break;
1439 }
1440 }
1441
1442 CGF.PopCleanupBlock();
1443 }
1444
1445 namespace {
1446 /// Calls the given 'operator delete' on an array of objects.
1447 struct CallArrayDelete : EHScopeStack::Cleanup {
1448 llvm::Value *Ptr;
1449 const FunctionDecl *OperatorDelete;
1450 llvm::Value *NumElements;
1451 QualType ElementType;
1452 CharUnits CookieSize;
1453
CallArrayDelete__anone677e7a20311::CallArrayDelete1454 CallArrayDelete(llvm::Value *Ptr,
1455 const FunctionDecl *OperatorDelete,
1456 llvm::Value *NumElements,
1457 QualType ElementType,
1458 CharUnits CookieSize)
1459 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1460 ElementType(ElementType), CookieSize(CookieSize) {}
1461
Emit__anone677e7a20311::CallArrayDelete1462 void Emit(CodeGenFunction &CGF, Flags flags) {
1463 const FunctionProtoType *DeleteFTy =
1464 OperatorDelete->getType()->getAs<FunctionProtoType>();
1465 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1466
1467 CallArgList Args;
1468
1469 // Pass the pointer as the first argument.
1470 QualType VoidPtrTy = DeleteFTy->getArgType(0);
1471 llvm::Value *DeletePtr
1472 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1473 Args.add(RValue::get(DeletePtr), VoidPtrTy);
1474
1475 // Pass the original requested size as the second argument.
1476 if (DeleteFTy->getNumArgs() == 2) {
1477 QualType size_t = DeleteFTy->getArgType(1);
1478 llvm::IntegerType *SizeTy
1479 = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1480
1481 CharUnits ElementTypeSize =
1482 CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1483
1484 // The size of an element, multiplied by the number of elements.
1485 llvm::Value *Size
1486 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1487 Size = CGF.Builder.CreateMul(Size, NumElements);
1488
1489 // Plus the size of the cookie if applicable.
1490 if (!CookieSize.isZero()) {
1491 llvm::Value *CookieSizeV
1492 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1493 Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1494 }
1495
1496 Args.add(RValue::get(Size), size_t);
1497 }
1498
1499 // Emit the call to delete.
1500 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy),
1501 CGF.CGM.GetAddrOfFunction(OperatorDelete),
1502 ReturnValueSlot(), Args, OperatorDelete);
1503 }
1504 };
1505 }
1506
1507 /// Emit the code for deleting an array of objects.
EmitArrayDelete(CodeGenFunction & CGF,const CXXDeleteExpr * E,llvm::Value * deletedPtr,QualType elementType)1508 static void EmitArrayDelete(CodeGenFunction &CGF,
1509 const CXXDeleteExpr *E,
1510 llvm::Value *deletedPtr,
1511 QualType elementType) {
1512 llvm::Value *numElements = 0;
1513 llvm::Value *allocatedPtr = 0;
1514 CharUnits cookieSize;
1515 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1516 numElements, allocatedPtr, cookieSize);
1517
1518 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1519
1520 // Make sure that we call delete even if one of the dtors throws.
1521 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1522 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1523 allocatedPtr, operatorDelete,
1524 numElements, elementType,
1525 cookieSize);
1526
1527 // Destroy the elements.
1528 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1529 assert(numElements && "no element count for a type with a destructor!");
1530
1531 llvm::Value *arrayEnd =
1532 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1533
1534 // Note that it is legal to allocate a zero-length array, and we
1535 // can never fold the check away because the length should always
1536 // come from a cookie.
1537 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1538 CGF.getDestroyer(dtorKind),
1539 /*checkZeroLength*/ true,
1540 CGF.needsEHCleanup(dtorKind));
1541 }
1542
1543 // Pop the cleanup block.
1544 CGF.PopCleanupBlock();
1545 }
1546
EmitCXXDeleteExpr(const CXXDeleteExpr * E)1547 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1548 const Expr *Arg = E->getArgument();
1549 llvm::Value *Ptr = EmitScalarExpr(Arg);
1550
1551 // Null check the pointer.
1552 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1553 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1554
1555 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1556
1557 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1558 EmitBlock(DeleteNotNull);
1559
1560 // We might be deleting a pointer to array. If so, GEP down to the
1561 // first non-array element.
1562 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1563 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1564 if (DeleteTy->isConstantArrayType()) {
1565 llvm::Value *Zero = Builder.getInt32(0);
1566 SmallVector<llvm::Value*,8> GEP;
1567
1568 GEP.push_back(Zero); // point at the outermost array
1569
1570 // For each layer of array type we're pointing at:
1571 while (const ConstantArrayType *Arr
1572 = getContext().getAsConstantArrayType(DeleteTy)) {
1573 // 1. Unpeel the array type.
