• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 //  * A success/failure flag indicating whether constant folding was successful.
15 //    This is the 'bool' return value used by most of the code in this file. A
16 //    'false' return value indicates that constant folding has failed, and any
17 //    appropriate diagnostic has already been produced.
18 //
19 //  * An evaluated result, valid only if constant folding has not failed.
20 //
21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 //    where it is possible to determine the evaluated result regardless.
24 //
25 //  * A set of notes indicating why the evaluation was not a constant expression
26 //    (under the C++11 rules only, at the moment), or, if folding failed too,
27 //    why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/CharUnits.h"
39 #include "clang/AST/RecordLayout.h"
40 #include "clang/AST/StmtVisitor.h"
41 #include "clang/AST/TypeLoc.h"
42 #include "clang/AST/ASTDiagnostic.h"
43 #include "clang/AST/Expr.h"
44 #include "clang/Basic/Builtins.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "llvm/ADT/SmallString.h"
47 #include <cstring>
48 #include <functional>
49 
50 using namespace clang;
51 using llvm::APSInt;
52 using llvm::APFloat;
53 
54 static bool IsGlobalLValue(APValue::LValueBase B);
55 
56 namespace {
57   struct LValue;
58   struct CallStackFrame;
59   struct EvalInfo;
60 
getType(APValue::LValueBase B)61   static QualType getType(APValue::LValueBase B) {
62     if (!B) return QualType();
63     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
64       return D->getType();
65     return B.get<const Expr*>()->getType();
66   }
67 
68   /// Get an LValue path entry, which is known to not be an array index, as a
69   /// field or base class.
70   static
getAsBaseOrMember(APValue::LValuePathEntry E)71   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
72     APValue::BaseOrMemberType Value;
73     Value.setFromOpaqueValue(E.BaseOrMember);
74     return Value;
75   }
76 
77   /// Get an LValue path entry, which is known to not be an array index, as a
78   /// field declaration.
getAsField(APValue::LValuePathEntry E)79   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
80     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
81   }
82   /// Get an LValue path entry, which is known to not be an array index, as a
83   /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)84   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
85     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
86   }
87   /// Determine whether this LValue path entry for a base class names a virtual
88   /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)89   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
90     return getAsBaseOrMember(E).getInt();
91   }
92 
93   /// Find the path length and type of the most-derived subobject in the given
94   /// path, and find the size of the containing array, if any.
95   static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type)96   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
97                                     ArrayRef<APValue::LValuePathEntry> Path,
98                                     uint64_t &ArraySize, QualType &Type) {
99     unsigned MostDerivedLength = 0;
100     Type = Base;
101     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
102       if (Type->isArrayType()) {
103         const ConstantArrayType *CAT =
104           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
105         Type = CAT->getElementType();
106         ArraySize = CAT->getSize().getZExtValue();
107         MostDerivedLength = I + 1;
108       } else if (Type->isAnyComplexType()) {
109         const ComplexType *CT = Type->castAs<ComplexType>();
110         Type = CT->getElementType();
111         ArraySize = 2;
112         MostDerivedLength = I + 1;
113       } else if (const FieldDecl *FD = getAsField(Path[I])) {
114         Type = FD->getType();
115         ArraySize = 0;
116         MostDerivedLength = I + 1;
117       } else {
118         // Path[I] describes a base class.
119         ArraySize = 0;
120       }
121     }
122     return MostDerivedLength;
123   }
124 
125   // The order of this enum is important for diagnostics.
126   enum CheckSubobjectKind {
127     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
128     CSK_This, CSK_Real, CSK_Imag
129   };
130 
131   /// A path from a glvalue to a subobject of that glvalue.
132   struct SubobjectDesignator {
133     /// True if the subobject was named in a manner not supported by C++11. Such
134     /// lvalues can still be folded, but they are not core constant expressions
135     /// and we cannot perform lvalue-to-rvalue conversions on them.
136     bool Invalid : 1;
137 
138     /// Is this a pointer one past the end of an object?
139     bool IsOnePastTheEnd : 1;
140 
141     /// The length of the path to the most-derived object of which this is a
142     /// subobject.
143     unsigned MostDerivedPathLength : 30;
144 
145     /// The size of the array of which the most-derived object is an element, or
146     /// 0 if the most-derived object is not an array element.
147     uint64_t MostDerivedArraySize;
148 
149     /// The type of the most derived object referred to by this address.
150     QualType MostDerivedType;
151 
152     typedef APValue::LValuePathEntry PathEntry;
153 
154     /// The entries on the path from the glvalue to the designated subobject.
155     SmallVector<PathEntry, 8> Entries;
156 
SubobjectDesignator__anon39b33ae20111::SubobjectDesignator157     SubobjectDesignator() : Invalid(true) {}
158 
SubobjectDesignator__anon39b33ae20111::SubobjectDesignator159     explicit SubobjectDesignator(QualType T)
160       : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
161         MostDerivedArraySize(0), MostDerivedType(T) {}
162 
SubobjectDesignator__anon39b33ae20111::SubobjectDesignator163     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
164       : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
165         MostDerivedPathLength(0), MostDerivedArraySize(0) {
166       if (!Invalid) {
167         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
168         ArrayRef<PathEntry> VEntries = V.getLValuePath();
169         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
170         if (V.getLValueBase())
171           MostDerivedPathLength =
172               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
173                                        V.getLValuePath(), MostDerivedArraySize,
174                                        MostDerivedType);
175       }
176     }
177 
setInvalid__anon39b33ae20111::SubobjectDesignator178     void setInvalid() {
179       Invalid = true;
180       Entries.clear();
181     }
182 
183     /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon39b33ae20111::SubobjectDesignator184     bool isOnePastTheEnd() const {
185       if (IsOnePastTheEnd)
186         return true;
187       if (MostDerivedArraySize &&
188           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
189         return true;
190       return false;
191     }
192 
193     /// Check that this refers to a valid subobject.
isValidSubobject__anon39b33ae20111::SubobjectDesignator194     bool isValidSubobject() const {
195       if (Invalid)
196         return false;
197       return !isOnePastTheEnd();
198     }
199     /// Check that this refers to a valid subobject, and if not, produce a
200     /// relevant diagnostic and set the designator as invalid.
201     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
202 
203     /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon39b33ae20111::SubobjectDesignator204     void addArrayUnchecked(const ConstantArrayType *CAT) {
205       PathEntry Entry;
206       Entry.ArrayIndex = 0;
207       Entries.push_back(Entry);
208 
209       // This is a most-derived object.
210       MostDerivedType = CAT->getElementType();
211       MostDerivedArraySize = CAT->getSize().getZExtValue();
212       MostDerivedPathLength = Entries.size();
213     }
214     /// Update this designator to refer to the given base or member of this
215     /// object.
addDeclUnchecked__anon39b33ae20111::SubobjectDesignator216     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
217       PathEntry Entry;
218       APValue::BaseOrMemberType Value(D, Virtual);
219       Entry.BaseOrMember = Value.getOpaqueValue();
220       Entries.push_back(Entry);
221 
222       // If this isn't a base class, it's a new most-derived object.
223       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
224         MostDerivedType = FD->getType();
225         MostDerivedArraySize = 0;
226         MostDerivedPathLength = Entries.size();
227       }
228     }
229     /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon39b33ae20111::SubobjectDesignator230     void addComplexUnchecked(QualType EltTy, bool Imag) {
231       PathEntry Entry;
232       Entry.ArrayIndex = Imag;
233       Entries.push_back(Entry);
234 
235       // This is technically a most-derived object, though in practice this
236       // is unlikely to matter.
237       MostDerivedType = EltTy;
238       MostDerivedArraySize = 2;
239       MostDerivedPathLength = Entries.size();
240     }
241     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
242     /// Add N to the address of this subobject.
adjustIndex__anon39b33ae20111::SubobjectDesignator243     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
244       if (Invalid) return;
245       if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
246         Entries.back().ArrayIndex += N;
247         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
248           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
249           setInvalid();
250         }
251         return;
252       }
253       // [expr.add]p4: For the purposes of these operators, a pointer to a
254       // nonarray object behaves the same as a pointer to the first element of
255       // an array of length one with the type of the object as its element type.
256       if (IsOnePastTheEnd && N == (uint64_t)-1)
257         IsOnePastTheEnd = false;
258       else if (!IsOnePastTheEnd && N == 1)
259         IsOnePastTheEnd = true;
260       else if (N != 0) {
261         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
262         setInvalid();
263       }
264     }
265   };
266 
267   /// A stack frame in the constexpr call stack.
268   struct CallStackFrame {
269     EvalInfo &Info;
270 
271     /// Parent - The caller of this stack frame.
272     CallStackFrame *Caller;
273 
274     /// CallLoc - The location of the call expression for this call.
275     SourceLocation CallLoc;
276 
277     /// Callee - The function which was called.
278     const FunctionDecl *Callee;
279 
280     /// Index - The call index of this call.
281     unsigned Index;
282 
283     /// This - The binding for the this pointer in this call, if any.
284     const LValue *This;
285 
286     /// ParmBindings - Parameter bindings for this function call, indexed by
287     /// parameters' function scope indices.
288     const APValue *Arguments;
289 
290     // Note that we intentionally use std::map here so that references to
291     // values are stable.
292     typedef std::map<const Expr*, APValue> MapTy;
293     typedef MapTy::const_iterator temp_iterator;
294     /// Temporaries - Temporary lvalues materialized within this stack frame.
295     MapTy Temporaries;
296 
297     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
298                    const FunctionDecl *Callee, const LValue *This,
299                    const APValue *Arguments);
300     ~CallStackFrame();
301   };
302 
303   /// A partial diagnostic which we might know in advance that we are not going
304   /// to emit.
305   class OptionalDiagnostic {
306     PartialDiagnostic *Diag;
307 
308   public:
OptionalDiagnostic(PartialDiagnostic * Diag=0)309     explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
310 
311     template<typename T>
operator <<(const T & v)312     OptionalDiagnostic &operator<<(const T &v) {
313       if (Diag)
314         *Diag << v;
315       return *this;
316     }
317 
operator <<(const APSInt & I)318     OptionalDiagnostic &operator<<(const APSInt &I) {
319       if (Diag) {
320         llvm::SmallVector<char, 32> Buffer;
321         I.toString(Buffer);
322         *Diag << StringRef(Buffer.data(), Buffer.size());
323       }
324       return *this;
325     }
326 
operator <<(const APFloat & F)327     OptionalDiagnostic &operator<<(const APFloat &F) {
328       if (Diag) {
329         llvm::SmallVector<char, 32> Buffer;
330         F.toString(Buffer);
331         *Diag << StringRef(Buffer.data(), Buffer.size());
332       }
333       return *this;
334     }
335   };
336 
337   /// EvalInfo - This is a private struct used by the evaluator to capture
338   /// information about a subexpression as it is folded.  It retains information
339   /// about the AST context, but also maintains information about the folded
340   /// expression.
341   ///
342   /// If an expression could be evaluated, it is still possible it is not a C
343   /// "integer constant expression" or constant expression.  If not, this struct
344   /// captures information about how and why not.
345   ///
346   /// One bit of information passed *into* the request for constant folding
347   /// indicates whether the subexpression is "evaluated" or not according to C
348   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
349   /// evaluate the expression regardless of what the RHS is, but C only allows
350   /// certain things in certain situations.
351   struct EvalInfo {
352     ASTContext &Ctx;
353 
354     /// EvalStatus - Contains information about the evaluation.
355     Expr::EvalStatus &EvalStatus;
356 
357     /// CurrentCall - The top of the constexpr call stack.
358     CallStackFrame *CurrentCall;
359 
360     /// CallStackDepth - The number of calls in the call stack right now.
361     unsigned CallStackDepth;
362 
363     /// NextCallIndex - The next call index to assign.
364     unsigned NextCallIndex;
365 
366     /// BottomFrame - The frame in which evaluation started. This must be
367     /// initialized after CurrentCall and CallStackDepth.
368     CallStackFrame BottomFrame;
369 
370     /// EvaluatingDecl - This is the declaration whose initializer is being
371     /// evaluated, if any.
372     const VarDecl *EvaluatingDecl;
373 
374     /// EvaluatingDeclValue - This is the value being constructed for the
375     /// declaration whose initializer is being evaluated, if any.
376     APValue *EvaluatingDeclValue;
377 
378     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
379     /// notes attached to it will also be stored, otherwise they will not be.
380     bool HasActiveDiagnostic;
381 
382     /// CheckingPotentialConstantExpression - Are we checking whether the
383     /// expression is a potential constant expression? If so, some diagnostics
384     /// are suppressed.
385     bool CheckingPotentialConstantExpression;
386 
EvalInfo__anon39b33ae20111::EvalInfo387     EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
388       : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
389         CallStackDepth(0), NextCallIndex(1),
390         BottomFrame(*this, SourceLocation(), 0, 0, 0),
391         EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
392         CheckingPotentialConstantExpression(false) {}
393 
setEvaluatingDecl__anon39b33ae20111::EvalInfo394     void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
395       EvaluatingDecl = VD;
396       EvaluatingDeclValue = &Value;
397     }
398 
getLangOpts__anon39b33ae20111::EvalInfo399     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
400 
CheckCallLimit__anon39b33ae20111::EvalInfo401     bool CheckCallLimit(SourceLocation Loc) {
402       // Don't perform any constexpr calls (other than the call we're checking)
403       // when checking a potential constant expression.
404       if (CheckingPotentialConstantExpression && CallStackDepth > 1)
405         return false;
406       if (NextCallIndex == 0) {
407         // NextCallIndex has wrapped around.
408         Diag(Loc, diag::note_constexpr_call_limit_exceeded);
409         return false;
410       }
411       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
412         return true;
413       Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
414         << getLangOpts().ConstexprCallDepth;
415       return false;
416     }
417 
getCallFrame__anon39b33ae20111::EvalInfo418     CallStackFrame *getCallFrame(unsigned CallIndex) {
419       assert(CallIndex && "no call index in getCallFrame");
420       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
421       // be null in this loop.
422       CallStackFrame *Frame = CurrentCall;
423       while (Frame->Index > CallIndex)
424         Frame = Frame->Caller;
425       return (Frame->Index == CallIndex) ? Frame : 0;
426     }
427 
428   private:
429     /// Add a diagnostic to the diagnostics list.
addDiag__anon39b33ae20111::EvalInfo430     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
431       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
432       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
433       return EvalStatus.Diag->back().second;
434     }
435 
436     /// Add notes containing a call stack to the current point of evaluation.
437     void addCallStack(unsigned Limit);
438 
439   public:
440     /// Diagnose that the evaluation cannot be folded.
Diag__anon39b33ae20111::EvalInfo441     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
442                               = diag::note_invalid_subexpr_in_const_expr,
443                             unsigned ExtraNotes = 0) {
444       // If we have a prior diagnostic, it will be noting that the expression
445       // isn't a constant expression. This diagnostic is more important.
446       // FIXME: We might want to show both diagnostics to the user.
447       if (EvalStatus.Diag) {
448         unsigned CallStackNotes = CallStackDepth - 1;
449         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
450         if (Limit)
451           CallStackNotes = std::min(CallStackNotes, Limit + 1);
452         if (CheckingPotentialConstantExpression)
453           CallStackNotes = 0;
454 
455         HasActiveDiagnostic = true;
456         EvalStatus.Diag->clear();
457         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
458         addDiag(Loc, DiagId);
459         if (!CheckingPotentialConstantExpression)
460           addCallStack(Limit);
461         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
462       }
463       HasActiveDiagnostic = false;
464       return OptionalDiagnostic();
465     }
466 
Diag__anon39b33ae20111::EvalInfo467     OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
468                               = diag::note_invalid_subexpr_in_const_expr,
469                             unsigned ExtraNotes = 0) {
470       if (EvalStatus.Diag)
471         return Diag(E->getExprLoc(), DiagId, ExtraNotes);
472       HasActiveDiagnostic = false;
473       return OptionalDiagnostic();
474     }
475 
476     /// Diagnose that the evaluation does not produce a C++11 core constant
477     /// expression.
478     template<typename LocArg>
CCEDiag__anon39b33ae20111::EvalInfo479     OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
480                                  = diag::note_invalid_subexpr_in_const_expr,
481                                unsigned ExtraNotes = 0) {
482       // Don't override a previous diagnostic.
483       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
484         HasActiveDiagnostic = false;
485         return OptionalDiagnostic();
486       }
487       return Diag(Loc, DiagId, ExtraNotes);
488     }
489 
490     /// Add a note to a prior diagnostic.
Note__anon39b33ae20111::EvalInfo491     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
492       if (!HasActiveDiagnostic)
493         return OptionalDiagnostic();
494       return OptionalDiagnostic(&addDiag(Loc, DiagId));
495     }
496 
497     /// Add a stack of notes to a prior diagnostic.
addNotes__anon39b33ae20111::EvalInfo498     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
499       if (HasActiveDiagnostic) {
500         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
501                                 Diags.begin(), Diags.end());
502       }
503     }
504 
505     /// Should we continue evaluation as much as possible after encountering a
506     /// construct which can't be folded?
keepEvaluatingAfterFailure__anon39b33ae20111::EvalInfo507     bool keepEvaluatingAfterFailure() {
508       return CheckingPotentialConstantExpression &&
509              EvalStatus.Diag && EvalStatus.Diag->empty();
510     }
511   };
512 
513   /// Object used to treat all foldable expressions as constant expressions.
514   struct FoldConstant {
515     bool Enabled;
516 
FoldConstant__anon39b33ae20111::FoldConstant517     explicit FoldConstant(EvalInfo &Info)
518       : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
519                 !Info.EvalStatus.HasSideEffects) {
520     }
521     // Treat the value we've computed since this object was created as constant.
Fold__anon39b33ae20111::FoldConstant522     void Fold(EvalInfo &Info) {
523       if (Enabled && !Info.EvalStatus.Diag->empty() &&
524           !Info.EvalStatus.HasSideEffects)
525         Info.EvalStatus.Diag->clear();
526     }
527   };
528 
529   /// RAII object used to suppress diagnostics and side-effects from a
530   /// speculative evaluation.
531   class SpeculativeEvaluationRAII {
532     EvalInfo &Info;
533     Expr::EvalStatus Old;
534 
535   public:
SpeculativeEvaluationRAII(EvalInfo & Info,llvm::SmallVectorImpl<PartialDiagnosticAt> * NewDiag=0)536     SpeculativeEvaluationRAII(EvalInfo &Info,
537                               llvm::SmallVectorImpl<PartialDiagnosticAt>
538                                 *NewDiag = 0)
539       : Info(Info), Old(Info.EvalStatus) {
540       Info.EvalStatus.Diag = NewDiag;
541     }
~SpeculativeEvaluationRAII()542     ~SpeculativeEvaluationRAII() {
543       Info.EvalStatus = Old;
544     }
545   };
546 }
547 
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)548 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
549                                          CheckSubobjectKind CSK) {
550   if (Invalid)
551     return false;
552   if (isOnePastTheEnd()) {
553     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
554       << CSK;
555     setInvalid();
556     return false;
557   }
558   return true;
559 }
560 
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)561 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
562                                                     const Expr *E, uint64_t N) {
563   if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
564     Info.CCEDiag(E, diag::note_constexpr_array_index)
565       << static_cast<int>(N) << /*array*/ 0
566       << static_cast<unsigned>(MostDerivedArraySize);
567   else
568     Info.CCEDiag(E, diag::note_constexpr_array_index)
569       << static_cast<int>(N) << /*non-array*/ 1;
570   setInvalid();
571 }
572 
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,const APValue * Arguments)573 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
574                                const FunctionDecl *Callee, const LValue *This,
575                                const APValue *Arguments)
576     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
577       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
578   Info.CurrentCall = this;
579   ++Info.CallStackDepth;
580 }
581 
~CallStackFrame()582 CallStackFrame::~CallStackFrame() {
583   assert(Info.CurrentCall == this && "calls retired out of order");
584   --Info.CallStackDepth;
585   Info.CurrentCall = Caller;
586 }
587 
588 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,llvm::raw_ostream & Out)589 static void describeCall(CallStackFrame *Frame, llvm::raw_ostream &Out) {
590   unsigned ArgIndex = 0;
591   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
592                       !isa<CXXConstructorDecl>(Frame->Callee) &&
593                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
594 
595   if (!IsMemberCall)
596     Out << *Frame->Callee << '(';
597 
598   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
599        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
600     if (ArgIndex > (unsigned)IsMemberCall)
601       Out << ", ";
602 
603     const ParmVarDecl *Param = *I;
604     const APValue &Arg = Frame->Arguments[ArgIndex];
605     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
606 
607     if (ArgIndex == 0 && IsMemberCall)
608       Out << "->" << *Frame->Callee << '(';
609   }
610 
611   Out << ')';
612 }
613 
addCallStack(unsigned Limit)614 void EvalInfo::addCallStack(unsigned Limit) {
615   // Determine which calls to skip, if any.
616   unsigned ActiveCalls = CallStackDepth - 1;
617   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
618   if (Limit && Limit < ActiveCalls) {
619     SkipStart = Limit / 2 + Limit % 2;
620     SkipEnd = ActiveCalls - Limit / 2;
621   }
622 
623   // Walk the call stack and add the diagnostics.
624   unsigned CallIdx = 0;
625   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
626        Frame = Frame->Caller, ++CallIdx) {
627     // Skip this call?
628     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
629       if (CallIdx == SkipStart) {
630         // Note that we're skipping calls.
631         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
632           << unsigned(ActiveCalls - Limit);
633       }
634       continue;
635     }
636 
637     llvm::SmallVector<char, 128> Buffer;
638     llvm::raw_svector_ostream Out(Buffer);
639     describeCall(Frame, Out);
640     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
641   }
642 }
643 
644 namespace {
645   struct ComplexValue {
646   private:
647     bool IsInt;
648 
649   public:
650     APSInt IntReal, IntImag;
651     APFloat FloatReal, FloatImag;
652 
ComplexValue__anon39b33ae20211::ComplexValue653     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
654 
makeComplexFloat__anon39b33ae20211::ComplexValue655     void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon39b33ae20211::ComplexValue656     bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon39b33ae20211::ComplexValue657     APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon39b33ae20211::ComplexValue658     APFloat &getComplexFloatImag() { return FloatImag; }
659 
makeComplexInt__anon39b33ae20211::ComplexValue660     void makeComplexInt() { IsInt = true; }
isComplexInt__anon39b33ae20211::ComplexValue661     bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon39b33ae20211::ComplexValue662     APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon39b33ae20211::ComplexValue663     APSInt &getComplexIntImag() { return IntImag; }
664 
moveInto__anon39b33ae20211::ComplexValue665     void moveInto(APValue &v) const {
666       if (isComplexFloat())
667         v = APValue(FloatReal, FloatImag);
668       else
669         v = APValue(IntReal, IntImag);
670     }
setFrom__anon39b33ae20211::ComplexValue671     void setFrom(const APValue &v) {
672       assert(v.isComplexFloat() || v.isComplexInt());
673       if (v.isComplexFloat()) {
674         makeComplexFloat();
675         FloatReal = v.getComplexFloatReal();
676         FloatImag = v.getComplexFloatImag();
677       } else {
678         makeComplexInt();
679         IntReal = v.getComplexIntReal();
680         IntImag = v.getComplexIntImag();
681       }
682     }
683   };
684 
685   struct LValue {
686     APValue::LValueBase Base;
687     CharUnits Offset;
688     unsigned CallIndex;
689     SubobjectDesignator Designator;
690 
getLValueBase__anon39b33ae20211::LValue691     const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon39b33ae20211::LValue692     CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon39b33ae20211::LValue693     const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon39b33ae20211::LValue694     unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon39b33ae20211::LValue695     SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon39b33ae20211::LValue696     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
697 
moveInto__anon39b33ae20211::LValue698     void moveInto(APValue &V) const {
699       if (Designator.Invalid)
700         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
701       else
702         V = APValue(Base, Offset, Designator.Entries,
703                     Designator.IsOnePastTheEnd, CallIndex);
704     }
setFrom__anon39b33ae20211::LValue705     void setFrom(ASTContext &Ctx, const APValue &V) {
706       assert(V.isLValue());
707       Base = V.getLValueBase();
708       Offset = V.getLValueOffset();
709       CallIndex = V.getLValueCallIndex();
710       Designator = SubobjectDesignator(Ctx, V);
711     }
712 
set__anon39b33ae20211::LValue713     void set(APValue::LValueBase B, unsigned I = 0) {
714       Base = B;
715       Offset = CharUnits::Zero();
716       CallIndex = I;
717       Designator = SubobjectDesignator(getType(B));
718     }
719 
720     // Check that this LValue is not based on a null pointer. If it is, produce
721     // a diagnostic and mark the designator as invalid.
checkNullPointer__anon39b33ae20211::LValue722     bool checkNullPointer(EvalInfo &Info, const Expr *E,
723                           CheckSubobjectKind CSK) {
724       if (Designator.Invalid)
725         return false;
726       if (!Base) {
727         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
728           << CSK;
729         Designator.setInvalid();
730         return false;
731       }
732       return true;
733     }
734 
735     // Check this LValue refers to an object. If not, set the designator to be
736     // invalid and emit a diagnostic.
checkSubobject__anon39b33ae20211::LValue737     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
738       // Outside C++11, do not build a designator referring to a subobject of
739       // any object: we won't use such a designator for anything.
740       if (!Info.getLangOpts().CPlusPlus0x)
741         Designator.setInvalid();
742       return checkNullPointer(Info, E, CSK) &&
743              Designator.checkSubobject(Info, E, CSK);
744     }
745 
addDecl__anon39b33ae20211::LValue746     void addDecl(EvalInfo &Info, const Expr *E,
747                  const Decl *D, bool Virtual = false) {
748       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
749         Designator.addDeclUnchecked(D, Virtual);
750     }
addArray__anon39b33ae20211::LValue751     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
752       if (checkSubobject(Info, E, CSK_ArrayToPointer))
753         Designator.addArrayUnchecked(CAT);
754     }
addComplex__anon39b33ae20211::LValue755     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
756       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
757         Designator.addComplexUnchecked(EltTy, Imag);
758     }
adjustIndex__anon39b33ae20211::LValue759     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
760       if (checkNullPointer(Info, E, CSK_ArrayIndex))
761         Designator.adjustIndex(Info, E, N);
762     }
763   };
764 
765   struct MemberPtr {
MemberPtr__anon39b33ae20211::MemberPtr766     MemberPtr() {}
MemberPtr__anon39b33ae20211::MemberPtr767     explicit MemberPtr(const ValueDecl *Decl) :
768       DeclAndIsDerivedMember(Decl, false), Path() {}
769 
770     /// The member or (direct or indirect) field referred to by this member
771     /// pointer, or 0 if this is a null member pointer.
getDecl__anon39b33ae20211::MemberPtr772     const ValueDecl *getDecl() const {
773       return DeclAndIsDerivedMember.getPointer();
774     }
775     /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon39b33ae20211::MemberPtr776     bool isDerivedMember() const {
777       return DeclAndIsDerivedMember.getInt();
778     }
779     /// Get the class which the declaration actually lives in.
getContainingRecord__anon39b33ae20211::MemberPtr780     const CXXRecordDecl *getContainingRecord() const {
781       return cast<CXXRecordDecl>(
782           DeclAndIsDerivedMember.getPointer()->getDeclContext());
783     }
784 
moveInto__anon39b33ae20211::MemberPtr785     void moveInto(APValue &V) const {
786       V = APValue(getDecl(), isDerivedMember(), Path);
787     }
setFrom__anon39b33ae20211::MemberPtr788     void setFrom(const APValue &V) {
789       assert(V.isMemberPointer());
790       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
791       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
792       Path.clear();
793       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
794       Path.insert(Path.end(), P.begin(), P.end());
795     }
796 
797     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
798     /// whether the member is a member of some class derived from the class type
799     /// of the member pointer.
800     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
801     /// Path - The path of base/derived classes from the member declaration's
802     /// class (exclusive) to the class type of the member pointer (inclusive).
803     SmallVector<const CXXRecordDecl*, 4> Path;
804 
805     /// Perform a cast towards the class of the Decl (either up or down the
806     /// hierarchy).
castBack__anon39b33ae20211::MemberPtr807     bool castBack(const CXXRecordDecl *Class) {
808       assert(!Path.empty());
809       const CXXRecordDecl *Expected;
810       if (Path.size() >= 2)
811         Expected = Path[Path.size() - 2];
812       else
813         Expected = getContainingRecord();
814       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
815         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
816         // if B does not contain the original member and is not a base or
817         // derived class of the class containing the original member, the result
818         // of the cast is undefined.
819         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
820         // (D::*). We consider that to be a language defect.
