• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 
12 #include <stdlib.h>
13 #include <stdio.h>
14 #include <string.h>
15 #include <limits.h>
16 #include <assert.h>
17 
18 #include "math.h"
19 #include "vp8/common/common.h"
20 #include "ratectrl.h"
21 #include "vp8/common/entropymode.h"
22 #include "vpx_mem/vpx_mem.h"
23 #include "vp8/common/systemdependent.h"
24 #include "encodemv.h"
25 
26 
27 #define MIN_BPB_FACTOR          0.01
28 #define MAX_BPB_FACTOR          50
29 
30 extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES];
31 extern const MV_REFERENCE_FRAME vp8_ref_frame_order[MAX_MODES];
32 
33 
34 
35 #ifdef MODE_STATS
36 extern int y_modes[5];
37 extern int uv_modes[4];
38 extern int b_modes[10];
39 
40 extern int inter_y_modes[10];
41 extern int inter_uv_modes[4];
42 extern int inter_b_modes[10];
43 #endif
44 
45 // Bits Per MB at different Q (Multiplied by 512)
46 #define BPER_MB_NORMBITS    9
47 
48 // Work in progress recalibration of baseline rate tables based on
49 // the assumption that bits per mb is inversely proportional to the
50 // quantizer value.
51 const int vp8_bits_per_mb[2][QINDEX_RANGE] =
52 {
53     // Intra case 450000/Qintra
54     {
55         1125000,900000, 750000, 642857, 562500, 500000, 450000, 450000,
56         409090, 375000, 346153, 321428, 300000, 281250, 264705, 264705,
57         250000, 236842, 225000, 225000, 214285, 214285, 204545, 204545,
58         195652, 195652, 187500, 180000, 180000, 173076, 166666, 160714,
59         155172, 150000, 145161, 140625, 136363, 132352, 128571, 125000,
60         121621, 121621, 118421, 115384, 112500, 109756, 107142, 104651,
61         102272, 100000, 97826,  97826,  95744,  93750,  91836,  90000,
62         88235,  86538,  84905,  83333,  81818,  80357,  78947,  77586,
63         76271,  75000,  73770,  72580,  71428,  70312,  69230,  68181,
64         67164,  66176,  65217,  64285,  63380,  62500,  61643,  60810,
65         60000,  59210,  59210,  58441,  57692,  56962,  56250,  55555,
66         54878,  54216,  53571,  52941,  52325,  51724,  51136,  50561,
67         49450,  48387,  47368,  46875,  45918,  45000,  44554,  44117,
68         43269,  42452,  41666,  40909,  40178,  39473,  38793,  38135,
69         36885,  36290,  35714,  35156,  34615,  34090,  33582,  33088,
70         32608,  32142,  31468,  31034,  30405,  29801,  29220,  28662,
71     },
72     // Inter case 285000/Qinter
73     {
74         712500, 570000, 475000, 407142, 356250, 316666, 285000, 259090,
75         237500, 219230, 203571, 190000, 178125, 167647, 158333, 150000,
76         142500, 135714, 129545, 123913, 118750, 114000, 109615, 105555,
77         101785, 98275,  95000,  91935,  89062,  86363,  83823,  81428,
78         79166,  77027,  75000,  73076,  71250,  69512,  67857,  66279,
79         64772,  63333,  61956,  60638,  59375,  58163,  57000,  55882,
80         54807,  53773,  52777,  51818,  50892,  50000,  49137,  47500,
81         45967,  44531,  43181,  41911,  40714,  39583,  38513,  37500,
82         36538,  35625,  34756,  33928,  33139,  32386,  31666,  30978,
83         30319,  29687,  29081,  28500,  27941,  27403,  26886,  26388,
84         25909,  25446,  25000,  24568,  23949,  23360,  22800,  22265,
85         21755,  21268,  20802,  20357,  19930,  19520,  19127,  18750,
86         18387,  18037,  17701,  17378,  17065,  16764,  16473,  16101,
87         15745,  15405,  15079,  14766,  14467,  14179,  13902,  13636,
88         13380,  13133,  12895,  12666,  12445,  12179,  11924,  11632,
89         11445,  11220,  11003,  10795,  10594,  10401,  10215,  10035,
90     }
91 };
92 
93 static const int kf_boost_qadjustment[QINDEX_RANGE] =
94 {
95     128, 129, 130, 131, 132, 133, 134, 135,
96     136, 137, 138, 139, 140, 141, 142, 143,
97     144, 145, 146, 147, 148, 149, 150, 151,
98     152, 153, 154, 155, 156, 157, 158, 159,
99     160, 161, 162, 163, 164, 165, 166, 167,
100     168, 169, 170, 171, 172, 173, 174, 175,
101     176, 177, 178, 179, 180, 181, 182, 183,
102     184, 185, 186, 187, 188, 189, 190, 191,
103     192, 193, 194, 195, 196, 197, 198, 199,
104     200, 200, 201, 201, 202, 203, 203, 203,
105     204, 204, 205, 205, 206, 206, 207, 207,
106     208, 208, 209, 209, 210, 210, 211, 211,
107     212, 212, 213, 213, 214, 214, 215, 215,
108     216, 216, 217, 217, 218, 218, 219, 219,
109     220, 220, 220, 220, 220, 220, 220, 220,
110     220, 220, 220, 220, 220, 220, 220, 220,
111 };
112 
113 //#define GFQ_ADJUSTMENT (Q+100)
114 #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
115 const int vp8_gf_boost_qadjustment[QINDEX_RANGE] =
116 {
117     80, 82, 84, 86, 88, 90, 92, 94,
118     96, 97, 98, 99, 100, 101, 102, 103,
119     104, 105, 106, 107, 108, 109, 110, 111,
120     112, 113, 114, 115, 116, 117, 118, 119,
121     120, 121, 122, 123, 124, 125, 126, 127,
122     128, 129, 130, 131, 132, 133, 134, 135,
123     136, 137, 138, 139, 140, 141, 142, 143,
124     144, 145, 146, 147, 148, 149, 150, 151,
125     152, 153, 154, 155, 156, 157, 158, 159,
126     160, 161, 162, 163, 164, 165, 166, 167,
127     168, 169, 170, 171, 172, 173, 174, 175,
128     176, 177, 178, 179, 180, 181, 182, 183,
129     184, 184, 185, 185, 186, 186, 187, 187,
130     188, 188, 189, 189, 190, 190, 191, 191,
131     192, 192, 193, 193, 194, 194, 194, 194,
132     195, 195, 196, 196, 197, 197, 198, 198
133 };
134 
135 /*
136 const int vp8_gf_boost_qadjustment[QINDEX_RANGE] =
137 {
138     100,101,102,103,104,105,105,106,
139     106,107,107,108,109,109,110,111,
140     112,113,114,115,116,117,118,119,
141     120,121,122,123,124,125,126,127,
142     128,129,130,131,132,133,134,135,
143     136,137,138,139,140,141,142,143,
144     144,145,146,147,148,149,150,151,
145     152,153,154,155,156,157,158,159,
146     160,161,162,163,164,165,166,167,
147     168,169,170,170,171,171,172,172,
148     173,173,173,174,174,174,175,175,
149     175,176,176,176,177,177,177,177,
150     178,178,179,179,180,180,181,181,
151     182,182,183,183,184,184,185,185,
152     186,186,187,187,188,188,189,189,
153     190,190,191,191,192,192,193,193,
154 };
155 */
156 
157 static const int kf_gf_boost_qlimits[QINDEX_RANGE] =
158 {
159     150, 155, 160, 165, 170, 175, 180, 185,
160     190, 195, 200, 205, 210, 215, 220, 225,
161     230, 235, 240, 245, 250, 255, 260, 265,
162     270, 275, 280, 285, 290, 295, 300, 305,
163     310, 320, 330, 340, 350, 360, 370, 380,
164     390, 400, 410, 420, 430, 440, 450, 460,
165     470, 480, 490, 500, 510, 520, 530, 540,
166     550, 560, 570, 580, 590, 600, 600, 600,
167     600, 600, 600, 600, 600, 600, 600, 600,
168     600, 600, 600, 600, 600, 600, 600, 600,
169     600, 600, 600, 600, 600, 600, 600, 600,
170     600, 600, 600, 600, 600, 600, 600, 600,
171     600, 600, 600, 600, 600, 600, 600, 600,
172     600, 600, 600, 600, 600, 600, 600, 600,
173     600, 600, 600, 600, 600, 600, 600, 600,
174     600, 600, 600, 600, 600, 600, 600, 600,
175 };
176 
177 // % adjustment to target kf size based on seperation from previous frame
178 static const int kf_boost_seperation_adjustment[16] =
179 {
180     30,   40,   50,   55,   60,   65,   70,   75,
181     80,   85,   90,   95,  100,  100,  100,  100,
182 };
183 
184 
185 static const int gf_adjust_table[101] =
186 {
187     100,
188     115, 130, 145, 160, 175, 190, 200, 210, 220, 230,
189     240, 260, 270, 280, 290, 300, 310, 320, 330, 340,
190     350, 360, 370, 380, 390, 400, 400, 400, 400, 400,
191     400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
192     400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
193     400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
194     400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
195     400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
196     400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
197     400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
198 };
199 
200 static const int gf_intra_usage_adjustment[20] =
201 {
202     125, 120, 115, 110, 105, 100,  95,  85,  80,  75,
203     70,  65,  60,  55,  50,  50,  50,  50,  50,  50,
204 };
205 
206 static const int gf_interval_table[101] =
207 {
208     7,
209     7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
210     7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
211     7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
212     8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
213     8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
214     9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
215     9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
216     10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
217     10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
218     11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
219 };
220 
221 static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 };
222 
223 
vp8_save_coding_context(VP8_COMP * cpi)224 void vp8_save_coding_context(VP8_COMP *cpi)
225 {
226     CODING_CONTEXT *const cc = & cpi->coding_context;
227 
228     // Stores a snapshot of key state variables which can subsequently be
229     // restored with a call to vp8_restore_coding_context. These functions are
230     // intended for use in a re-code loop in vp8_compress_frame where the
231     // quantizer value is adjusted between loop iterations.