1574 DeleteTy = Arr->getElementType();
1575
1576 // 2. GEP to the first element of the array.
1577 GEP.push_back(Zero);
1578 }
1579
1580 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1581 }
1582
1583 assert(ConvertTypeForMem(DeleteTy) ==
1584 cast<llvm::PointerType>(Ptr->getType())->getElementType());
1585
1586 if (E->isArrayForm()) {
1587 EmitArrayDelete(*this, E, Ptr, DeleteTy);
1588 } else {
1589 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1590 E->isGlobalDelete());
1591 }
1592
1593 EmitBlock(DeleteEnd);
1594 }
1595
getBadTypeidFn(CodeGenFunction & CGF)1596 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1597 // void __cxa_bad_typeid();
1598 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1599
1600 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1601 }
1602
EmitBadTypeidCall(CodeGenFunction & CGF)1603 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1604 llvm::Value *Fn = getBadTypeidFn(CGF);
1605 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1606 CGF.Builder.CreateUnreachable();
1607 }
1608
EmitTypeidFromVTable(CodeGenFunction & CGF,const Expr * E,llvm::Type * StdTypeInfoPtrTy)1609 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1610 const Expr *E,
1611 llvm::Type *StdTypeInfoPtrTy) {
1612 // Get the vtable pointer.
1613 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1614
1615 // C++ [expr.typeid]p2:
1616 // If the glvalue expression is obtained by applying the unary * operator to
1617 // a pointer and the pointer is a null pointer value, the typeid expression
1618 // throws the std::bad_typeid exception.
1619 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1620 if (UO->getOpcode() == UO_Deref) {
1621 llvm::BasicBlock *BadTypeidBlock =
1622 CGF.createBasicBlock("typeid.bad_typeid");
1623 llvm::BasicBlock *EndBlock =
1624 CGF.createBasicBlock("typeid.end");
1625
1626 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1627 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1628
1629 CGF.EmitBlock(BadTypeidBlock);
1630 EmitBadTypeidCall(CGF);
1631 CGF.EmitBlock(EndBlock);
1632 }
1633 }
1634
1635 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1636 StdTypeInfoPtrTy->getPointerTo());
1637
1638 // Load the type info.
1639 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1640 return CGF.Builder.CreateLoad(Value);
1641 }
1642
EmitCXXTypeidExpr(const CXXTypeidExpr * E)1643 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1644 llvm::Type *StdTypeInfoPtrTy =
1645 ConvertType(E->getType())->getPointerTo();
1646
1647 if (E->isTypeOperand()) {
1648 llvm::Constant *TypeInfo =
1649 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
1650 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1651 }
1652
1653 // C++ [expr.typeid]p2:
1654 // When typeid is applied to a glvalue expression whose type is a
1655 // polymorphic class type, the result refers to a std::type_info object
1656 // representing the type of the most derived object (that is, the dynamic
1657 // type) to which the glvalue refers.
1658 if (E->isPotentiallyEvaluated())
1659 return EmitTypeidFromVTable(*this, E->getExprOperand(),
1660 StdTypeInfoPtrTy);
1661
1662 QualType OperandTy = E->getExprOperand()->getType();
1663 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1664 StdTypeInfoPtrTy);
1665 }
1666
getDynamicCastFn(CodeGenFunction & CGF)1667 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1668 // void *__dynamic_cast(const void *sub,
1669 // const abi::__class_type_info *src,
1670 // const abi::__class_type_info *dst,
1671 // std::ptrdiff_t src2dst_offset);
1672
1673 llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
1674 llvm::Type *PtrDiffTy =
1675 CGF.ConvertType(CGF.getContext().getPointerDiffType());
1676
1677 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1678
1679 llvm::FunctionType *FTy =
1680 llvm::FunctionType::get(Int8PtrTy, Args, false);
1681
1682 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
1683 }
1684
getBadCastFn(CodeGenFunction & CGF)1685 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1686 // void __cxa_bad_cast();
1687 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1688 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1689 }
1690
EmitBadCastCall(CodeGenFunction & CGF)1691 static void EmitBadCastCall(CodeGenFunction &CGF) {
1692 llvm::Value *Fn = getBadCastFn(CGF);
1693 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1694 CGF.Builder.CreateUnreachable();
1695 }
1696
1697 static llvm::Value *
EmitDynamicCastCall(CodeGenFunction & CGF,llvm::Value * Value,QualType SrcTy,QualType DestTy,llvm::BasicBlock * CastEnd)1698 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1699 QualType SrcTy, QualType DestTy,
1700 llvm::BasicBlock *CastEnd) {
1701 llvm::Type *PtrDiffLTy =
1702 CGF.ConvertType(CGF.getContext().getPointerDiffType());
1703 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1704
1705 if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1706 if (PTy->getPointeeType()->isVoidType()) {
1707 // C++ [expr.dynamic.cast]p7:
1708 // If T is "pointer to cv void," then the result is a pointer to the
1709 // most derived object pointed to by v.