821         return false;
822       }
823       Path.pop_back();
824       return true;
825     }
826     /// Perform a base-to-derived member pointer cast.
castToDerived__anon39b33ae20211::MemberPtr827     bool castToDerived(const CXXRecordDecl *Derived) {
828       if (!getDecl())
829         return true;
830       if (!isDerivedMember()) {
831         Path.push_back(Derived);
832         return true;
833       }
834       if (!castBack(Derived))
835         return false;
836       if (Path.empty())
837         DeclAndIsDerivedMember.setInt(false);
838       return true;
839     }
840     /// Perform a derived-to-base member pointer cast.
castToBase__anon39b33ae20211::MemberPtr841     bool castToBase(const CXXRecordDecl *Base) {
842       if (!getDecl())
843         return true;
844       if (Path.empty())
845         DeclAndIsDerivedMember.setInt(true);
846       if (isDerivedMember()) {
847         Path.push_back(Base);
848         return true;
849       }
850       return castBack(Base);
851     }
852   };
853 
854   /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)855   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
856     if (!LHS.getDecl() || !RHS.getDecl())
857       return !LHS.getDecl() && !RHS.getDecl();
858     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
859       return false;
860     return LHS.Path == RHS.Path;
861   }
862 
863   /// Kinds of constant expression checking, for diagnostics.
864   enum CheckConstantExpressionKind {
865     CCEK_Constant,    ///< A normal constant.
866     CCEK_ReturnValue, ///< A constexpr function return value.
867     CCEK_MemberInit   ///< A constexpr constructor mem-initializer.
868   };
869 }
870 
871 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
872 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
873                             const LValue &This, const Expr *E,
874                             CheckConstantExpressionKind CCEK = CCEK_Constant,
875                             bool AllowNonLiteralTypes = false);
876 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
877 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
878 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
879                                   EvalInfo &Info);
880 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
881 static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
882 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
883                                     EvalInfo &Info);
884 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
885 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
886 
887 //===----------------------------------------------------------------------===//
888 // Misc utilities
889 //===----------------------------------------------------------------------===//
890 
891 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)892 static bool IsStringLiteralCall(const CallExpr *E) {
893   unsigned Builtin = E->isBuiltinCall();
894   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
895           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
896 }
897 
IsGlobalLValue(APValue::LValueBase B)898 static bool IsGlobalLValue(APValue::LValueBase B) {
899   // C++11 [expr.const]p3 An address constant expression is a prvalue core
900   // constant expression of pointer type that evaluates to...
901 
902   // ... a null pointer value, or a prvalue core constant expression of type
903   // std::nullptr_t.
904   if (!B) return true;
905 
906   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
907     // ... the address of an object with static storage duration,
908     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
909       return VD->hasGlobalStorage();
910     // ... the address of a function,
911     return isa<FunctionDecl>(D);
912   }
913 
914   const Expr *E = B.get<const Expr*>();
915   switch (E->getStmtClass()) {
916   default:
917     return false;
918   case Expr::CompoundLiteralExprClass: {
919     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
920     return CLE->isFileScope() && CLE->isLValue();
921   }
922   // A string literal has static storage duration.
923   case Expr::StringLiteralClass:
924   case Expr::PredefinedExprClass:
925   case Expr::ObjCStringLiteralClass:
926   case Expr::ObjCEncodeExprClass:
927   case Expr::CXXTypeidExprClass:
928   case Expr::CXXUuidofExprClass:
929     return true;
930   case Expr::CallExprClass:
931     return IsStringLiteralCall(cast<CallExpr>(E));
932   // For GCC compatibility, &&label has static storage duration.
933   case Expr::AddrLabelExprClass:
934     return true;
935   // A Block literal expression may be used as the initialization value for
936   // Block variables at global or local static scope.
937   case Expr::BlockExprClass:
938     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
939   case Expr::ImplicitValueInitExprClass:
940     // FIXME:
941     // We can never form an lvalue with an implicit value initialization as its
942     // base through expression evaluation, so these only appear in one case: the
943     // implicit variable declaration we invent when checking whether a constexpr
944     // constructor can produce a constant expression. We must assume that such
945     // an expression might be a global lvalue.
946     return true;
947   }
948 }
949 
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)950 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
951   assert(Base && "no location for a null lvalue");
952   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
953   if (VD)
954     Info.Note(VD->getLocation(), diag::note_declared_at);
955   else
956     Info.Note(Base.get<const Expr*>()->getExprLoc(),
957               diag::note_constexpr_temporary_here);
958 }
959 
960 /// Check that this reference or pointer core constant expression is a valid
961 /// value for an address or reference constant expression. Return true if we
962 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)963 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
964                                           QualType Type, const LValue &LVal) {
965   bool IsReferenceType = Type->isReferenceType();
966 
967   APValue::LValueBase Base = LVal.getLValueBase();
968   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
969 
970   // Check that the object is a global. Note that the fake 'this' object we
971   // manufacture when checking potential constant expressions is conservatively
972   // assumed to be global here.
973   if (!IsGlobalLValue(Base)) {
974     if (Info.getLangOpts().CPlusPlus0x) {
975       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
976       Info.Diag(Loc, diag::note_constexpr_non_global, 1)
977         << IsReferenceType << !Designator.Entries.empty()
978         << !!VD << VD;
979       NoteLValueLocation(Info, Base);
980     } else {
981       Info.Diag(Loc);
982     }
983     // Don't allow references to temporaries to escape.
984     return false;
985   }
986   assert((Info.CheckingPotentialConstantExpression ||
987           LVal.getLValueCallIndex() == 0) &&
988          "have call index for global lvalue");
989 
990   // Check if this is a thread-local variable.
991   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
992     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
993       if (Var->isThreadSpecified())
994         return false;
995     }
996   }
997 
998   // Allow address constant expressions to be past-the-end pointers. This is
999   // an extension: the standard requires them to point to an object.
1000   if (!IsReferenceType)
1001     return true;
1002 
1003   // A reference constant expression must refer to an object.
1004   if (!Base) {
1005     // FIXME: diagnostic
1006     Info.CCEDiag(Loc);
1007     return true;
1008   }
1009 
1010   // Does this refer one past the end of some object?
1011   if (Designator.isOnePastTheEnd()) {
1012     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1013     Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1014       << !Designator.Entries.empty() << !!VD << VD;
1015     NoteLValueLocation(Info, Base);
1016   }
1017 
1018   return true;
1019 }
1020 
1021 /// Check that this core constant expression is of literal type, and if not,
1022 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E)1023 static bool CheckLiteralType(EvalInfo &Info, const Expr *E) {
1024   if (!E->isRValue() || E->getType()->isLiteralType())
1025     return true;
1026 
1027   // Prvalue constant expressions must be of literal types.
1028   if (Info.getLangOpts().CPlusPlus0x)
1029     Info.Diag(E, diag::note_constexpr_nonliteral)
1030       << E->getType();
1031   else
1032     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1033   return false;
1034 }
1035 
1036 /// Check that this core constant expression value is a valid value for a
1037 /// constant expression. If not, report an appropriate diagnostic. Does not
1038 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1039 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1040                                     QualType Type, const APValue &Value) {
1041   // Core issue 1454: For a literal constant expression of array or class type,
1042   // each subobject of its value shall have been initialized by a constant
1043   // expression.
1044   if (Value.isArray()) {
1045     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1046     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1047       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1048                                    Value.getArrayInitializedElt(I)))
1049         return false;
1050     }
1051     if (!Value.hasArrayFiller())
1052       return true;
1053     return CheckConstantExpression(Info, DiagLoc, EltTy,
1054                                    Value.getArrayFiller());
1055   }
1056   if (Value.isUnion() && Value.getUnionField()) {
1057     return CheckConstantExpression(Info, DiagLoc,
1058                                    Value.getUnionField()->getType(),
1059                                    Value.getUnionValue());
1060   }
1061   if (Value.isStruct()) {
1062     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1063     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1064       unsigned BaseIndex = 0;
1065       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1066              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1067         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1068                                      Value.getStructBase(BaseIndex)))
1069           return false;
1070       }
1071     }
1072     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1073          I != E; ++I) {
1074       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1075                                    Value.getStructField(I->getFieldIndex())))
1076         return false;
1077     }
1078   }
1079 
1080   if (Value.isLValue()) {
1081     LValue LVal;
1082     LVal.setFrom(Info.Ctx, Value);
1083     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1084   }
1085 
1086   // Everything else is fine.
1087   return true;
1088 }
1089 
GetLValueBaseDecl(const LValue & LVal)1090 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1091   return LVal.Base.dyn_cast<const ValueDecl*>();
1092 }
1093 
IsLiteralLValue(const LValue & Value)1094 static bool IsLiteralLValue(const LValue &Value) {
1095   return Value.Base.dyn_cast<const Expr*>() && !Value.CallIndex;
1096 }
1097 
IsWeakLValue(const LValue & Value)1098 static bool IsWeakLValue(const LValue &Value) {
1099   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1100   return Decl && Decl->isWeak();
1101 }
1102 
EvalPointerValueAsBool(const APValue & Value,bool & Result)1103 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1104   // A null base expression indicates a null pointer.  These are always
1105   // evaluatable, and they are false unless the offset is zero.
1106   if (!Value.getLValueBase()) {
1107     Result = !Value.getLValueOffset().isZero();
1108     return true;
1109   }
1110 
1111   // We have a non-null base.  These are generally known to be true, but if it's
1112   // a weak declaration it can be null at runtime.
1113   Result = true;
1114   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1115   return !Decl || !Decl->isWeak();
1116 }
1117 
HandleConversionToBool(const APValue & Val,bool & Result)1118 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1119   switch (Val.getKind()) {
1120   case APValue::Uninitialized:
1121     return false;
1122   case APValue::Int:
1123     Result = Val.getInt().getBoolValue();
1124     return true;
1125   case APValue::Float:
1126     Result = !Val.getFloat().isZero();
1127     return true;
1128   case APValue::ComplexInt:
1129     Result = Val.getComplexIntReal().getBoolValue() ||
1130              Val.getComplexIntImag().getBoolValue();
1131     return true;
1132   case APValue::ComplexFloat:
1133     Result = !Val.getComplexFloatReal().isZero() ||
1134              !Val.getComplexFloatImag().isZero();
1135     return true;
1136   case APValue::LValue:
1137     return EvalPointerValueAsBool(Val, Result);
1138   case APValue::MemberPointer:
1139     Result = Val.getMemberPointerDecl();
1140     return true;
1141   case APValue::Vector:
1142   case APValue::Array:
1143   case APValue::Struct:
1144   case APValue::Union:
1145   case APValue::AddrLabelDiff:
1146     return false;
1147   }
1148 
1149   llvm_unreachable("unknown APValue kind");
1150 }
1151 
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1152 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1153                                        EvalInfo &Info) {
1154   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1155   APValue Val;
1156   if (!Evaluate(Val, Info, E))
1157     return false;
1158   return HandleConversionToBool(Val, Result);
1159 }
1160 
1161 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1162 static void HandleOverflow(EvalInfo &Info, const Expr *E,
1163                            const T &SrcValue, QualType DestType) {
1164   Info.CCEDiag(E, diag::note_constexpr_overflow)
1165     << SrcValue << DestType;
1166 }
1167 
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1168 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1169                                  QualType SrcType, const APFloat &Value,
1170                                  QualType DestType, APSInt &Result) {
1171   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1172   // Determine whether we are converting to unsigned or signed.
1173   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1174 
1175   Result = APSInt(DestWidth, !DestSigned);
1176   bool ignored;
1177   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1178       & APFloat::opInvalidOp)
1179     HandleOverflow(Info, E, Value, DestType);
1180   return true;
1181 }
1182 
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1183 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1184                                    QualType SrcType, QualType DestType,
1185                                    APFloat &Result) {
1186   APFloat Value = Result;
1187   bool ignored;
1188   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1189                      APFloat::rmNearestTiesToEven, &ignored)
1190       & APFloat::opOverflow)
1191     HandleOverflow(Info, E, Value, DestType);
1192   return true;
1193 }
1194 
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,APSInt & Value)1195 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1196                                  QualType DestType, QualType SrcType,
1197                                  APSInt &Value) {
1198   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1199   APSInt Result = Value;
1200   // Figure out if this is a truncate, extend or noop cast.
1201   // If the input is signed, do a sign extend, noop, or truncate.
1202   Result = Result.extOrTrunc(DestWidth);
1203   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1204   return Result;
1205 }
1206 
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1207 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1208                                  QualType SrcType, const APSInt &Value,
1209                                  QualType DestType, APFloat &Result) {
1210   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1211   if (Result.convertFromAPInt(Value, Value.isSigned(),
1212                               APFloat::rmNearestTiesToEven)
1213       & APFloat::opOverflow)
1214     HandleOverflow(Info, E, Value, DestType);
1215   return true;
1216 }
1217 
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1218 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1219                                   llvm::APInt &Res) {
1220   APValue SVal;
1221   if (!Evaluate(SVal, Info, E))
1222     return false;
1223   if (SVal.isInt()) {
1224     Res = SVal.getInt();
1225     return true;
1226   }
1227   if (SVal.isFloat()) {
1228     Res = SVal.getFloat().bitcastToAPInt();
1229     return true;
1230   }
1231   if (SVal.isVector()) {
1232     QualType VecTy = E->getType();
1233     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1234     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1235     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1236     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1237     Res = llvm::APInt::getNullValue(VecSize);
1238     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1239       APValue &Elt = SVal.getVectorElt(i);
1240       llvm::APInt EltAsInt;
1241       if (Elt.isInt()) {
1242         EltAsInt = Elt.getInt();
1243       } else if (Elt.isFloat()) {
1244         EltAsInt = Elt.getFloat().bitcastToAPInt();
1245       } else {
1246         // Don't try to handle vectors of anything other than int or float
1247         // (not sure if it's possible to hit this case).
1248         Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1249         return false;
1250       }
1251       unsigned BaseEltSize = EltAsInt.getBitWidth();
1252       if (BigEndian)
1253         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1254       else
1255         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1256     }
1257     return true;
1258   }
1259   // Give up if the input isn't an int, float, or vector.  For example, we
1260   // reject "(v4i16)(intptr_t)&a".
1261   Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1262   return false;
1263 }
1264 
1265 /// Cast an lvalue referring to a base subobject to a derived class, by
1266 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1267 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1268                                const RecordDecl *TruncatedType,
1269                                unsigned TruncatedElements) {
1270   SubobjectDesignator &D = Result.Designator;
1271 
1272   // Check we actually point to a derived class object.
1273   if (TruncatedElements == D.Entries.size())
1274     return true;
1275   assert(TruncatedElements >= D.MostDerivedPathLength &&
1276          "not casting to a derived class");
1277   if (!Result.checkSubobject(Info, E, CSK_Derived))
1278     return false;
1279 
1280   // Truncate the path to the subobject, and remove any derived-to-base offsets.
1281   const RecordDecl *RD = TruncatedType;
1282   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1283     if (RD->isInvalidDecl()) return false;
1284     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1285     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1286     if (isVirtualBaseClass(D.Entries[I]))
1287       Result.Offset -= Layout.getVBaseClassOffset(Base);
1288     else
1289       Result.Offset -= Layout.getBaseClassOffset(Base);
1290     RD = Base;
1291   }
1292   D.Entries.resize(TruncatedElements);
1293   return true;
1294 }
1295 
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=0)1296 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1297                                    const CXXRecordDecl *Derived,
1298                                    const CXXRecordDecl *Base,
1299                                    const ASTRecordLayout *RL = 0) {
1300   if (!RL) {
1301     if (Derived->isInvalidDecl()) return false;
1302     RL = &Info.Ctx.getASTRecordLayout(Derived);
1303   }
1304 
1305   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1306   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1307   return true;
1308 }
1309 
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1310 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1311                              const CXXRecordDecl *DerivedDecl,
1312                              const CXXBaseSpecifier *Base) {
1313   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1314 
1315   if (!Base->isVirtual())
1316     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1317 
1318   SubobjectDesignator &D = Obj.Designator;
1319   if (D.Invalid)
1320     return false;
1321 
1322   // Extract most-derived object and corresponding type.
1323   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1324   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1325     return false;
1326 
1327   // Find the virtual base class.
1328   if (DerivedDecl->isInvalidDecl()) return false;
1329   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1330   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1331   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1332   return true;
1333 }
1334 
1335 /// Update LVal to refer to the given field, which must be a member of the type
1336 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=0)1337 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1338                                const FieldDecl *FD,
1339                                const ASTRecordLayout *RL = 0) {
1340   if (!RL) {
1341     if (FD->getParent()->isInvalidDecl()) return false;
1342     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1343   }
1344 
1345   unsigned I = FD->getFieldIndex();
1346   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1347   LVal.addDecl(Info, E, FD);
1348   return true;
1349 }
1350 
1351 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)1352 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1353                                        LValue &LVal,
1354                                        const IndirectFieldDecl *IFD) {
1355   for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1356                                          CE = IFD->chain_end(); C != CE; ++C)
1357     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
1358       return false;
1359   return true;
1360 }
1361 
1362 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)1363 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1364                          QualType Type, CharUnits &Size) {
1365   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1366   // extension.
1367   if (Type->isVoidType() || Type->isFunctionType()) {
1368     Size = CharUnits::One();
1369     return true;
1370   }
1371 
1372   if (!Type->isConstantSizeType()) {
1373     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1374     // FIXME: Better diagnostic.
1375     Info.Diag(Loc);
1376     return false;
1377   }
1378 
1379   Size = Info.Ctx.getTypeSizeInChars(Type);
1380   return true;
1381 }
1382 
1383 /// Update a pointer value to model pointer arithmetic.
1384 /// \param Info - Information about the ongoing evaluation.
1385 /// \param E - The expression being evaluated, for diagnostic purposes.
1386 /// \param LVal - The pointer value to be updated.
1387 /// \param EltTy - The pointee type represented by LVal.
1388 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)1389 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1390                                         LValue &LVal, QualType EltTy,
1391                                         int64_t Adjustment) {
1392   CharUnits SizeOfPointee;
1393   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1394     return false;
1395 
1396   // Compute the new offset in the appropriate width.
1397   LVal.Offset += Adjustment * SizeOfPointee;
1398   LVal.adjustIndex(Info, E, Adjustment);
1399   return true;
1400 }
1401 
1402 /// Update an lvalue to refer to a component of a complex number.
1403 /// \param Info - Information about the ongoing evaluation.
1404 /// \param LVal - The lvalue to be updated.
1405 /// \param EltTy - The complex number's component type.
1406 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)1407 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1408                                        LValue &LVal, QualType EltTy,
1409                                        bool Imag) {
1410   if (Imag) {
1411     CharUnits SizeOfComponent;
1412     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1413       return false;
1414     LVal.Offset += SizeOfComponent;
1415   }
1416   LVal.addComplex(Info, E, EltTy, Imag);
1417   return true;
1418 }
1419 
1420 /// Try to evaluate the initializer for a variable declaration.
EvaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue & Result)1421 static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1422                                 const VarDecl *VD,
1423                                 CallStackFrame *Frame, APValue &Result) {
1424   // If this is a parameter to an active constexpr function call, perform
1425   // argument substitution.
1426   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1427     // Assume arguments of a potential constant expression are unknown
1428     // constant expressions.
1429     if (Info.CheckingPotentialConstantExpression)
1430       return false;
1431     if (!Frame || !Frame->Arguments) {
1432       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1433       return false;
1434     }
1435     Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
1436     return true;
1437   }
1438 
1439   // Dig out the initializer, and use the declaration which it's attached to.
1440   const Expr *Init = VD->getAnyInitializer(VD);
1441   if (!Init || Init->isValueDependent()) {
1442     // If we're checking a potential constant expression, the variable could be
1443     // initialized later.
1444     if (!Info.CheckingPotentialConstantExpression)
1445       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1446     return false;
1447   }
1448 
1449   // If we're currently evaluating the initializer of this declaration, use that
1450   // in-flight value.
1451   if (Info.EvaluatingDecl == VD) {
1452     Result = *Info.EvaluatingDeclValue;
1453     return !Result.isUninit();
1454   }
1455 
1456   // Never evaluate the initializer of a weak variable. We can't be sure that
1457   // this is the definition which will be used.
1458   if (VD->isWeak()) {
1459     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1460     return false;
1461   }
1462 
1463   // Check that we can fold the initializer. In C++, we will have already done
1464   // this in the cases where it matters for conformance.
1465   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
1466   if (!VD->evaluateValue(Notes)) {
1467     Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1468               Notes.size() + 1) << VD;
1469     Info.Note(VD->getLocation(), diag::note_declared_at);
1470     Info.addNotes(Notes);
1471     return false;
1472   } else if (!VD->checkInitIsICE()) {
1473     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1474                  Notes.size() + 1) << VD;
1475     Info.Note(VD->getLocation(), diag::note_declared_at);
1476     Info.addNotes(Notes);
1477   }
1478 
1479   Result = *VD->getEvaluatedValue();
1480   return true;
1481 }
1482 
IsConstNonVolatile(QualType T)1483 static bool IsConstNonVolatile(QualType T) {
1484   Qualifiers Quals = T.getQualifiers();
1485   return Quals.hasConst() && !Quals.hasVolatile();
1486 }
1487 
1488 /// Get the base index of the given base class within an APValue representing
1489 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)1490 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1491                              const CXXRecordDecl *Base) {
1492   Base = Base->getCanonicalDecl();
1493   unsigned Index = 0;
1494   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1495          E = Derived->bases_end(); I != E; ++I, ++Index) {
1496     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1497       return Index;
1498   }
1499 
1500   llvm_unreachable("base class missing from derived class's bases list");
1501 }
1502 
1503 /// Extract the value of a character from a string literal. CharType is used to
1504 /// determine the expected signedness of the result -- a string literal used to
1505 /// initialize an array of 'signed char' or 'unsigned char' might contain chars
1506 /// of the wrong signedness.
ExtractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index,QualType CharType)1507 static APSInt ExtractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1508                                             uint64_t Index, QualType CharType) {
1509   // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1510   const StringLiteral *S = dyn_cast<StringLiteral>(Lit);
1511   assert(S && "unexpected string literal expression kind");
1512   assert(CharType->isIntegerType() && "unexpected character type");
1513 
1514   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1515                CharType->isUnsignedIntegerType());
1516   if (Index < S->getLength())
1517     Value = S->getCodeUnit(Index);
1518   return Value;
1519 }
1520 
1521 /// Extract the designated sub-object of an rvalue.
ExtractSubobject(EvalInfo & Info,const Expr * E,APValue & Obj,QualType ObjType,const SubobjectDesignator & Sub,QualType SubType)1522 static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
1523                              APValue &Obj, QualType ObjType,
1524                              const SubobjectDesignator &Sub, QualType SubType) {
1525   if (Sub.Invalid)
1526     // A diagnostic will have already been produced.
1527     return false;
1528   if (Sub.isOnePastTheEnd()) {
1529     Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1530                 (unsigned)diag::note_constexpr_read_past_end :
1531                 (unsigned)diag::note_invalid_subexpr_in_const_expr);
1532     return false;
1533   }
1534   if (Sub.Entries.empty())
1535     return true;
1536   if (Info.CheckingPotentialConstantExpression && Obj.isUninit())
1537     // This object might be initialized later.
1538     return false;
1539 
1540   APValue *O = &Obj;
1541   // Walk the designator's path to find the subobject.
1542   for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
1543     if (ObjType->isArrayType()) {
1544       // Next subobject is an array element.
1545       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
1546       assert(CAT && "vla in literal type?");
1547       uint64_t Index = Sub.Entries[I].ArrayIndex;
1548       if (CAT->getSize().ule(Index)) {
1549         // Note, it should not be possible to form a pointer with a valid
1550         // designator which points more than one past the end of the array.
1551         Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1552                     (unsigned)diag::note_constexpr_read_past_end :
1553                     (unsigned)diag::note_invalid_subexpr_in_const_expr);
1554         return false;
1555       }
1556       // An array object is represented as either an Array APValue or as an
1557       // LValue which refers to a string literal.
1558       if (O->isLValue()) {
1559         assert(I == N - 1 && "extracting subobject of character?");
1560         assert(!O->hasLValuePath() || O->getLValuePath().empty());
1561         Obj = APValue(ExtractStringLiteralCharacter(
1562           Info, O->getLValueBase().get<const Expr*>(), Index, SubType));
1563         return true;
1564       } else if (O->getArrayInitializedElts() > Index)
1565         O = &O->getArrayInitializedElt(Index);
1566       else
1567         O = &O->getArrayFiller();
1568       ObjType = CAT->getElementType();
1569     } else if (ObjType->isAnyComplexType()) {
1570       // Next subobject is a complex number.
1571       uint64_t Index = Sub.Entries[I].ArrayIndex;
1572       if (Index > 1) {
1573         Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1574                     (unsigned)diag::note_constexpr_read_past_end :
1575                     (unsigned)diag::note_invalid_subexpr_in_const_expr);
1576         return false;
1577       }
1578       assert(I == N - 1 && "extracting subobject of scalar?");
1579       if (O->isComplexInt()) {
1580         Obj = APValue(Index ? O->getComplexIntImag()
1581                             : O->getComplexIntReal());
1582       } else {
1583         assert(O->isComplexFloat());
1584         Obj = APValue(Index ? O->getComplexFloatImag()
1585                             : O->getComplexFloatReal());
1586       }
1587       return true;
1588     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
1589       if (Field->isMutable()) {
1590         Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
1591           << Field;
1592         Info.Note(Field->getLocation(), diag::note_declared_at);
1593         return false;
1594       }
1595 
1596       // Next subobject is a class, struct or union field.
1597       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
1598       if (RD->isUnion()) {
1599         const FieldDecl *UnionField = O->getUnionField();
1600         if (!UnionField ||
1601             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
1602           Info.Diag(E, diag::note_constexpr_read_inactive_union_member)
1603             << Field << !UnionField << UnionField;
1604           return false;
1605         }
1606         O = &O->getUnionValue();
1607       } else
1608         O = &O->getStructField(Field->getFieldIndex());
1609       ObjType = Field->getType();
1610 
1611       if (ObjType.isVolatileQualified()) {
1612         if (Info.getLangOpts().CPlusPlus) {
1613           // FIXME: Include a description of the path to the volatile subobject.
1614           Info.Diag(E, diag::note_constexpr_ltor_volatile_obj, 1)
1615             << 2 << Field;
1616           Info.Note(Field->getLocation(), diag::note_declared_at);
1617         } else {
1618           Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1619         }
1620         return false;
1621       }
1622     } else {
1623       // Next subobject is a base class.
1624       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
1625       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
1626       O = &O->getStructBase(getBaseIndex(Derived, Base));
1627       ObjType = Info.Ctx.getRecordType(Base);
1628     }
1629 
1630     if (O->isUninit()) {
1631       if (!Info.CheckingPotentialConstantExpression)
1632         Info.Diag(E, diag::note_constexpr_read_uninit);
1633       return false;
1634     }
1635   }
1636 
1637   // This may look super-stupid, but it serves an important purpose: if we just
1638   // swapped Obj and *O, we'd create an object which had itself as a subobject.
1639   // To avoid the leak, we ensure that Tmp ends up owning the original complete
1640   // object, which is destroyed by Tmp's destructor.
1641   APValue Tmp;
1642   O->swap(Tmp);
1643   Obj.swap(Tmp);
1644   return true;
1645 }
1646 
1647 /// Find the position where two subobject designators diverge, or equivalently
1648 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)1649 static unsigned FindDesignatorMismatch(QualType ObjType,
1650                                        const SubobjectDesignator &A,
1651                                        const SubobjectDesignator &B,
1652                                        bool &WasArrayIndex) {
1653   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
1654   for (/**/; I != N; ++I) {
1655     if (!ObjType.isNull() &&
1656         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
1657       // Next subobject is an array element.
1658       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
1659         WasArrayIndex = true;
1660         return I;
1661       }
1662       if (ObjType->isAnyComplexType())
1663         ObjType = ObjType->castAs<ComplexType>()->getElementType();
1664       else
1665         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
1666     } else {
1667       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
1668         WasArrayIndex = false;
1669         return I;
1670       }
1671       if (const FieldDecl *FD = getAsField(A.Entries[I]))
1672         // Next subobject is a field.
1673         ObjType = FD->getType();
1674       else
1675         // Next subobject is a base class.
1676         ObjType = QualType();
1677     }
1678   }
1679   WasArrayIndex = false;
1680   return I;
1681 }
1682 
1683 /// Determine whether the given subobject designators refer to elements of the
1684 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)1685 static bool AreElementsOfSameArray(QualType ObjType,
1686                                    const SubobjectDesignator &A,
1687                                    const SubobjectDesignator &B) {
1688   if (A.Entries.size() != B.Entries.size())
1689     return false;
1690 
1691   bool IsArray = A.MostDerivedArraySize != 0;
1692   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
1693     // A is a subobject of the array element.
1694     return false;
1695 
1696   // If A (and B) designates an array element, the last entry will be the array
1697   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
1698   // of length 1' case, and the entire path must match.
1699   bool WasArrayIndex;
1700   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
1701   return CommonLength >= A.Entries.size() - IsArray;
1702 }
1703 
1704 /// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
1705 /// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
1706 /// for looking up the glvalue referred to by an entity of reference type.
1707 ///
1708 /// \param Info - Information about the ongoing evaluation.
1709 /// \param Conv - The expression for which we are performing the conversion.
1710 ///               Used for diagnostics.
1711 /// \param Type - The type we expect this conversion to produce, before
1712 ///               stripping cv-qualifiers in the case of a non-clas type.
1713 /// \param LVal - The glvalue on which we are attempting to perform this action.
1714 /// \param RVal - The produced value will be placed here.
HandleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)1715 static bool HandleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
1716                                            QualType Type,
1717                                            const LValue &LVal, APValue &RVal) {
1718   if (LVal.Designator.Invalid)
1719     // A diagnostic will have already been produced.
1720     return false;
1721 
1722   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
1723 
1724   if (!LVal.Base) {
1725     // FIXME: Indirection through a null pointer deserves a specific diagnostic.
1726     Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1727     return false;
1728   }
1729 
1730   CallStackFrame *Frame = 0;
1731   if (LVal.CallIndex) {
1732     Frame = Info.getCallFrame(LVal.CallIndex);
1733     if (!Frame) {
1734       Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1735       NoteLValueLocation(Info, LVal.Base);
1736       return false;
1737     }
1738   }
1739 
1740   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
1741   // is not a constant expression (even if the object is non-volatile). We also
1742   // apply this rule to C++98, in order to conform to the expected 'volatile'
1743   // semantics.
1744   if (Type.isVolatileQualified()) {
1745     if (Info.getLangOpts().CPlusPlus)
1746       Info.Diag(Conv, diag::note_constexpr_ltor_volatile_type) << Type;
1747     else
1748       Info.Diag(Conv);
1749     return false;
1750   }
1751 
1752   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
1753     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
1754     // In C++11, constexpr, non-volatile variables initialized with constant
1755     // expressions are constant expressions too. Inside constexpr functions,
1756     // parameters are constant expressions even if they're non-const.
1757     // In C, such things can also be folded, although they are not ICEs.
1758     const VarDecl *VD = dyn_cast<VarDecl>(D);
1759     if (VD) {
1760       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
1761         VD = VDef;
1762     }
1763     if (!VD || VD->isInvalidDecl()) {
1764       Info.Diag(Conv);
1765       return false;
1766     }
1767 
1768     // DR1313: If the object is volatile-qualified but the glvalue was not,
1769     // behavior is undefined so the result is not a constant expression.
1770     QualType VT = VD->getType();
1771     if (VT.isVolatileQualified()) {
1772       if (Info.getLangOpts().CPlusPlus) {
1773         Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 1 << VD;
1774         Info.Note(VD->getLocation(), diag::note_declared_at);
1775       } else {
1776         Info.Diag(Conv);
1777       }
1778       return false;
1779     }
1780 
1781     if (!isa<ParmVarDecl>(VD)) {
1782       if (VD->isConstexpr()) {
1783         // OK, we can read this variable.
1784       } else if (VT->isIntegralOrEnumerationType()) {
1785         if (!VT.isConstQualified()) {
1786           if (Info.getLangOpts().CPlusPlus) {
1787             Info.Diag(Conv, diag::note_constexpr_ltor_non_const_int, 1) << VD;
1788             Info.Note(VD->getLocation(), diag::note_declared_at);
1789           } else {
1790             Info.Diag(Conv);
1791           }
1792           return false;
1793         }
1794       } else if (VT->isFloatingType() && VT.isConstQualified()) {
1795         // We support folding of const floating-point types, in order to make
1796         // static const data members of such types (supported as an extension)
1797         // more useful.
1798         if (Info.getLangOpts().CPlusPlus0x) {
1799           Info.CCEDiag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1800           Info.Note(VD->getLocation(), diag::note_declared_at);
1801         } else {
1802           Info.CCEDiag(Conv);
1803         }
1804       } else {
1805         // FIXME: Allow folding of values of any literal type in all languages.
1806         if (Info.getLangOpts().CPlusPlus0x) {
1807           Info.Diag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1808           Info.Note(VD->getLocation(), diag::note_declared_at);
1809         } else {
1810           Info.Diag(Conv);
1811         }
1812         return false;
1813       }
1814     }
1815 
1816     if (!EvaluateVarDeclInit(Info, Conv, VD, Frame, RVal))
1817       return false;
1818 
1819     if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
1820       return ExtractSubobject(Info, Conv, RVal, VT, LVal.Designator, Type);
1821 
1822     // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
1823     // conversion. This happens when the declaration and the lvalue should be
1824     // considered synonymous, for instance when initializing an array of char
1825     // from a string literal. Continue as if the initializer lvalue was the
1826     // value we were originally given.
1827     assert(RVal.getLValueOffset().isZero() &&
1828            "offset for lvalue init of non-reference");
1829     Base = RVal.getLValueBase().get<const Expr*>();
1830 
1831     if (unsigned CallIndex = RVal.getLValueCallIndex()) {
1832       Frame = Info.getCallFrame(CallIndex);
1833       if (!Frame) {
1834         Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1835         NoteLValueLocation(Info, RVal.getLValueBase());
1836         return false;
1837       }
1838     } else {
1839       Frame = 0;
1840     }
1841   }
1842 
1843   // Volatile temporary objects cannot be read in constant expressions.
1844   if (Base->getType().isVolatileQualified()) {
1845     if (Info.getLangOpts().CPlusPlus) {
1846       Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 0;
1847       Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
1848     } else {
1849       Info.Diag(Conv);
1850     }
1851     return false;
1852   }
1853 
1854   if (Frame) {
1855     // If this is a temporary expression with a nontrivial initializer, grab the
1856     // value from the relevant stack frame.
1857     RVal = Frame->Temporaries[Base];
1858   } else if (const CompoundLiteralExpr *CLE
1859              = dyn_cast<CompoundLiteralExpr>(Base)) {
1860     // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
1861     // initializer until now for such expressions. Such an expression can't be
1862     // an ICE in C, so this only matters for fold.
1863     assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
1864     if (!Evaluate(RVal, Info, CLE->getInitializer()))
1865       return false;
1866   } else if (isa<StringLiteral>(Base)) {
1867     // We represent a string literal array as an lvalue pointing at the
1868     // corresponding expression, rather than building an array of chars.
1869     // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1870     RVal = APValue(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
1871   } else {
1872     Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1873     return false;
1874   }
1875 
1876   return ExtractSubobject(Info, Conv, RVal, Base->getType(), LVal.Designator,
1877                           Type);
1878 }
1879 
1880 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)1881 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
1882                                    LValue &This) {
1883   if (Object->getType()->isPointerType())
1884     return EvaluatePointer(Object, This, Info);
1885 
1886   if (Object->isGLValue())
1887     return EvaluateLValue(Object, This, Info);
1888 
1889   if (Object->getType()->isLiteralType())
1890     return EvaluateTemporary(Object, This, Info);
1891 
1892   return false;
1893 }
1894 
1895 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
1896 /// lvalue referring to the result.
1897 ///
1898 /// \param Info - Information about the ongoing evaluation.
1899 /// \param BO - The member pointer access operation.
1900 /// \param LV - Filled in with a reference to the resulting object.
1901 /// \param IncludeMember - Specifies whether the member itself is included in
1902 ///        the resulting LValue subobject designator. This is not possible when
1903 ///        creating a bound member function.
1904 /// \return The field or method declaration to which the member pointer refers,
1905 ///         or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)1906 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
1907                                                   const BinaryOperator *BO,
1908                                                   LValue &LV,
1909                                                   bool IncludeMember = true) {
1910   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
1911 
1912   bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
1913   if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
1914     return 0;
1915 
1916   MemberPtr MemPtr;
1917   if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
1918     return 0;
1919 
1920   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
1921   // member value, the behavior is undefined.
1922   if (!MemPtr.getDecl())
1923     return 0;
1924 
1925   if (!EvalObjOK)
1926     return 0;
1927 
1928   if (MemPtr.isDerivedMember()) {
1929     // This is a member of some derived class. Truncate LV appropriately.
1930     // The end of the derived-to-base path for the base object must match the
1931     // derived-to-base path for the member pointer.
1932     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
1933         LV.Designator.Entries.size())
1934       return 0;
1935     unsigned PathLengthToMember =
1936         LV.Designator.Entries.size() - MemPtr.Path.size();
1937     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
1938       const CXXRecordDecl *LVDecl = getAsBaseClass(
1939           LV.Designator.Entries[PathLengthToMember + I]);
1940       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
1941       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
1942         return 0;
1943     }
1944 
1945     // Truncate the lvalue to the appropriate derived class.
1946     if (!CastToDerivedClass(Info, BO, LV, MemPtr.getContainingRecord(),
1947                             PathLengthToMember))
1948       return 0;
1949   } else if (!MemPtr.Path.empty()) {
1950     // Extend the LValue path with the member pointer's path.
1951     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
1952                                   MemPtr.Path.size() + IncludeMember);
1953 
1954     // Walk down to the appropriate base class.
1955     QualType LVType = BO->getLHS()->getType();
1956     if (const PointerType *PT = LVType->getAs<PointerType>())
1957       LVType = PT->getPointeeType();
1958     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
1959     assert(RD && "member pointer access on non-class-type expression");
1960     // The first class in the path is that of the lvalue.
1961     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
1962       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
1963       if (!HandleLValueDirectBase(Info, BO, LV, RD, Base))
1964         return 0;
1965       RD = Base;
1966     }
1967     // Finally cast to the class containing the member.
1968     if (!HandleLValueDirectBase(Info, BO, LV, RD, MemPtr.getContainingRecord()))
1969       return 0;
1970   }
1971 
1972   // Add the member. Note that we cannot build bound member functions here.
1973   if (IncludeMember) {
1974     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
1975       if (!HandleLValueMember(Info, BO, LV, FD))
1976         return 0;
1977     } else if (const IndirectFieldDecl *IFD =
1978                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
1979       if (!HandleLValueIndirectMember(Info, BO, LV, IFD))
1980         return 0;
1981     } else {
1982       llvm_unreachable("can't construct reference to bound member function");
1983     }
1984   }
1985 
1986   return MemPtr.getDecl();
1987 }
1988 
1989 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
1990 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)1991 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
1992                                     LValue &Result) {
1993   SubobjectDesignator &D = Result.Designator;
1994   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
1995     return false;
1996 
1997   QualType TargetQT = E->getType();
1998   if (const PointerType *PT = TargetQT->getAs<PointerType>())
1999     TargetQT = PT->getPointeeType();
2000 
2001   // Check this cast lands within the final derived-to-base subobject path.
2002   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
2003     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2004       << D.MostDerivedType << TargetQT;
2005     return false;
2006   }
2007 
2008   // Check the type of the final cast. We don't need to check the path,
2009   // since a cast can only be formed if the path is unique.
2010   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
2011   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
2012   const CXXRecordDecl *FinalType;
2013   if (NewEntriesSize == D.MostDerivedPathLength)
2014     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
2015   else
2016     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
2017   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2018     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2019       << D.MostDerivedType << TargetQT;
2020     return false;
2021   }
2022 
2023   // Truncate the lvalue to the appropriate derived class.
2024   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2025 }
2026 
2027 namespace {
2028 enum EvalStmtResult {
2029   /// Evaluation failed.
2030   ESR_Failed,
2031   /// Hit a 'return' statement.
2032   ESR_Returned,
2033   /// Evaluation succeeded.
2034   ESR_Succeeded
2035 };
2036 }
2037 
2038 // Evaluate a statement.
EvaluateStmt(APValue & Result,EvalInfo & Info,const Stmt * S)2039 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
2040                                    const Stmt *S) {
2041   switch (S->getStmtClass()) {
2042   default:
2043     return ESR_Failed;
2044 
2045   case Stmt::NullStmtClass:
2046   case Stmt::DeclStmtClass:
2047     return ESR_Succeeded;
2048 
2049   case Stmt::ReturnStmtClass: {
2050     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
2051     if (!Evaluate(Result, Info, RetExpr))
2052       return ESR_Failed;
2053     return ESR_Returned;
2054   }
2055 
2056   case Stmt::CompoundStmtClass: {
2057     const CompoundStmt *CS = cast<CompoundStmt>(S);
2058     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
2059            BE = CS->body_end(); BI != BE; ++BI) {
2060       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
2061       if (ESR != ESR_Succeeded)
2062         return ESR;
2063     }
2064     return ESR_Succeeded;
2065   }
2066   }
2067 }
2068 
2069 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
2070 /// default constructor. If so, we'll fold it whether or not it's marked as
2071 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
2072 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)2073 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
2074                                            const CXXConstructorDecl *CD,
2075                                            bool IsValueInitialization) {
2076   if (!CD->isTrivial() || !CD->isDefaultConstructor())
2077     return false;
2078 
2079   // Value-initialization does not call a trivial default constructor, so such a
2080   // call is a core constant expression whether or not the constructor is
2081   // constexpr.
2082   if (!CD->isConstexpr() && !IsValueInitialization) {
2083     if (Info.getLangOpts().CPlusPlus0x) {
2084       // FIXME: If DiagDecl is an implicitly-declared special member function,
2085       // we should be much more explicit about why it's not constexpr.
2086       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
2087         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
2088       Info.Note(CD->getLocation(), diag::note_declared_at);
2089     } else {
2090       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
2091     }
2092   }
2093   return true;
2094 }
2095 
2096 /// CheckConstexprFunction - Check that a function can be called in a constant
2097 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition)2098 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
2099                                    const FunctionDecl *Declaration,
2100                                    const FunctionDecl *Definition) {
2101   // Potential constant expressions can contain calls to declared, but not yet
2102   // defined, constexpr functions.
2103   if (Info.CheckingPotentialConstantExpression && !Definition &&
2104       Declaration->isConstexpr())
2105     return false;
2106 
2107   // Can we evaluate this function call?
2108   if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
2109     return true;
2110 
2111   if (Info.getLangOpts().CPlusPlus0x) {
2112     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
2113     // FIXME: If DiagDecl is an implicitly-declared special member function, we
2114     // should be much more explicit about why it's not constexpr.
2115     Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
2116       << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
2117       << DiagDecl;
2118     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
2119   } else {
2120     Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
2121   }
2122   return false;
2123 }
2124 
2125 namespace {
2126 typedef SmallVector<APValue, 8> ArgVector;
2127 }
2128 
2129 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)2130 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
2131                          EvalInfo &Info) {
2132   bool Success = true;
2133   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
2134        I != E; ++I) {
2135     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
2136       // If we're checking for a potential constant expression, evaluate all
2137       // initializers even if some of them fail.
2138       if (!Info.keepEvaluatingAfterFailure())
2139         return false;
2140       Success = false;
2141     }
2142   }
2143   return Success;
2144 }
2145 
2146 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result)2147 static bool HandleFunctionCall(SourceLocation CallLoc,
2148                                const FunctionDecl *Callee, const LValue *This,
2149                                ArrayRef<const Expr*> Args, const Stmt *Body,
2150                                EvalInfo &Info, APValue &Result) {
2151   ArgVector ArgValues(Args.size());
2152   if (!EvaluateArgs(Args, ArgValues, Info))
2153     return false;
2154 
2155   if (!Info.CheckCallLimit(CallLoc))
2156     return false;
2157 
2158   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
2159   return EvaluateStmt(Result, Info, Body) == ESR_Returned;
2160 }
2161 
2162 /// Evaluate a constructor call.
HandleConstructorCall(SourceLocation CallLoc,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)2163 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
2164                                   ArrayRef<const Expr*> Args,
2165                                   const CXXConstructorDecl *Definition,
2166                                   EvalInfo &Info, APValue &Result) {
2167   ArgVector ArgValues(Args.size());
2168   if (!EvaluateArgs(Args, ArgValues, Info))
2169     return false;
2170 
2171   if (!Info.CheckCallLimit(CallLoc))
2172     return false;
2173 
2174   const CXXRecordDecl *RD = Definition->getParent();
2175   if (RD->getNumVBases()) {
2176     Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
2177     return false;
2178   }
2179 
2180   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
2181 
2182   // If it's a delegating constructor, just delegate.
2183   if (Definition->isDelegatingConstructor()) {
2184     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
2185     return EvaluateInPlace(Result, Info, This, (*I)->getInit());
2186   }
2187 
2188   // For a trivial copy or move constructor, perform an APValue copy. This is
2189   // essential for unions, where the operations performed by the constructor
2190   // cannot be represented by ctor-initializers.
2191   if (Definition->isDefaulted() &&
2192       ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
2193        (Definition->isMoveConstructor() && Definition->isTrivial()))) {
2194     LValue RHS;
2195     RHS.setFrom(Info.Ctx, ArgValues[0]);
2196     return HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
2197                                           RHS, Result);
2198   }
2199 
2200   // Reserve space for the struct members.
2201   if (!RD->isUnion() && Result.isUninit())
2202     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
2203                      std::distance(RD->field_begin(), RD->field_end()));
2204 
2205   if (RD->isInvalidDecl()) return false;
2206   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2207 
2208   bool Success = true;
2209   unsigned BasesSeen = 0;
2210 #ifndef NDEBUG
2211   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
2212 #endif
2213   for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
2214        E = Definition->init_end(); I != E; ++I) {
2215     LValue Subobject = This;
2216     APValue *Value = &Result;
2217 
2218     // Determine the subobject to initialize.
2219     if ((*I)->isBaseInitializer()) {
2220       QualType BaseType((*I)->getBaseClass(), 0);
2221 #ifndef NDEBUG
2222       // Non-virtual base classes are initialized in the order in the class
2223       // definition. We have already checked for virtual base classes.
2224       assert(!BaseIt->isVirtual() && "virtual base for literal type");
2225       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
2226              "base class initializers not in expected order");
2227       ++BaseIt;
2228 #endif
2229       if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
2230                                   BaseType->getAsCXXRecordDecl(), &Layout))
2231         return false;
2232       Value = &Result.getStructBase(BasesSeen++);
2233     } else if (FieldDecl *FD = (*I)->getMember()) {
2234       if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
2235         return false;
2236       if (RD->isUnion()) {
2237         Result = APValue(FD);
2238         Value = &Result.getUnionValue();
2239       } else {
2240         Value = &Result.getStructField(FD->getFieldIndex());
2241       }
2242     } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
2243       // Walk the indirect field decl's chain to find the object to initialize,
2244       // and make sure we've initialized every step along it.
2245       for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
2246                                              CE = IFD->chain_end();
2247            C != CE; ++C) {
2248         FieldDecl *FD = cast<FieldDecl>(*C);
2249         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
2250         // Switch the union field if it differs. This happens if we had
2251         // preceding zero-initialization, and we're now initializing a union
2252         // subobject other than the first.
2253         // FIXME: In this case, the values of the other subobjects are
2254         // specified, since zero-initialization sets all padding bits to zero.
2255         if (Value->isUninit() ||
2256             (Value->isUnion() && Value->getUnionField() != FD)) {
2257           if (CD->isUnion())
2258             *Value = APValue(FD);
2259           else
2260             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
2261                              std::distance(CD->field_begin(), CD->field_end()));
2262         }
2263         if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
2264           return false;
2265         if (CD->isUnion())
2266           Value = &Value->getUnionValue();
2267         else
2268           Value = &Value->getStructField(FD->getFieldIndex());
2269       }
2270     } else {
2271       llvm_unreachable("unknown base initializer kind");
2272     }
2273 
2274     if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit(),
2275                          (*I)->isBaseInitializer()
2276                                       ? CCEK_Constant : CCEK_MemberInit)) {
2277       // If we're checking for a potential constant expression, evaluate all
2278       // initializers even if some of them fail.
2279       if (!Info.keepEvaluatingAfterFailure())
2280         return false;
2281       Success = false;
2282     }
2283   }
2284 
2285   return Success;
2286 }
2287 
2288 //===----------------------------------------------------------------------===//
2289 // Generic Evaluation
2290 //===----------------------------------------------------------------------===//
2291 namespace {
2292 
2293 // FIXME: RetTy is always bool. Remove it.
2294 template <class Derived, typename RetTy=bool>
2295 class ExprEvaluatorBase
2296   : public ConstStmtVisitor<Derived, RetTy> {
2297 private:
DerivedSuccess(const APValue & V,const Expr * E)2298   RetTy DerivedSuccess(const APValue &V, const Expr *E) {
2299     return static_cast<Derived*>(this)->Success(V, E);
2300   }
DerivedZeroInitialization(const Expr * E)2301   RetTy DerivedZeroInitialization(const Expr *E) {
2302     return static_cast<Derived*>(this)->ZeroInitialization(E);
2303   }
2304 
2305   // Check whether a conditional operator with a non-constant condition is a
2306   // potential constant expression. If neither arm is a potential constant
2307   // expression, then the conditional operator is not either.
2308   template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)2309   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
2310     assert(Info.CheckingPotentialConstantExpression);
2311 
2312     // Speculatively evaluate both arms.
2313     {
2314       llvm::SmallVector<PartialDiagnosticAt, 8> Diag;
2315       SpeculativeEvaluationRAII Speculate(Info, &Diag);
2316 
2317       StmtVisitorTy::Visit(E->getFalseExpr());
2318       if (Diag.empty())
2319         return;
2320 
2321       Diag.clear();
2322       StmtVisitorTy::Visit(E->getTrueExpr());
2323       if (Diag.empty())
2324         return;
2325     }
2326 
2327     Error(E, diag::note_constexpr_conditional_never_const);
2328   }
2329 
2330 
2331   template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)2332   bool HandleConditionalOperator(const ConditionalOperator *E) {
2333     bool BoolResult;
2334     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
2335       if (Info.CheckingPotentialConstantExpression)
2336         CheckPotentialConstantConditional(E);
2337       return false;
2338     }
2339 
2340     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
2341     return StmtVisitorTy::Visit(EvalExpr);
2342   }
2343 
2344 protected:
2345   EvalInfo &Info;
2346   typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
2347   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
2348 
CCEDiag(const Expr * E,diag::kind D)2349   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
2350     return Info.CCEDiag(E, D);
2351   }
2352 
ZeroInitialization(const Expr * E)2353   RetTy ZeroInitialization(const Expr *E) { return Error(E); }
2354 
2355 public:
ExprEvaluatorBase(EvalInfo & Info)2356   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
2357 
getEvalInfo()2358   EvalInfo &getEvalInfo() { return Info; }
2359 
2360   /// Report an evaluation error. This should only be called when an error is
2361   /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)2362   bool Error(const Expr *E, diag::kind D) {
2363     Info.Diag(E, D);
2364     return false;
2365   }
Error(const Expr * E)2366   bool Error(const Expr *E) {
2367     return Error(E, diag::note_invalid_subexpr_in_const_expr);
2368   }
2369 
VisitStmt(const Stmt *)2370   RetTy VisitStmt(const Stmt *) {
2371     llvm_unreachable("Expression evaluator should not be called on stmts");
2372   }
VisitExpr(const Expr * E)2373   RetTy VisitExpr(const Expr *E) {
2374     return Error(E);
2375   }
2376 
VisitParenExpr(const ParenExpr * E)2377   RetTy VisitParenExpr(const ParenExpr *E)
2378     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)2379   RetTy VisitUnaryExtension(const UnaryOperator *E)
2380     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)2381   RetTy VisitUnaryPlus(const UnaryOperator *E)
2382     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)2383   RetTy VisitChooseExpr(const ChooseExpr *E)
2384     { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)2385   RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
2386     { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)2387   RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
2388     { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)2389   RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
2390     { return StmtVisitorTy::Visit(E->getExpr()); }
2391   // We cannot create any objects for which cleanups are required, so there is
2392   // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)2393   RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
2394     { return StmtVisitorTy::Visit(E->getSubExpr()); }
2395 
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)2396   RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
2397     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
2398     return static_cast<Derived*>(this)->VisitCastExpr(E);
2399   }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)2400   RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
2401     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
2402     return static_cast<Derived*>(this)->VisitCastExpr(E);
2403   }
2404 
VisitBinaryOperator(const BinaryOperator * E)2405   RetTy VisitBinaryOperator(const BinaryOperator *E) {
2406     switch (E->getOpcode()) {
2407     default:
2408       return Error(E);
2409 
2410     case BO_Comma:
2411       VisitIgnoredValue(E->getLHS());
2412       return StmtVisitorTy::Visit(E->getRHS());
2413 
2414     case BO_PtrMemD:
2415     case BO_PtrMemI: {
2416       LValue Obj;
2417       if (!HandleMemberPointerAccess(Info, E, Obj))
2418         return false;
2419       APValue Result;
2420       if (!HandleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
2421         return false;
2422       return DerivedSuccess(Result, E);
2423     }
2424     }
2425   }
2426 
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)2427   RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
2428     // Evaluate and cache the common expression. We treat it as a temporary,
2429     // even though it's not quite the same thing.
2430     if (!Evaluate(Info.CurrentCall->Temporaries[E->getOpaqueValue()],
2431                   Info, E->getCommon()))
2432       return false;
2433 
2434     return HandleConditionalOperator(E);
2435   }
2436 
VisitConditionalOperator(const ConditionalOperator * E)2437   RetTy VisitConditionalOperator(const ConditionalOperator *E) {
2438     bool IsBcpCall = false;
2439     // If the condition (ignoring parens) is a __builtin_constant_p call,
2440     // the result is a constant expression if it can be folded without
2441     // side-effects. This is an important GNU extension. See GCC PR38377
2442     // for discussion.
2443     if (const CallExpr *CallCE =
2444           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
2445       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
2446         IsBcpCall = true;
2447 
2448     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
2449     // constant expression; we can't check whether it's potentially foldable.
2450     if (Info.CheckingPotentialConstantExpression && IsBcpCall)
2451       return false;
2452 
2453     FoldConstant Fold(Info);
2454 
2455     if (!HandleConditionalOperator(E))
2456       return false;
2457 
2458     if (IsBcpCall)
2459       Fold.Fold(Info);
2460 
2461     return true;
2462   }
2463 
VisitOpaqueValueExpr(const OpaqueValueExpr * E)2464   RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2465     APValue &Value = Info.CurrentCall->Temporaries[E];
2466     if (Value.isUninit()) {
2467       const Expr *Source = E->getSourceExpr();
2468       if (!Source)
2469         return Error(E);
2470       if (Source == E) { // sanity checking.
2471         assert(0 && "OpaqueValueExpr recursively refers to itself");
2472         return Error(E);
2473       }
2474       return StmtVisitorTy::Visit(Source);
2475     }
2476     return DerivedSuccess(Value, E);
2477   }
2478 
VisitCallExpr(const CallExpr * E)2479   RetTy VisitCallExpr(const CallExpr *E) {
2480     const Expr *Callee = E->getCallee()->IgnoreParens();
2481     QualType CalleeType = Callee->getType();
2482 
2483     const FunctionDecl *FD = 0;
2484     LValue *This = 0, ThisVal;
2485     llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
2486     bool HasQualifier = false;
2487 
2488     // Extract function decl and 'this' pointer from the callee.
2489     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
2490       const ValueDecl *Member = 0;
2491       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
2492         // Explicit bound member calls, such as x.f() or p->g();
2493         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
2494           return false;
2495         Member = ME->getMemberDecl();
2496         This = &ThisVal;
2497         HasQualifier = ME->hasQualifier();
2498       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
2499         // Indirect bound member calls ('.*' or '->*').
2500         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
2501         if (!Member) return false;
2502         This = &ThisVal;
2503       } else
2504         return Error(Callee);
2505 
2506       FD = dyn_cast<FunctionDecl>(Member);
2507       if (!FD)
2508         return Error(Callee);
2509     } else if (CalleeType->isFunctionPointerType()) {
2510       LValue Call;
2511       if (!EvaluatePointer(Callee, Call, Info))
2512         return false;
2513 
2514       if (!Call.getLValueOffset().isZero())
2515         return Error(Callee);
2516       FD = dyn_cast_or_null<FunctionDecl>(
2517                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
2518       if (!FD)
2519         return Error(Callee);
2520 
2521       // Overloaded operator calls to member functions are represented as normal
2522       // calls with '*this' as the first argument.
2523       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
2524       if (MD && !MD->isStatic()) {
2525         // FIXME: When selecting an implicit conversion for an overloaded
2526         // operator delete, we sometimes try to evaluate calls to conversion
2527         // operators without a 'this' parameter!
2528         if (Args.empty())
2529           return Error(E);
2530 
2531         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
2532           return false;
2533         This = &ThisVal;
2534         Args = Args.slice(1);
2535       }
2536 
2537       // Don't call function pointers which have been cast to some other type.
2538       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
2539         return Error(E);
2540     } else
2541       return Error(E);
2542 
2543     if (This && !This->checkSubobject(Info, E, CSK_This))
2544       return false;
2545 
2546     // DR1358 allows virtual constexpr functions in some cases. Don't allow
2547     // calls to such functions in constant expressions.