232 
233     cc->frames_since_key          = cpi->frames_since_key;
234     cc->filter_level             = cpi->common.filter_level;
235     cc->frames_till_gf_update_due   = cpi->frames_till_gf_update_due;
236     cc->frames_since_golden       = cpi->common.frames_since_golden;
237 
238     vp8_copy(cc->mvc,      cpi->common.fc.mvc);
239     vp8_copy(cc->mvcosts,  cpi->mb.mvcosts);
240 
241     vp8_copy(cc->kf_ymode_prob,   cpi->common.kf_ymode_prob);
242     vp8_copy(cc->ymode_prob,   cpi->common.fc.ymode_prob);
243     vp8_copy(cc->kf_uv_mode_prob,  cpi->common.kf_uv_mode_prob);
244     vp8_copy(cc->uv_mode_prob,  cpi->common.fc.uv_mode_prob);
245 
246     vp8_copy(cc->ymode_count, cpi->ymode_count);
247     vp8_copy(cc->uv_mode_count, cpi->uv_mode_count);
248 
249 
250     // Stats
251 #ifdef MODE_STATS
252     vp8_copy(cc->y_modes,       y_modes);
253     vp8_copy(cc->uv_modes,      uv_modes);
254     vp8_copy(cc->b_modes,       b_modes);
255     vp8_copy(cc->inter_y_modes,  inter_y_modes);
256     vp8_copy(cc->inter_uv_modes, inter_uv_modes);
257     vp8_copy(cc->inter_b_modes,  inter_b_modes);
258 #endif
259 
260     cc->this_frame_percent_intra = cpi->this_frame_percent_intra;
261 }
262 
263 
vp8_restore_coding_context(VP8_COMP * cpi)264 void vp8_restore_coding_context(VP8_COMP *cpi)
265 {
266     CODING_CONTEXT *const cc = & cpi->coding_context;
267 
268     // Restore key state variables to the snapshot state stored in the
269     // previous call to vp8_save_coding_context.
270 
271     cpi->frames_since_key         =   cc->frames_since_key;
272     cpi->common.filter_level     =   cc->filter_level;
273     cpi->frames_till_gf_update_due  =   cc->frames_till_gf_update_due;
274     cpi->common.frames_since_golden       =   cc->frames_since_golden;
275 
276     vp8_copy(cpi->common.fc.mvc, cc->mvc);
277 
278     vp8_copy(cpi->mb.mvcosts, cc->mvcosts);
279 
280     vp8_copy(cpi->common.kf_ymode_prob,   cc->kf_ymode_prob);
281     vp8_copy(cpi->common.fc.ymode_prob,   cc->ymode_prob);
282     vp8_copy(cpi->common.kf_uv_mode_prob,  cc->kf_uv_mode_prob);
283     vp8_copy(cpi->common.fc.uv_mode_prob,  cc->uv_mode_prob);
284 
285     vp8_copy(cpi->ymode_count, cc->ymode_count);
286     vp8_copy(cpi->uv_mode_count, cc->uv_mode_count);
287 
288     // Stats
289 #ifdef MODE_STATS
290     vp8_copy(y_modes, cc->y_modes);
291     vp8_copy(uv_modes, cc->uv_modes);
292     vp8_copy(b_modes, cc->b_modes);
293     vp8_copy(inter_y_modes, cc->inter_y_modes);
294     vp8_copy(inter_uv_modes, cc->inter_uv_modes);
295     vp8_copy(inter_b_modes, cc->inter_b_modes);
296 #endif
297 
298 
299     cpi->this_frame_percent_intra = cc->this_frame_percent_intra;
300 }
301 
302 
vp8_setup_key_frame(VP8_COMP * cpi)303 void vp8_setup_key_frame(VP8_COMP *cpi)
304 {
305     // Setup for Key frame:
306 
307     vp8_default_coef_probs(& cpi->common);
308     vp8_kf_default_bmode_probs(cpi->common.kf_bmode_prob);
309 
310     vpx_memcpy(cpi->common.fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
311     {
312         int flag[2] = {1, 1};
313         vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cpi->common.fc.mvc, flag);
314     }
315 
316     vpx_memset(cpi->common.fc.pre_mvc, 0, sizeof(cpi->common.fc.pre_mvc));  //initialize pre_mvc to all zero.
317 
318     //cpi->common.filter_level = 0;      // Reset every key frame.
319     cpi->common.filter_level = cpi->common.base_qindex * 3 / 8 ;
320 
321     // Provisional interval before next GF
322     if (cpi->auto_gold)
323         //cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
324         cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
325     else
326         cpi->frames_till_gf_update_due = cpi->goldfreq;
327 
328     cpi->common.refresh_golden_frame = TRUE;
329     cpi->common.refresh_alt_ref_frame = TRUE;
330 }
331 
vp8_calc_auto_iframe_target_size(VP8_COMP * cpi)332 void vp8_calc_auto_iframe_target_size(VP8_COMP *cpi)
333 {
334     // boost defaults to half second
335     int kf_boost;
336 
337     // Clear down mmx registers to allow floating point in what follows
338     vp8_clear_system_state();  //__asm emms;
339 
340     if (cpi->oxcf.fixed_q >= 0)
341     {
342         vp8_calc_iframe_target_size(cpi);
343         return;
344     }
345 
346     if (cpi->pass == 2)
347     {
348         cpi->this_frame_target = cpi->per_frame_bandwidth;      // New Two pass RC
349     }
350     else
351     {
352         // Boost depends somewhat on frame rate
353         kf_boost = (int)(2 * cpi->output_frame_rate - 16);
354 
355         // adjustment up based on q
356         kf_boost = kf_boost * kf_boost_qadjustment[cpi->ni_av_qi] / 100;
357 
358         // frame separation adjustment ( down)
359         if (cpi->frames_since_key  < cpi->output_frame_rate / 2)
360             kf_boost = (int)(kf_boost * cpi->frames_since_key / (cpi->output_frame_rate / 2));
361 
362         if (kf_boost < 16)
363             kf_boost = 16;
364 
365         // Reset the active worst quality to the baseline value for key frames.
