• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16 
17 #include "llvm/Target/TargetRegisterInfo.h"
18 #include "llvm/CodeGen/MachineInstrBundle.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/IndexedMap.h"
21 #include <vector>
22 
23 namespace llvm {
24 
25 /// MachineRegisterInfo - Keep track of information for virtual and physical
26 /// registers, including vreg register classes, use/def chains for registers,
27 /// etc.
28 class MachineRegisterInfo {
29   const TargetRegisterInfo *const TRI;
30 
31   /// IsSSA - True when the machine function is in SSA form and virtual
32   /// registers have a single def.
33   bool IsSSA;
34 
35   /// TracksLiveness - True while register liveness is being tracked accurately.
36   /// Basic block live-in lists, kill flags, and implicit defs may not be
37   /// accurate when after this flag is cleared.
38   bool TracksLiveness;
39 
40   /// VRegInfo - Information we keep for each virtual register.
41   ///
42   /// Each element in this list contains the register class of the vreg and the
43   /// start of the use/def list for the register.
44   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
45              VirtReg2IndexFunctor> VRegInfo;
46 
47   /// RegAllocHints - This vector records register allocation hints for virtual
48   /// registers. For each virtual register, it keeps a register and hint type
49   /// pair making up the allocation hint. Hint type is target specific except
50   /// for the value 0 which means the second value of the pair is the preferred
51   /// register for allocation. For example, if the hint is <0, 1024>, it means
52   /// the allocator should prefer the physical register allocated to the virtual
53   /// register of the hint.
54   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
55 
56   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
57   /// physical registers.
58   MachineOperand **PhysRegUseDefLists;
59 
60   /// getRegUseDefListHead - Return the head pointer for the register use/def
61   /// list for the specified virtual or physical register.
getRegUseDefListHead(unsigned RegNo)62   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
63     if (TargetRegisterInfo::isVirtualRegister(RegNo))
64       return VRegInfo[RegNo].second;
65     return PhysRegUseDefLists[RegNo];
66   }
67 
getRegUseDefListHead(unsigned RegNo)68   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
69     if (TargetRegisterInfo::isVirtualRegister(RegNo))
70       return VRegInfo[RegNo].second;
71     return PhysRegUseDefLists[RegNo];
72   }
73 
74   /// Get the next element in the use-def chain.
getNextOperandForReg(const MachineOperand * MO)75   static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
76     assert(MO && MO->isReg() && "This is not a register operand!");
77     return MO->Contents.Reg.Next;
78   }
79 
80   /// UsedPhysRegs - This is a bit vector that is computed and set by the
81   /// register allocator, and must be kept up to date by passes that run after
82   /// register allocation (though most don't modify this).  This is used
83   /// so that the code generator knows which callee save registers to save and
84   /// for other target specific uses.
85   /// This vector only has bits set for registers explicitly used, not their
86   /// aliases.
87   BitVector UsedPhysRegs;
88 
89   /// UsedPhysRegMask - Additional used physregs, but including aliases.
90   BitVector UsedPhysRegMask;
91 
92   /// ReservedRegs - This is a bit vector of reserved registers.  The target
93   /// may change its mind about which registers should be reserved.  This
94   /// vector is the frozen set of reserved registers when register allocation
95   /// started.
96   BitVector ReservedRegs;
97 
98   /// AllocatableRegs - From TRI->getAllocatableSet.
99   mutable BitVector AllocatableRegs;
100 
101   /// LiveIns/LiveOuts - Keep track of the physical registers that are
102   /// livein/liveout of the function.  Live in values are typically arguments in
103   /// registers, live out values are typically return values in registers.
104   /// LiveIn values are allowed to have virtual registers associated with them,
105   /// stored in the second element.
106   std::vector<std::pair<unsigned, unsigned> > LiveIns;
107   std::vector<unsigned> LiveOuts;
108 
109   MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
110   void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
111 public:
112   explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
113   ~MachineRegisterInfo();
114 
115   //===--------------------------------------------------------------------===//
116   // Function State
117   //===--------------------------------------------------------------------===//
118 
119   // isSSA - Returns true when the machine function is in SSA form. Early
120   // passes require the machine function to be in SSA form where every virtual
121   // register has a single defining instruction.