2548     if (This && !HasQualifier &&
2549         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
2550       return Error(E, diag::note_constexpr_virtual_call);
2551 
2552     const FunctionDecl *Definition = 0;
2553     Stmt *Body = FD->getBody(Definition);
2554     APValue Result;
2555 
2556     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
2557         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
2558                             Info, Result))
2559       return false;
2560 
2561     return DerivedSuccess(Result, E);
2562   }
2563 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)2564   RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2565     return StmtVisitorTy::Visit(E->getInitializer());
2566   }
VisitInitListExpr(const InitListExpr * E)2567   RetTy VisitInitListExpr(const InitListExpr *E) {
2568     if (E->getNumInits() == 0)
2569       return DerivedZeroInitialization(E);
2570     if (E->getNumInits() == 1)
2571       return StmtVisitorTy::Visit(E->getInit(0));
2572     return Error(E);
2573   }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)2574   RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
2575     return DerivedZeroInitialization(E);
2576   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)2577   RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
2578     return DerivedZeroInitialization(E);
2579   }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)2580   RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
2581     return DerivedZeroInitialization(E);
2582   }
2583 
2584   /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)2585   RetTy VisitMemberExpr(const MemberExpr *E) {
2586     assert(!E->isArrow() && "missing call to bound member function?");
2587 
2588     APValue Val;
2589     if (!Evaluate(Val, Info, E->getBase()))
2590       return false;
2591 
2592     QualType BaseTy = E->getBase()->getType();
2593 
2594     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
2595     if (!FD) return Error(E);
2596     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
2597     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2598            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2599 
2600     SubobjectDesignator Designator(BaseTy);
2601     Designator.addDeclUnchecked(FD);
2602 
2603     return ExtractSubobject(Info, E, Val, BaseTy, Designator, E->getType()) &&
2604            DerivedSuccess(Val, E);
2605   }
2606 
VisitCastExpr(const CastExpr * E)2607   RetTy VisitCastExpr(const CastExpr *E) {
2608     switch (E->getCastKind()) {
2609     default:
2610       break;
2611 
2612     case CK_AtomicToNonAtomic:
2613     case CK_NonAtomicToAtomic:
2614     case CK_NoOp:
2615     case CK_UserDefinedConversion:
2616       return StmtVisitorTy::Visit(E->getSubExpr());
2617 
2618     case CK_LValueToRValue: {
2619       LValue LVal;
2620       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
2621         return false;
2622       APValue RVal;
2623       // Note, we use the subexpression's type in order to retain cv-qualifiers.
2624       if (!HandleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
2625                                           LVal, RVal))
2626         return false;
2627       return DerivedSuccess(RVal, E);
2628     }
2629     }
2630 
2631     return Error(E);
2632   }
2633 
2634   /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)2635   void VisitIgnoredValue(const Expr *E) {
2636     APValue Scratch;
2637     if (!Evaluate(Scratch, Info, E))
2638       Info.EvalStatus.HasSideEffects = true;
2639   }
2640 };
2641 
2642 }
2643 
2644 //===----------------------------------------------------------------------===//
2645 // Common base class for lvalue and temporary evaluation.
2646 //===----------------------------------------------------------------------===//
2647 namespace {
2648 template<class Derived>
2649 class LValueExprEvaluatorBase
2650   : public ExprEvaluatorBase<Derived, bool> {
2651 protected:
2652   LValue &Result;
2653   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
2654   typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
2655 
Success(APValue::LValueBase B)2656   bool Success(APValue::LValueBase B) {
2657     Result.set(B);
2658     return true;
2659   }
2660 
2661 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)2662   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
2663     ExprEvaluatorBaseTy(Info), Result(Result) {}
2664 
Success(const APValue & V,const Expr * E)2665   bool Success(const APValue &V, const Expr *E) {
2666     Result.setFrom(this->Info.Ctx, V);
2667     return true;
2668   }
2669 
VisitMemberExpr(const MemberExpr * E)2670   bool VisitMemberExpr(const MemberExpr *E) {
2671     // Handle non-static data members.
2672     QualType BaseTy;
2673     if (E->isArrow()) {
2674       if (!EvaluatePointer(E->getBase(), Result, this->Info))
2675         return false;
2676       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
2677     } else if (E->getBase()->isRValue()) {
2678       assert(E->getBase()->getType()->isRecordType());
2679       if (!EvaluateTemporary(E->getBase(), Result, this->Info))
2680         return false;
2681       BaseTy = E->getBase()->getType();
2682     } else {
2683       if (!this->Visit(E->getBase()))
2684         return false;
2685       BaseTy = E->getBase()->getType();
2686     }
2687 
2688     const ValueDecl *MD = E->getMemberDecl();
2689     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
2690       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2691              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2692       (void)BaseTy;
2693       if (!HandleLValueMember(this->Info, E, Result, FD))
2694         return false;
2695     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
2696       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
2697         return false;
2698     } else
2699       return this->Error(E);
2700 
2701     if (MD->getType()->isReferenceType()) {
2702       APValue RefValue;
2703       if (!HandleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
2704                                           RefValue))
2705         return false;
2706       return Success(RefValue, E);
2707     }
2708     return true;
2709   }
2710 
VisitBinaryOperator(const BinaryOperator * E)2711   bool VisitBinaryOperator(const BinaryOperator *E) {
2712     switch (E->getOpcode()) {
2713     default:
2714       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
2715 
2716     case BO_PtrMemD:
2717     case BO_PtrMemI:
2718       return HandleMemberPointerAccess(this->Info, E, Result);
2719     }
2720   }
2721 
VisitCastExpr(const CastExpr * E)2722   bool VisitCastExpr(const CastExpr *E) {
2723     switch (E->getCastKind()) {
2724     default:
2725       return ExprEvaluatorBaseTy::VisitCastExpr(E);
2726 
2727     case CK_DerivedToBase:
2728     case CK_UncheckedDerivedToBase: {
2729       if (!this->Visit(E->getSubExpr()))
2730         return false;
2731 
2732       // Now figure out the necessary offset to add to the base LV to get from
2733       // the derived class to the base class.
2734       QualType Type = E->getSubExpr()->getType();
2735 
2736       for (CastExpr::path_const_iterator PathI = E->path_begin(),
2737            PathE = E->path_end(); PathI != PathE; ++PathI) {
2738         if (!HandleLValueBase(this->Info, E, Result, Type->getAsCXXRecordDecl(),
2739                               *PathI))
2740           return false;
2741         Type = (*PathI)->getType();
2742       }
2743 
2744       return true;
2745     }
2746     }
2747   }
2748 };
2749 }
2750 
2751 //===----------------------------------------------------------------------===//
2752 // LValue Evaluation
2753 //
2754 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
2755 // function designators (in C), decl references to void objects (in C), and
2756 // temporaries (if building with -Wno-address-of-temporary).
2757 //
2758 // LValue evaluation produces values comprising a base expression of one of the
2759 // following types:
2760 // - Declarations
2761 //  * VarDecl
2762 //  * FunctionDecl
2763 // - Literals
2764 //  * CompoundLiteralExpr in C
2765 //  * StringLiteral
2766 //  * CXXTypeidExpr
2767 //  * PredefinedExpr
2768 //  * ObjCStringLiteralExpr
2769 //  * ObjCEncodeExpr
2770 //  * AddrLabelExpr
2771 //  * BlockExpr
2772 //  * CallExpr for a MakeStringConstant builtin
2773 // - Locals and temporaries
2774 //  * Any Expr, with a CallIndex indicating the function in which the temporary
2775 //    was evaluated.
2776 // plus an offset in bytes.
2777 //===----------------------------------------------------------------------===//
2778 namespace {
2779 class LValueExprEvaluator
2780   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
2781 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)2782   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
2783     LValueExprEvaluatorBaseTy(Info, Result) {}
2784 
2785   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
2786 
2787   bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)2788   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
2789   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2790   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
2791   bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)2792   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)2793   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
2794   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2795   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
2796   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
2797   bool VisitUnaryDeref(const UnaryOperator *E);
2798   bool VisitUnaryReal(const UnaryOperator *E);
2799   bool VisitUnaryImag(const UnaryOperator *E);
2800 
VisitCastExpr(const CastExpr * E)2801   bool VisitCastExpr(const CastExpr *E) {
2802     switch (E->getCastKind()) {
2803     default:
2804       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
2805 
2806     case CK_LValueBitCast:
2807       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
2808       if (!Visit(E->getSubExpr()))
2809         return false;
2810       Result.Designator.setInvalid();
2811       return true;
2812 
2813     case CK_BaseToDerived:
2814       if (!Visit(E->getSubExpr()))
2815         return false;
2816       return HandleBaseToDerivedCast(Info, E, Result);
2817     }
2818   }
2819 };
2820 } // end anonymous namespace
2821 
2822 /// Evaluate an expression as an lvalue. This can be legitimately called on
2823 /// expressions which are not glvalues, in a few cases:
2824 ///  * function designators in C,
2825 ///  * "extern void" objects,
2826 ///  * temporaries, if building with -Wno-address-of-temporary.
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)2827 static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
2828   assert((E->isGLValue() || E->getType()->isFunctionType() ||
2829           E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
2830          "can't evaluate expression as an lvalue");
2831   return LValueExprEvaluator(Info, Result).Visit(E);
2832 }
2833 
VisitDeclRefExpr(const DeclRefExpr * E)2834 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
2835   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
2836     return Success(FD);
2837   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
2838     return VisitVarDecl(E, VD);
2839   return Error(E);
2840 }
2841 
VisitVarDecl(const Expr * E,const VarDecl * VD)2842 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
2843   if (!VD->getType()->isReferenceType()) {
2844     if (isa<ParmVarDecl>(VD)) {
2845       Result.set(VD, Info.CurrentCall->Index);
2846       return true;
2847     }
2848     return Success(VD);
2849   }
2850 
2851   APValue V;
2852   if (!EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
2853     return false;
2854   return Success(V, E);
2855 }
2856 
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)2857 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
2858     const MaterializeTemporaryExpr *E) {
2859   if (E->GetTemporaryExpr()->isRValue()) {
2860     if (E->getType()->isRecordType())
2861       return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);
2862 
2863     Result.set(E, Info.CurrentCall->Index);
2864     return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info,
2865                            Result, E->GetTemporaryExpr());
2866   }
2867 
2868   // Materialization of an lvalue temporary occurs when we need to force a copy
2869   // (for instance, if it's a bitfield).
2870   // FIXME: The AST should contain an lvalue-to-rvalue node for such cases.
2871   if (!Visit(E->GetTemporaryExpr()))
2872     return false;
2873   if (!HandleLValueToRValueConversion(Info, E, E->getType(), Result,
2874                                       Info.CurrentCall->Temporaries[E]))
2875     return false;
2876   Result.set(E, Info.CurrentCall->Index);
2877   return true;
2878 }
2879 
2880 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)2881 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2882   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2883   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
2884   // only see this when folding in C, so there's no standard to follow here.
2885   return Success(E);
2886 }
2887 
VisitCXXTypeidExpr(const CXXTypeidExpr * E)2888 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2889   if (E->isTypeOperand())
2890     return Success(E);
2891   CXXRecordDecl *RD = E->getExprOperand()->getType()->getAsCXXRecordDecl();
2892   // FIXME: The standard says "a typeid expression whose operand is of a
2893   // polymorphic class type" is not a constant expression, but it probably
2894   // means "a typeid expression whose operand is potentially evaluated".
2895   if (RD && RD->isPolymorphic()) {
2896     Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
2897       << E->getExprOperand()->getType()
2898       << E->getExprOperand()->getSourceRange();
2899     return false;
2900   }
2901   return Success(E);
2902 }
2903 
VisitCXXUuidofExpr(const CXXUuidofExpr * E)2904 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
2905   return Success(E);
2906 }
2907 
VisitMemberExpr(const MemberExpr * E)2908 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
2909   // Handle static data members.
2910   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
2911     VisitIgnoredValue(E->getBase());
2912     return VisitVarDecl(E, VD);
2913   }
2914 
2915   // Handle static member functions.
2916   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
2917     if (MD->isStatic()) {
2918       VisitIgnoredValue(E->getBase());
2919       return Success(MD);
2920     }
2921   }
2922 
2923   // Handle non-static data members.
2924   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
2925 }
2926 
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)2927 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2928   // FIXME: Deal with vectors as array subscript bases.
2929   if (E->getBase()->getType()->isVectorType())
2930     return Error(E);
2931 
2932   if (!EvaluatePointer(E->getBase(), Result, Info))
2933     return false;
2934 
2935   APSInt Index;
2936   if (!EvaluateInteger(E->getIdx(), Index, Info))
2937     return false;
2938   int64_t IndexValue
2939     = Index.isSigned() ? Index.getSExtValue()
2940                        : static_cast<int64_t>(Index.getZExtValue());
2941 
2942   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), IndexValue);
2943 }
2944 
VisitUnaryDeref(const UnaryOperator * E)2945 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
2946   return EvaluatePointer(E->getSubExpr(), Result, Info);
2947 }
2948 
VisitUnaryReal(const UnaryOperator * E)2949 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
2950   if (!Visit(E->getSubExpr()))
2951     return false;
2952   // __real is a no-op on scalar lvalues.
2953   if (E->getSubExpr()->getType()->isAnyComplexType())
2954     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
2955   return true;
2956 }
2957 
VisitUnaryImag(const UnaryOperator * E)2958 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
2959   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
2960          "lvalue __imag__ on scalar?");
2961   if (!Visit(E->getSubExpr()))
2962     return false;
2963   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
2964   return true;
2965 }
2966 
2967 //===----------------------------------------------------------------------===//
2968 // Pointer Evaluation
2969 //===----------------------------------------------------------------------===//
2970 
2971 namespace {
2972 class PointerExprEvaluator
2973   : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
2974   LValue &Result;
2975 
Success(const Expr * E)2976   bool Success(const Expr *E) {
2977     Result.set(E);
2978     return true;
2979   }
2980 public:
2981 
PointerExprEvaluator(EvalInfo & info,LValue & Result)2982   PointerExprEvaluator(EvalInfo &info, LValue &Result)
2983     : ExprEvaluatorBaseTy(info), Result(Result) {}
2984 
Success(const APValue & V,const Expr * E)2985   bool Success(const APValue &V, const Expr *E) {
2986     Result.setFrom(Info.Ctx, V);
2987     return true;
2988   }
ZeroInitialization(const Expr * E)2989   bool ZeroInitialization(const Expr *E) {
2990     return Success((Expr*)0);
2991   }
2992 
2993   bool VisitBinaryOperator(const BinaryOperator *E);
2994   bool VisitCastExpr(const CastExpr* E);
2995   bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)2996   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
2997       { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)2998   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
2999       { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)3000   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
3001       { return Success(E); }
3002   bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)3003   bool VisitBlockExpr(const BlockExpr *E) {
3004     if (!E->getBlockDecl()->hasCaptures())
3005       return Success(E);
3006     return Error(E);
3007   }
VisitCXXThisExpr(const CXXThisExpr * E)3008   bool VisitCXXThisExpr(const CXXThisExpr *E) {
3009     if (!Info.CurrentCall->This)
3010       return Error(E);
3011     Result = *Info.CurrentCall->This;
3012     return true;
3013   }
3014 
3015   // FIXME: Missing: @protocol, @selector
3016 };
3017 } // end anonymous namespace
3018 
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)3019 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
3020   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
3021   return PointerExprEvaluator(Info, Result).Visit(E);
3022 }
3023 
VisitBinaryOperator(const BinaryOperator * E)3024 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
3025   if (E->getOpcode() != BO_Add &&
3026       E->getOpcode() != BO_Sub)
3027     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
3028 
3029   const Expr *PExp = E->getLHS();
3030   const Expr *IExp = E->getRHS();
3031   if (IExp->getType()->isPointerType())
3032     std::swap(PExp, IExp);
3033 
3034   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
3035   if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
3036     return false;
3037 
3038   llvm::APSInt Offset;
3039   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
3040     return false;
3041   int64_t AdditionalOffset
3042     = Offset.isSigned() ? Offset.getSExtValue()
3043                         : static_cast<int64_t>(Offset.getZExtValue());
3044   if (E->getOpcode() == BO_Sub)
3045     AdditionalOffset = -AdditionalOffset;
3046 
3047   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
3048   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
3049                                      AdditionalOffset);
3050 }
3051 
VisitUnaryAddrOf(const UnaryOperator * E)3052 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3053   return EvaluateLValue(E->getSubExpr(), Result, Info);
3054 }
3055 
VisitCastExpr(const CastExpr * E)3056 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
3057   const Expr* SubExpr = E->getSubExpr();
3058 
3059   switch (E->getCastKind()) {
3060   default:
3061     break;
3062 
3063   case CK_BitCast:
3064   case CK_CPointerToObjCPointerCast:
3065   case CK_BlockPointerToObjCPointerCast:
3066   case CK_AnyPointerToBlockPointerCast:
3067     if (!Visit(SubExpr))
3068       return false;
3069     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
3070     // permitted in constant expressions in C++11. Bitcasts from cv void* are
3071     // also static_casts, but we disallow them as a resolution to DR1312.
3072     if (!E->getType()->isVoidPointerType()) {
3073       Result.Designator.setInvalid();
3074       if (SubExpr->getType()->isVoidPointerType())
3075         CCEDiag(E, diag::note_constexpr_invalid_cast)
3076           << 3 << SubExpr->getType();
3077       else
3078         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3079     }
3080     return true;
3081 
3082   case CK_DerivedToBase:
3083   case CK_UncheckedDerivedToBase: {
3084     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
3085       return false;
3086     if (!Result.Base && Result.Offset.isZero())
3087       return true;
3088 
3089     // Now figure out the necessary offset to add to the base LV to get from
3090     // the derived class to the base class.
3091     QualType Type =
3092         E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3093 
3094     for (CastExpr::path_const_iterator PathI = E->path_begin(),
3095          PathE = E->path_end(); PathI != PathE; ++PathI) {
3096       if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3097                             *PathI))
3098         return false;
3099       Type = (*PathI)->getType();
3100     }
3101 
3102     return true;
3103   }
3104 
3105   case CK_BaseToDerived:
3106     if (!Visit(E->getSubExpr()))
3107       return false;
3108     if (!Result.Base && Result.Offset.isZero())
3109       return true;
3110     return HandleBaseToDerivedCast(Info, E, Result);
3111 
3112   case CK_NullToPointer:
3113     VisitIgnoredValue(E->getSubExpr());
3114     return ZeroInitialization(E);
3115 
3116   case CK_IntegralToPointer: {
3117     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3118 
3119     APValue Value;
3120     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
3121       break;
3122 
3123     if (Value.isInt()) {
3124       unsigned Size = Info.Ctx.getTypeSize(E->getType());
3125       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
3126       Result.Base = (Expr*)0;
3127       Result.Offset = CharUnits::fromQuantity(N);
3128       Result.CallIndex = 0;
3129       Result.Designator.setInvalid();
3130       return true;
3131     } else {
3132       // Cast is of an lvalue, no need to change value.
3133       Result.setFrom(Info.Ctx, Value);
3134       return true;
3135     }
3136   }
3137   case CK_ArrayToPointerDecay:
3138     if (SubExpr->isGLValue()) {
3139       if (!EvaluateLValue(SubExpr, Result, Info))
3140         return false;
3141     } else {
3142       Result.set(SubExpr, Info.CurrentCall->Index);
3143       if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
3144                            Info, Result, SubExpr))
3145         return false;
3146     }
3147     // The result is a pointer to the first element of the array.
3148     if (const ConstantArrayType *CAT
3149           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
3150       Result.addArray(Info, E, CAT);
3151     else
3152       Result.Designator.setInvalid();
3153     return true;
3154 
3155   case CK_FunctionToPointerDecay:
3156     return EvaluateLValue(SubExpr, Result, Info);
3157   }
3158 
3159   return ExprEvaluatorBaseTy::VisitCastExpr(E);
3160 }
3161 
VisitCallExpr(const CallExpr * E)3162 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
3163   if (IsStringLiteralCall(E))
3164     return Success(E);
3165 
3166   return ExprEvaluatorBaseTy::VisitCallExpr(E);
3167 }
3168 
3169 //===----------------------------------------------------------------------===//
3170 // Member Pointer Evaluation
3171 //===----------------------------------------------------------------------===//
3172 
3173 namespace {
3174 class MemberPointerExprEvaluator
3175   : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
3176   MemberPtr &Result;
3177 
Success(const ValueDecl * D)3178   bool Success(const ValueDecl *D) {
3179     Result = MemberPtr(D);
3180     return true;
3181   }
3182 public:
3183 
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)3184   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
3185     : ExprEvaluatorBaseTy(Info), Result(Result) {}
3186 
Success(const APValue & V,const Expr * E)3187   bool Success(const APValue &V, const Expr *E) {
3188     Result.setFrom(V);
3189     return true;
3190   }
ZeroInitialization(const Expr * E)3191   bool ZeroInitialization(const Expr *E) {
3192     return Success((const ValueDecl*)0);
3193   }
3194 
3195   bool VisitCastExpr(const CastExpr *E);
3196   bool VisitUnaryAddrOf(const UnaryOperator *E);
3197 };
3198 } // end anonymous namespace
3199 
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)3200 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
3201                                   EvalInfo &Info) {
3202   assert(E->isRValue() && E->getType()->isMemberPointerType());
3203   return MemberPointerExprEvaluator(Info, Result).Visit(E);
3204 }
3205 
VisitCastExpr(const CastExpr * E)3206 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
3207   switch (E->getCastKind()) {
3208   default:
3209     return ExprEvaluatorBaseTy::VisitCastExpr(E);
3210 
3211   case CK_NullToMemberPointer:
3212     VisitIgnoredValue(E->getSubExpr());
3213     return ZeroInitialization(E);
3214 
3215   case CK_BaseToDerivedMemberPointer: {
3216     if (!Visit(E->getSubExpr()))
3217       return false;
3218     if (E->path_empty())
3219       return true;
3220     // Base-to-derived member pointer casts store the path in derived-to-base
3221     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
3222     // the wrong end of the derived->base arc, so stagger the path by one class.
3223     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
3224     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
3225          PathI != PathE; ++PathI) {
3226       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3227       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
3228       if (!Result.castToDerived(Derived))
3229         return Error(E);
3230     }
3231     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
3232     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
3233       return Error(E);
3234     return true;
3235   }
3236 
3237   case CK_DerivedToBaseMemberPointer:
3238     if (!Visit(E->getSubExpr()))
3239       return false;
3240     for (CastExpr::path_const_iterator PathI = E->path_begin(),
3241          PathE = E->path_end(); PathI != PathE; ++PathI) {
3242       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3243       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3244       if (!Result.castToBase(Base))
3245         return Error(E);
3246     }
3247     return true;
3248   }
3249 }
3250 
VisitUnaryAddrOf(const UnaryOperator * E)3251 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3252   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
3253   // member can be formed.
3254   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
3255 }
3256 
3257 //===----------------------------------------------------------------------===//
3258 // Record Evaluation
3259 //===----------------------------------------------------------------------===//
3260 
3261 namespace {
3262   class RecordExprEvaluator
3263   : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
3264     const LValue &This;
3265     APValue &Result;
3266   public:
3267 
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)3268     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
3269       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
3270 
Success(const APValue & V,const Expr * E)3271     bool Success(const APValue &V, const Expr *E) {
3272       Result = V;
3273       return true;
3274     }
3275     bool ZeroInitialization(const Expr *E);
3276 
3277     bool VisitCastExpr(const CastExpr *E);
3278     bool VisitInitListExpr(const InitListExpr *E);
3279     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3280   };
3281 }
3282 
3283 /// Perform zero-initialization on an object of non-union class type.
3284 /// C++11 [dcl.init]p5:
3285 ///  To zero-initialize an object or reference of type T means:
3286 ///    [...]
3287 ///    -- if T is a (possibly cv-qualified) non-union class type,
3288 ///       each non-static data member and each base-class subobject is
3289 ///       zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)3290 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
3291                                           const RecordDecl *RD,
3292                                           const LValue &This, APValue &Result) {
3293   assert(!RD->isUnion() && "Expected non-union class type");
3294   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
3295   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
3296                    std::distance(RD->field_begin(), RD->field_end()));
3297 
3298   if (RD->isInvalidDecl()) return false;
3299   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3300 
3301   if (CD) {
3302     unsigned Index = 0;
3303     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
3304            End = CD->bases_end(); I != End; ++I, ++Index) {
3305       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
3306       LValue Subobject = This;
3307       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
3308         return false;
3309       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
3310                                          Result.getStructBase(Index)))
3311         return false;
3312     }
3313   }
3314 
3315   for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
3316        I != End; ++I) {
3317     // -- if T is a reference type, no initialization is performed.
3318     if (I->getType()->isReferenceType())
3319       continue;
3320 
3321     LValue Subobject = This;
3322     if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
3323       return false;
3324 
3325     ImplicitValueInitExpr VIE(I->getType());
3326     if (!EvaluateInPlace(
3327           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
3328       return false;
3329   }
3330 
3331   return true;
3332 }
3333 
ZeroInitialization(const Expr * E)3334 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
3335   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3336   if (RD->isInvalidDecl()) return false;
3337   if (RD->isUnion()) {
3338     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3339     // object's first non-static named data member is zero-initialized
3340     RecordDecl::field_iterator I = RD->field_begin();
3341     if (I == RD->field_end()) {
3342       Result = APValue((const FieldDecl*)0);
3343       return true;
3344     }
3345 
3346     LValue Subobject = This;
3347     if (!HandleLValueMember(Info, E, Subobject, *I))
3348       return false;
3349     Result = APValue(*I);
3350     ImplicitValueInitExpr VIE(I->getType());
3351     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
3352   }
3353 
3354   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
3355     Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
3356     return false;
3357   }
3358 
3359   return HandleClassZeroInitialization(Info, E, RD, This, Result);
3360 }
3361 
VisitCastExpr(const CastExpr * E)3362 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
3363   switch (E->getCastKind()) {
3364   default:
3365     return ExprEvaluatorBaseTy::VisitCastExpr(E);
3366 
3367   case CK_ConstructorConversion:
3368     return Visit(E->getSubExpr());
3369 
3370   case CK_DerivedToBase:
3371   case CK_UncheckedDerivedToBase: {
3372     APValue DerivedObject;
3373     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
3374       return false;
3375     if (!DerivedObject.isStruct())
3376       return Error(E->getSubExpr());
3377 
3378     // Derived-to-base rvalue conversion: just slice off the derived part.
3379     APValue *Value = &DerivedObject;
3380     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
3381     for (CastExpr::path_const_iterator PathI = E->path_begin(),
3382          PathE = E->path_end(); PathI != PathE; ++PathI) {
3383       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
3384       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3385       Value = &Value->getStructBase(getBaseIndex(RD, Base));
3386       RD = Base;
3387     }
3388     Result = *Value;
3389     return true;
3390   }
3391   }
3392 }
3393 
VisitInitListExpr(const InitListExpr * E)3394 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3395   // Cannot constant-evaluate std::initializer_list inits.
3396   if (E->initializesStdInitializerList())
3397     return false;
3398 
3399   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3400   if (RD->isInvalidDecl()) return false;
3401   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3402 
3403   if (RD->isUnion()) {
3404     const FieldDecl *Field = E->getInitializedFieldInUnion();
3405     Result = APValue(Field);
3406     if (!Field)
3407       return true;
3408 
3409     // If the initializer list for a union does not contain any elements, the
3410     // first element of the union is value-initialized.
3411     ImplicitValueInitExpr VIE(Field->getType());
3412     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
3413 
3414     LValue Subobject = This;
3415     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
3416       return false;
3417     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
3418   }
3419 
3420   assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
3421          "initializer list for class with base classes");
3422   Result = APValue(APValue::UninitStruct(), 0,
3423                    std::distance(RD->field_begin(), RD->field_end()));
3424   unsigned ElementNo = 0;
3425   bool Success = true;
3426   for (RecordDecl::field_iterator Field = RD->field_begin(),
3427        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
3428     // Anonymous bit-fields are not considered members of the class for
3429     // purposes of aggregate initialization.
3430     if (Field->isUnnamedBitfield())
3431       continue;
3432 
3433     LValue Subobject = This;
3434 
3435     bool HaveInit = ElementNo < E->getNumInits();
3436 
3437     // FIXME: Diagnostics here should point to the end of the initializer
3438     // list, not the start.
3439     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
3440                             Subobject, *Field, &Layout))
3441       return false;
3442 
3443     // Perform an implicit value-initialization for members beyond the end of
3444     // the initializer list.
3445     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
3446 
3447     if (!EvaluateInPlace(
3448           Result.getStructField(Field->getFieldIndex()),
3449           Info, Subobject, HaveInit ? E->getInit(ElementNo++) : &VIE)) {
3450       if (!Info.keepEvaluatingAfterFailure())
3451         return false;
3452       Success = false;
3453     }
3454   }
3455 
3456   return Success;
3457 }
3458 
VisitCXXConstructExpr(const CXXConstructExpr * E)3459 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3460   const CXXConstructorDecl *FD = E->getConstructor();
3461   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
3462 
3463   bool ZeroInit = E->requiresZeroInitialization();
3464   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3465     // If we've already performed zero-initialization, we're already done.
3466     if (!Result.isUninit())
3467       return true;
3468 
3469     if (ZeroInit)
3470       return ZeroInitialization(E);
3471 
3472     const CXXRecordDecl *RD = FD->getParent();
3473     if (RD->isUnion())
3474       Result = APValue((FieldDecl*)0);
3475     else
3476       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3477                        std::distance(RD->field_begin(), RD->field_end()));
3478     return true;
3479   }
3480 
3481   const FunctionDecl *Definition = 0;
3482   FD->getBody(Definition);
3483 
3484   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3485     return false;
3486 
3487   // Avoid materializing a temporary for an elidable copy/move constructor.