366         cpi->active_worst_quality = cpi->worst_quality;
367 
368         cpi->this_frame_target = ((16 + kf_boost)  * cpi->per_frame_bandwidth) >> 4;
369     }
370 
371 
372     // Should the next frame be an altref frame
373     if (cpi->pass != 2)
374     {
375         // For now Alt ref is not allowed except in 2 pass modes.
376         cpi->source_alt_ref_pending = FALSE;
377 
378         /*if ( cpi->oxcf.fixed_q == -1)
379         {
380             if ( cpi->oxcf.play_alternate && ( (cpi->last_boost/2) > (100+(AF_THRESH*cpi->frames_till_gf_update_due)) ) )
381                 cpi->source_alt_ref_pending = TRUE;
382             else
383                 cpi->source_alt_ref_pending = FALSE;
384         }*/
385     }
386 
387     if (0)
388     {
389         FILE *f;
390 
391         f = fopen("kf_boost.stt", "a");
392         //fprintf(f, " %8d %10d %10d %10d %10d %10d %10d\n",
393         //  cpi->common.current_video_frame,  cpi->target_bandwidth, cpi->frames_to_key, kf_boost_qadjustment[cpi->ni_av_qi], cpi->kf_boost, (cpi->this_frame_target *100 / cpi->per_frame_bandwidth), cpi->this_frame_target );
394 
395         fprintf(f, " %8u %10d %10d %10d\n",
396                 cpi->common.current_video_frame,  cpi->gfu_boost, cpi->baseline_gf_interval, cpi->source_alt_ref_pending);
397 
398         fclose(f);
399     }
400 }
401 
402 //  Do the best we can to define the parameteres for the next GF based on what information we have available.
calc_gf_params(VP8_COMP * cpi)403 static void calc_gf_params(VP8_COMP *cpi)
404 {
405     int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
406     int Boost = 0;
407 
408     int gf_frame_useage = 0;      // Golden frame useage since last GF
409     int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME]  +
410                   cpi->recent_ref_frame_usage[LAST_FRAME]   +
411                   cpi->recent_ref_frame_usage[GOLDEN_FRAME] +
412                   cpi->recent_ref_frame_usage[ALTREF_FRAME];
413 
414     int pct_gf_active = (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols);
415 
416     // Reset the last boost indicator
417     //cpi->last_boost = 100;
418 
419     if (tot_mbs)
420         gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * 100 / tot_mbs;
421 
422     if (pct_gf_active > gf_frame_useage)
423         gf_frame_useage = pct_gf_active;
424 
425     // Not two pass
426     if (cpi->pass != 2)
427     {
428         // Single Pass lagged mode: TBD
429         if (FALSE)
430         {
431         }
432 
433         // Single Pass compression: Has to use current and historical data
434         else
435         {
436 #if 0
437             // Experimental code
438             int index = cpi->one_pass_frame_index;
439             int frames_to_scan = (cpi->max_gf_interval <= MAX_LAG_BUFFERS) ? cpi->max_gf_interval : MAX_LAG_BUFFERS;
440 
441             /*
442             // *************** Experimental code - incomplete
443             double decay_val = 1.0;
444             double IIAccumulator = 0.0;
445             double last_iiaccumulator = 0.0;
446             double IIRatio;
447 
448             cpi->one_pass_frame_index = cpi->common.current_video_frame%MAX_LAG_BUFFERS;
449 
450             for ( i = 0; i < (frames_to_scan - 1); i++ )
451             {
452                 if ( index < 0 )
453                     index = MAX_LAG_BUFFERS;
454                 index --;
455 
456                 if ( cpi->one_pass_frame_stats[index].frame_coded_error > 0.0 )
457                 {
458                     IIRatio = cpi->one_pass_frame_stats[index].frame_intra_error / cpi->one_pass_frame_stats[index].frame_coded_error;
459 
460                     if ( IIRatio > 30.0 )
461                         IIRatio = 30.0;
462                 }
463                 else
464                     IIRatio = 30.0;
465 
466                 IIAccumulator += IIRatio * decay_val;
467 
468                 decay_val = decay_val * cpi->one_pass_frame_stats[index].frame_pcnt_inter;
469 
470                 if (    (i > MIN_GF_INTERVAL) &&
471                         ((IIAccumulator - last_iiaccumulator) < 2.0) )
472                 {
473                     break;
474                 }
475                 last_iiaccumulator = IIAccumulator;
476             }
477 
478             Boost = IIAccumulator*100.0/16.0;
479             cpi->baseline_gf_interval = i;
480 
481             */
482 #else
483 
484             /*************************************************************/
485             // OLD code
486 
487             // Adjust boost based upon ambient Q
488             Boost = GFQ_ADJUSTMENT;
489 
490             // Adjust based upon most recently measure intra useage
491             Boost = Boost * gf_intra_usage_adjustment[(cpi->this_frame_percent_intra < 15) ? cpi->this_frame_percent_intra : 14] / 100;
492 
493             // Adjust gf boost based upon GF usage since last GF
494             Boost = Boost * gf_adjust_table[gf_frame_useage] / 100;
495 #endif
496         }
497 
498         // golden frame boost without recode loop often goes awry.  be safe by keeping numbers down.
499         if (!cpi->sf.recode_loop)
500         {
501             if (cpi->compressor_speed == 2)
502                 Boost = Boost / 2;
503         }
504 
505         // Apply an upper limit based on Q for 1 pass encodes
506         if (Boost > kf_gf_boost_qlimits[Q] && (cpi->pass == 0))
507             Boost = kf_gf_boost_qlimits[Q];
508 
509         // Apply lower limits to boost.
510         else if (Boost < 110)
511             Boost = 110;
512 
513         // Note the boost used
514         cpi->last_boost = Boost;
515 
516     }
517 
518     // Estimate next interval
519     // This is updated once the real frame size/boost is known.
520     if (cpi->oxcf.fixed_q == -1)
521     {
522         if (cpi->pass == 2)         // 2 Pass
523         {
524             cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
525         }
526         else                            // 1 Pass
527         {
528             cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
529 
530             if (cpi->last_boost > 750)
531                 cpi->frames_till_gf_update_due++;
532 
533             if (cpi->last_boost > 1000)
534                 cpi->frames_till_gf_update_due++;
535 
536             if (cpi->last_boost > 1250)
537                 cpi->frames_till_gf_update_due++;
538 
539             if (cpi->last_boost >= 1500)
540                 cpi->frames_till_gf_update_due ++;
541 
542             if (gf_interval_table[gf_frame_useage] > cpi->frames_till_gf_update_due)
543                 cpi->frames_till_gf_update_due = gf_interval_table[gf_frame_useage];
544 
545             if (cpi->frames_till_gf_update_due > cpi->max_gf_interval)
546                 cpi->frames_till_gf_update_due = cpi->max_gf_interval;
547         }
548     }
549     else
550         cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
551 
552     // ARF on or off
553     if (cpi->pass != 2)
554     {
555         // For now Alt ref is not allowed except in 2 pass modes.
556         cpi->source_alt_ref_pending = FALSE;
557 
558         /*if ( cpi->oxcf.fixed_q == -1)
559         {
560             if ( cpi->oxcf.play_alternate && (cpi->last_boost > (100 + (AF_THRESH*cpi->frames_till_gf_update_due)) ) )
561                 cpi->source_alt_ref_pending = TRUE;
562             else
563                 cpi->source_alt_ref_pending = FALSE;
564         }*/
565     }
566 }
567 /* This is equvialent to estimate_bits_at_q without the rate_correction_factor. */
baseline_bits_at_q(int frame_kind,int Q,int MBs)568 static int baseline_bits_at_q(int frame_kind, int Q, int MBs)
569 {
570     int Bpm = vp8_bits_per_mb[frame_kind][Q];
571 
572     /* Attempt to retain reasonable accuracy without overflow. The cutoff is
573      * chosen such that the maximum product of Bpm and MBs fits 31 bits. The
574      * largest Bpm takes 20 bits.