122   //
123   // The TwoAddressInstructionPass and PHIElimination passes take the machine
124   // function out of SSA form when they introduce multiple defs per virtual
125   // register.
isSSA()126   bool isSSA() const { return IsSSA; }
127 
128   // leaveSSA - Indicates that the machine function is no longer in SSA form.
leaveSSA()129   void leaveSSA() { IsSSA = false; }
130 
131   /// tracksLiveness - Returns true when tracking register liveness accurately.
132   ///
133   /// While this flag is true, register liveness information in basic block
134   /// live-in lists and machine instruction operands is accurate. This means it
135   /// can be used to change the code in ways that affect the values in
136   /// registers, for example by the register scavenger.
137   ///
138   /// When this flag is false, liveness is no longer reliable.
tracksLiveness()139   bool tracksLiveness() const { return TracksLiveness; }
140 
141   /// invalidateLiveness - Indicates that register liveness is no longer being
142   /// tracked accurately.
143   ///
144   /// This should be called by late passes that invalidate the liveness
145   /// information.
invalidateLiveness()146   void invalidateLiveness() { TracksLiveness = false; }
147 
148   //===--------------------------------------------------------------------===//
149   // Register Info
150   //===--------------------------------------------------------------------===//
151 
152   // Strictly for use by MachineInstr.cpp.
153   void addRegOperandToUseList(MachineOperand *MO);
154 
155   // Strictly for use by MachineInstr.cpp.
156   void removeRegOperandFromUseList(MachineOperand *MO);
157 
158   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
159   /// and uses of a register within the MachineFunction that corresponds to this
160   /// MachineRegisterInfo object.
161   template<bool Uses, bool Defs, bool SkipDebug>
162   class defusechain_iterator;
163 
164   // Make it a friend so it can access getNextOperandForReg().
165   template<bool, bool, bool> friend class defusechain_iterator;
166 
167   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
168   /// register.
169   typedef defusechain_iterator<true,true,false> reg_iterator;
reg_begin(unsigned RegNo)170   reg_iterator reg_begin(unsigned RegNo) const {
171     return reg_iterator(getRegUseDefListHead(RegNo));
172   }
reg_end()173   static reg_iterator reg_end() { return reg_iterator(0); }
174 
175   /// reg_empty - Return true if there are no instructions using or defining the
176   /// specified register (it may be live-in).
reg_empty(unsigned RegNo)177   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
178 
179   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
180   /// of the specified register, skipping those marked as Debug.
181   typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
reg_nodbg_begin(unsigned RegNo)182   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
183     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
184   }
reg_nodbg_end()185   static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
186 
187   /// reg_nodbg_empty - Return true if the only instructions using or defining
188   /// Reg are Debug instructions.
reg_nodbg_empty(unsigned RegNo)189   bool reg_nodbg_empty(unsigned RegNo) const {
190     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
191   }
192 
193   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
194   typedef defusechain_iterator<false,true,false> def_iterator;
def_begin(unsigned RegNo)195   def_iterator def_begin(unsigned RegNo) const {
196     return def_iterator(getRegUseDefListHead(RegNo));
197   }
def_end()198   static def_iterator def_end() { return def_iterator(0); }
199 
200   /// def_empty - Return true if there are no instructions defining the
201   /// specified register (it may be live-in).
def_empty(unsigned RegNo)202   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
203 
204   /// hasOneDef - Return true if there is exactly one instruction defining the
205   /// specified register.
hasOneDef(unsigned RegNo)206   bool hasOneDef(unsigned RegNo) const {
207     def_iterator DI = def_begin(RegNo);
208     if (DI == def_end())
209       return false;
210     return ++DI == def_end();
211   }
212 
213   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
214   typedef defusechain_iterator<true,false,false> use_iterator;
use_begin(unsigned RegNo)215   use_iterator use_begin(unsigned RegNo) const {
216     return use_iterator(getRegUseDefListHead(RegNo));
217   }
use_end()218   static use_iterator use_end() { return use_iterator(0); }
219 
220   /// use_empty - Return true if there are no instructions using the specified
221   /// register.
use_empty(unsigned RegNo)222   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
223 
224   /// hasOneUse - Return true if there is exactly one instruction using the
225   /// specified register.
hasOneUse(unsigned RegNo)226   bool hasOneUse(unsigned RegNo) const {
227     use_iterator UI = use_begin(RegNo);
228     if (UI == use_end())
229       return false;
230     return ++UI == use_end();
231   }
232 
233   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
234   /// specified register, skipping those marked as Debug.