3488   if (E->isElidable() && !ZeroInit)
3489     if (const MaterializeTemporaryExpr *ME
3490           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
3491       return Visit(ME->GetTemporaryExpr());
3492 
3493   if (ZeroInit && !ZeroInitialization(E))
3494     return false;
3495 
3496   llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
3497   return HandleConstructorCall(E->getExprLoc(), This, Args,
3498                                cast<CXXConstructorDecl>(Definition), Info,
3499                                Result);
3500 }
3501 
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)3502 static bool EvaluateRecord(const Expr *E, const LValue &This,
3503                            APValue &Result, EvalInfo &Info) {
3504   assert(E->isRValue() && E->getType()->isRecordType() &&
3505          "can't evaluate expression as a record rvalue");
3506   return RecordExprEvaluator(Info, This, Result).Visit(E);
3507 }
3508 
3509 //===----------------------------------------------------------------------===//
3510 // Temporary Evaluation
3511 //
3512 // Temporaries are represented in the AST as rvalues, but generally behave like
3513 // lvalues. The full-object of which the temporary is a subobject is implicitly
3514 // materialized so that a reference can bind to it.
3515 //===----------------------------------------------------------------------===//
3516 namespace {
3517 class TemporaryExprEvaluator
3518   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
3519 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)3520   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
3521     LValueExprEvaluatorBaseTy(Info, Result) {}
3522 
3523   /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)3524   bool VisitConstructExpr(const Expr *E) {
3525     Result.set(E, Info.CurrentCall->Index);
3526     return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
3527   }
3528 
VisitCastExpr(const CastExpr * E)3529   bool VisitCastExpr(const CastExpr *E) {
3530     switch (E->getCastKind()) {
3531     default:
3532       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
3533 
3534     case CK_ConstructorConversion:
3535       return VisitConstructExpr(E->getSubExpr());
3536     }
3537   }
VisitInitListExpr(const InitListExpr * E)3538   bool VisitInitListExpr(const InitListExpr *E) {
3539     return VisitConstructExpr(E);
3540   }
VisitCXXConstructExpr(const CXXConstructExpr * E)3541   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
3542     return VisitConstructExpr(E);
3543   }
VisitCallExpr(const CallExpr * E)3544   bool VisitCallExpr(const CallExpr *E) {
3545     return VisitConstructExpr(E);
3546   }
3547 };
3548 } // end anonymous namespace
3549 
3550 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)3551 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
3552   assert(E->isRValue() && E->getType()->isRecordType());
3553   return TemporaryExprEvaluator(Info, Result).Visit(E);
3554 }
3555 
3556 //===----------------------------------------------------------------------===//
3557 // Vector Evaluation
3558 //===----------------------------------------------------------------------===//
3559 
3560 namespace {
3561   class VectorExprEvaluator
3562   : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
3563     APValue &Result;
3564   public:
3565 
VectorExprEvaluator(EvalInfo & info,APValue & Result)3566     VectorExprEvaluator(EvalInfo &info, APValue &Result)
3567       : ExprEvaluatorBaseTy(info), Result(Result) {}
3568 
Success(const ArrayRef<APValue> & V,const Expr * E)3569     bool Success(const ArrayRef<APValue> &V, const Expr *E) {
3570       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
3571       // FIXME: remove this APValue copy.
3572       Result = APValue(V.data(), V.size());
3573       return true;
3574     }
Success(const APValue & V,const Expr * E)3575     bool Success(const APValue &V, const Expr *E) {
3576       assert(V.isVector());
3577       Result = V;
3578       return true;
3579     }
3580     bool ZeroInitialization(const Expr *E);
3581 
VisitUnaryReal(const UnaryOperator * E)3582     bool VisitUnaryReal(const UnaryOperator *E)
3583       { return Visit(E->getSubExpr()); }
3584     bool VisitCastExpr(const CastExpr* E);
3585     bool VisitInitListExpr(const InitListExpr *E);
3586     bool VisitUnaryImag(const UnaryOperator *E);
3587     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
3588     //                 binary comparisons, binary and/or/xor,
3589     //                 shufflevector, ExtVectorElementExpr
3590   };
3591 } // end anonymous namespace
3592 
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)3593 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
3594   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
3595   return VectorExprEvaluator(Info, Result).Visit(E);
3596 }
3597 
VisitCastExpr(const CastExpr * E)3598 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
3599   const VectorType *VTy = E->getType()->castAs<VectorType>();
3600   unsigned NElts = VTy->getNumElements();
3601 
3602   const Expr *SE = E->getSubExpr();
3603   QualType SETy = SE->getType();
3604 
3605   switch (E->getCastKind()) {
3606   case CK_VectorSplat: {
3607     APValue Val = APValue();
3608     if (SETy->isIntegerType()) {
3609       APSInt IntResult;
3610       if (!EvaluateInteger(SE, IntResult, Info))
3611          return false;
3612       Val = APValue(IntResult);
3613     } else if (SETy->isRealFloatingType()) {
3614        APFloat F(0.0);
3615        if (!EvaluateFloat(SE, F, Info))
3616          return false;
3617        Val = APValue(F);
3618     } else {
3619       return Error(E);
3620     }
3621 
3622     // Splat and create vector APValue.
3623     SmallVector<APValue, 4> Elts(NElts, Val);
3624     return Success(Elts, E);
3625   }
3626   case CK_BitCast: {
3627     // Evaluate the operand into an APInt we can extract from.
3628     llvm::APInt SValInt;
3629     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
3630       return false;
3631     // Extract the elements
3632     QualType EltTy = VTy->getElementType();
3633     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
3634     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
3635     SmallVector<APValue, 4> Elts;
3636     if (EltTy->isRealFloatingType()) {
3637       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
3638       bool isIEESem = &Sem != &APFloat::PPCDoubleDouble;
3639       unsigned FloatEltSize = EltSize;
3640       if (&Sem == &APFloat::x87DoubleExtended)
3641         FloatEltSize = 80;
3642       for (unsigned i = 0; i < NElts; i++) {
3643         llvm::APInt Elt;
3644         if (BigEndian)
3645           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
3646         else
3647           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
3648         Elts.push_back(APValue(APFloat(Elt, isIEESem)));
3649       }
3650     } else if (EltTy->isIntegerType()) {
3651       for (unsigned i = 0; i < NElts; i++) {
3652         llvm::APInt Elt;
3653         if (BigEndian)
3654           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
3655         else
3656           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
3657         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
3658       }
3659     } else {
3660       return Error(E);
3661     }
3662     return Success(Elts, E);
3663   }
3664   default:
3665     return ExprEvaluatorBaseTy::VisitCastExpr(E);
3666   }
3667 }
3668 
3669 bool
VisitInitListExpr(const InitListExpr * E)3670 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3671   const VectorType *VT = E->getType()->castAs<VectorType>();
3672   unsigned NumInits = E->getNumInits();
3673   unsigned NumElements = VT->getNumElements();
3674 
3675   QualType EltTy = VT->getElementType();
3676   SmallVector<APValue, 4> Elements;
3677 
3678   // The number of initializers can be less than the number of
3679   // vector elements. For OpenCL, this can be due to nested vector
3680   // initialization. For GCC compatibility, missing trailing elements
3681   // should be initialized with zeroes.
3682   unsigned CountInits = 0, CountElts = 0;
3683   while (CountElts < NumElements) {
3684     // Handle nested vector initialization.
3685     if (CountInits < NumInits
3686         && E->getInit(CountInits)->getType()->isExtVectorType()) {
3687       APValue v;
3688       if (!EvaluateVector(E->getInit(CountInits), v, Info))
3689         return Error(E);
3690       unsigned vlen = v.getVectorLength();
3691       for (unsigned j = 0; j < vlen; j++)
3692         Elements.push_back(v.getVectorElt(j));
3693       CountElts += vlen;
3694     } else if (EltTy->isIntegerType()) {
3695       llvm::APSInt sInt(32);
3696       if (CountInits < NumInits) {
3697         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
3698           return false;
3699       } else // trailing integer zero.
3700         sInt = Info.Ctx.MakeIntValue(0, EltTy);
3701       Elements.push_back(APValue(sInt));
3702       CountElts++;
3703     } else {
3704       llvm::APFloat f(0.0);
3705       if (CountInits < NumInits) {
3706         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
3707           return false;
3708       } else // trailing float zero.
3709         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
3710       Elements.push_back(APValue(f));
3711       CountElts++;
3712     }
3713     CountInits++;
3714   }
3715   return Success(Elements, E);
3716 }
3717 
3718 bool
ZeroInitialization(const Expr * E)3719 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
3720   const VectorType *VT = E->getType()->getAs<VectorType>();
3721   QualType EltTy = VT->getElementType();
3722   APValue ZeroElement;
3723   if (EltTy->isIntegerType())
3724     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
3725   else
3726     ZeroElement =
3727         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
3728 
3729   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
3730   return Success(Elements, E);
3731 }
3732 
VisitUnaryImag(const UnaryOperator * E)3733 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
3734   VisitIgnoredValue(E->getSubExpr());
3735   return ZeroInitialization(E);
3736 }
3737 
3738 //===----------------------------------------------------------------------===//
3739 // Array Evaluation
3740 //===----------------------------------------------------------------------===//
3741 
3742 namespace {
3743   class ArrayExprEvaluator
3744   : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
3745     const LValue &This;
3746     APValue &Result;
3747   public:
3748 
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)3749     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
3750       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
3751 
Success(const APValue & V,const Expr * E)3752     bool Success(const APValue &V, const Expr *E) {
3753       assert((V.isArray() || V.isLValue()) &&
3754              "expected array or string literal");
3755       Result = V;
3756       return true;
3757     }
3758 
ZeroInitialization(const Expr * E)3759     bool ZeroInitialization(const Expr *E) {
3760       const ConstantArrayType *CAT =
3761           Info.Ctx.getAsConstantArrayType(E->getType());
3762       if (!CAT)
3763         return Error(E);
3764 
3765       Result = APValue(APValue::UninitArray(), 0,
3766                        CAT->getSize().getZExtValue());
3767       if (!Result.hasArrayFiller()) return true;
3768 
3769       // Zero-initialize all elements.
3770       LValue Subobject = This;
3771       Subobject.addArray(Info, E, CAT);
3772       ImplicitValueInitExpr VIE(CAT->getElementType());
3773       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
3774     }
3775 
3776     bool VisitInitListExpr(const InitListExpr *E);
3777     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3778   };
3779 } // end anonymous namespace
3780 
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)3781 static bool EvaluateArray(const Expr *E, const LValue &This,
3782                           APValue &Result, EvalInfo &Info) {
3783   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
3784   return ArrayExprEvaluator(Info, This, Result).Visit(E);
3785 }
3786 
VisitInitListExpr(const InitListExpr * E)3787 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3788   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
3789   if (!CAT)
3790     return Error(E);
3791 
3792   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
3793   // an appropriately-typed string literal enclosed in braces.
3794   if (E->isStringLiteralInit()) {
3795     LValue LV;
3796     if (!EvaluateLValue(E->getInit(0), LV, Info))
3797       return false;
3798     APValue Val;
3799     LV.moveInto(Val);
3800     return Success(Val, E);
3801   }
3802 
3803   bool Success = true;
3804 
3805   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
3806          "zero-initialized array shouldn't have any initialized elts");
3807   APValue Filler;
3808   if (Result.isArray() && Result.hasArrayFiller())
3809     Filler = Result.getArrayFiller();
3810 
3811   Result = APValue(APValue::UninitArray(), E->getNumInits(),
3812                    CAT->getSize().getZExtValue());
3813 
3814   // If the array was previously zero-initialized, preserve the
3815   // zero-initialized values.
3816   if (!Filler.isUninit()) {
3817     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
3818       Result.getArrayInitializedElt(I) = Filler;
3819     if (Result.hasArrayFiller())
3820       Result.getArrayFiller() = Filler;
3821   }
3822 
3823   LValue Subobject = This;
3824   Subobject.addArray(Info, E, CAT);
3825   unsigned Index = 0;
3826   for (InitListExpr::const_iterator I = E->begin(), End = E->end();
3827        I != End; ++I, ++Index) {
3828     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
3829                          Info, Subobject, cast<Expr>(*I)) ||
3830         !HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
3831                                      CAT->getElementType(), 1)) {
3832       if (!Info.keepEvaluatingAfterFailure())
3833         return false;
3834       Success = false;
3835     }
3836   }
3837 
3838   if (!Result.hasArrayFiller()) return Success;
3839   assert(E->hasArrayFiller() && "no array filler for incomplete init list");
3840   // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3841   // but sometimes does:
3842   //   struct S { constexpr S() : p(&p) {} void *p; };
3843   //   S s[10] = {};
3844   return EvaluateInPlace(Result.getArrayFiller(), Info,
3845                          Subobject, E->getArrayFiller()) && Success;
3846 }
3847 
VisitCXXConstructExpr(const CXXConstructExpr * E)3848 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3849   // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3850   // but sometimes does:
3851   //   struct S { constexpr S() : p(&p) {} void *p; };
3852   //   S s[10];
3853   LValue Subobject = This;
3854 
3855   APValue *Value = &Result;
3856   bool HadZeroInit = true;
3857   QualType ElemTy = E->getType();
3858   while (const ConstantArrayType *CAT =
3859            Info.Ctx.getAsConstantArrayType(ElemTy)) {
3860     Subobject.addArray(Info, E, CAT);
3861     HadZeroInit &= !Value->isUninit();
3862     if (!HadZeroInit)
3863       *Value = APValue(APValue::UninitArray(), 0, CAT->getSize().getZExtValue());
3864     if (!Value->hasArrayFiller())
3865       return true;
3866     Value = &Value->getArrayFiller();
3867     ElemTy = CAT->getElementType();
3868   }
3869 
3870   if (!ElemTy->isRecordType())
3871     return Error(E);
3872 
3873   const CXXConstructorDecl *FD = E->getConstructor();
3874 
3875   bool ZeroInit = E->requiresZeroInitialization();
3876   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3877     if (HadZeroInit)
3878       return true;
3879 
3880     if (ZeroInit) {
3881       ImplicitValueInitExpr VIE(ElemTy);
3882       return EvaluateInPlace(*Value, Info, Subobject, &VIE);
3883     }
3884 
3885     const CXXRecordDecl *RD = FD->getParent();
3886     if (RD->isUnion())
3887       *Value = APValue((FieldDecl*)0);
3888     else
3889       *Value =
3890           APValue(APValue::UninitStruct(), RD->getNumBases(),
3891                   std::distance(RD->field_begin(), RD->field_end()));
3892     return true;
3893   }
3894 
3895   const FunctionDecl *Definition = 0;
3896   FD->getBody(Definition);
3897 
3898   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3899     return false;
3900 
3901   if (ZeroInit && !HadZeroInit) {
3902     ImplicitValueInitExpr VIE(ElemTy);
3903     if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
3904       return false;
3905   }
3906 
3907   llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
3908   return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
3909                                cast<CXXConstructorDecl>(Definition),
3910                                Info, *Value);
3911 }
3912 
3913 //===----------------------------------------------------------------------===//
3914 // Integer Evaluation
3915 //
3916 // As a GNU extension, we support casting pointers to sufficiently-wide integer
3917 // types and back in constant folding. Integer values are thus represented
3918 // either as an integer-valued APValue, or as an lvalue-valued APValue.
3919 //===----------------------------------------------------------------------===//
3920 
3921 namespace {
3922 class IntExprEvaluator
3923   : public ExprEvaluatorBase<IntExprEvaluator, bool> {
3924   APValue &Result;
3925 public:
IntExprEvaluator(EvalInfo & info,APValue & result)3926   IntExprEvaluator(EvalInfo &info, APValue &result)
3927     : ExprEvaluatorBaseTy(info), Result(result) {}
3928 
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)3929   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
3930     assert(E->getType()->isIntegralOrEnumerationType() &&
3931            "Invalid evaluation result.");
3932     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
3933            "Invalid evaluation result.");
3934     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3935            "Invalid evaluation result.");
3936     Result = APValue(SI);
3937     return true;
3938   }
Success(const llvm::APSInt & SI,const Expr * E)3939   bool Success(const llvm::APSInt &SI, const Expr *E) {
3940     return Success(SI, E, Result);
3941   }
3942 
Success(const llvm::APInt & I,const Expr * E,APValue & Result)3943   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
3944     assert(E->getType()->isIntegralOrEnumerationType() &&
3945            "Invalid evaluation result.");
3946     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3947            "Invalid evaluation result.");
3948     Result = APValue(APSInt(I));
3949     Result.getInt().setIsUnsigned(
3950                             E->getType()->isUnsignedIntegerOrEnumerationType());
3951     return true;
3952   }
Success(const llvm::APInt & I,const Expr * E)3953   bool Success(const llvm::APInt &I, const Expr *E) {
3954     return Success(I, E, Result);
3955   }
3956 
Success(uint64_t Value,const Expr * E,APValue & Result)3957   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
3958     assert(E->getType()->isIntegralOrEnumerationType() &&
3959            "Invalid evaluation result.");
3960     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
3961     return true;
3962   }
Success(uint64_t Value,const Expr * E)3963   bool Success(uint64_t Value, const Expr *E) {
3964     return Success(Value, E, Result);
3965   }
3966 
Success(CharUnits Size,const Expr * E)3967   bool Success(CharUnits Size, const Expr *E) {
3968     return Success(Size.getQuantity(), E);
3969   }
3970 
Success(const APValue & V,const Expr * E)3971   bool Success(const APValue &V, const Expr *E) {
3972     if (V.isLValue() || V.isAddrLabelDiff()) {
3973       Result = V;
3974       return true;
3975     }
3976     return Success(V.getInt(), E);
3977   }
3978 
ZeroInitialization(const Expr * E)3979   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
3980 
3981   //===--------------------------------------------------------------------===//
3982   //                            Visitor Methods
3983   //===--------------------------------------------------------------------===//
3984 
VisitIntegerLiteral(const IntegerLiteral * E)3985   bool VisitIntegerLiteral(const IntegerLiteral *E) {
3986     return Success(E->getValue(), E);
3987   }
VisitCharacterLiteral(const CharacterLiteral * E)3988   bool VisitCharacterLiteral(const CharacterLiteral *E) {
3989     return Success(E->getValue(), E);
3990   }
3991 
3992   bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)3993   bool VisitDeclRefExpr(const DeclRefExpr *E) {
3994     if (CheckReferencedDecl(E, E->getDecl()))
3995       return true;
3996 
3997     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
3998   }
VisitMemberExpr(const MemberExpr * E)3999   bool VisitMemberExpr(const MemberExpr *E) {
4000     if (CheckReferencedDecl(E, E->getMemberDecl())) {
4001       VisitIgnoredValue(E->getBase());
4002       return true;
4003     }
4004 
4005     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
4006   }
4007 
4008   bool VisitCallExpr(const CallExpr *E);
4009   bool VisitBinaryOperator(const BinaryOperator *E);
4010   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
4011   bool VisitUnaryOperator(const UnaryOperator *E);
4012 
4013   bool VisitCastExpr(const CastExpr* E);
4014   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
4015 
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)4016   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4017     return Success(E->getValue(), E);
4018   }
4019 
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)4020   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
4021     return Success(E->getValue(), E);
4022   }
4023 
4024   // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)4025   bool VisitGNUNullExpr(const GNUNullExpr *E) {
4026     return ZeroInitialization(E);
4027   }
4028 
VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr * E)4029   bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
4030     return Success(E->getValue(), E);
4031   }
4032 
VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr * E)4033   bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
4034     return Success(E->getValue(), E);
4035   }
4036 
VisitTypeTraitExpr(const TypeTraitExpr * E)4037   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
4038     return Success(E->getValue(), E);
4039   }
4040 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)4041   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
4042     return Success(E->getValue(), E);
4043   }
4044 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)4045   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
4046     return Success(E->getValue(), E);
4047   }
4048 
4049   bool VisitUnaryReal(const UnaryOperator *E);
4050   bool VisitUnaryImag(const UnaryOperator *E);
4051 
4052   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
4053   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
4054 
4055 private:
4056   CharUnits GetAlignOfExpr(const Expr *E);
4057   CharUnits GetAlignOfType(QualType T);
4058   static QualType GetObjectType(APValue::LValueBase B);
4059   bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
4060   // FIXME: Missing: array subscript of vector, member of vector
4061 };
4062 } // end anonymous namespace
4063 
4064 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
4065 /// produce either the integer value or a pointer.
4066 ///
4067 /// GCC has a heinous extension which folds casts between pointer types and
4068 /// pointer-sized integral types. We support this by allowing the evaluation of
4069 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
4070 /// Some simple arithmetic on such values is supported (they are treated much
4071 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)4072 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
4073                                     EvalInfo &Info) {
4074   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
4075   return IntExprEvaluator(Info, Result).Visit(E);
4076 }
4077 
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)4078 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
4079   APValue Val;
4080   if (!EvaluateIntegerOrLValue(E, Val, Info))
4081     return false;
4082   if (!Val.isInt()) {
4083     // FIXME: It would be better to produce the diagnostic for casting
4084     //        a pointer to an integer.
4085     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
4086     return false;
4087   }
4088   Result = Val.getInt();
4089   return true;
4090 }
4091 
4092 /// Check whether the given declaration can be directly converted to an integral
4093 /// rvalue. If not, no diagnostic is produced; there are other things we can
4094 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)4095 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
4096   // Enums are integer constant exprs.
4097   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
4098     // Check for signedness/width mismatches between E type and ECD value.
4099     bool SameSign = (ECD->getInitVal().isSigned()
4100                      == E->getType()->isSignedIntegerOrEnumerationType());
4101     bool SameWidth = (ECD->getInitVal().getBitWidth()
4102                       == Info.Ctx.getIntWidth(E->getType()));
4103     if (SameSign && SameWidth)
4104       return Success(ECD->getInitVal(), E);
4105     else {
4106       // Get rid of mismatch (otherwise Success assertions will fail)
4107       // by computing a new value matching the type of E.
4108       llvm::APSInt Val = ECD->getInitVal();
4109       if (!SameSign)
4110         Val.setIsSigned(!ECD->getInitVal().isSigned());
4111       if (!SameWidth)
4112         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
4113       return Success(Val, E);
4114     }
4115   }
4116   return false;
4117 }
4118 
4119 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
4120 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E)4121 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
4122   // The following enum mimics the values returned by GCC.
4123   // FIXME: Does GCC differ between lvalue and rvalue references here?
4124   enum gcc_type_class {
4125     no_type_class = -1,
4126     void_type_class, integer_type_class, char_type_class,
4127     enumeral_type_class, boolean_type_class,
4128     pointer_type_class, reference_type_class, offset_type_class,
4129     real_type_class, complex_type_class,
4130     function_type_class, method_type_class,
4131     record_type_class, union_type_class,
4132     array_type_class, string_type_class,
4133     lang_type_class
4134   };
4135 
4136   // If no argument was supplied, default to "no_type_class". This isn't
4137   // ideal, however it is what gcc does.
4138   if (E->getNumArgs() == 0)
4139     return no_type_class;
4140 
4141   QualType ArgTy = E->getArg(0)->getType();
4142   if (ArgTy->isVoidType())
4143     return void_type_class;
4144   else if (ArgTy->isEnumeralType())
4145     return enumeral_type_class;
4146   else if (ArgTy->isBooleanType())
4147     return boolean_type_class;
4148   else if (ArgTy->isCharType())
4149     return string_type_class; // gcc doesn't appear to use char_type_class
4150   else if (ArgTy->isIntegerType())
4151     return integer_type_class;
4152   else if (ArgTy->isPointerType())
4153     return pointer_type_class;
4154   else if (ArgTy->isReferenceType())
4155     return reference_type_class;
4156   else if (ArgTy->isRealType())
4157     return real_type_class;
4158   else if (ArgTy->isComplexType())
4159     return complex_type_class;
4160   else if (ArgTy->isFunctionType())
4161     return function_type_class;
4162   else if (ArgTy->isStructureOrClassType())
4163     return record_type_class;
4164   else if (ArgTy->isUnionType())
4165     return union_type_class;
4166   else if (ArgTy->isArrayType())
4167     return array_type_class;
4168   else if (ArgTy->isUnionType())
4169     return union_type_class;
4170   else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
4171     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
4172 }
4173 
4174 /// EvaluateBuiltinConstantPForLValue - Determine the result of
4175 /// __builtin_constant_p when applied to the given lvalue.
4176 ///
4177 /// An lvalue is only "constant" if it is a pointer or reference to the first
4178 /// character of a string literal.
4179 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)4180 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
4181   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
4182   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
4183 }
4184 
4185 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
4186 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)4187 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
4188   QualType ArgType = Arg->getType();
4189 
4190   // __builtin_constant_p always has one operand. The rules which gcc follows
4191   // are not precisely documented, but are as follows:
4192   //
4193   //  - If the operand is of integral, floating, complex or enumeration type,
4194   //    and can be folded to a known value of that type, it returns 1.
4195   //  - If the operand and can be folded to a pointer to the first character
4196   //    of a string literal (or such a pointer cast to an integral type), it
4197   //    returns 1.
4198   //
4199   // Otherwise, it returns 0.
4200   //
4201   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
4202   // its support for this does not currently work.
4203   if (ArgType->isIntegralOrEnumerationType()) {
4204     Expr::EvalResult Result;
4205     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
4206       return false;
4207 
4208     APValue &V = Result.Val;
4209     if (V.getKind() == APValue::Int)
4210       return true;
4211 
4212     return EvaluateBuiltinConstantPForLValue(V);
4213   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
4214     return Arg->isEvaluatable(Ctx);
4215   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
4216     LValue LV;
4217     Expr::EvalStatus Status;
4218     EvalInfo Info(Ctx, Status);
4219     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
4220                           : EvaluatePointer(Arg, LV, Info)) &&
4221         !Status.HasSideEffects)
4222       return EvaluateBuiltinConstantPForLValue(LV);
4223   }
4224 
4225   // Anything else isn't considered to be sufficiently constant.
4226   return false;
4227 }
4228 
4229 /// Retrieves the "underlying object type" of the given expression,
4230 /// as used by __builtin_object_size.
GetObjectType(APValue::LValueBase B)4231 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
4232   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
4233     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4234       return VD->getType();
4235   } else if (const Expr *E = B.get<const Expr*>()) {
4236     if (isa<CompoundLiteralExpr>(E))
4237       return E->getType();
4238   }
4239 
4240   return QualType();
4241 }
4242 
TryEvaluateBuiltinObjectSize(const CallExpr * E)4243 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
4244   LValue Base;
4245 
4246   {
4247     // The operand of __builtin_object_size is never evaluated for side-effects.
4248     // If there are any, but we can determine the pointed-to object anyway, then
4249     // ignore the side-effects.
4250     SpeculativeEvaluationRAII SpeculativeEval(Info);
4251     if (!EvaluatePointer(E->getArg(0), Base, Info))
4252       return false;
4253   }
4254 
4255   // If we can prove the base is null, lower to zero now.
4256   if (!Base.getLValueBase()) return Success(0, E);
4257 
4258   QualType T = GetObjectType(Base.getLValueBase());
4259   if (T.isNull() ||
4260       T->isIncompleteType() ||
4261       T->isFunctionType() ||
4262       T->isVariablyModifiedType() ||
4263       T->isDependentType())
4264     return Error(E);
4265 
4266   CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
4267   CharUnits Offset = Base.getLValueOffset();
4268 
4269   if (!Offset.isNegative() && Offset <= Size)
4270     Size -= Offset;
4271   else
4272     Size = CharUnits::Zero();
4273   return Success(Size, E);
4274 }
4275 
VisitCallExpr(const CallExpr * E)4276 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
4277   switch (unsigned BuiltinOp = E->isBuiltinCall()) {
4278   default:
4279     return ExprEvaluatorBaseTy::VisitCallExpr(E);
4280 
4281   case Builtin::BI__builtin_object_size: {
4282     if (TryEvaluateBuiltinObjectSize(E))
4283       return true;
4284 
4285     // If evaluating the argument has side-effects, we can't determine the size
4286     // of the object, and so we lower it to unknown now. CodeGen relies on us to
4287     // handle all cases where the expression has side-effects.
4288     if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
4289       if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
4290         return Success(-1ULL, E);
4291       return Success(0, E);
4292     }
4293 
4294     // Expression had no side effects, but we couldn't statically determine the
4295     // size of the referenced object.
4296     return Error(E);
4297   }
4298 
4299   case Builtin::BI__builtin_classify_type:
4300     return Success(EvaluateBuiltinClassifyType(E), E);
4301 
4302   case Builtin::BI__builtin_constant_p:
4303     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
4304 
4305   case Builtin::BI__builtin_eh_return_data_regno: {
4306     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
4307     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
4308     return Success(Operand, E);
4309   }
4310 
4311   case Builtin::BI__builtin_expect:
4312     return Visit(E->getArg(0));
4313 
4314   case Builtin::BIstrlen:
4315     // A call to strlen is not a constant expression.
4316     if (Info.getLangOpts().CPlusPlus0x)
4317       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
4318         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
4319     else
4320       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
4321     // Fall through.
4322   case Builtin::BI__builtin_strlen:
4323     // As an extension, we support strlen() and __builtin_strlen() as constant
4324     // expressions when the argument is a string literal.
4325     if (const StringLiteral *S
4326                = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
4327       // The string literal may have embedded null characters. Find the first
4328       // one and truncate there.