575      */
576     if (MBs > (1 << 11))
577         return (Bpm >> BPER_MB_NORMBITS) * MBs;
578     else
579         return (Bpm * MBs) >> BPER_MB_NORMBITS;
580 }
581 
vp8_calc_iframe_target_size(VP8_COMP * cpi)582 void vp8_calc_iframe_target_size(VP8_COMP *cpi)
583 {
584     int Q;
585     int Boost = 100;
586 
587     Q = (cpi->oxcf.fixed_q >= 0) ? cpi->oxcf.fixed_q : cpi->avg_frame_qindex;
588 
589     if (cpi->auto_adjust_key_quantizer == 1)
590     {
591         // If (auto_adjust_key_quantizer==1) then a lower Q is selected for key-frames.
592         // The enhanced Q is calculated so as to boost the key frame size by a factor
593         // specified in kf_boost_qadjustment. Also, can adjust based on distance
594         // between key frames.
595 
596         // Adjust boost based upon ambient Q
597         Boost = kf_boost_qadjustment[Q];
598 
599         // Make the Key frame boost less if the seperation from the previous key frame is small
600         if (cpi->frames_since_key < 16)
601             Boost = Boost * kf_boost_seperation_adjustment[cpi->frames_since_key] / 100;
602         else
603             Boost = Boost * kf_boost_seperation_adjustment[15] / 100;
604 
605         // Apply limits on boost
606         if (Boost > kf_gf_boost_qlimits[Q])
607             Boost = kf_gf_boost_qlimits[Q];
608         else if (Boost < 120)
609             Boost = 120;
610     }
611 
612     // Keep a record of the boost that was used
613     cpi->last_boost = Boost;
614 
615     // Should the next frame be an altref frame
616     if (cpi->pass != 2)
617     {
618         // For now Alt ref is not allowed except in 2 pass modes.
619         cpi->source_alt_ref_pending = FALSE;
620 
621         /*if ( cpi->oxcf.fixed_q == -1)
622         {
623             if ( cpi->oxcf.play_alternate && ( (cpi->last_boost/2) > (100+(AF_THRESH*cpi->frames_till_gf_update_due)) ) )
624                 cpi->source_alt_ref_pending = TRUE;
625             else
626                 cpi->source_alt_ref_pending = FALSE;
627         }*/
628     }
629 
630     if (cpi->oxcf.fixed_q >= 0)
631     {
632         cpi->this_frame_target = (baseline_bits_at_q(0, Q, cpi->common.MBs) * Boost) / 100;
633     }
634     else
635     {
636 
637         int bits_per_mb_at_this_q ;
638 
639         if (cpi->oxcf.error_resilient_mode == 1)
640         {
641             cpi->this_frame_target = 2 * cpi->av_per_frame_bandwidth;
642             return;
643         }
644 
645         // Rate targetted scenario:
646         // Be careful of 32-bit OVERFLOW if restructuring the caluclation of cpi->this_frame_target
647         bits_per_mb_at_this_q = (int)(.5 +
648                                       cpi->key_frame_rate_correction_factor * vp8_bits_per_mb[0][Q]);
649 
650         cpi->this_frame_target = (((bits_per_mb_at_this_q * cpi->common.MBs) >> BPER_MB_NORMBITS) * Boost) / 100;
651 
652         // Reset the active worst quality to the baseline value for key frames.
653         if (cpi->pass < 2)
654             cpi->active_worst_quality = cpi->worst_quality;
655     }
656 }
657 
658 
659 
vp8_calc_pframe_target_size(VP8_COMP * cpi)660 void vp8_calc_pframe_target_size(VP8_COMP *cpi)
661 {
662     int min_frame_target;
663     int Adjustment;
664 
665     // Set the min frame bandwidth.
666     //min_frame_target = estimate_min_frame_size( cpi );
667     min_frame_target = 0;
668 
669     if (cpi->pass == 2)
670     {
671         min_frame_target = cpi->min_frame_bandwidth;
672 
673         if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
674             min_frame_target = cpi->av_per_frame_bandwidth >> 5;
675     }
676     else if (min_frame_target < cpi->per_frame_bandwidth / 4)
677         min_frame_target = cpi->per_frame_bandwidth / 4;
678 
679 
680     // Special alt reference frame case
681     if (cpi->common.refresh_alt_ref_frame)
682     {
683         if (cpi->pass == 2)
684         {
685             cpi->per_frame_bandwidth = cpi->gf_bits;                       // Per frame bit target for the alt ref frame
686             cpi->this_frame_target = cpi->per_frame_bandwidth;
687         }
688 
689         /* One Pass ??? TBD */
690         /*else
691         {
692             int frames_in_section;
693             int allocation_chunks;
694             int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
695             int alt_boost;
696             int max_arf_rate;
697 
698             alt_boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
699             alt_boost += (cpi->frames_till_gf_update_due * 50);
700 
701             // If alt ref is not currently active then we have a pottential double hit with GF and ARF so reduce the boost a bit.
702             // A similar thing is done on GFs that preceed a arf update.
703             if ( !cpi->source_alt_ref_active )
704                 alt_boost = alt_boost * 3 / 4;
705 
706             frames_in_section = cpi->frames_till_gf_update_due+1;                                   // Standard frames + GF
707             allocation_chunks = (frames_in_section * 100) + alt_boost;
708 
709             // Normalize Altboost and allocations chunck down to prevent overflow
710             while ( alt_boost > 1000 )
711             {
712                 alt_boost /= 2;
713                 allocation_chunks /= 2;
714             }
715 
716             else
717             {
718                 int bits_in_section;
719 
720                 if ( cpi->kf_overspend_bits > 0 )
721                 {
722                     Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) ? cpi->kf_bitrate_adjustment : cpi->kf_overspend_bits;
723 
724                     if ( Adjustment > (cpi->per_frame_bandwidth - min_frame_target) )
725                         Adjustment = (cpi->per_frame_bandwidth - min_frame_target);
726 
727                     cpi->kf_overspend_bits -= Adjustment;
728 
729                     // Calculate an inter frame bandwidth target for the next few frames designed to recover
730                     // any extra bits spent on the key frame.
731                     cpi->inter_frame_target = cpi->per_frame_bandwidth - Adjustment;
732                     if ( cpi->inter_frame_target < min_frame_target )
733                         cpi->inter_frame_target = min_frame_target;
734                 }
735                 else
736                     cpi->inter_frame_target = cpi->per_frame_bandwidth;
737 
738                 bits_in_section = cpi->inter_frame_target * frames_in_section;
739 
740                 // Avoid loss of precision but avoid overflow
741                 if ( (bits_in_section>>7) > allocation_chunks )
742                     cpi->this_frame_target = alt_boost * (bits_in_section / allocation_chunks);
743                 else
744                     cpi->this_frame_target = (alt_boost * bits_in_section) / allocation_chunks;
745             }
746         }
747         */
748     }
749 
750     // Normal frames (gf,and inter)
751     else
752     {
753         // 2 pass
754         if (cpi->pass == 2)
755         {
756             cpi->this_frame_target = cpi->per_frame_bandwidth;
757         }
758         // 1 pass
759         else
760         {
761             // Make rate adjustment to recover bits spent in key frame
762             // Test to see if the key frame inter data rate correction should still be in force
763             if (cpi->kf_overspend_bits > 0)
764             {
765                 Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) ? cpi->kf_bitrate_adjustment : cpi->kf_overspend_bits;
766 
767                 if (Adjustment > (cpi->per_frame_bandwidth - min_frame_target))
768                     Adjustment = (cpi->per_frame_bandwidth - min_frame_target);
769 
770                 cpi->kf_overspend_bits -= Adjustment;
771 
772                 // Calculate an inter frame bandwidth target for the next few frames designed to recover
773                 // any extra bits spent on the key frame.