235   typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
use_nodbg_begin(unsigned RegNo)236   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
237     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
238   }
use_nodbg_end()239   static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
240 
241   /// use_nodbg_empty - Return true if there are no non-Debug instructions
242   /// using the specified register.
use_nodbg_empty(unsigned RegNo)243   bool use_nodbg_empty(unsigned RegNo) const {
244     return use_nodbg_begin(RegNo) == use_nodbg_end();
245   }
246 
247   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
248   /// instruction using the specified register.
249   bool hasOneNonDBGUse(unsigned RegNo) const;
250 
251   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
252   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
253   /// except that it also changes any definitions of the register as well.
254   ///
255   /// Note that it is usually necessary to first constrain ToReg's register
256   /// class to match the FromReg constraints using:
257   ///
258   ///   constrainRegClass(ToReg, getRegClass(FromReg))
259   ///
260   /// That function will return NULL if the virtual registers have incompatible
261   /// constraints.
262   void replaceRegWith(unsigned FromReg, unsigned ToReg);
263 
264   /// getVRegDef - Return the machine instr that defines the specified virtual
265   /// register or null if none is found.  This assumes that the code is in SSA
266   /// form, so there should only be one definition.
267   MachineInstr *getVRegDef(unsigned Reg) const;
268 
269   /// getUniqueVRegDef - Return the unique machine instr that defines the
270   /// specified virtual register or null if none is found.  If there are
271   /// multiple definitions or no definition, return null.
272   MachineInstr *getUniqueVRegDef(unsigned Reg) const;
273 
274   /// clearKillFlags - Iterate over all the uses of the given register and
275   /// clear the kill flag from the MachineOperand. This function is used by
276   /// optimization passes which extend register lifetimes and need only
277   /// preserve conservative kill flag information.
278   void clearKillFlags(unsigned Reg) const;
279 
280 #ifndef NDEBUG
281   void dumpUses(unsigned RegNo) const;
282 #endif
283 
284   /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
285   /// throughout the function.  It is safe to move instructions that read such
286   /// a physreg.
287   bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
288 
289   //===--------------------------------------------------------------------===//
290   // Virtual Register Info
291   //===--------------------------------------------------------------------===//
292 
293   /// getRegClass - Return the register class of the specified virtual register.
294   ///
getRegClass(unsigned Reg)295   const TargetRegisterClass *getRegClass(unsigned Reg) const {
296     return VRegInfo[Reg].first;
297   }
298 
299   /// setRegClass - Set the register class of the specified virtual register.
300   ///
301   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
302 
303   /// constrainRegClass - Constrain the register class of the specified virtual
304   /// register to be a common subclass of RC and the current register class,
305   /// but only if the new class has at least MinNumRegs registers.  Return the
306   /// new register class, or NULL if no such class exists.
307   /// This should only be used when the constraint is known to be trivial, like
308   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
309   ///
310   const TargetRegisterClass *constrainRegClass(unsigned Reg,
311                                                const TargetRegisterClass *RC,
312                                                unsigned MinNumRegs = 0);
313 
314   /// recomputeRegClass - Try to find a legal super-class of Reg's register
315   /// class that still satisfies the constraints from the instructions using
316   /// Reg.  Returns true if Reg was upgraded.
317   ///
318   /// This method can be used after constraints have been removed from a
319   /// virtual register, for example after removing instructions or splitting
320   /// the live range.
321   ///
322   bool recomputeRegClass(unsigned Reg, const TargetMachine&);
323 
324   /// createVirtualRegister - Create and return a new virtual register in the
325   /// function with the specified register class.
326   ///
327   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
328 
329   /// getNumVirtRegs - Return the number of virtual registers created.
330   ///
getNumVirtRegs()331   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
332 
333   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
334   void clearVirtRegs();
335 
336   /// setRegAllocationHint - Specify a register allocation hint for the
337   /// specified virtual register.
setRegAllocationHint(unsigned Reg,unsigned Type,unsigned PrefReg)338   void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
339     RegAllocHints[Reg].first  = Type;
340     RegAllocHints[Reg].second = PrefReg;
341   }
342 
343   /// getRegAllocationHint - Return the register allocation hint for the
344   /// specified virtual register.