4329       StringRef Str = S->getString();
4330       StringRef::size_type Pos = Str.find(0);
4331       if (Pos != StringRef::npos)
4332         Str = Str.substr(0, Pos);
4333 
4334       return Success(Str.size(), E);
4335     }
4336 
4337     return Error(E);
4338 
4339   case Builtin::BI__atomic_always_lock_free:
4340   case Builtin::BI__atomic_is_lock_free:
4341   case Builtin::BI__c11_atomic_is_lock_free: {
4342     APSInt SizeVal;
4343     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
4344       return false;
4345 
4346     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
4347     // of two less than the maximum inline atomic width, we know it is
4348     // lock-free.  If the size isn't a power of two, or greater than the
4349     // maximum alignment where we promote atomics, we know it is not lock-free
4350     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
4351     // the answer can only be determined at runtime; for example, 16-byte
4352     // atomics have lock-free implementations on some, but not all,
4353     // x86-64 processors.
4354 
4355     // Check power-of-two.
4356     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
4357     if (Size.isPowerOfTwo()) {
4358       // Check against inlining width.
4359       unsigned InlineWidthBits =
4360           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
4361       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
4362         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
4363             Size == CharUnits::One() ||
4364             E->getArg(1)->isNullPointerConstant(Info.Ctx,
4365                                                 Expr::NPC_NeverValueDependent))
4366           // OK, we will inline appropriately-aligned operations of this size,
4367           // and _Atomic(T) is appropriately-aligned.
4368           return Success(1, E);
4369 
4370         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
4371           castAs<PointerType>()->getPointeeType();
4372         if (!PointeeType->isIncompleteType() &&
4373             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
4374           // OK, we will inline operations on this object.
4375           return Success(1, E);
4376         }
4377       }
4378     }
4379 
4380     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
4381         Success(0, E) : Error(E);
4382   }
4383   }
4384 }
4385 
HasSameBase(const LValue & A,const LValue & B)4386 static bool HasSameBase(const LValue &A, const LValue &B) {
4387   if (!A.getLValueBase())
4388     return !B.getLValueBase();
4389   if (!B.getLValueBase())
4390     return false;
4391 
4392   if (A.getLValueBase().getOpaqueValue() !=
4393       B.getLValueBase().getOpaqueValue()) {
4394     const Decl *ADecl = GetLValueBaseDecl(A);
4395     if (!ADecl)
4396       return false;
4397     const Decl *BDecl = GetLValueBaseDecl(B);
4398     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
4399       return false;
4400   }
4401 
4402   return IsGlobalLValue(A.getLValueBase()) ||
4403          A.getLValueCallIndex() == B.getLValueCallIndex();
4404 }
4405 
4406 /// Perform the given integer operation, which is known to need at most BitWidth
4407 /// bits, and check for overflow in the original type (if that type was not an
4408 /// unsigned type).
4409 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op)4410 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
4411                                    const APSInt &LHS, const APSInt &RHS,
4412                                    unsigned BitWidth, Operation Op) {
4413   if (LHS.isUnsigned())
4414     return Op(LHS, RHS);
4415 
4416   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
4417   APSInt Result = Value.trunc(LHS.getBitWidth());
4418   if (Result.extend(BitWidth) != Value)
4419     HandleOverflow(Info, E, Value, E->getType());
4420   return Result;
4421 }
4422 
4423 namespace {
4424 
4425 /// \brief Data recursive integer evaluator of certain binary operators.
4426 ///
4427 /// We use a data recursive algorithm for binary operators so that we are able
4428 /// to handle extreme cases of chained binary operators without causing stack
4429 /// overflow.
4430 class DataRecursiveIntBinOpEvaluator {
4431   struct EvalResult {
4432     APValue Val;
4433     bool Failed;
4434 
EvalResult__anon39b33ae20f11::DataRecursiveIntBinOpEvaluator::EvalResult4435     EvalResult() : Failed(false) { }
4436 
swap__anon39b33ae20f11::DataRecursiveIntBinOpEvaluator::EvalResult4437     void swap(EvalResult &RHS) {
4438       Val.swap(RHS.Val);
4439       Failed = RHS.Failed;
4440       RHS.Failed = false;
4441     }
4442   };
4443 
4444   struct Job {
4445     const Expr *E;
4446     EvalResult LHSResult; // meaningful only for binary operator expression.
4447     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
4448 
Job__anon39b33ae20f11::DataRecursiveIntBinOpEvaluator::Job4449     Job() : StoredInfo(0) { }
startSpeculativeEval__anon39b33ae20f11::DataRecursiveIntBinOpEvaluator::Job4450     void startSpeculativeEval(EvalInfo &Info) {
4451       OldEvalStatus = Info.EvalStatus;
4452       Info.EvalStatus.Diag = 0;
4453       StoredInfo = &Info;
4454     }
~Job__anon39b33ae20f11::DataRecursiveIntBinOpEvaluator::Job4455     ~Job() {
4456       if (StoredInfo) {
4457         StoredInfo->EvalStatus = OldEvalStatus;
4458       }
4459     }
4460   private:
4461     EvalInfo *StoredInfo; // non-null if status changed.
4462     Expr::EvalStatus OldEvalStatus;
4463   };
4464 
4465   SmallVector<Job, 16> Queue;
4466 
4467   IntExprEvaluator &IntEval;
4468   EvalInfo &Info;
4469   APValue &FinalResult;
4470 
4471 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)4472   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
4473     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
4474 
4475   /// \brief True if \param E is a binary operator that we are going to handle
4476   /// data recursively.
4477   /// We handle binary operators that are comma, logical, or that have operands
4478   /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)4479   static bool shouldEnqueue(const BinaryOperator *E) {
4480     return E->getOpcode() == BO_Comma ||
4481            E->isLogicalOp() ||
4482            (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4483             E->getRHS()->getType()->isIntegralOrEnumerationType());
4484   }
4485 
Traverse(const BinaryOperator * E)4486   bool Traverse(const BinaryOperator *E) {
4487     enqueue(E);
4488     EvalResult PrevResult;
4489     while (!Queue.empty())
4490       process(PrevResult);
4491 
4492     if (PrevResult.Failed) return false;
4493 
4494     FinalResult.swap(PrevResult.Val);
4495     return true;
4496   }
4497 
4498 private:
Success(uint64_t Value,const Expr * E,APValue & Result)4499   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
4500     return IntEval.Success(Value, E, Result);
4501   }
Success(const APSInt & Value,const Expr * E,APValue & Result)4502   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
4503     return IntEval.Success(Value, E, Result);
4504   }
Error(const Expr * E)4505   bool Error(const Expr *E) {
4506     return IntEval.Error(E);
4507   }
Error(const Expr * E,diag::kind D)4508   bool Error(const Expr *E, diag::kind D) {
4509     return IntEval.Error(E, D);
4510   }
4511 
CCEDiag(const Expr * E,diag::kind D)4512   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4513     return Info.CCEDiag(E, D);
4514   }
4515 
4516   // \brief Returns true if visiting the RHS is necessary, false otherwise.
4517   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4518                          bool &SuppressRHSDiags);
4519 
4520   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4521                   const BinaryOperator *E, APValue &Result);
4522 
EvaluateExpr(const Expr * E,EvalResult & Result)4523   void EvaluateExpr(const Expr *E, EvalResult &Result) {
4524     Result.Failed = !Evaluate(Result.Val, Info, E);
4525     if (Result.Failed)
4526       Result.Val = APValue();
4527   }
4528 
4529   void process(EvalResult &Result);
4530 
enqueue(const Expr * E)4531   void enqueue(const Expr *E) {
4532     E = E->IgnoreParens();
4533     Queue.resize(Queue.size()+1);
4534     Queue.back().E = E;
4535     Queue.back().Kind = Job::AnyExprKind;
4536   }
4537 };
4538 
4539 }
4540 
4541 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)4542        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4543                          bool &SuppressRHSDiags) {
4544   if (E->getOpcode() == BO_Comma) {
4545     // Ignore LHS but note if we could not evaluate it.
4546     if (LHSResult.Failed)
4547       Info.EvalStatus.HasSideEffects = true;
4548     return true;
4549   }
4550 
4551   if (E->isLogicalOp()) {
4552     bool lhsResult;
4553     if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
4554       // We were able to evaluate the LHS, see if we can get away with not
4555       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
4556       if (lhsResult == (E->getOpcode() == BO_LOr)) {
4557         Success(lhsResult, E, LHSResult.Val);
4558         return false; // Ignore RHS
4559       }
4560     } else {
4561       // Since we weren't able to evaluate the left hand side, it
4562       // must have had side effects.
4563       Info.EvalStatus.HasSideEffects = true;
4564 
4565       // We can't evaluate the LHS; however, sometimes the result
4566       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4567       // Don't ignore RHS and suppress diagnostics from this arm.
4568       SuppressRHSDiags = true;
4569     }
4570 
4571     return true;
4572   }
4573 
4574   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4575          E->getRHS()->getType()->isIntegralOrEnumerationType());
4576 
4577   if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
4578     return false; // Ignore RHS;
4579 
4580   return true;
4581 }
4582 
4583 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)4584        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4585                   const BinaryOperator *E, APValue &Result) {
4586   if (E->getOpcode() == BO_Comma) {
4587     if (RHSResult.Failed)
4588       return false;
4589     Result = RHSResult.Val;
4590     return true;
4591   }
4592 
4593   if (E->isLogicalOp()) {
4594     bool lhsResult, rhsResult;
4595     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
4596     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
4597 
4598     if (LHSIsOK) {
4599       if (RHSIsOK) {
4600         if (E->getOpcode() == BO_LOr)
4601           return Success(lhsResult || rhsResult, E, Result);
4602         else
4603           return Success(lhsResult && rhsResult, E, Result);
4604       }
4605     } else {
4606       if (RHSIsOK) {
4607         // We can't evaluate the LHS; however, sometimes the result
4608         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4609         if (rhsResult == (E->getOpcode() == BO_LOr))
4610           return Success(rhsResult, E, Result);
4611       }
4612     }
4613 
4614     return false;
4615   }
4616 
4617   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4618          E->getRHS()->getType()->isIntegralOrEnumerationType());
4619 
4620   if (LHSResult.Failed || RHSResult.Failed)
4621     return false;
4622 
4623   const APValue &LHSVal = LHSResult.Val;
4624   const APValue &RHSVal = RHSResult.Val;
4625 
4626   // Handle cases like (unsigned long)&a + 4.
4627   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
4628     Result = LHSVal;
4629     CharUnits AdditionalOffset = CharUnits::fromQuantity(
4630                                                          RHSVal.getInt().getZExtValue());
4631     if (E->getOpcode() == BO_Add)
4632       Result.getLValueOffset() += AdditionalOffset;
4633     else
4634       Result.getLValueOffset() -= AdditionalOffset;
4635     return true;
4636   }
4637 
4638   // Handle cases like 4 + (unsigned long)&a
4639   if (E->getOpcode() == BO_Add &&
4640       RHSVal.isLValue() && LHSVal.isInt()) {
4641     Result = RHSVal;
4642     Result.getLValueOffset() += CharUnits::fromQuantity(
4643                                                         LHSVal.getInt().getZExtValue());
4644     return true;
4645   }
4646 
4647   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
4648     // Handle (intptr_t)&&A - (intptr_t)&&B.
4649     if (!LHSVal.getLValueOffset().isZero() ||
4650         !RHSVal.getLValueOffset().isZero())
4651       return false;
4652     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
4653     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
4654     if (!LHSExpr || !RHSExpr)
4655       return false;
4656     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4657     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4658     if (!LHSAddrExpr || !RHSAddrExpr)
4659       return false;
4660     // Make sure both labels come from the same function.
4661     if (LHSAddrExpr->getLabel()->getDeclContext() !=
4662         RHSAddrExpr->getLabel()->getDeclContext())
4663       return false;
4664     Result = APValue(LHSAddrExpr, RHSAddrExpr);
4665     return true;
4666   }
4667 
4668   // All the following cases expect both operands to be an integer
4669   if (!LHSVal.isInt() || !RHSVal.isInt())
4670     return Error(E);
4671 
4672   const APSInt &LHS = LHSVal.getInt();
4673   APSInt RHS = RHSVal.getInt();
4674 
4675   switch (E->getOpcode()) {
4676     default:
4677       return Error(E);
4678     case BO_Mul:
4679       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4680                                           LHS.getBitWidth() * 2,
4681                                           std::multiplies<APSInt>()), E,
4682                      Result);
4683     case BO_Add:
4684       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4685                                           LHS.getBitWidth() + 1,
4686                                           std::plus<APSInt>()), E, Result);
4687     case BO_Sub:
4688       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4689                                           LHS.getBitWidth() + 1,
4690                                           std::minus<APSInt>()), E, Result);
4691     case BO_And: return Success(LHS & RHS, E, Result);
4692     case BO_Xor: return Success(LHS ^ RHS, E, Result);
4693     case BO_Or:  return Success(LHS | RHS, E, Result);
4694     case BO_Div:
4695     case BO_Rem:
4696       if (RHS == 0)
4697         return Error(E, diag::note_expr_divide_by_zero);
4698       // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
4699       // not actually undefined behavior in C++11 due to a language defect.
4700       if (RHS.isNegative() && RHS.isAllOnesValue() &&
4701           LHS.isSigned() && LHS.isMinSignedValue())
4702         HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
4703       return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
4704                      Result);
4705     case BO_Shl: {
4706       // During constant-folding, a negative shift is an opposite shift. Such
4707       // a shift is not a constant expression.
4708       if (RHS.isSigned() && RHS.isNegative()) {
4709         CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4710         RHS = -RHS;
4711         goto shift_right;
4712       }
4713 
4714     shift_left:
4715       // C++11 [expr.shift]p1: Shift width must be less than the bit width of
4716       // the shifted type.
4717       unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4718       if (SA != RHS) {
4719         CCEDiag(E, diag::note_constexpr_large_shift)
4720         << RHS << E->getType() << LHS.getBitWidth();
4721       } else if (LHS.isSigned()) {
4722         // C++11 [expr.shift]p2: A signed left shift must have a non-negative
4723         // operand, and must not overflow the corresponding unsigned type.
4724         if (LHS.isNegative())
4725           CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
4726         else if (LHS.countLeadingZeros() < SA)
4727           CCEDiag(E, diag::note_constexpr_lshift_discards);
4728       }
4729 
4730       return Success(LHS << SA, E, Result);
4731     }
4732     case BO_Shr: {
4733       // During constant-folding, a negative shift is an opposite shift. Such a
4734       // shift is not a constant expression.
4735       if (RHS.isSigned() && RHS.isNegative()) {
4736         CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4737         RHS = -RHS;
4738         goto shift_left;
4739       }
4740 
4741     shift_right:
4742       // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
4743       // shifted type.
4744       unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4745       if (SA != RHS)
4746         CCEDiag(E, diag::note_constexpr_large_shift)
4747         << RHS << E->getType() << LHS.getBitWidth();
4748 
4749       return Success(LHS >> SA, E, Result);
4750     }
4751 
4752     case BO_LT: return Success(LHS < RHS, E, Result);
4753     case BO_GT: return Success(LHS > RHS, E, Result);
4754     case BO_LE: return Success(LHS <= RHS, E, Result);
4755     case BO_GE: return Success(LHS >= RHS, E, Result);
4756     case BO_EQ: return Success(LHS == RHS, E, Result);
4757     case BO_NE: return Success(LHS != RHS, E, Result);
4758   }
4759 }
4760 
process(EvalResult & Result)4761 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
4762   Job &job = Queue.back();
4763 
4764   switch (job.Kind) {
4765     case Job::AnyExprKind: {
4766       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
4767         if (shouldEnqueue(Bop)) {
4768           job.Kind = Job::BinOpKind;
4769           enqueue(Bop->getLHS());
4770           return;
4771         }
4772       }
4773 
4774       EvaluateExpr(job.E, Result);
4775       Queue.pop_back();
4776       return;
4777     }
4778 
4779     case Job::BinOpKind: {
4780       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4781       bool SuppressRHSDiags = false;
4782       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
4783         Queue.pop_back();
4784         return;
4785       }
4786       if (SuppressRHSDiags)
4787         job.startSpeculativeEval(Info);
4788       job.LHSResult.swap(Result);
4789       job.Kind = Job::BinOpVisitedLHSKind;
4790       enqueue(Bop->getRHS());
4791       return;
4792     }
4793 
4794     case Job::BinOpVisitedLHSKind: {
4795       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4796       EvalResult RHS;
4797       RHS.swap(Result);
4798       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
4799       Queue.pop_back();
4800       return;
4801     }
4802   }
4803 
4804   llvm_unreachable("Invalid Job::Kind!");
4805 }
4806 
VisitBinaryOperator(const BinaryOperator * E)4807 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4808   if (E->isAssignmentOp())
4809     return Error(E);
4810 
4811   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
4812     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
4813 
4814   QualType LHSTy = E->getLHS()->getType();
4815   QualType RHSTy = E->getRHS()->getType();
4816 
4817   if (LHSTy->isAnyComplexType()) {
4818     assert(RHSTy->isAnyComplexType() && "Invalid comparison");
4819     ComplexValue LHS, RHS;
4820 
4821     bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
4822     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4823       return false;
4824 
4825     if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
4826       return false;
4827 
4828     if (LHS.isComplexFloat()) {
4829       APFloat::cmpResult CR_r =
4830         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
4831       APFloat::cmpResult CR_i =
4832         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
4833 
4834       if (E->getOpcode() == BO_EQ)
4835         return Success((CR_r == APFloat::cmpEqual &&
4836                         CR_i == APFloat::cmpEqual), E);
4837       else {
4838         assert(E->getOpcode() == BO_NE &&
4839                "Invalid complex comparison.");
4840         return Success(((CR_r == APFloat::cmpGreaterThan ||
4841                          CR_r == APFloat::cmpLessThan ||
4842                          CR_r == APFloat::cmpUnordered) ||
4843                         (CR_i == APFloat::cmpGreaterThan ||
4844                          CR_i == APFloat::cmpLessThan ||
4845                          CR_i == APFloat::cmpUnordered)), E);
4846       }
4847     } else {
4848       if (E->getOpcode() == BO_EQ)
4849         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
4850                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
4851       else {
4852         assert(E->getOpcode() == BO_NE &&
4853                "Invalid compex comparison.");
4854         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
4855                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
4856       }
4857     }
4858   }
4859 
4860   if (LHSTy->isRealFloatingType() &&
4861       RHSTy->isRealFloatingType()) {
4862     APFloat RHS(0.0), LHS(0.0);
4863 
4864     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
4865     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4866       return false;
4867 
4868     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
4869       return false;
4870 
4871     APFloat::cmpResult CR = LHS.compare(RHS);
4872 
4873     switch (E->getOpcode()) {
4874     default:
4875       llvm_unreachable("Invalid binary operator!");
4876     case BO_LT:
4877       return Success(CR == APFloat::cmpLessThan, E);
4878     case BO_GT:
4879       return Success(CR == APFloat::cmpGreaterThan, E);
4880     case BO_LE:
4881       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
4882     case BO_GE:
4883       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
4884                      E);
4885     case BO_EQ:
4886       return Success(CR == APFloat::cmpEqual, E);
4887     case BO_NE:
4888       return Success(CR == APFloat::cmpGreaterThan
4889                      || CR == APFloat::cmpLessThan
4890                      || CR == APFloat::cmpUnordered, E);
4891     }
4892   }
4893 
4894   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4895     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
4896       LValue LHSValue, RHSValue;
4897 
4898       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
4899       if (!LHSOK && Info.keepEvaluatingAfterFailure())
4900         return false;
4901 
4902       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
4903         return false;
4904 
4905       // Reject differing bases from the normal codepath; we special-case
4906       // comparisons to null.
4907       if (!HasSameBase(LHSValue, RHSValue)) {
4908         if (E->getOpcode() == BO_Sub) {
4909           // Handle &&A - &&B.
4910           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
4911             return false;
4912           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4913           const Expr *RHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4914           if (!LHSExpr || !RHSExpr)
4915             return false;
4916           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4917           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4918           if (!LHSAddrExpr || !RHSAddrExpr)
4919             return false;
4920           // Make sure both labels come from the same function.
4921           if (LHSAddrExpr->getLabel()->getDeclContext() !=
4922               RHSAddrExpr->getLabel()->getDeclContext())
4923             return false;
4924           Result = APValue(LHSAddrExpr, RHSAddrExpr);
4925           return true;
4926         }
4927         // Inequalities and subtractions between unrelated pointers have
4928         // unspecified or undefined behavior.
4929         if (!E->isEqualityOp())
4930           return Error(E);
4931         // A constant address may compare equal to the address of a symbol.
4932         // The one exception is that address of an object cannot compare equal
4933         // to a null pointer constant.
4934         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
4935             (!RHSValue.Base && !RHSValue.Offset.isZero()))
4936           return Error(E);
4937         // It's implementation-defined whether distinct literals will have
4938         // distinct addresses. In clang, the result of such a comparison is
4939         // unspecified, so it is not a constant expression. However, we do know
4940         // that the address of a literal will be non-null.
4941         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
4942             LHSValue.Base && RHSValue.Base)
4943           return Error(E);
4944         // We can't tell whether weak symbols will end up pointing to the same
4945         // object.
4946         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
4947           return Error(E);
4948         // Pointers with different bases cannot represent the same object.
4949         // (Note that clang defaults to -fmerge-all-constants, which can
4950         // lead to inconsistent results for comparisons involving the address
4951         // of a constant; this generally doesn't matter in practice.)
4952         return Success(E->getOpcode() == BO_NE, E);
4953       }
4954 
4955       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
4956       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
4957 
4958       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
4959       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
4960 
4961       if (E->getOpcode() == BO_Sub) {
4962         // C++11 [expr.add]p6:
4963         //   Unless both pointers point to elements of the same array object, or
4964         //   one past the last element of the array object, the behavior is
4965         //   undefined.
4966         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
4967             !AreElementsOfSameArray(getType(LHSValue.Base),
4968                                     LHSDesignator, RHSDesignator))
4969           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
4970 
4971         QualType Type = E->getLHS()->getType();
4972         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
4973 
4974         CharUnits ElementSize;
4975         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
4976           return false;
4977 
4978         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
4979         // and produce incorrect results when it overflows. Such behavior
4980         // appears to be non-conforming, but is common, so perhaps we should
4981         // assume the standard intended for such cases to be undefined behavior
4982         // and check for them.
4983 
4984         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
4985         // overflow in the final conversion to ptrdiff_t.
4986         APSInt LHS(
4987           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
4988         APSInt RHS(
4989           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
4990         APSInt ElemSize(
4991           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
4992         APSInt TrueResult = (LHS - RHS) / ElemSize;
4993         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
4994 
4995         if (Result.extend(65) != TrueResult)
4996           HandleOverflow(Info, E, TrueResult, E->getType());
4997         return Success(Result, E);
4998       }
4999 
5000       // C++11 [expr.rel]p3:
5001       //   Pointers to void (after pointer conversions) can be compared, with a
5002       //   result defined as follows: If both pointers represent the same
5003       //   address or are both the null pointer value, the result is true if the
5004       //   operator is <= or >= and false otherwise; otherwise the result is
5005       //   unspecified.
5006       // We interpret this as applying to pointers to *cv* void.
5007       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
5008           E->isRelationalOp())
5009         CCEDiag(E, diag::note_constexpr_void_comparison);
5010 
5011       // C++11 [expr.rel]p2:
5012       // - If two pointers point to non-static data members of the same object,
5013       //   or to subobjects or array elements fo such members, recursively, the
5014       //   pointer to the later declared member compares greater provided the
5015       //   two members have the same access control and provided their class is
5016       //   not a union.
5017       //   [...]
5018       // - Otherwise pointer comparisons are unspecified.
5019       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
5020           E->isRelationalOp()) {
5021         bool WasArrayIndex;
5022         unsigned Mismatch =
5023           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
5024                                  RHSDesignator, WasArrayIndex);
5025         // At the point where the designators diverge, the comparison has a
5026         // specified value if:
5027         //  - we are comparing array indices
5028         //  - we are comparing fields of a union, or fields with the same access
5029         // Otherwise, the result is unspecified and thus the comparison is not a
5030         // constant expression.
5031         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
5032             Mismatch < RHSDesignator.Entries.size()) {
5033           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
5034           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
5035           if (!LF && !RF)
5036             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
5037           else if (!LF)
5038             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5039               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
5040               << RF->getParent() << RF;
5041           else if (!RF)
5042             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5043               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
5044               << LF->getParent() << LF;
5045           else if (!LF->getParent()->isUnion() &&
5046                    LF->getAccess() != RF->getAccess())
5047             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
5048               << LF << LF->getAccess() << RF << RF->getAccess()
5049               << LF->getParent();
5050         }
5051       }
5052 
5053       // The comparison here must be unsigned, and performed with the same
5054       // width as the pointer.
5055       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
5056       uint64_t CompareLHS = LHSOffset.getQuantity();
5057       uint64_t CompareRHS = RHSOffset.getQuantity();
5058       assert(PtrSize <= 64 && "Unexpected pointer width");
5059       uint64_t Mask = ~0ULL >> (64 - PtrSize);
5060       CompareLHS &= Mask;
5061       CompareRHS &= Mask;
5062 
5063       // If there is a base and this is a relational operator, we can only
5064       // compare pointers within the object in question; otherwise, the result
5065       // depends on where the object is located in memory.
5066       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
5067         QualType BaseTy = getType(LHSValue.Base);
5068         if (BaseTy->isIncompleteType())
5069           return Error(E);
5070         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
5071         uint64_t OffsetLimit = Size.getQuantity();
5072         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
5073           return Error(E);
5074       }
5075 
5076       switch (E->getOpcode()) {
5077       default: llvm_unreachable("missing comparison operator");
5078       case BO_LT: return Success(CompareLHS < CompareRHS, E);
5079       case BO_GT: return Success(CompareLHS > CompareRHS, E);
5080       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
5081       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
5082       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
5083       case BO_NE: return Success(CompareLHS != CompareRHS, E);
5084       }
5085     }
5086   }
5087 
5088   if (LHSTy->isMemberPointerType()) {
5089     assert(E->isEqualityOp() && "unexpected member pointer operation");
5090     assert(RHSTy->isMemberPointerType() && "invalid comparison");
5091 
5092     MemberPtr LHSValue, RHSValue;
5093 
5094     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
5095     if (!LHSOK && Info.keepEvaluatingAfterFailure())
5096       return false;
5097 
5098     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
5099       return false;
5100 
5101     // C++11 [expr.eq]p2:
5102     //   If both operands are null, they compare equal. Otherwise if only one is
5103     //   null, they compare unequal.
5104     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
5105       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
5106       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5107     }
5108 
5109     //   Otherwise if either is a pointer to a virtual member function, the
5110     //   result is unspecified.
5111     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
5112       if (MD->isVirtual())
5113         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5114     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
5115       if (MD->isVirtual())
5116         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5117 
5118     //   Otherwise they compare equal if and only if they would refer to the
5119     //   same member of the same most derived object or the same subobject if
5120     //   they were dereferenced with a hypothetical object of the associated
5121     //   class type.
5122     bool Equal = LHSValue == RHSValue;
5123     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5124   }
5125 
5126   if (LHSTy->isNullPtrType()) {
5127     assert(E->isComparisonOp() && "unexpected nullptr operation");
5128     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
5129     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
5130     // are compared, the result is true of the operator is <=, >= or ==, and
5131     // false otherwise.
5132     BinaryOperator::Opcode Opcode = E->getOpcode();
5133     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
5134   }
5135 
5136   assert((!LHSTy->isIntegralOrEnumerationType() ||
5137           !RHSTy->isIntegralOrEnumerationType()) &&
5138          "DataRecursiveIntBinOpEvaluator should have handled integral types");
5139   // We can't continue from here for non-integral types.
5140   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5141 }
5142 
GetAlignOfType(QualType T)5143 CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
5144   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
5145   //   result shall be the alignment of the referenced type."
5146   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5147     T = Ref->getPointeeType();
5148 
5149   // __alignof is defined to return the preferred alignment.
5150   return Info.Ctx.toCharUnitsFromBits(
5151     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5152 }
5153 
GetAlignOfExpr(const Expr * E)5154 CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
5155   E = E->IgnoreParens();
5156 
5157   // alignof decl is always accepted, even if it doesn't make sense: we default
5158   // to 1 in those cases.
5159   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5160     return Info.Ctx.getDeclAlign(DRE->getDecl(),
5161                                  /*RefAsPointee*/true);
5162 
5163   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5164     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5165                                  /*RefAsPointee*/true);
5166 
5167   return GetAlignOfType(E->getType());
5168 }
5169 
5170 
5171 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
5172 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)5173 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
5174                                     const UnaryExprOrTypeTraitExpr *E) {
5175   switch(E->getKind()) {
5176   case UETT_AlignOf: {
5177     if (E->isArgumentType())
5178       return Success(GetAlignOfType(E->getArgumentType()), E);
5179     else
5180       return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
5181   }
5182 
5183   case UETT_VecStep: {
5184     QualType Ty = E->getTypeOfArgument();
5185 
5186     if (Ty->isVectorType()) {
5187       unsigned n = Ty->castAs<VectorType>()->getNumElements();
5188 
5189       // The vec_step built-in functions that take a 3-component
5190       // vector return 4. (OpenCL 1.1 spec 6.11.12)
5191       if (n == 3)
5192         n = 4;
5193 
5194       return Success(n, E);
5195     } else
5196       return Success(1, E);
5197   }
5198 
5199   case UETT_SizeOf: {
5200     QualType SrcTy = E->getTypeOfArgument();
5201     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
5202     //   the result is the size of the referenced type."