774                 cpi->this_frame_target = cpi->per_frame_bandwidth - Adjustment;
775 
776                 if (cpi->this_frame_target < min_frame_target)
777                     cpi->this_frame_target = min_frame_target;
778             }
779             else
780                 cpi->this_frame_target = cpi->per_frame_bandwidth;
781 
782             // If appropriate make an adjustment to recover bits spent on a recent GF
783             if ((cpi->gf_overspend_bits > 0) && (cpi->this_frame_target > min_frame_target))
784             {
785                 int Adjustment = (cpi->non_gf_bitrate_adjustment <= cpi->gf_overspend_bits) ? cpi->non_gf_bitrate_adjustment : cpi->gf_overspend_bits;
786 
787                 if (Adjustment > (cpi->this_frame_target - min_frame_target))
788                     Adjustment = (cpi->this_frame_target - min_frame_target);
789 
790                 cpi->gf_overspend_bits -= Adjustment;
791                 cpi->this_frame_target -= Adjustment;
792             }
793 
794             // Apply small + and - boosts for non gf frames
795             if ((cpi->last_boost > 150) && (cpi->frames_till_gf_update_due > 0) &&
796                 (cpi->current_gf_interval >= (MIN_GF_INTERVAL << 1)))
797             {
798                 // % Adjustment limited to the range 1% to 10%
799                 Adjustment = (cpi->last_boost - 100) >> 5;
800 
801                 if (Adjustment < 1)
802                     Adjustment = 1;
803                 else if (Adjustment > 10)
804                     Adjustment = 10;
805 
806                 // Convert to bits
807                 Adjustment = (cpi->this_frame_target * Adjustment) / 100;
808 
809                 if (Adjustment > (cpi->this_frame_target - min_frame_target))
810                     Adjustment = (cpi->this_frame_target - min_frame_target);
811 
812                 if (cpi->common.frames_since_golden == (cpi->current_gf_interval >> 1))
813                     cpi->this_frame_target += ((cpi->current_gf_interval - 1) * Adjustment);
814                 else
815                     cpi->this_frame_target -= Adjustment;
816             }
817         }
818     }
819 
820     // Set a reduced data rate target for our initial Q calculation.
821     // This should help to save bits during earier sections.
822     if ((cpi->oxcf.under_shoot_pct > 0) && (cpi->oxcf.under_shoot_pct <= 100))
823         cpi->this_frame_target = (cpi->this_frame_target * cpi->oxcf.under_shoot_pct) / 100;
824 
825     // Sanity check that the total sum of adjustments is not above the maximum allowed
826     // That is that having allowed for KF and GF penalties we have not pushed the
827     // current interframe target to low. If the adjustment we apply here is not capable of recovering
828     // all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over
829     // a longer time span via other buffer / rate control mechanisms.
830     if (cpi->this_frame_target < min_frame_target)
831         cpi->this_frame_target = min_frame_target;
832 
833     if (!cpi->common.refresh_alt_ref_frame)
834         // Note the baseline target data rate for this inter frame.
835         cpi->inter_frame_target = cpi->this_frame_target;
836 
837     // One Pass specific code
838     if (cpi->pass == 0)
839     {
840         // Adapt target frame size with respect to any buffering constraints:
841         if (cpi->buffered_mode)
842         {
843             int one_percent_bits = 1 + cpi->oxcf.optimal_buffer_level / 100;
844 
845             if ((cpi->buffer_level < cpi->oxcf.optimal_buffer_level) ||
846                 (cpi->bits_off_target < cpi->oxcf.optimal_buffer_level))
847             {
848                 int percent_low = 0;
849 
850                 // Decide whether or not we need to adjust the frame data rate target.
851                 //
852                 // If we are are below the optimal buffer fullness level and adherence
853                 // to buffering contraints is important to the end useage then adjust
854                 // the per frame target.
855                 if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
856                     (cpi->buffer_level < cpi->oxcf.optimal_buffer_level))
857                 {
858                     percent_low =
859                         (cpi->oxcf.optimal_buffer_level - cpi->buffer_level) /
860                         one_percent_bits;
861 
862                     if (percent_low > 100)
863                         percent_low = 100;
864                     else if (percent_low < 0)
865                         percent_low = 0;
866                 }
867                 // Are we overshooting the long term clip data rate...
868                 else if (cpi->bits_off_target < 0)
869                 {
870                     // Adjust per frame data target downwards to compensate.
871                     percent_low = (int)(100 * -cpi->bits_off_target /
872                                        (cpi->total_byte_count * 8));
873 
874                     if (percent_low > 100)
875                         percent_low = 100;
876                     else if (percent_low < 0)
877                         percent_low = 0;
878                 }
879 
880                 // lower the target bandwidth for this frame.
881                 cpi->this_frame_target =
882                     (cpi->this_frame_target * (100 - (percent_low / 2))) / 100;
883 
884                 // Are we using allowing control of active_worst_allowed_q
885                 // according to buffer level.
886                 if (cpi->auto_worst_q)
887                 {
888                     int critical_buffer_level;
889 
890                     // For streaming applications the most important factor is
891                     // cpi->buffer_level as this takes into account the
892                     // specified short term buffering constraints. However,
893                     // hitting the long term clip data rate target is also
894                     // important.
895                     if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
896                     {
897                         // Take the smaller of cpi->buffer_level and
898                         // cpi->bits_off_target
899                         critical_buffer_level =
900                             (cpi->buffer_level < cpi->bits_off_target)
901                             ? cpi->buffer_level : cpi->bits_off_target;
902                     }
903                     // For local file playback short term buffering contraints
904                     // are less of an issue
905                     else
906                     {
907                         // Consider only how we are doing for the clip as a
908                         // whole
909                         critical_buffer_level = cpi->bits_off_target;
910                     }
911 
912                     // Set the active worst quality based upon the selected
913                     // buffer fullness number.
914                     if (critical_buffer_level < cpi->oxcf.optimal_buffer_level)
915                     {
916                         if ( critical_buffer_level >
917                              (cpi->oxcf.optimal_buffer_level >> 2) )
918                         {
919                             INT64 qadjustment_range =
920                                       cpi->worst_quality - cpi->ni_av_qi;
921                             INT64 above_base =
922                                       (critical_buffer_level -
923                                        (cpi->oxcf.optimal_buffer_level >> 2));
924 
925                             // Step active worst quality down from
926                             // cpi->ni_av_qi when (critical_buffer_level ==
927                             // cpi->optimal_buffer_level) to
928                             // cpi->worst_quality when
929                             // (critical_buffer_level ==
930                             //     cpi->optimal_buffer_level >> 2)
931                             cpi->active_worst_quality =
932                                 cpi->worst_quality -
933                                 ((qadjustment_range * above_base) /
934                                  (cpi->oxcf.optimal_buffer_level*3>>2));
935                         }
936                         else
937                         {
938                             cpi->active_worst_quality = cpi->worst_quality;
939                         }
940                     }
941                     else
942                     {
943                         cpi->active_worst_quality = cpi->ni_av_qi;
944                     }
945                 }
946                 else
947                 {
948                     cpi->active_worst_quality = cpi->worst_quality;
949                 }
950             }
951             else
952             {
953                 int percent_high;
954 
955                 if (cpi->bits_off_target > cpi->oxcf.optimal_buffer_level)
956                 {
957                     percent_high = (int)(100 * (cpi->bits_off_target - cpi->oxcf.optimal_buffer_level) / (cpi->total_byte_count * 8));
958 
959                     if (percent_high > 100)
960                         percent_high = 100;
961                     else if (percent_high < 0)
962                         percent_high = 0;
963 
964                     cpi->this_frame_target = (cpi->this_frame_target * (100 + (percent_high / 2))) / 100;
965 
966                 }
967 
968                 // Are we allowing control of active_worst_allowed_q according to bufferl level.
969                 if (cpi->auto_worst_q)
970                 {
971                     // When using the relaxed buffer model stick to the user specified value
972                     cpi->active_worst_quality = cpi->ni_av_qi;
973                 }
974                 else
975                 {
976                     cpi->active_worst_quality = cpi->worst_quality;
977                 }
978             }
979 
980             // Set active_best_quality to prevent quality rising too high
981             cpi->active_best_quality = cpi->best_quality;
982 
983             // Worst quality obviously must not be better than best quality
984             if (cpi->active_worst_quality <= cpi->active_best_quality)
985                 cpi->active_worst_quality = cpi->active_best_quality + 1;
986 
987         }
988         // Unbuffered mode (eg. video conferencing)
989         else
990         {
991             // Set the active worst quality
992             cpi->active_worst_quality = cpi->worst_quality;
993         }
994 
995         // Special trap for constrained quality mode
996         // "active_worst_quality" may never drop below cq level
997         // for any frame type.