1710
1711 // Get the vtable pointer.
1712 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1713
1714 // Get the offset-to-top from the vtable.
1715 llvm::Value *OffsetToTop =
1716 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1717 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1718
1719 // Finally, add the offset to the pointer.
1720 Value = CGF.EmitCastToVoidPtr(Value);
1721 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1722
1723 return CGF.Builder.CreateBitCast(Value, DestLTy);
1724 }
1725 }
1726
1727 QualType SrcRecordTy;
1728 QualType DestRecordTy;
1729
1730 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1731 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1732 DestRecordTy = DestPTy->getPointeeType();
1733 } else {
1734 SrcRecordTy = SrcTy;
1735 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1736 }
1737
1738 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1739 assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1740
1741 llvm::Value *SrcRTTI =
1742 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1743 llvm::Value *DestRTTI =
1744 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1745
1746 // FIXME: Actually compute a hint here.
1747 llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);
1748
1749 // Emit the call to __dynamic_cast.
1750 Value = CGF.EmitCastToVoidPtr(Value);
1751 Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
1752 SrcRTTI, DestRTTI, OffsetHint);
1753 Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1754
1755 /// C++ [expr.dynamic.cast]p9:
1756 /// A failed cast to reference type throws std::bad_cast
1757 if (DestTy->isReferenceType()) {
1758 llvm::BasicBlock *BadCastBlock =
1759 CGF.createBasicBlock("dynamic_cast.bad_cast");
1760
1761 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1762 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1763
1764 CGF.EmitBlock(BadCastBlock);
1765 EmitBadCastCall(CGF);
1766 }
1767
1768 return Value;
1769 }
1770
EmitDynamicCastToNull(CodeGenFunction & CGF,QualType DestTy)1771 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1772 QualType DestTy) {
1773 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1774 if (DestTy->isPointerType())
1775 return llvm::Constant::getNullValue(DestLTy);
1776
1777 /// C++ [expr.dynamic.cast]p9:
1778 /// A failed cast to reference type throws std::bad_cast
1779 EmitBadCastCall(CGF);
1780
1781 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1782 return llvm::UndefValue::get(DestLTy);
1783 }
1784
EmitDynamicCast(llvm::Value * Value,const CXXDynamicCastExpr * DCE)1785 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1786 const CXXDynamicCastExpr *DCE) {
1787 QualType DestTy = DCE->getTypeAsWritten();
1788
1789 if (DCE->isAlwaysNull())
1790 return EmitDynamicCastToNull(*this, DestTy);
1791
1792 QualType SrcTy = DCE->getSubExpr()->getType();
1793
1794 // C++ [expr.dynamic.cast]p4:
1795 // If the value of v is a null pointer value in the pointer case, the result
1796 // is the null pointer value of type T.
1797 bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1798
1799 llvm::BasicBlock *CastNull = 0;
1800 llvm::BasicBlock *CastNotNull = 0;
1801 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1802
1803 if (ShouldNullCheckSrcValue) {
1804 CastNull = createBasicBlock("dynamic_cast.null");
1805 CastNotNull = createBasicBlock("dynamic_cast.notnull");
1806
1807 llvm::Value *IsNull = Builder.CreateIsNull(Value);
1808 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1809 EmitBlock(CastNotNull);
1810 }
1811
1812 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1813
1814 if (ShouldNullCheckSrcValue) {
1815 EmitBranch(CastEnd);
1816
1817 EmitBlock(CastNull);
1818 EmitBranch(CastEnd);
1819 }
1820
1821 EmitBlock(CastEnd);
1822
1823 if (ShouldNullCheckSrcValue) {
1824 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1825 PHI->addIncoming(Value, CastNotNull);
1826 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1827
1828 Value = PHI;
1829 }
1830
1831 return Value;
1832 }
1833
EmitLambdaExpr(const LambdaExpr * E,AggValueSlot Slot)1834 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1835 RunCleanupsScope Scope(*this);
1836 LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
1837 Slot.getAlignment());
1838
1839 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1840 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1841 e = E->capture_init_end();
1842 i != e; ++i, ++CurField) {
1843 // Emit initialization
1844
1845 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1846 ArrayRef<VarDecl *> ArrayIndexes;
1847 if (CurField->getType()->isArrayType())
1848 ArrayIndexes = E->getCaptureInitIndexVars(i);
1849 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1850 }
1851 }
1852