345   std::pair<unsigned, unsigned>
getRegAllocationHint(unsigned Reg)346   getRegAllocationHint(unsigned Reg) const {
347     return RegAllocHints[Reg];
348   }
349 
350   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
351   /// standard simple hint (Type == 0) is not set.
getSimpleHint(unsigned Reg)352   unsigned getSimpleHint(unsigned Reg) const {
353     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
354     return Hint.first ? 0 : Hint.second;
355   }
356 
357 
358   //===--------------------------------------------------------------------===//
359   // Physical Register Use Info
360   //===--------------------------------------------------------------------===//
361 
362   /// isPhysRegUsed - Return true if the specified register is used in this
363   /// function.  This only works after register allocation.
isPhysRegUsed(unsigned Reg)364   bool isPhysRegUsed(unsigned Reg) const {
365     return UsedPhysRegs.test(Reg) || UsedPhysRegMask.test(Reg);
366   }
367 
368   /// isPhysRegOrOverlapUsed - Return true if Reg or any overlapping register
369   /// is used in this function.
isPhysRegOrOverlapUsed(unsigned Reg)370   bool isPhysRegOrOverlapUsed(unsigned Reg) const {
371     if (UsedPhysRegMask.test(Reg))
372       return true;
373     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
374       if (UsedPhysRegs.test(*AI))
375         return true;
376     return false;
377   }
378 
379   /// setPhysRegUsed - Mark the specified register used in this function.
380   /// This should only be called during and after register allocation.
setPhysRegUsed(unsigned Reg)381   void setPhysRegUsed(unsigned Reg) { UsedPhysRegs.set(Reg); }
382 
383   /// addPhysRegsUsed - Mark the specified registers used in this function.
384   /// This should only be called during and after register allocation.
addPhysRegsUsed(const BitVector & Regs)385   void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
386 
387   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
388   /// This corresponds to the bit mask attached to register mask operands.
addPhysRegsUsedFromRegMask(const uint32_t * RegMask)389   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
390     UsedPhysRegMask.setBitsNotInMask(RegMask);
391   }
392 
393   /// setPhysRegUnused - Mark the specified register unused in this function.
394   /// This should only be called during and after register allocation.
setPhysRegUnused(unsigned Reg)395   void setPhysRegUnused(unsigned Reg) {
396     UsedPhysRegs.reset(Reg);
397     UsedPhysRegMask.reset(Reg);
398   }
399 
400 
401   //===--------------------------------------------------------------------===//
402   // Reserved Register Info
403   //===--------------------------------------------------------------------===//
404   //
405   // The set of reserved registers must be invariant during register
406   // allocation.  For example, the target cannot suddenly decide it needs a
407   // frame pointer when the register allocator has already used the frame
408   // pointer register for something else.
409   //
410   // These methods can be used by target hooks like hasFP() to avoid changing
411   // the reserved register set during register allocation.
412 
413   /// freezeReservedRegs - Called by the register allocator to freeze the set
414   /// of reserved registers before allocation begins.
415   void freezeReservedRegs(const MachineFunction&);
416 
417   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
418   /// to ensure the set of reserved registers stays constant.
reservedRegsFrozen()419   bool reservedRegsFrozen() const {
420     return !ReservedRegs.empty();
421   }
422 
423   /// canReserveReg - Returns true if PhysReg can be used as a reserved
424   /// register.  Any register can be reserved before freezeReservedRegs() is
425   /// called.
canReserveReg(unsigned PhysReg)426   bool canReserveReg(unsigned PhysReg) const {
427     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
428   }
429 
430 
431   //===--------------------------------------------------------------------===//
432   // LiveIn/LiveOut Management
433   //===--------------------------------------------------------------------===//
434 
435   /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
436   /// is an error to add the same register to the same set more than once.
437   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
438     LiveIns.push_back(std::make_pair(Reg, vreg));
439   }
addLiveOut(unsigned Reg)440   void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
441 
442   // Iteration support for live in/out sets.  These sets are kept in sorted
443   // order by their register number.
444   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
445   livein_iterator;
446   typedef std::vector<unsigned>::const_iterator liveout_iterator;
livein_begin()447   livein_iterator livein_begin() const { return LiveIns.begin(); }
livein_end()448   livein_iterator livein_end()   const { return LiveIns.end(); }
livein_empty()449   bool            livein_empty() const { return LiveIns.empty(); }
liveout_begin()450   liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
liveout_end()451   liveout_iterator liveout_end()   const { return LiveOuts.end(); }
liveout_empty()452   bool             liveout_empty() const { return LiveOuts.empty(); }
453 
454   bool isLiveIn(unsigned Reg) const;
455   bool isLiveOut(unsigned Reg) const;
456 
457   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
458   /// corresponding live-in physical register.