998         if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY &&
999              cpi->active_worst_quality < cpi->cq_target_quality)
1000         {
1001             cpi->active_worst_quality = cpi->cq_target_quality;
1002         }
1003     }
1004 
1005     // Test to see if we have to drop a frame
1006     // The auto-drop frame code is only used in buffered mode.
1007     // In unbufferd mode (eg vide conferencing) the descision to
1008     // code or drop a frame is made outside the codec in response to real
1009     // world comms or buffer considerations.
1010     if (cpi->drop_frames_allowed && cpi->buffered_mode &&
1011         (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
1012         ((cpi->common.frame_type != KEY_FRAME))) //|| !cpi->oxcf.allow_spatial_resampling) )
1013     {
1014         // Check for a buffer underun-crisis in which case we have to drop a frame
1015         if ((cpi->buffer_level < 0))
1016         {
1017 #if 0
1018             FILE *f = fopen("dec.stt", "a");
1019             fprintf(f, "%10d %10d %10d %10d ***** BUFFER EMPTY\n",
1020                     (int) cpi->common.current_video_frame,
1021                     cpi->decimation_factor, cpi->common.horiz_scale,
1022                     (cpi->buffer_level * 100) / cpi->oxcf.optimal_buffer_level);
1023             fclose(f);
1024 #endif
1025             //vpx_log("Decoder: Drop frame due to bandwidth: %d \n",cpi->buffer_level, cpi->av_per_frame_bandwidth);
1026 
1027             cpi->drop_frame = TRUE;
1028         }
1029 
1030 #if 0
1031         // Check for other drop frame crtieria (Note 2 pass cbr uses decimation on whole KF sections)
1032         else if ((cpi->buffer_level < cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100) &&
1033                  (cpi->drop_count < cpi->max_drop_count) && (cpi->pass == 0))
1034         {
1035             cpi->drop_frame = TRUE;
1036         }
1037 
1038 #endif
1039 
1040         if (cpi->drop_frame)
1041         {
1042             // Update the buffer level variable.
1043             cpi->bits_off_target += cpi->av_per_frame_bandwidth;
1044             cpi->buffer_level = cpi->bits_off_target;
1045         }
1046         else
1047             cpi->drop_count = 0;
1048     }
1049 
1050     // Adjust target frame size for Golden Frames:
1051     if (cpi->oxcf.error_resilient_mode == 0 &&
1052         (cpi->frames_till_gf_update_due == 0) && !cpi->drop_frame)
1053     {
1054         //int Boost = 0;
1055         int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
1056 
1057         int gf_frame_useage = 0;      // Golden frame useage since last GF
1058         int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME]  +
1059                       cpi->recent_ref_frame_usage[LAST_FRAME]   +
1060                       cpi->recent_ref_frame_usage[GOLDEN_FRAME] +
1061                       cpi->recent_ref_frame_usage[ALTREF_FRAME];
1062 
1063         int pct_gf_active = (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols);
1064 
1065         // Reset the last boost indicator
1066         //cpi->last_boost = 100;
1067 
1068         if (tot_mbs)
1069             gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * 100 / tot_mbs;
1070 
1071         if (pct_gf_active > gf_frame_useage)
1072             gf_frame_useage = pct_gf_active;
1073 
1074         // Is a fixed manual GF frequency being used
1075         if (cpi->auto_gold)
1076         {
1077             // For one pass throw a GF if recent frame intra useage is low or the GF useage is high
1078             if ((cpi->pass == 0) && (cpi->this_frame_percent_intra < 15 || gf_frame_useage >= 5))
1079                 cpi->common.refresh_golden_frame = TRUE;
1080 
1081             // Two pass GF descision
1082             else if (cpi->pass == 2)
1083                 cpi->common.refresh_golden_frame = TRUE;
1084         }
1085 
1086 #if 0
1087 
1088         // Debug stats
1089         if (0)
1090         {
1091             FILE *f;
1092 
1093             f = fopen("gf_useaget.stt", "a");
1094             fprintf(f, " %8ld %10ld %10ld %10ld %10ld\n",
1095                     cpi->common.current_video_frame,  cpi->gfu_boost, GFQ_ADJUSTMENT, cpi->gfu_boost, gf_frame_useage);
1096             fclose(f);
1097         }
1098 
1099 #endif
1100 
1101         if (cpi->common.refresh_golden_frame == TRUE)
1102         {
1103 #if 0
1104 
1105             if (0)   // p_gw
1106             {
1107                 FILE *f;
1108 
1109                 f = fopen("GFexit.stt", "a");
1110                 fprintf(f, "%8ld GF coded\n", cpi->common.current_video_frame);
1111                 fclose(f);
1112             }
1113 
1114 #endif
1115             cpi->initial_gf_use = 0;
1116 
1117             if (cpi->auto_adjust_gold_quantizer)
1118             {
1119                 calc_gf_params(cpi);
1120             }
1121 
1122             // If we are using alternate ref instead of gf then do not apply the boost
1123             // It will instead be applied to the altref update
1124             // Jims modified boost
1125             if (!cpi->source_alt_ref_active)
1126             {
1127                 if (cpi->oxcf.fixed_q < 0)
1128                 {
1129                     if (cpi->pass == 2)
1130                     {
1131                         cpi->this_frame_target = cpi->per_frame_bandwidth;          // The spend on the GF is defined in the two pass code for two pass encodes
1132                     }
1133                     else
1134                     {
1135                         int Boost = cpi->last_boost;
1136                         int frames_in_section = cpi->frames_till_gf_update_due + 1;
1137                         int allocation_chunks = (frames_in_section * 100) + (Boost - 100);
1138                         int bits_in_section = cpi->inter_frame_target * frames_in_section;
1139 
1140                         // Normalize Altboost and allocations chunck down to prevent overflow
1141                         while (Boost > 1000)
1142                         {
1143                             Boost /= 2;
1144                             allocation_chunks /= 2;
1145                         }
1146 
1147                         // Avoid loss of precision but avoid overflow
1148                         if ((bits_in_section >> 7) > allocation_chunks)
1149                             cpi->this_frame_target = Boost * (bits_in_section / allocation_chunks);
1150                         else
1151                             cpi->this_frame_target = (Boost * bits_in_section) / allocation_chunks;
1152                     }
1153                 }
1154                 else
1155                     cpi->this_frame_target = (baseline_bits_at_q(1, Q, cpi->common.MBs) * cpi->last_boost) / 100;
1156 
1157             }
1158             // If there is an active ARF at this location use the minimum
1159             // bits on this frame even if it is a contructed arf.
1160             // The active maximum quantizer insures that an appropriate
1161             // number of bits will be spent if needed for contstructed ARFs.
1162             else
1163             {
1164                 cpi->this_frame_target = 0;
1165             }
1166 
1167             cpi->current_gf_interval = cpi->frames_till_gf_update_due;
1168 
1169         }
1170     }
1171 }
1172 
1173 
vp8_update_rate_correction_factors(VP8_COMP * cpi,int damp_var)1174 void vp8_update_rate_correction_factors(VP8_COMP *cpi, int damp_var)
1175 {
1176     int    Q = cpi->common.base_qindex;
1177     int    correction_factor = 100;
1178     double rate_correction_factor;
1179     double adjustment_limit;
1180 
1181     int    projected_size_based_on_q = 0;
1182 
1183     // Clear down mmx registers to allow floating point in what follows
1184     vp8_clear_system_state();  //__asm emms;
1185 
1186     if (cpi->common.frame_type == KEY_FRAME)
1187     {
1188         rate_correction_factor = cpi->key_frame_rate_correction_factor;
1189     }
1190     else
1191     {
1192         if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
1193             rate_correction_factor = cpi->gf_rate_correction_factor;
1194         else
1195             rate_correction_factor = cpi->rate_correction_factor;
1196     }
1197 
1198     // Work out how big we would have expected the frame to be at this Q given the current correction factor.
