1 //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an _extremely_ simple interprocedural constant
11 // propagation pass. It could certainly be improved in many different ways,
12 // like using a worklist. This pass makes arguments dead, but does not remove
13 // them. The existing dead argument elimination pass should be run after this
14 // to clean up the mess.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "ipconstprop"
19 #include "llvm/Transforms/IPO.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Support/CallSite.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/SmallVector.h"
28 using namespace llvm;
29
30 STATISTIC(NumArgumentsProped, "Number of args turned into constants");
31 STATISTIC(NumReturnValProped, "Number of return values turned into constants");
32
33 namespace {
34 /// IPCP - The interprocedural constant propagation pass
35 ///
36 struct IPCP : public ModulePass {
37 static char ID; // Pass identification, replacement for typeid
IPCP__anonfec477940111::IPCP38 IPCP() : ModulePass(ID) {
39 initializeIPCPPass(*PassRegistry::getPassRegistry());
40 }
41
42 bool runOnModule(Module &M);
43 private:
44 bool PropagateConstantsIntoArguments(Function &F);
45 bool PropagateConstantReturn(Function &F);
46 };
47 }
48
49 char IPCP::ID = 0;
50 INITIALIZE_PASS(IPCP, "ipconstprop",
51 "Interprocedural constant propagation", false, false)
52
createIPConstantPropagationPass()53 ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
54
runOnModule(Module & M)55 bool IPCP::runOnModule(Module &M) {
56 bool Changed = false;
57 bool LocalChange = true;
58
59 // FIXME: instead of using smart algorithms, we just iterate until we stop
60 // making changes.
61 while (LocalChange) {
62 LocalChange = false;
63 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
64 if (!I->isDeclaration()) {
65 // Delete any klingons.
66 I->removeDeadConstantUsers();
67 if (I->hasLocalLinkage())
68 LocalChange |= PropagateConstantsIntoArguments(*I);
69 Changed |= PropagateConstantReturn(*I);
70 }
71 Changed |= LocalChange;
72 }
73 return Changed;
74 }
75
76 /// PropagateConstantsIntoArguments - Look at all uses of the specified
77 /// function. If all uses are direct call sites, and all pass a particular
78 /// constant in for an argument, propagate that constant in as the argument.
79 ///
PropagateConstantsIntoArguments(Function & F)80 bool IPCP::PropagateConstantsIntoArguments(Function &F) {
81 if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
82
83 // For each argument, keep track of its constant value and whether it is a
84 // constant or not. The bool is driven to true when found to be non-constant.
85 SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
86 ArgumentConstants.resize(F.arg_size());
87
88 unsigned NumNonconstant = 0;
89 for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
90 User *U = *UI;
91 // Ignore blockaddress uses.
92 if (isa<BlockAddress>(U)) continue;
93
94 // Used by a non-instruction, or not the callee of a function, do not
95 // transform.
96 if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
97 return false;
98
99 CallSite CS(cast<Instruction>(U));
100 if (!CS.isCallee(UI))
101 return false;
102
103 // Check out all of the potentially constant arguments. Note that we don't
104 // inspect varargs here.
105 CallSite::arg_iterator AI = CS.arg_begin();
106 Function::arg_iterator Arg = F.arg_begin();
107 for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
108 ++i, ++AI, ++Arg) {
109
110 // If this argument is known non-constant, ignore it.
111 if (ArgumentConstants[i].second)
112 continue;
113
114 Constant *C = dyn_cast<Constant>(*AI);
115 if (C && ArgumentConstants[i].first == 0) {
116 ArgumentConstants[i].first = C; // First constant seen.
117 } else if (C && ArgumentConstants[i].first == C) {
118 // Still the constant value we think it is.
119 } else if (*AI == &*Arg) {
120 // Ignore recursive calls passing argument down.
121 } else {
122 // Argument became non-constant. If all arguments are non-constant now,
123 // give up on this function.
124 if (++NumNonconstant == ArgumentConstants.size())
125 return false;
126 ArgumentConstants[i].second = true;
127 }
128 }
129 }
130
131 // If we got to this point, there is a constant argument!