5203     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
5204       SrcTy = Ref->getPointeeType();
5205 
5206     CharUnits Sizeof;
5207     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
5208       return false;
5209     return Success(Sizeof, E);
5210   }
5211   }
5212 
5213   llvm_unreachable("unknown expr/type trait");
5214 }
5215 
VisitOffsetOfExpr(const OffsetOfExpr * OOE)5216 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
5217   CharUnits Result;
5218   unsigned n = OOE->getNumComponents();
5219   if (n == 0)
5220     return Error(OOE);
5221   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
5222   for (unsigned i = 0; i != n; ++i) {
5223     OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
5224     switch (ON.getKind()) {
5225     case OffsetOfExpr::OffsetOfNode::Array: {
5226       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
5227       APSInt IdxResult;
5228       if (!EvaluateInteger(Idx, IdxResult, Info))
5229         return false;
5230       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
5231       if (!AT)
5232         return Error(OOE);
5233       CurrentType = AT->getElementType();
5234       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
5235       Result += IdxResult.getSExtValue() * ElementSize;
5236         break;
5237     }
5238 
5239     case OffsetOfExpr::OffsetOfNode::Field: {
5240       FieldDecl *MemberDecl = ON.getField();
5241       const RecordType *RT = CurrentType->getAs<RecordType>();
5242       if (!RT)
5243         return Error(OOE);
5244       RecordDecl *RD = RT->getDecl();
5245       if (RD->isInvalidDecl()) return false;
5246       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5247       unsigned i = MemberDecl->getFieldIndex();
5248       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
5249       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
5250       CurrentType = MemberDecl->getType().getNonReferenceType();
5251       break;
5252     }
5253 
5254     case OffsetOfExpr::OffsetOfNode::Identifier:
5255       llvm_unreachable("dependent __builtin_offsetof");
5256 
5257     case OffsetOfExpr::OffsetOfNode::Base: {
5258       CXXBaseSpecifier *BaseSpec = ON.getBase();
5259       if (BaseSpec->isVirtual())
5260         return Error(OOE);
5261 
5262       // Find the layout of the class whose base we are looking into.
5263       const RecordType *RT = CurrentType->getAs<RecordType>();
5264       if (!RT)
5265         return Error(OOE);
5266       RecordDecl *RD = RT->getDecl();
5267       if (RD->isInvalidDecl()) return false;
5268       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5269 
5270       // Find the base class itself.
5271       CurrentType = BaseSpec->getType();
5272       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
5273       if (!BaseRT)
5274         return Error(OOE);
5275 
5276       // Add the offset to the base.
5277       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
5278       break;
5279     }
5280     }
5281   }
5282   return Success(Result, OOE);
5283 }
5284 
VisitUnaryOperator(const UnaryOperator * E)5285 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5286   switch (E->getOpcode()) {
5287   default:
5288     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
5289     // See C99 6.6p3.
5290     return Error(E);
5291   case UO_Extension:
5292     // FIXME: Should extension allow i-c-e extension expressions in its scope?
5293     // If so, we could clear the diagnostic ID.
5294     return Visit(E->getSubExpr());
5295   case UO_Plus:
5296     // The result is just the value.
5297     return Visit(E->getSubExpr());
5298   case UO_Minus: {
5299     if (!Visit(E->getSubExpr()))
5300       return false;
5301     if (!Result.isInt()) return Error(E);
5302     const APSInt &Value = Result.getInt();
5303     if (Value.isSigned() && Value.isMinSignedValue())
5304       HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
5305                      E->getType());
5306     return Success(-Value, E);
5307   }
5308   case UO_Not: {
5309     if (!Visit(E->getSubExpr()))
5310       return false;
5311     if (!Result.isInt()) return Error(E);
5312     return Success(~Result.getInt(), E);
5313   }
5314   case UO_LNot: {
5315     bool bres;
5316     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
5317       return false;
5318     return Success(!bres, E);
5319   }
5320   }
5321 }
5322 
5323 /// HandleCast - This is used to evaluate implicit or explicit casts where the
5324 /// result type is integer.
VisitCastExpr(const CastExpr * E)5325 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
5326   const Expr *SubExpr = E->getSubExpr();
5327   QualType DestType = E->getType();
5328   QualType SrcType = SubExpr->getType();
5329 
5330   switch (E->getCastKind()) {
5331   case CK_BaseToDerived:
5332   case CK_DerivedToBase:
5333   case CK_UncheckedDerivedToBase:
5334   case CK_Dynamic:
5335   case CK_ToUnion:
5336   case CK_ArrayToPointerDecay:
5337   case CK_FunctionToPointerDecay:
5338   case CK_NullToPointer:
5339   case CK_NullToMemberPointer:
5340   case CK_BaseToDerivedMemberPointer:
5341   case CK_DerivedToBaseMemberPointer:
5342   case CK_ReinterpretMemberPointer:
5343   case CK_ConstructorConversion:
5344   case CK_IntegralToPointer:
5345   case CK_ToVoid:
5346   case CK_VectorSplat:
5347   case CK_IntegralToFloating:
5348   case CK_FloatingCast:
5349   case CK_CPointerToObjCPointerCast:
5350   case CK_BlockPointerToObjCPointerCast:
5351   case CK_AnyPointerToBlockPointerCast:
5352   case CK_ObjCObjectLValueCast:
5353   case CK_FloatingRealToComplex:
5354   case CK_FloatingComplexToReal:
5355   case CK_FloatingComplexCast:
5356   case CK_FloatingComplexToIntegralComplex:
5357   case CK_IntegralRealToComplex:
5358   case CK_IntegralComplexCast:
5359   case CK_IntegralComplexToFloatingComplex:
5360   case CK_BuiltinFnToFnPtr:
5361     llvm_unreachable("invalid cast kind for integral value");
5362 
5363   case CK_BitCast:
5364   case CK_Dependent:
5365   case CK_LValueBitCast:
5366   case CK_ARCProduceObject:
5367   case CK_ARCConsumeObject:
5368   case CK_ARCReclaimReturnedObject:
5369   case CK_ARCExtendBlockObject:
5370   case CK_CopyAndAutoreleaseBlockObject:
5371     return Error(E);
5372 
5373   case CK_UserDefinedConversion:
5374   case CK_LValueToRValue:
5375   case CK_AtomicToNonAtomic:
5376   case CK_NonAtomicToAtomic:
5377   case CK_NoOp:
5378     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5379 
5380   case CK_MemberPointerToBoolean:
5381   case CK_PointerToBoolean:
5382   case CK_IntegralToBoolean:
5383   case CK_FloatingToBoolean:
5384   case CK_FloatingComplexToBoolean:
5385   case CK_IntegralComplexToBoolean: {
5386     bool BoolResult;
5387     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
5388       return false;
5389     return Success(BoolResult, E);
5390   }
5391 
5392   case CK_IntegralCast: {
5393     if (!Visit(SubExpr))
5394       return false;
5395 
5396     if (!Result.isInt()) {
5397       // Allow casts of address-of-label differences if they are no-ops
5398       // or narrowing.  (The narrowing case isn't actually guaranteed to
5399       // be constant-evaluatable except in some narrow cases which are hard
5400       // to detect here.  We let it through on the assumption the user knows
5401       // what they are doing.)
5402       if (Result.isAddrLabelDiff())
5403         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
5404       // Only allow casts of lvalues if they are lossless.
5405       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
5406     }
5407 
5408     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
5409                                       Result.getInt()), E);
5410   }
5411 
5412   case CK_PointerToIntegral: {
5413     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5414 
5415     LValue LV;
5416     if (!EvaluatePointer(SubExpr, LV, Info))
5417       return false;
5418 
5419     if (LV.getLValueBase()) {
5420       // Only allow based lvalue casts if they are lossless.
5421       // FIXME: Allow a larger integer size than the pointer size, and allow
5422       // narrowing back down to pointer width in subsequent integral casts.
5423       // FIXME: Check integer type's active bits, not its type size.
5424       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
5425         return Error(E);
5426 
5427       LV.Designator.setInvalid();
5428       LV.moveInto(Result);
5429       return true;
5430     }
5431 
5432     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
5433                                          SrcType);
5434     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
5435   }
5436 
5437   case CK_IntegralComplexToReal: {
5438     ComplexValue C;
5439     if (!EvaluateComplex(SubExpr, C, Info))
5440       return false;
5441     return Success(C.getComplexIntReal(), E);
5442   }
5443 
5444   case CK_FloatingToIntegral: {
5445     APFloat F(0.0);
5446     if (!EvaluateFloat(SubExpr, F, Info))
5447       return false;
5448 
5449     APSInt Value;
5450     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
5451       return false;
5452     return Success(Value, E);
5453   }
5454   }
5455 
5456   llvm_unreachable("unknown cast resulting in integral value");
5457 }
5458 
VisitUnaryReal(const UnaryOperator * E)5459 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5460   if (E->getSubExpr()->getType()->isAnyComplexType()) {
5461     ComplexValue LV;
5462     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5463       return false;
5464     if (!LV.isComplexInt())
5465       return Error(E);
5466     return Success(LV.getComplexIntReal(), E);
5467   }
5468 
5469   return Visit(E->getSubExpr());
5470 }
5471 
VisitUnaryImag(const UnaryOperator * E)5472 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5473   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
5474     ComplexValue LV;
5475     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5476       return false;
5477     if (!LV.isComplexInt())
5478       return Error(E);
5479     return Success(LV.getComplexIntImag(), E);
5480   }
5481 
5482   VisitIgnoredValue(E->getSubExpr());
5483   return Success(0, E);
5484 }
5485 
VisitSizeOfPackExpr(const SizeOfPackExpr * E)5486 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
5487   return Success(E->getPackLength(), E);
5488 }
5489 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)5490 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
5491   return Success(E->getValue(), E);
5492 }
5493 
5494 //===----------------------------------------------------------------------===//
5495 // Float Evaluation
5496 //===----------------------------------------------------------------------===//
5497 
5498 namespace {
5499 class FloatExprEvaluator
5500   : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
5501   APFloat &Result;
5502 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)5503   FloatExprEvaluator(EvalInfo &info, APFloat &result)
5504     : ExprEvaluatorBaseTy(info), Result(result) {}
5505 
Success(const APValue & V,const Expr * e)5506   bool Success(const APValue &V, const Expr *e) {
5507     Result = V.getFloat();
5508     return true;
5509   }
5510 
ZeroInitialization(const Expr * E)5511   bool ZeroInitialization(const Expr *E) {
5512     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
5513     return true;
5514   }
5515 
5516   bool VisitCallExpr(const CallExpr *E);
5517 
5518   bool VisitUnaryOperator(const UnaryOperator *E);
5519   bool VisitBinaryOperator(const BinaryOperator *E);
5520   bool VisitFloatingLiteral(const FloatingLiteral *E);
5521   bool VisitCastExpr(const CastExpr *E);
5522 
5523   bool VisitUnaryReal(const UnaryOperator *E);
5524   bool VisitUnaryImag(const UnaryOperator *E);
5525 
5526   // FIXME: Missing: array subscript of vector, member of vector
5527 };
5528 } // end anonymous namespace
5529 
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)5530 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
5531   assert(E->isRValue() && E->getType()->isRealFloatingType());
5532   return FloatExprEvaluator(Info, Result).Visit(E);
5533 }
5534 
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)5535 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
5536                                   QualType ResultTy,
5537                                   const Expr *Arg,
5538                                   bool SNaN,
5539                                   llvm::APFloat &Result) {
5540   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
5541   if (!S) return false;
5542 
5543   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
5544 
5545   llvm::APInt fill;
5546 
5547   // Treat empty strings as if they were zero.
5548   if (S->getString().empty())
5549     fill = llvm::APInt(32, 0);
5550   else if (S->getString().getAsInteger(0, fill))
5551     return false;
5552 
5553   if (SNaN)
5554     Result = llvm::APFloat::getSNaN(Sem, false, &fill);
5555   else
5556     Result = llvm::APFloat::getQNaN(Sem, false, &fill);
5557   return true;
5558 }
5559 
VisitCallExpr(const CallExpr * E)5560 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
5561   switch (E->isBuiltinCall()) {
5562   default:
5563     return ExprEvaluatorBaseTy::VisitCallExpr(E);
5564 
5565   case Builtin::BI__builtin_huge_val:
5566   case Builtin::BI__builtin_huge_valf:
5567   case Builtin::BI__builtin_huge_vall:
5568   case Builtin::BI__builtin_inf:
5569   case Builtin::BI__builtin_inff:
5570   case Builtin::BI__builtin_infl: {
5571     const llvm::fltSemantics &Sem =
5572       Info.Ctx.getFloatTypeSemantics(E->getType());
5573     Result = llvm::APFloat::getInf(Sem);
5574     return true;
5575   }
5576 
5577   case Builtin::BI__builtin_nans:
5578   case Builtin::BI__builtin_nansf:
5579   case Builtin::BI__builtin_nansl:
5580     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5581                                true, Result))
5582       return Error(E);
5583     return true;
5584 
5585   case Builtin::BI__builtin_nan:
5586   case Builtin::BI__builtin_nanf:
5587   case Builtin::BI__builtin_nanl:
5588     // If this is __builtin_nan() turn this into a nan, otherwise we
5589     // can't constant fold it.
5590     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5591                                false, Result))
5592       return Error(E);
5593     return true;
5594 
5595   case Builtin::BI__builtin_fabs:
5596   case Builtin::BI__builtin_fabsf:
5597   case Builtin::BI__builtin_fabsl:
5598     if (!EvaluateFloat(E->getArg(0), Result, Info))
5599       return false;
5600 
5601     if (Result.isNegative())
5602       Result.changeSign();
5603     return true;
5604 
5605   case Builtin::BI__builtin_copysign:
5606   case Builtin::BI__builtin_copysignf:
5607   case Builtin::BI__builtin_copysignl: {
5608     APFloat RHS(0.);
5609     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
5610         !EvaluateFloat(E->getArg(1), RHS, Info))
5611       return false;
5612     Result.copySign(RHS);
5613     return true;
5614   }
5615   }
5616 }
5617 
VisitUnaryReal(const UnaryOperator * E)5618 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5619   if (E->getSubExpr()->getType()->isAnyComplexType()) {
5620     ComplexValue CV;
5621     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5622       return false;
5623     Result = CV.FloatReal;
5624     return true;
5625   }
5626 
5627   return Visit(E->getSubExpr());
5628 }
5629 
VisitUnaryImag(const UnaryOperator * E)5630 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5631   if (E->getSubExpr()->getType()->isAnyComplexType()) {
5632     ComplexValue CV;
5633     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5634       return false;
5635     Result = CV.FloatImag;
5636     return true;
5637   }
5638 
5639   VisitIgnoredValue(E->getSubExpr());
5640   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
5641   Result = llvm::APFloat::getZero(Sem);
5642   return true;
5643 }
5644 
VisitUnaryOperator(const UnaryOperator * E)5645 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5646   switch (E->getOpcode()) {
5647   default: return Error(E);
5648   case UO_Plus:
5649     return EvaluateFloat(E->getSubExpr(), Result, Info);
5650   case UO_Minus:
5651     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
5652       return false;
5653     Result.changeSign();
5654     return true;
5655   }
5656 }
5657 
VisitBinaryOperator(const BinaryOperator * E)5658 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5659   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5660     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5661 
5662   APFloat RHS(0.0);
5663   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
5664   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5665     return false;
5666   if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
5667     return false;
5668 
5669   switch (E->getOpcode()) {
5670   default: return Error(E);
5671   case BO_Mul:
5672     Result.multiply(RHS, APFloat::rmNearestTiesToEven);
5673     break;
5674   case BO_Add:
5675     Result.add(RHS, APFloat::rmNearestTiesToEven);
5676     break;
5677   case BO_Sub:
5678     Result.subtract(RHS, APFloat::rmNearestTiesToEven);
5679     break;
5680   case BO_Div:
5681     Result.divide(RHS, APFloat::rmNearestTiesToEven);
5682     break;
5683   }
5684 
5685   if (Result.isInfinity() || Result.isNaN())
5686     CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
5687   return true;
5688 }
5689 
VisitFloatingLiteral(const FloatingLiteral * E)5690 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
5691   Result = E->getValue();
5692   return true;
5693 }
5694 
VisitCastExpr(const CastExpr * E)5695 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
5696   const Expr* SubExpr = E->getSubExpr();
5697 
5698   switch (E->getCastKind()) {
5699   default:
5700     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5701 
5702   case CK_IntegralToFloating: {
5703     APSInt IntResult;
5704     return EvaluateInteger(SubExpr, IntResult, Info) &&
5705            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
5706                                 E->getType(), Result);
5707   }
5708 
5709   case CK_FloatingCast: {
5710     if (!Visit(SubExpr))
5711       return false;
5712     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
5713                                   Result);
5714   }
5715 
5716   case CK_FloatingComplexToReal: {
5717     ComplexValue V;
5718     if (!EvaluateComplex(SubExpr, V, Info))
5719       return false;
5720     Result = V.getComplexFloatReal();
5721     return true;
5722   }
5723   }
5724 }
5725 
5726 //===----------------------------------------------------------------------===//
5727 // Complex Evaluation (for float and integer)
5728 //===----------------------------------------------------------------------===//
5729 
5730 namespace {
5731 class ComplexExprEvaluator
5732   : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
5733   ComplexValue &Result;
5734 
5735 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)5736   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
5737     : ExprEvaluatorBaseTy(info), Result(Result) {}
5738 
Success(const APValue & V,const Expr * e)5739   bool Success(const APValue &V, const Expr *e) {
5740     Result.setFrom(V);
5741     return true;
5742   }
5743 
5744   bool ZeroInitialization(const Expr *E);
5745 
5746   //===--------------------------------------------------------------------===//
5747   //                            Visitor Methods
5748   //===--------------------------------------------------------------------===//
5749 
5750   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
5751   bool VisitCastExpr(const CastExpr *E);
5752   bool VisitBinaryOperator(const BinaryOperator *E);
5753   bool VisitUnaryOperator(const UnaryOperator *E);
5754   bool VisitInitListExpr(const InitListExpr *E);
5755 };
5756 } // end anonymous namespace
5757 
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)5758 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
5759                             EvalInfo &Info) {
5760   assert(E->isRValue() && E->getType()->isAnyComplexType());
5761   return ComplexExprEvaluator(Info, Result).Visit(E);
5762 }
5763 
ZeroInitialization(const Expr * E)5764 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
5765   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
5766   if (ElemTy->isRealFloatingType()) {
5767     Result.makeComplexFloat();
5768     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
5769     Result.FloatReal = Zero;
5770     Result.FloatImag = Zero;
5771   } else {
5772     Result.makeComplexInt();
5773     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
5774     Result.IntReal = Zero;
5775     Result.IntImag = Zero;
5776   }
5777   return true;
5778 }
5779 
VisitImaginaryLiteral(const ImaginaryLiteral * E)5780 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
5781   const Expr* SubExpr = E->getSubExpr();
5782 
5783   if (SubExpr->getType()->isRealFloatingType()) {
5784     Result.makeComplexFloat();
5785     APFloat &Imag = Result.FloatImag;
5786     if (!EvaluateFloat(SubExpr, Imag, Info))
5787       return false;
5788 
5789     Result.FloatReal = APFloat(Imag.getSemantics());
5790     return true;
5791   } else {
5792     assert(SubExpr->getType()->isIntegerType() &&
5793            "Unexpected imaginary literal.");
5794 
5795     Result.makeComplexInt();
5796     APSInt &Imag = Result.IntImag;
5797     if (!EvaluateInteger(SubExpr, Imag, Info))
5798       return false;
5799 
5800     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
5801     return true;
5802   }
5803 }
5804 
VisitCastExpr(const CastExpr * E)5805 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
5806 
5807   switch (E->getCastKind()) {
5808   case CK_BitCast:
5809   case CK_BaseToDerived:
5810   case CK_DerivedToBase:
5811   case CK_UncheckedDerivedToBase:
5812   case CK_Dynamic:
5813   case CK_ToUnion:
5814   case CK_ArrayToPointerDecay:
5815   case CK_FunctionToPointerDecay:
5816   case CK_NullToPointer:
5817   case CK_NullToMemberPointer:
5818   case CK_BaseToDerivedMemberPointer:
5819   case CK_DerivedToBaseMemberPointer:
5820   case CK_MemberPointerToBoolean:
5821   case CK_ReinterpretMemberPointer:
5822   case CK_ConstructorConversion:
5823   case CK_IntegralToPointer:
5824   case CK_PointerToIntegral:
5825   case CK_PointerToBoolean:
5826   case CK_ToVoid:
5827   case CK_VectorSplat:
5828   case CK_IntegralCast:
5829   case CK_IntegralToBoolean:
5830   case CK_IntegralToFloating:
5831   case CK_FloatingToIntegral:
5832   case CK_FloatingToBoolean:
5833   case CK_FloatingCast:
5834   case CK_CPointerToObjCPointerCast:
5835   case CK_BlockPointerToObjCPointerCast:
5836   case CK_AnyPointerToBlockPointerCast:
5837   case CK_ObjCObjectLValueCast:
5838   case CK_FloatingComplexToReal:
5839   case CK_FloatingComplexToBoolean:
5840   case CK_IntegralComplexToReal:
5841   case CK_IntegralComplexToBoolean:
5842   case CK_ARCProduceObject:
5843   case CK_ARCConsumeObject:
5844   case CK_ARCReclaimReturnedObject:
5845   case CK_ARCExtendBlockObject:
5846   case CK_CopyAndAutoreleaseBlockObject:
5847   case CK_BuiltinFnToFnPtr:
5848     llvm_unreachable("invalid cast kind for complex value");
5849 
5850   case CK_LValueToRValue:
5851   case CK_AtomicToNonAtomic:
5852   case CK_NonAtomicToAtomic:
5853   case CK_NoOp:
5854     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5855 
5856   case CK_Dependent:
5857   case CK_LValueBitCast:
5858   case CK_UserDefinedConversion:
5859     return Error(E);
5860 
5861   case CK_FloatingRealToComplex: {
5862     APFloat &Real = Result.FloatReal;
5863     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
5864       return false;
5865 
5866     Result.makeComplexFloat();
5867     Result.FloatImag = APFloat(Real.getSemantics());
5868     return true;
5869   }
5870 
5871   case CK_FloatingComplexCast: {
5872     if (!Visit(E->getSubExpr()))
5873       return false;
5874 
5875     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5876     QualType From
5877       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5878 
5879     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
5880            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
5881   }
5882 
5883   case CK_FloatingComplexToIntegralComplex: {
5884     if (!Visit(E->getSubExpr()))
5885       return false;
5886 
5887     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5888     QualType From
5889       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5890     Result.makeComplexInt();
5891     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
5892                                 To, Result.IntReal) &&
5893            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
5894                                 To, Result.IntImag);
5895   }
5896 
5897   case CK_IntegralRealToComplex: {
5898     APSInt &Real = Result.IntReal;
5899     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
5900       return false;
5901 
5902     Result.makeComplexInt();
5903     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
5904     return true;
5905   }
5906 
5907   case CK_IntegralComplexCast: {
5908     if (!Visit(E->getSubExpr()))
5909       return false;
5910 
5911     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5912     QualType From
5913       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5914 
5915     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
5916     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
5917     return true;
5918   }
5919 
5920   case CK_IntegralComplexToFloatingComplex: {
5921     if (!Visit(E->getSubExpr()))
5922       return false;
5923 
5924     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
5925     QualType From
5926       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
5927     Result.makeComplexFloat();
5928     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
5929                                 To, Result.FloatReal) &&
5930            HandleIntToFloatCast(Info, E, From, Result.IntImag,
5931                                 To, Result.FloatImag);
5932   }
5933   }
5934 
5935   llvm_unreachable("unknown cast resulting in complex value");
5936 }
5937 
VisitBinaryOperator(const BinaryOperator * E)5938 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5939   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5940     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5941 
5942   bool LHSOK = Visit(E->getLHS());
5943   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5944     return false;
5945 
5946   ComplexValue RHS;
5947   if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
5948     return false;
5949 
5950   assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
5951          "Invalid operands to binary operator.");
5952   switch (E->getOpcode()) {
5953   default: return Error(E);
5954   case BO_Add:
5955     if (Result.isComplexFloat()) {
5956       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
5957                                        APFloat::rmNearestTiesToEven);
5958       Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
5959                                        APFloat::rmNearestTiesToEven);
5960     } else {
5961       Result.getComplexIntReal() += RHS.getComplexIntReal();
5962       Result.getComplexIntImag() += RHS.getComplexIntImag();
5963     }
5964     break;
5965   case BO_Sub:
5966     if (Result.isComplexFloat()) {
5967       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
5968                                             APFloat::rmNearestTiesToEven);
5969       Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
5970                                             APFloat::rmNearestTiesToEven);
5971     } else {
5972       Result.getComplexIntReal() -= RHS.getComplexIntReal();
5973       Result.getComplexIntImag() -= RHS.getComplexIntImag();
5974     }
5975     break;
5976   case BO_Mul:
5977     if (Result.isComplexFloat()) {
5978       ComplexValue LHS = Result;
5979       APFloat &LHS_r = LHS.getComplexFloatReal();
5980       APFloat &LHS_i = LHS.getComplexFloatImag();
5981       APFloat &RHS_r = RHS.getComplexFloatReal();
5982       APFloat &RHS_i = RHS.getComplexFloatImag();
5983 
5984       APFloat Tmp = LHS_r;
5985       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
5986       Result.getComplexFloatReal() = Tmp;
5987       Tmp = LHS_i;
5988       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
5989       Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
5990 
5991       Tmp = LHS_r;
5992       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
5993       Result.getComplexFloatImag() = Tmp;
5994       Tmp = LHS_i;
5995       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
5996       Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
5997     } else {
5998       ComplexValue LHS = Result;
5999       Result.getComplexIntReal() =
6000         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
6001          LHS.getComplexIntImag() * RHS.getComplexIntImag());
6002       Result.getComplexIntImag() =
6003         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
6004          LHS.getComplexIntImag() * RHS.getComplexIntReal());
6005     }
6006     break;
6007   case BO_Div:
6008     if (Result.isComplexFloat()) {
6009       ComplexValue LHS = Result;
6010       APFloat &LHS_r = LHS.getComplexFloatReal();
6011       APFloat &LHS_i = LHS.getComplexFloatImag();
6012       APFloat &RHS_r = RHS.getComplexFloatReal();
6013       APFloat &RHS_i = RHS.getComplexFloatImag();
6014       APFloat &Res_r = Result.getComplexFloatReal();
6015       APFloat &Res_i = Result.getComplexFloatImag();
6016 
6017       APFloat Den = RHS_r;
6018       Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6019       APFloat Tmp = RHS_i;
6020       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6021       Den.add(Tmp, APFloat::rmNearestTiesToEven);
6022 
6023       Res_r = LHS_r;
6024       Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6025       Tmp = LHS_i;
6026       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6027       Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
6028       Res_r.divide(Den, APFloat::rmNearestTiesToEven);
6029 
6030       Res_i = LHS_i;
6031       Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6032       Tmp = LHS_r;
6033       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6034       Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
6035       Res_i.divide(Den, APFloat::rmNearestTiesToEven);
6036     } else {
6037       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
6038         return Error(E, diag::note_expr_divide_by_zero);
6039 
6040       ComplexValue LHS = Result;
6041       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
6042         RHS.getComplexIntImag() * RHS.getComplexIntImag();
6043       Result.getComplexIntReal() =
6044         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
6045          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
6046       Result.getComplexIntImag() =
6047         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
6048          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
6049     }
6050     break;
6051   }
6052 
6053   return true;
6054 }
6055 
VisitUnaryOperator(const UnaryOperator * E)6056 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6057   // Get the operand value into 'Result'.
6058   if (!Visit(E->getSubExpr()))
6059     return false;
6060 
6061   switch (E->getOpcode()) {
6062   default:
6063     return Error(E);
6064   case UO_Extension:
6065     return true;
6066   case UO_Plus:
6067     // The result is always just the subexpr.