1199     // Stay in double to avoid int overflow when values are large
1200     //projected_size_based_on_q = ((int)(.5 + rate_correction_factor * vp8_bits_per_mb[cpi->common.frame_type][Q]) * cpi->common.MBs) >> BPER_MB_NORMBITS;
1201     projected_size_based_on_q = (int)(((.5 + rate_correction_factor * vp8_bits_per_mb[cpi->common.frame_type][Q]) * cpi->common.MBs) / (1 << BPER_MB_NORMBITS));
1202 
1203     // Make some allowance for cpi->zbin_over_quant
1204     if (cpi->zbin_over_quant > 0)
1205     {
1206         int Z = cpi->zbin_over_quant;
1207         double Factor = 0.99;
1208         double factor_adjustment = 0.01 / 256.0; //(double)ZBIN_OQ_MAX;
1209 
1210         while (Z > 0)
1211         {
1212             Z --;
1213             projected_size_based_on_q =
1214                 (int)(Factor * projected_size_based_on_q);
1215             Factor += factor_adjustment;
1216 
1217             if (Factor  >= 0.999)
1218                 Factor = 0.999;
1219         }
1220     }
1221 
1222     // Work out a size correction factor.
1223     //if ( cpi->this_frame_target > 0 )
1224     //  correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target;
1225     if (projected_size_based_on_q > 0)
1226         correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q;
1227 
1228     // More heavily damped adjustment used if we have been oscillating either side of target
1229     switch (damp_var)
1230     {
1231     case 0:
1232         adjustment_limit = 0.75;
1233         break;
1234     case 1:
1235         adjustment_limit = 0.375;
1236         break;
1237     case 2:
1238     default:
1239         adjustment_limit = 0.25;
1240         break;
1241     }
1242 
1243     //if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
1244     if (correction_factor > 102)
1245     {
1246         // We are not already at the worst allowable quality
1247         correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit));
1248         rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
1249 
1250         // Keep rate_correction_factor within limits
1251         if (rate_correction_factor > MAX_BPB_FACTOR)
1252             rate_correction_factor = MAX_BPB_FACTOR;
1253     }
1254     //else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) )
1255     else if (correction_factor < 99)
1256     {
1257         // We are not already at the best allowable quality
1258         correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit));
1259         rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
1260 
1261         // Keep rate_correction_factor within limits
1262         if (rate_correction_factor < MIN_BPB_FACTOR)
1263             rate_correction_factor = MIN_BPB_FACTOR;
1264     }
1265 
1266     if (cpi->common.frame_type == KEY_FRAME)
1267         cpi->key_frame_rate_correction_factor = rate_correction_factor;
1268     else
1269     {
1270         if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
1271             cpi->gf_rate_correction_factor = rate_correction_factor;
1272         else
1273             cpi->rate_correction_factor = rate_correction_factor;
1274     }
1275 }
1276 
estimate_bits_at_q(VP8_COMP * cpi,int Q)1277 static int estimate_bits_at_q(VP8_COMP *cpi, int Q)
1278 {
1279     int Bpm = (int)(.5 + cpi->rate_correction_factor * vp8_bits_per_mb[INTER_FRAME][Q]);
1280 
1281     /* Attempt to retain reasonable accuracy without overflow. The cutoff is
1282      * chosen such that the maximum product of Bpm and MBs fits 31 bits. The
1283      * largest Bpm takes 20 bits.
1284      */
1285     if (cpi->common.MBs > (1 << 11))
1286         return (Bpm >> BPER_MB_NORMBITS) * cpi->common.MBs;
1287     else
1288         return (Bpm * cpi->common.MBs) >> BPER_MB_NORMBITS;
1289 
1290 }
1291 
1292 
vp8_regulate_q(VP8_COMP * cpi,int target_bits_per_frame)1293 int vp8_regulate_q(VP8_COMP *cpi, int target_bits_per_frame)
1294 {
1295     int Q = cpi->active_worst_quality;
1296 
1297     // Reset Zbin OQ value
1298     cpi->zbin_over_quant = 0;
1299 
1300     if (cpi->oxcf.fixed_q >= 0)
1301     {
1302         Q = cpi->oxcf.fixed_q;
1303 
1304         if (cpi->common.frame_type == KEY_FRAME)
1305         {
1306             Q = cpi->oxcf.key_q;
1307         }
1308         else if (cpi->common.refresh_alt_ref_frame)
1309         {
1310             Q = cpi->oxcf.alt_q;
1311         }
1312         else if (cpi->common.refresh_golden_frame)
1313         {
1314             Q = cpi->oxcf.gold_q;
1315         }
1316 
1317     }
1318     else
1319     {
1320         int i;
1321         int last_error = INT_MAX;
1322         int target_bits_per_mb;
1323         int bits_per_mb_at_this_q;
1324         double correction_factor;
1325 
1326         // Select the appropriate correction factor based upon type of frame.
1327         if (cpi->common.frame_type == KEY_FRAME)
1328             correction_factor = cpi->key_frame_rate_correction_factor;
1329         else
1330         {
1331             if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
1332                 correction_factor = cpi->gf_rate_correction_factor;
1333             else
1334                 correction_factor = cpi->rate_correction_factor;
1335         }
1336 
1337         // Calculate required scaling factor based on target frame size and size of frame produced using previous Q
1338         if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
1339             target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS;       // Case where we would overflow int
1340         else
1341             target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
1342 
1343         i = cpi->active_best_quality;
1344 
1345         do
1346         {
1347             bits_per_mb_at_this_q = (int)(.5 + correction_factor * vp8_bits_per_mb[cpi->common.frame_type][i]);
1348 
1349             if (bits_per_mb_at_this_q <= target_bits_per_mb)
1350             {
1351                 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
1352                     Q = i;
1353                 else
1354                     Q = i - 1;
1355 
1356                 break;
1357             }
1358             else
1359                 last_error = bits_per_mb_at_this_q - target_bits_per_mb;
1360         }
1361         while (++i <= cpi->active_worst_quality);
1362 
1363 
1364         // If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like
1365         // the RD multiplier and zero bin size.
1366         if (Q >= MAXQ)
1367         {
1368             int zbin_oqmax;
1369 
1370             double Factor = 0.99;
1371             double factor_adjustment = 0.01 / 256.0; //(double)ZBIN_OQ_MAX;
1372 
1373             if (cpi->common.frame_type == KEY_FRAME)
1374                 zbin_oqmax = 0; //ZBIN_OQ_MAX/16
1375             else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_frame && !cpi->source_alt_ref_active))
1376                 zbin_oqmax = 16;
1377             else
1378                 zbin_oqmax = ZBIN_OQ_MAX;
1379 
1380             /*{
1381                 double Factor = (double)target_bits_per_mb/(double)bits_per_mb_at_this_q;
1382                 double Oq;
1383 
1384                 Factor = Factor/1.2683;
1385 
1386                 Oq = pow( Factor, (1.0/-0.165) );
1387 
1388                 if ( Oq > zbin_oqmax )
1389                     Oq = zbin_oqmax;
1390 
1391                 cpi->zbin_over_quant = (int)Oq;
1392             }*/
1393 
1394             // Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true.
1395             // The effect will be highly clip dependent and may well have sudden steps.
1396             // The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero
1397             // bin and hence decreasing the number of low magnitude non zero coefficients.
1398             while (cpi->zbin_over_quant < zbin_oqmax)
1399             {
1400                 cpi->zbin_over_quant ++;
1401 
1402                 if (cpi->zbin_over_quant > zbin_oqmax)
1403                     cpi->zbin_over_quant = zbin_oqmax;
1404 
1405                 // Adjust bits_per_mb_at_this_q estimate
1406                 bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q);
1407                 Factor += factor_adjustment;
1408 
1409                 if (Factor  >= 0.999)
1410                     Factor = 0.999;
1411 
1412                 if (bits_per_mb_at_this_q <= target_bits_per_mb)    // Break out if we get down to the target rate
1413                     break;
1414             }
1415 
1416         }
1417     }
1418 
1419     return Q;
1420 }
1421 
estimate_min_frame_size(VP8_COMP * cpi)1422 static int estimate_min_frame_size(VP8_COMP *cpi)
1423 {
1424     double correction_factor;
1425     int bits_per_mb_at_max_q;
1426 
1427     // This funtion returns a default value for the first few frames untill the correction factor has had time to adapt.