459   unsigned getLiveInPhysReg(unsigned VReg) const;
460 
461   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
462   /// corresponding live-in physical register.
463   unsigned getLiveInVirtReg(unsigned PReg) const;
464 
465   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
466   /// into the given entry block.
467   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
468                         const TargetRegisterInfo &TRI,
469                         const TargetInstrInfo &TII);
470 
471   /// defusechain_iterator - This class provides iterator support for machine
472   /// operands in the function that use or define a specific register.  If
473   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
474   /// returns defs.  If neither are true then you are silly and it always
475   /// returns end().  If SkipDebug is true it skips uses marked Debug
476   /// when incrementing.
477   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
478   class defusechain_iterator
479     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
480     MachineOperand *Op;
defusechain_iterator(MachineOperand * op)481     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
482       // If the first node isn't one we're interested in, advance to one that
483       // we are interested in.
484       if (op) {
485         if ((!ReturnUses && op->isUse()) ||
486             (!ReturnDefs && op->isDef()) ||
487             (SkipDebug && op->isDebug()))
488           ++*this;
489       }
490     }
491     friend class MachineRegisterInfo;
492   public:
493     typedef std::iterator<std::forward_iterator_tag,
494                           MachineInstr, ptrdiff_t>::reference reference;
495     typedef std::iterator<std::forward_iterator_tag,
496                           MachineInstr, ptrdiff_t>::pointer pointer;
497 
defusechain_iterator(const defusechain_iterator & I)498     defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
defusechain_iterator()499     defusechain_iterator() : Op(0) {}
500 
501     bool operator==(const defusechain_iterator &x) const {
502       return Op == x.Op;
503     }
504     bool operator!=(const defusechain_iterator &x) const {
505       return !operator==(x);
506     }
507 
508     /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()509     bool atEnd() const { return Op == 0; }
510 
511     // Iterator traversal: forward iteration only
512     defusechain_iterator &operator++() {          // Preincrement
513       assert(Op && "Cannot increment end iterator!");
514       Op = getNextOperandForReg(Op);
515 
516       // All defs come before the uses, so stop def_iterator early.
517       if (!ReturnUses) {
518         if (Op) {
519           if (Op->isUse())
520             Op = 0;
521           else
522             assert(!Op->isDebug() && "Can't have debug defs");
523         }
524       } else {
525         // If this is an operand we don't care about, skip it.
526         while (Op && ((!ReturnDefs && Op->isDef()) ||
527                       (SkipDebug && Op->isDebug())))
528           Op = getNextOperandForReg(Op);
529       }
530 
531       return *this;
532     }
533     defusechain_iterator operator++(int) {        // Postincrement
534       defusechain_iterator tmp = *this; ++*this; return tmp;
535     }
536 
537     /// skipInstruction - move forward until reaching a different instruction.
538     /// Return the skipped instruction that is no longer pointed to, or NULL if
539     /// already pointing to end().
skipInstruction()540     MachineInstr *skipInstruction() {
541       if (!Op) return 0;
542       MachineInstr *MI = Op->getParent();
543       do ++*this;
544       while (Op && Op->getParent() == MI);
545       return MI;
546     }
547 
skipBundle()548     MachineInstr *skipBundle() {
549       if (!Op) return 0;
550       MachineInstr *MI = getBundleStart(Op->getParent());
551       do ++*this;
552       while (Op && getBundleStart(Op->getParent()) == MI);
553       return MI;
554     }
555 
getOperand()556     MachineOperand &getOperand() const {
557       assert(Op && "Cannot dereference end iterator!");
558       return *Op;
559     }
560 
561     /// getOperandNo - Return the operand # of this MachineOperand in its
562     /// MachineInstr.
getOperandNo()563     unsigned getOperandNo() const {
564       assert(Op && "Cannot dereference end iterator!");
565       return Op - &Op->getParent()->getOperand(0);
566     }
567 
568     // Retrieve a reference to the current operand.
569     MachineInstr &operator*() const {
570       assert(Op && "Cannot dereference end iterator!");
571       return *Op->getParent();
572     }
573 
574     MachineInstr *operator->() const {
575       assert(Op && "Cannot dereference end iterator!");
576       return Op->getParent();
577     }
578   };
579 
580 };
581 
582 } // End llvm namespace
583 
584 #endif
585