6068     return true;
6069   case UO_Minus:
6070     if (Result.isComplexFloat()) {
6071       Result.getComplexFloatReal().changeSign();
6072       Result.getComplexFloatImag().changeSign();
6073     }
6074     else {
6075       Result.getComplexIntReal() = -Result.getComplexIntReal();
6076       Result.getComplexIntImag() = -Result.getComplexIntImag();
6077     }
6078     return true;
6079   case UO_Not:
6080     if (Result.isComplexFloat())
6081       Result.getComplexFloatImag().changeSign();
6082     else
6083       Result.getComplexIntImag() = -Result.getComplexIntImag();
6084     return true;
6085   }
6086 }
6087 
VisitInitListExpr(const InitListExpr * E)6088 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6089   if (E->getNumInits() == 2) {
6090     if (E->getType()->isComplexType()) {
6091       Result.makeComplexFloat();
6092       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
6093         return false;
6094       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
6095         return false;
6096     } else {
6097       Result.makeComplexInt();
6098       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
6099         return false;
6100       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
6101         return false;
6102     }
6103     return true;
6104   }
6105   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
6106 }
6107 
6108 //===----------------------------------------------------------------------===//
6109 // Void expression evaluation, primarily for a cast to void on the LHS of a
6110 // comma operator
6111 //===----------------------------------------------------------------------===//
6112 
6113 namespace {
6114 class VoidExprEvaluator
6115   : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
6116 public:
VoidExprEvaluator(EvalInfo & Info)6117   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
6118 
Success(const APValue & V,const Expr * e)6119   bool Success(const APValue &V, const Expr *e) { return true; }
6120 
VisitCastExpr(const CastExpr * E)6121   bool VisitCastExpr(const CastExpr *E) {
6122     switch (E->getCastKind()) {
6123     default:
6124       return ExprEvaluatorBaseTy::VisitCastExpr(E);
6125     case CK_ToVoid:
6126       VisitIgnoredValue(E->getSubExpr());
6127       return true;
6128     }
6129   }
6130 };
6131 } // end anonymous namespace
6132 
EvaluateVoid(const Expr * E,EvalInfo & Info)6133 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
6134   assert(E->isRValue() && E->getType()->isVoidType());
6135   return VoidExprEvaluator(Info).Visit(E);
6136 }
6137 
6138 //===----------------------------------------------------------------------===//
6139 // Top level Expr::EvaluateAsRValue method.
6140 //===----------------------------------------------------------------------===//
6141 
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)6142 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
6143   // In C, function designators are not lvalues, but we evaluate them as if they
6144   // are.
6145   if (E->isGLValue() || E->getType()->isFunctionType()) {
6146     LValue LV;
6147     if (!EvaluateLValue(E, LV, Info))
6148       return false;
6149     LV.moveInto(Result);
6150   } else if (E->getType()->isVectorType()) {
6151     if (!EvaluateVector(E, Result, Info))
6152       return false;
6153   } else if (E->getType()->isIntegralOrEnumerationType()) {
6154     if (!IntExprEvaluator(Info, Result).Visit(E))
6155       return false;
6156   } else if (E->getType()->hasPointerRepresentation()) {
6157     LValue LV;
6158     if (!EvaluatePointer(E, LV, Info))
6159       return false;
6160     LV.moveInto(Result);
6161   } else if (E->getType()->isRealFloatingType()) {
6162     llvm::APFloat F(0.0);
6163     if (!EvaluateFloat(E, F, Info))
6164       return false;
6165     Result = APValue(F);
6166   } else if (E->getType()->isAnyComplexType()) {
6167     ComplexValue C;
6168     if (!EvaluateComplex(E, C, Info))
6169       return false;
6170     C.moveInto(Result);
6171   } else if (E->getType()->isMemberPointerType()) {
6172     MemberPtr P;
6173     if (!EvaluateMemberPointer(E, P, Info))
6174       return false;
6175     P.moveInto(Result);
6176     return true;
6177   } else if (E->getType()->isArrayType()) {
6178     LValue LV;
6179     LV.set(E, Info.CurrentCall->Index);
6180     if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
6181       return false;
6182     Result = Info.CurrentCall->Temporaries[E];
6183   } else if (E->getType()->isRecordType()) {
6184     LValue LV;
6185     LV.set(E, Info.CurrentCall->Index);
6186     if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
6187       return false;
6188     Result = Info.CurrentCall->Temporaries[E];
6189   } else if (E->getType()->isVoidType()) {
6190     if (Info.getLangOpts().CPlusPlus0x)
6191       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
6192         << E->getType();
6193     else
6194       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6195     if (!EvaluateVoid(E, Info))
6196       return false;
6197   } else if (Info.getLangOpts().CPlusPlus0x) {
6198     Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
6199     return false;
6200   } else {
6201     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6202     return false;
6203   }
6204 
6205   return true;
6206 }
6207 
6208 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
6209 /// cases, the in-place evaluation is essential, since later initializers for
6210 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,CheckConstantExpressionKind CCEK,bool AllowNonLiteralTypes)6211 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
6212                             const Expr *E, CheckConstantExpressionKind CCEK,
6213                             bool AllowNonLiteralTypes) {
6214   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E))
6215     return false;
6216 
6217   if (E->isRValue()) {
6218     // Evaluate arrays and record types in-place, so that later initializers can
6219     // refer to earlier-initialized members of the object.
6220     if (E->getType()->isArrayType())
6221       return EvaluateArray(E, This, Result, Info);
6222     else if (E->getType()->isRecordType())
6223       return EvaluateRecord(E, This, Result, Info);
6224   }
6225 
6226   // For any other type, in-place evaluation is unimportant.
6227   return Evaluate(Result, Info, E);
6228 }
6229 
6230 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
6231 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)6232 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
6233   if (!CheckLiteralType(Info, E))
6234     return false;
6235 
6236   if (!::Evaluate(Result, Info, E))
6237     return false;
6238 
6239   if (E->isGLValue()) {
6240     LValue LV;
6241     LV.setFrom(Info.Ctx, Result);
6242     if (!HandleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
6243       return false;
6244   }
6245 
6246   // Check this core constant expression is a constant expression.
6247   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
6248 }
6249 
6250 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
6251 /// any crazy technique (that has nothing to do with language standards) that
6252 /// we want to.  If this function returns true, it returns the folded constant
6253 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
6254 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const6255 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
6256   // Fast-path evaluations of integer literals, since we sometimes see files
6257   // containing vast quantities of these.
6258   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(this)) {
6259     Result.Val = APValue(APSInt(L->getValue(),
6260                                 L->getType()->isUnsignedIntegerType()));
6261     return true;
6262   }
6263 
6264   // FIXME: Evaluating values of large array and record types can cause
6265   // performance problems. Only do so in C++11 for now.
6266   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6267       !Ctx.getLangOpts().CPlusPlus0x)
6268     return false;
6269 
6270   EvalInfo Info(Ctx, Result);
6271   return ::EvaluateAsRValue(Info, this, Result.Val);
6272 }
6273 
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const6274 bool Expr::EvaluateAsBooleanCondition(bool &Result,
6275                                       const ASTContext &Ctx) const {
6276   EvalResult Scratch;
6277   return EvaluateAsRValue(Scratch, Ctx) &&
6278          HandleConversionToBool(Scratch.Val, Result);
6279 }
6280 
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const6281 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
6282                          SideEffectsKind AllowSideEffects) const {
6283   if (!getType()->isIntegralOrEnumerationType())
6284     return false;
6285 
6286   EvalResult ExprResult;
6287   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
6288       (!AllowSideEffects && ExprResult.HasSideEffects))
6289     return false;
6290 
6291   Result = ExprResult.Val.getInt();
6292   return true;
6293 }
6294 
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const6295 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
6296   EvalInfo Info(Ctx, Result);
6297 
6298   LValue LV;
6299   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
6300       !CheckLValueConstantExpression(Info, getExprLoc(),
6301                                      Ctx.getLValueReferenceType(getType()), LV))
6302     return false;
6303 
6304   LV.moveInto(Result.Val);
6305   return true;
6306 }
6307 
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,llvm::SmallVectorImpl<PartialDiagnosticAt> & Notes) const6308 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
6309                                  const VarDecl *VD,
6310                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
6311   // FIXME: Evaluating initializers for large array and record types can cause
6312   // performance problems. Only do so in C++11 for now.
6313   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6314       !Ctx.getLangOpts().CPlusPlus0x)
6315     return false;
6316 
6317   Expr::EvalStatus EStatus;
6318   EStatus.Diag = &Notes;
6319 
6320   EvalInfo InitInfo(Ctx, EStatus);
6321   InitInfo.setEvaluatingDecl(VD, Value);
6322 
6323   LValue LVal;
6324   LVal.set(VD);
6325 
6326   // C++11 [basic.start.init]p2:
6327   //  Variables with static storage duration or thread storage duration shall be
6328   //  zero-initialized before any other initialization takes place.
6329   // This behavior is not present in C.
6330   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
6331       !VD->getType()->isReferenceType()) {
6332     ImplicitValueInitExpr VIE(VD->getType());
6333     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, CCEK_Constant,
6334                          /*AllowNonLiteralTypes=*/true))
6335       return false;
6336   }
6337 
6338   if (!EvaluateInPlace(Value, InitInfo, LVal, this, CCEK_Constant,
6339                          /*AllowNonLiteralTypes=*/true) ||
6340       EStatus.HasSideEffects)
6341     return false;
6342 
6343   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
6344                                  Value);
6345 }
6346 
6347 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
6348 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx) const6349 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
6350   EvalResult Result;
6351   return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
6352 }
6353 
EvaluateKnownConstInt(const ASTContext & Ctx) const6354 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx) const {
6355   EvalResult EvalResult;
6356   bool Result = EvaluateAsRValue(EvalResult, Ctx);
6357   (void)Result;
6358   assert(Result && "Could not evaluate expression");
6359   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
6360 
6361   return EvalResult.Val.getInt();
6362 }
6363 
isGlobalLValue() const6364  bool Expr::EvalResult::isGlobalLValue() const {
6365    assert(Val.isLValue());
6366    return IsGlobalLValue(Val.getLValueBase());
6367  }
6368 
6369 
6370 /// isIntegerConstantExpr - this recursive routine will test if an expression is
6371 /// an integer constant expression.
6372 
6373 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
6374 /// comma, etc
6375 ///
6376 /// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
6377 /// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
6378 /// cast+dereference.
6379 
6380 // CheckICE - This function does the fundamental ICE checking: the returned
6381 // ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
6382 // Note that to reduce code duplication, this helper does no evaluation
6383 // itself; the caller checks whether the expression is evaluatable, and
6384 // in the rare cases where CheckICE actually cares about the evaluated
6385 // value, it calls into Evalute.
6386 //
6387 // Meanings of Val:
6388 // 0: This expression is an ICE.
6389 // 1: This expression is not an ICE, but if it isn't evaluated, it's
6390 //    a legal subexpression for an ICE. This return value is used to handle
6391 //    the comma operator in C99 mode.
6392 // 2: This expression is not an ICE, and is not a legal subexpression for one.
6393 
6394 namespace {
6395 
6396 struct ICEDiag {
6397   unsigned Val;
6398   SourceLocation Loc;
6399 
6400   public:
ICEDiag__anon39b33ae21411::ICEDiag6401   ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
ICEDiag__anon39b33ae21411::ICEDiag6402   ICEDiag() : Val(0) {}
6403 };
6404 
6405 }
6406 
NoDiag()6407 static ICEDiag NoDiag() { return ICEDiag(); }
6408 
CheckEvalInICE(const Expr * E,ASTContext & Ctx)6409 static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
6410   Expr::EvalResult EVResult;
6411   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
6412       !EVResult.Val.isInt()) {
6413     return ICEDiag(2, E->getLocStart());
6414   }
6415   return NoDiag();
6416 }
6417 
CheckICE(const Expr * E,ASTContext & Ctx)6418 static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
6419   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
6420   if (!E->getType()->isIntegralOrEnumerationType()) {
6421     return ICEDiag(2, E->getLocStart());
6422   }
6423 
6424   switch (E->getStmtClass()) {
6425 #define ABSTRACT_STMT(Node)
6426 #define STMT(Node, Base) case Expr::Node##Class:
6427 #define EXPR(Node, Base)
6428 #include "clang/AST/StmtNodes.inc"
6429   case Expr::PredefinedExprClass:
6430   case Expr::FloatingLiteralClass:
6431   case Expr::ImaginaryLiteralClass:
6432   case Expr::StringLiteralClass:
6433   case Expr::ArraySubscriptExprClass:
6434   case Expr::MemberExprClass:
6435   case Expr::CompoundAssignOperatorClass:
6436   case Expr::CompoundLiteralExprClass:
6437   case Expr::ExtVectorElementExprClass:
6438   case Expr::DesignatedInitExprClass:
6439   case Expr::ImplicitValueInitExprClass:
6440   case Expr::ParenListExprClass:
6441   case Expr::VAArgExprClass:
6442   case Expr::AddrLabelExprClass:
6443   case Expr::StmtExprClass:
6444   case Expr::CXXMemberCallExprClass:
6445   case Expr::CUDAKernelCallExprClass:
6446   case Expr::CXXDynamicCastExprClass:
6447   case Expr::CXXTypeidExprClass:
6448   case Expr::CXXUuidofExprClass:
6449   case Expr::CXXNullPtrLiteralExprClass:
6450   case Expr::UserDefinedLiteralClass:
6451   case Expr::CXXThisExprClass:
6452   case Expr::CXXThrowExprClass:
6453   case Expr::CXXNewExprClass:
6454   case Expr::CXXDeleteExprClass:
6455   case Expr::CXXPseudoDestructorExprClass:
6456   case Expr::UnresolvedLookupExprClass:
6457   case Expr::DependentScopeDeclRefExprClass:
6458   case Expr::CXXConstructExprClass:
6459   case Expr::CXXBindTemporaryExprClass:
6460   case Expr::ExprWithCleanupsClass:
6461   case Expr::CXXTemporaryObjectExprClass:
6462   case Expr::CXXUnresolvedConstructExprClass:
6463   case Expr::CXXDependentScopeMemberExprClass:
6464   case Expr::UnresolvedMemberExprClass:
6465   case Expr::ObjCStringLiteralClass:
6466   case Expr::ObjCBoxedExprClass:
6467   case Expr::ObjCArrayLiteralClass:
6468   case Expr::ObjCDictionaryLiteralClass:
6469   case Expr::ObjCEncodeExprClass:
6470   case Expr::ObjCMessageExprClass:
6471   case Expr::ObjCSelectorExprClass:
6472   case Expr::ObjCProtocolExprClass:
6473   case Expr::ObjCIvarRefExprClass:
6474   case Expr::ObjCPropertyRefExprClass:
6475   case Expr::ObjCSubscriptRefExprClass:
6476   case Expr::ObjCIsaExprClass:
6477   case Expr::ShuffleVectorExprClass:
6478   case Expr::BlockExprClass:
6479   case Expr::NoStmtClass:
6480   case Expr::OpaqueValueExprClass:
6481   case Expr::PackExpansionExprClass:
6482   case Expr::SubstNonTypeTemplateParmPackExprClass:
6483   case Expr::AsTypeExprClass:
6484   case Expr::ObjCIndirectCopyRestoreExprClass:
6485   case Expr::MaterializeTemporaryExprClass:
6486   case Expr::PseudoObjectExprClass:
6487   case Expr::AtomicExprClass:
6488   case Expr::InitListExprClass:
6489   case Expr::LambdaExprClass:
6490     return ICEDiag(2, E->getLocStart());
6491 
6492   case Expr::SizeOfPackExprClass:
6493   case Expr::GNUNullExprClass:
6494     // GCC considers the GNU __null value to be an integral constant expression.
6495     return NoDiag();
6496 
6497   case Expr::SubstNonTypeTemplateParmExprClass:
6498     return
6499       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
6500 
6501   case Expr::ParenExprClass:
6502     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
6503   case Expr::GenericSelectionExprClass:
6504     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
6505   case Expr::IntegerLiteralClass:
6506   case Expr::CharacterLiteralClass:
6507   case Expr::ObjCBoolLiteralExprClass:
6508   case Expr::CXXBoolLiteralExprClass:
6509   case Expr::CXXScalarValueInitExprClass:
6510   case Expr::UnaryTypeTraitExprClass:
6511   case Expr::BinaryTypeTraitExprClass:
6512   case Expr::TypeTraitExprClass:
6513   case Expr::ArrayTypeTraitExprClass:
6514   case Expr::ExpressionTraitExprClass:
6515   case Expr::CXXNoexceptExprClass:
6516     return NoDiag();
6517   case Expr::CallExprClass:
6518   case Expr::CXXOperatorCallExprClass: {
6519     // C99 6.6/3 allows function calls within unevaluated subexpressions of
6520     // constant expressions, but they can never be ICEs because an ICE cannot
6521     // contain an operand of (pointer to) function type.
6522     const CallExpr *CE = cast<CallExpr>(E);
6523     if (CE->isBuiltinCall())
6524       return CheckEvalInICE(E, Ctx);
6525     return ICEDiag(2, E->getLocStart());
6526   }
6527   case Expr::DeclRefExprClass: {
6528     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
6529       return NoDiag();
6530     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
6531     if (Ctx.getLangOpts().CPlusPlus &&
6532         D && IsConstNonVolatile(D->getType())) {
6533       // Parameter variables are never constants.  Without this check,
6534       // getAnyInitializer() can find a default argument, which leads
6535       // to chaos.
6536       if (isa<ParmVarDecl>(D))
6537         return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6538 
6539       // C++ 7.1.5.1p2
6540       //   A variable of non-volatile const-qualified integral or enumeration
6541       //   type initialized by an ICE can be used in ICEs.
6542       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
6543         if (!Dcl->getType()->isIntegralOrEnumerationType())
6544           return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6545 
6546         const VarDecl *VD;
6547         // Look for a declaration of this variable that has an initializer, and
6548         // check whether it is an ICE.
6549         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
6550           return NoDiag();
6551         else
6552           return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6553       }
6554     }
6555     return ICEDiag(2, E->getLocStart());
6556   }
6557   case Expr::UnaryOperatorClass: {
6558     const UnaryOperator *Exp = cast<UnaryOperator>(E);
6559     switch (Exp->getOpcode()) {
6560     case UO_PostInc:
6561     case UO_PostDec:
6562     case UO_PreInc:
6563     case UO_PreDec:
6564     case UO_AddrOf:
6565     case UO_Deref:
6566       // C99 6.6/3 allows increment and decrement within unevaluated
6567       // subexpressions of constant expressions, but they can never be ICEs
6568       // because an ICE cannot contain an lvalue operand.
6569       return ICEDiag(2, E->getLocStart());
6570     case UO_Extension:
6571     case UO_LNot:
6572     case UO_Plus:
6573     case UO_Minus:
6574     case UO_Not:
6575     case UO_Real:
6576     case UO_Imag:
6577       return CheckICE(Exp->getSubExpr(), Ctx);
6578     }
6579 
6580     // OffsetOf falls through here.
6581   }
6582   case Expr::OffsetOfExprClass: {
6583       // Note that per C99, offsetof must be an ICE. And AFAIK, using
6584       // EvaluateAsRValue matches the proposed gcc behavior for cases like
6585       // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
6586       // compliance: we should warn earlier for offsetof expressions with
6587       // array subscripts that aren't ICEs, and if the array subscripts
6588       // are ICEs, the value of the offsetof must be an integer constant.
6589       return CheckEvalInICE(E, Ctx);
6590   }
6591   case Expr::UnaryExprOrTypeTraitExprClass: {
6592     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
6593     if ((Exp->getKind() ==  UETT_SizeOf) &&
6594         Exp->getTypeOfArgument()->isVariableArrayType())
6595       return ICEDiag(2, E->getLocStart());
6596     return NoDiag();
6597   }
6598   case Expr::BinaryOperatorClass: {
6599     const BinaryOperator *Exp = cast<BinaryOperator>(E);
6600     switch (Exp->getOpcode()) {
6601     case BO_PtrMemD:
6602     case BO_PtrMemI:
6603     case BO_Assign:
6604     case BO_MulAssign:
6605     case BO_DivAssign:
6606     case BO_RemAssign:
6607     case BO_AddAssign:
6608     case BO_SubAssign:
6609     case BO_ShlAssign:
6610     case BO_ShrAssign:
6611     case BO_AndAssign:
6612     case BO_XorAssign:
6613     case BO_OrAssign:
6614       // C99 6.6/3 allows assignments within unevaluated subexpressions of
6615       // constant expressions, but they can never be ICEs because an ICE cannot
6616       // contain an lvalue operand.
6617       return ICEDiag(2, E->getLocStart());
6618 
6619     case BO_Mul:
6620     case BO_Div:
6621     case BO_Rem:
6622     case BO_Add:
6623     case BO_Sub:
6624     case BO_Shl:
6625     case BO_Shr:
6626     case BO_LT:
6627     case BO_GT:
6628     case BO_LE:
6629     case BO_GE:
6630     case BO_EQ:
6631     case BO_NE:
6632     case BO_And:
6633     case BO_Xor:
6634     case BO_Or:
6635     case BO_Comma: {
6636       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6637       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6638       if (Exp->getOpcode() == BO_Div ||
6639           Exp->getOpcode() == BO_Rem) {
6640         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
6641         // we don't evaluate one.
6642         if (LHSResult.Val == 0 && RHSResult.Val == 0) {
6643           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
6644           if (REval == 0)
6645             return ICEDiag(1, E->getLocStart());
6646           if (REval.isSigned() && REval.isAllOnesValue()) {
6647             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
6648             if (LEval.isMinSignedValue())
6649               return ICEDiag(1, E->getLocStart());
6650           }
6651         }
6652       }
6653       if (Exp->getOpcode() == BO_Comma) {
6654         if (Ctx.getLangOpts().C99) {
6655           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
6656           // if it isn't evaluated.
6657           if (LHSResult.Val == 0 && RHSResult.Val == 0)
6658             return ICEDiag(1, E->getLocStart());
6659         } else {
6660           // In both C89 and C++, commas in ICEs are illegal.
6661           return ICEDiag(2, E->getLocStart());
6662         }
6663       }
6664       if (LHSResult.Val >= RHSResult.Val)
6665         return LHSResult;
6666       return RHSResult;
6667     }
6668     case BO_LAnd:
6669     case BO_LOr: {
6670       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6671       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6672       if (LHSResult.Val == 0 && RHSResult.Val == 1) {
6673         // Rare case where the RHS has a comma "side-effect"; we need
6674         // to actually check the condition to see whether the side
6675         // with the comma is evaluated.
6676         if ((Exp->getOpcode() == BO_LAnd) !=
6677             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
6678           return RHSResult;
6679         return NoDiag();
6680       }
6681 
6682       if (LHSResult.Val >= RHSResult.Val)
6683         return LHSResult;
6684       return RHSResult;
6685     }
6686     }
6687   }
6688   case Expr::ImplicitCastExprClass:
6689   case Expr::CStyleCastExprClass:
6690   case Expr::CXXFunctionalCastExprClass:
6691   case Expr::CXXStaticCastExprClass:
6692   case Expr::CXXReinterpretCastExprClass:
6693   case Expr::CXXConstCastExprClass:
6694   case Expr::ObjCBridgedCastExprClass: {
6695     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
6696     if (isa<ExplicitCastExpr>(E)) {
6697       if (const FloatingLiteral *FL
6698             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
6699         unsigned DestWidth = Ctx.getIntWidth(E->getType());
6700         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
6701         APSInt IgnoredVal(DestWidth, !DestSigned);
6702         bool Ignored;
6703         // If the value does not fit in the destination type, the behavior is
6704         // undefined, so we are not required to treat it as a constant
6705         // expression.
6706         if (FL->getValue().convertToInteger(IgnoredVal,
6707                                             llvm::APFloat::rmTowardZero,
6708                                             &Ignored) & APFloat::opInvalidOp)
6709           return ICEDiag(2, E->getLocStart());
6710         return NoDiag();
6711       }
6712     }
6713     switch (cast<CastExpr>(E)->getCastKind()) {
6714     case CK_LValueToRValue:
6715     case CK_AtomicToNonAtomic:
6716     case CK_NonAtomicToAtomic:
6717     case CK_NoOp:
6718     case CK_IntegralToBoolean:
6719     case CK_IntegralCast:
6720       return CheckICE(SubExpr, Ctx);
6721     default:
6722       return ICEDiag(2, E->getLocStart());
6723     }
6724   }
6725   case Expr::BinaryConditionalOperatorClass: {
6726     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
6727     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
6728     if (CommonResult.Val == 2) return CommonResult;
6729     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6730     if (FalseResult.Val == 2) return FalseResult;
6731     if (CommonResult.Val == 1) return CommonResult;
6732     if (FalseResult.Val == 1 &&
6733         Exp->getCommon()->EvaluateKnownConstInt(Ctx) == 0) return NoDiag();
6734     return FalseResult;
6735   }
6736   case Expr::ConditionalOperatorClass: {
6737     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
6738     // If the condition (ignoring parens) is a __builtin_constant_p call,
6739     // then only the true side is actually considered in an integer constant
6740     // expression, and it is fully evaluated.  This is an important GNU
6741     // extension.  See GCC PR38377 for discussion.
6742     if (const CallExpr *CallCE
6743         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
6744       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
6745         return CheckEvalInICE(E, Ctx);
6746     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
6747     if (CondResult.Val == 2)
6748       return CondResult;
6749 
6750     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
6751     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6752 
6753     if (TrueResult.Val == 2)
6754       return TrueResult;
6755     if (FalseResult.Val == 2)
6756       return FalseResult;
6757     if (CondResult.Val == 1)
6758       return CondResult;
6759     if (TrueResult.Val == 0 && FalseResult.Val == 0)
6760       return NoDiag();
6761     // Rare case where the diagnostics depend on which side is evaluated
6762     // Note that if we get here, CondResult is 0, and at least one of
6763     // TrueResult and FalseResult is non-zero.
6764     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) {
6765       return FalseResult;
6766     }
6767     return TrueResult;
6768   }
6769   case Expr::CXXDefaultArgExprClass:
6770     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
6771   case Expr::ChooseExprClass: {
6772     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
6773   }
6774   }
6775 
6776   llvm_unreachable("Invalid StmtClass!");
6777 }
6778 
6779 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)6780 static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
6781                                                     const Expr *E,
6782                                                     llvm::APSInt *Value,
6783                                                     SourceLocation *Loc) {
6784   if (!E->getType()->isIntegralOrEnumerationType()) {
6785     if (Loc) *Loc = E->getExprLoc();
6786     return false;
6787   }
6788 
6789   APValue Result;
6790   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
6791     return false;
6792 
6793   assert(Result.isInt() && "pointer cast to int is not an ICE");
6794   if (Value) *Value = Result.getInt();
6795   return true;
6796 }
6797 
isIntegerConstantExpr(ASTContext & Ctx,SourceLocation * Loc) const6798 bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
6799   if (Ctx.getLangOpts().CPlusPlus0x)
6800     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
6801 
6802   ICEDiag d = CheckICE(this, Ctx);
6803   if (d.Val != 0) {
6804     if (Loc) *Loc = d.Loc;
6805     return false;
6806   }
6807   return true;
6808 }
6809 
isIntegerConstantExpr(llvm::APSInt & Value,ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const6810 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
6811                                  SourceLocation *Loc, bool isEvaluated) const {
6812   if (Ctx.getLangOpts().CPlusPlus0x)
6813     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
6814 
6815   if (!isIntegerConstantExpr(Ctx, Loc))
6816     return false;
6817   if (!EvaluateAsInt(Value, Ctx))
6818     llvm_unreachable("ICE cannot be evaluated!");
6819   return true;
6820 }
6821 
isCXX98IntegralConstantExpr(ASTContext & Ctx) const6822 bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
6823   return CheckICE(this, Ctx).Val == 0;
6824 }
6825 
isCXX11ConstantExpr(ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const6826 bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
6827                                SourceLocation *Loc) const {
6828   // We support this checking in C++98 mode in order to diagnose compatibility
6829   // issues.
6830   assert(Ctx.getLangOpts().CPlusPlus);
6831 
6832   // Build evaluation settings.
6833   Expr::EvalStatus Status;
6834   llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
6835   Status.Diag = &Diags;
6836   EvalInfo Info(Ctx, Status);
6837 
6838   APValue Scratch;
6839   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
6840 
6841   if (!Diags.empty()) {
6842     IsConstExpr = false;
6843     if (Loc) *Loc = Diags[0].first;
6844   } else if (!IsConstExpr) {
6845     // FIXME: This shouldn't happen.
6846     if (Loc) *Loc = getExprLoc();
6847   }
6848 
6849   return IsConstExpr;
6850 }
6851 
isPotentialConstantExpr(const FunctionDecl * FD,llvm::SmallVectorImpl<PartialDiagnosticAt> & Diags)6852 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
6853                                    llvm::SmallVectorImpl<
6854                                      PartialDiagnosticAt> &Diags) {
6855   // FIXME: It would be useful to check constexpr function templates, but at the
6856   // moment the constant expression evaluator cannot cope with the non-rigorous
6857   // ASTs which we build for dependent expressions.
6858   if (FD->isDependentContext())
6859     return true;
6860 
6861   Expr::EvalStatus Status;
6862   Status.Diag = &Diags;
6863 
6864   EvalInfo Info(FD->getASTContext(), Status);
6865   Info.CheckingPotentialConstantExpression = true;
6866 
6867   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6868   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
6869 
6870   // FIXME: Fabricate an arbitrary expression on the stack and pretend that it
6871   // is a temporary being used as the 'this' pointer.
6872   LValue This;
6873   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
6874   This.set(&VIE, Info.CurrentCall->Index);
6875 
6876   ArrayRef<const Expr*> Args;
6877 
6878   SourceLocation Loc = FD->getLocation();
6879 
6880   APValue Scratch;
6881   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
6882     HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
6883   else
6884     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
6885                        Args, FD->getBody(), Info, Scratch);
6886 
6887   return Diags.empty();
6888 }
6889