1428     if (cpi->common.current_video_frame < 10)
1429     {
1430         if (cpi->pass == 2)
1431             return (cpi->min_frame_bandwidth);
1432         else
1433             return cpi->per_frame_bandwidth / 3;
1434     }
1435 
1436     /*  // Select the appropriate correction factor based upon type of frame.
1437         if ( cpi->common.frame_type == KEY_FRAME )
1438             correction_factor = cpi->key_frame_rate_correction_factor;
1439         else
1440         {
1441             if ( cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame )
1442                 correction_factor = cpi->gf_rate_correction_factor;
1443             else
1444                 correction_factor = cpi->rate_correction_factor;
1445         }*/
1446 
1447     // We estimate at half the value we get from vp8_bits_per_mb
1448     correction_factor = cpi->rate_correction_factor / 2.0;
1449 
1450     bits_per_mb_at_max_q = (int)(.5 + correction_factor * vp8_bits_per_mb[cpi->common.frame_type][MAXQ]);
1451 
1452     return (bits_per_mb_at_max_q * cpi->common.MBs) >> BPER_MB_NORMBITS;
1453 }
1454 
vp8_adjust_key_frame_context(VP8_COMP * cpi)1455 void vp8_adjust_key_frame_context(VP8_COMP *cpi)
1456 {
1457     int i;
1458     int av_key_frames_per_second;
1459 
1460     // Average key frame frequency and size
1461     unsigned int total_weight = 0;
1462     unsigned int av_key_frame_frequency = 0;
1463     unsigned int av_key_frame_bits = 0;
1464 
1465     unsigned int output_frame_rate = (unsigned int)(100 * cpi->output_frame_rate);
1466     unsigned int target_bandwidth = (unsigned int)(100 * cpi->target_bandwidth);
1467 
1468     // Clear down mmx registers to allow floating point in what follows
1469     vp8_clear_system_state();  //__asm emms;
1470 
1471     // Update the count of total key frame bits
1472     cpi->tot_key_frame_bits += cpi->projected_frame_size;
1473 
1474     // First key frame at start of sequence is a special case. We have no frequency data.
1475     if (cpi->key_frame_count == 1)
1476     {
1477         av_key_frame_frequency = (int)cpi->output_frame_rate * 2;            // Assume a default of 1 kf every 2 seconds
1478         av_key_frame_bits = cpi->projected_frame_size;
1479         av_key_frames_per_second  = output_frame_rate / av_key_frame_frequency;  // Note output_frame_rate not cpi->output_frame_rate
1480     }
1481     else
1482     {
1483         int last_kf_interval =
1484                 (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
1485 
1486         // reset keyframe context and calculate weighted average of last KEY_FRAME_CONTEXT keyframes
1487         for (i = 0; i < KEY_FRAME_CONTEXT; i++)
1488         {
1489             if (i < KEY_FRAME_CONTEXT - 1)
1490             {
1491                 cpi->prior_key_frame_size[i]     = cpi->prior_key_frame_size[i+1];
1492                 cpi->prior_key_frame_distance[i] = cpi->prior_key_frame_distance[i+1];
1493             }
1494             else
1495             {
1496                 cpi->prior_key_frame_size[i]     = cpi->projected_frame_size;
1497                 cpi->prior_key_frame_distance[i] = last_kf_interval;
1498             }
1499 
1500             av_key_frame_bits      += prior_key_frame_weight[i] * cpi->prior_key_frame_size[i];
1501             av_key_frame_frequency += prior_key_frame_weight[i] * cpi->prior_key_frame_distance[i];
1502             total_weight         += prior_key_frame_weight[i];
1503         }
1504 
1505         av_key_frame_bits       /= total_weight;
1506         av_key_frame_frequency  /= total_weight;
1507         av_key_frames_per_second  = output_frame_rate / av_key_frame_frequency;
1508 
1509     }
1510 
1511     // Do we have any key frame overspend to recover?
1512     if ((cpi->pass != 2) && (cpi->projected_frame_size > cpi->per_frame_bandwidth))
1513     {
1514         // Update the count of key frame overspend to be recovered in subsequent frames
1515         // A portion of the KF overspend is treated as gf overspend (and hence recovered more quickly)
1516         // as the kf is also a gf. Otherwise the few frames following each kf tend to get more bits
1517         // allocated than those following other gfs.
1518         cpi->kf_overspend_bits += (cpi->projected_frame_size - cpi->per_frame_bandwidth) * 7 / 8;
1519         cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->per_frame_bandwidth) * 1 / 8;
1520         if(!av_key_frame_frequency)
1521             av_key_frame_frequency = 60;
1522 
1523         // Work out how much to try and recover per frame.
1524         // For one pass we estimate the number of frames to spread it over based upon past history.
1525         // For two pass we know how many frames there will be till the next kf.
1526         if (cpi->pass == 2)
1527         {
1528             if (cpi->frames_to_key > 16)
1529                 cpi->kf_bitrate_adjustment = cpi->kf_overspend_bits / (int)cpi->frames_to_key;
1530             else
1531                 cpi->kf_bitrate_adjustment = cpi->kf_overspend_bits / 16;
1532         }
1533         else
1534             cpi->kf_bitrate_adjustment = cpi->kf_overspend_bits / (int)av_key_frame_frequency;
1535     }
1536 
1537     cpi->frames_since_key = 0;
1538     cpi->last_key_frame_size = cpi->projected_frame_size;
1539     cpi->key_frame_count++;
1540 }
1541 
vp8_compute_frame_size_bounds(VP8_COMP * cpi,int * frame_under_shoot_limit,int * frame_over_shoot_limit)1542 void vp8_compute_frame_size_bounds(VP8_COMP *cpi, int *frame_under_shoot_limit, int *frame_over_shoot_limit)
1543 {
1544     // Set-up bounds on acceptable frame size:
1545     if (cpi->oxcf.fixed_q >= 0)
1546     {
1547         // Fixed Q scenario: frame size never outranges target (there is no target!)
1548         *frame_under_shoot_limit = 0;
1549         *frame_over_shoot_limit  = INT_MAX;
1550     }
1551     else
1552     {
1553         if (cpi->common.frame_type == KEY_FRAME)
1554         {
1555             *frame_over_shoot_limit  = cpi->this_frame_target * 9 / 8;
1556             *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
1557         }
1558         else
1559         {
1560             if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
1561             {
1562                 *frame_over_shoot_limit  = cpi->this_frame_target * 9 / 8;
1563                 *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
1564             }
1565             else
1566             {
1567                 // For CBR take buffer fullness into account
1568                 if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
1569                 {
1570                     if (cpi->buffer_level >= ((cpi->oxcf.optimal_buffer_level + cpi->oxcf.maximum_buffer_size) >> 1))
1571                     {
1572                         // Buffer is too full so relax overshoot and tighten undershoot
1573                         *frame_over_shoot_limit  = cpi->this_frame_target * 12 / 8;
1574                         *frame_under_shoot_limit = cpi->this_frame_target * 6 / 8;
1575                     }
1576                     else if (cpi->buffer_level <= (cpi->oxcf.optimal_buffer_level >> 1))
1577                     {
1578                         // Buffer is too low so relax undershoot and tighten overshoot
1579                         *frame_over_shoot_limit  = cpi->this_frame_target * 10 / 8;
1580                         *frame_under_shoot_limit = cpi->this_frame_target * 4 / 8;
1581                     }
1582                     else
1583                     {
1584                         *frame_over_shoot_limit  = cpi->this_frame_target * 11 / 8;
1585                         *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
1586                     }
1587                 }
1588                 // VBR and CQ mode
1589                 // Note that tighter restrictions here can help quality but hurt encode speed
1590                 else
1591                 {
1592                     // Stron overshoot limit for constrained quality
1593                     if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
1594                     {
1595                         *frame_over_shoot_limit  = cpi->this_frame_target * 11 / 8;
1596                         *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
1597                     }
1598                     else
1599                     {
1600                         *frame_over_shoot_limit  = cpi->this_frame_target * 11 / 8;
1601                         *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
1602                     }
1603                 }
1604             }
1605         }
1606     }
1607 }
1608