132 assert(NumNonconstant != ArgumentConstants.size());
133 bool MadeChange = false;
134 Function::arg_iterator AI = F.arg_begin();
135 for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
136 // Do we have a constant argument?
137 if (ArgumentConstants[i].second || AI->use_empty() ||
138 (AI->hasByValAttr() && !F.onlyReadsMemory()))
139 continue;
140
141 Value *V = ArgumentConstants[i].first;
142 if (V == 0) V = UndefValue::get(AI->getType());
143 AI->replaceAllUsesWith(V);
144 ++NumArgumentsProped;
145 MadeChange = true;
146 }
147 return MadeChange;
148 }
149
150
151 // Check to see if this function returns one or more constants. If so, replace
152 // all callers that use those return values with the constant value. This will
153 // leave in the actual return values and instructions, but deadargelim will
154 // clean that up.
155 //
156 // Additionally if a function always returns one of its arguments directly,
157 // callers will be updated to use the value they pass in directly instead of
158 // using the return value.
PropagateConstantReturn(Function & F)159 bool IPCP::PropagateConstantReturn(Function &F) {
160 if (F.getReturnType()->isVoidTy())
161 return false; // No return value.
162
163 // If this function could be overridden later in the link stage, we can't
164 // propagate information about its results into callers.
165 if (F.mayBeOverridden())
166 return false;
167
168 // Check to see if this function returns a constant.
169 SmallVector<Value *,4> RetVals;
170 StructType *STy = dyn_cast<StructType>(F.getReturnType());
171 if (STy)
172 for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
173 RetVals.push_back(UndefValue::get(STy->getElementType(i)));
174 else
175 RetVals.push_back(UndefValue::get(F.getReturnType()));
176
177 unsigned NumNonConstant = 0;
178 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
179 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
180 for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
181 // Already found conflicting return values?
182 Value *RV = RetVals[i];
183 if (!RV)
184 continue;
185
186 // Find the returned value
187 Value *V;
188 if (!STy)
189 V = RI->getOperand(0);
190 else
191 V = FindInsertedValue(RI->getOperand(0), i);
192
193 if (V) {
194 // Ignore undefs, we can change them into anything
195 if (isa<UndefValue>(V))
196 continue;
197
198 // Try to see if all the rets return the same constant or argument.
199 if (isa<Constant>(V) || isa<Argument>(V)) {
200 if (isa<UndefValue>(RV)) {
201 // No value found yet? Try the current one.
202 RetVals[i] = V;
203 continue;
204 }
205 // Returning the same value? Good.
206 if (RV == V)
207 continue;
208 }
209 }
210 // Different or no known return value? Don't propagate this return
211 // value.
212 RetVals[i] = 0;
213 // All values non constant? Stop looking.
214 if (++NumNonConstant == RetVals.size())
215 return false;
216 }
217 }
218
219 // If we got here, the function returns at least one constant value. Loop
220 // over all users, replacing any uses of the return value with the returned
221 // constant.
222 bool MadeChange = false;
223 for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
224 CallSite CS(*UI);
225 Instruction* Call = CS.getInstruction();
226
227 // Not a call instruction or a call instruction that's not calling F
228 // directly?
229 if (!Call || !CS.isCallee(UI))
230 continue;
231
232 // Call result not used?
233 if (Call->use_empty())
234 continue;
235
236 MadeChange = true;
237
238 if (STy == 0) {
239 Value* New = RetVals[0];
240 if (Argument *A = dyn_cast<Argument>(New))
241 // Was an argument returned? Then find the corresponding argument in
242 // the call instruction and use that.
243 New = CS.getArgument(A->getArgNo());
244 Call->replaceAllUsesWith(New);
245 continue;
246 }
247
248 for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
249 I != E;) {
250 Instruction *Ins = cast<Instruction>(*I);
251
252 // Increment now, so we can remove the use
253 ++I;
254
255 // Find the index of the retval to replace with
256 int index = -1;
257 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
258 if (EV->hasIndices())
259 index = *EV->idx_begin();
260
261 // If this use uses a specific return value, and we have a replacement,
262 // replace it.
263 if (index != -1) {
264 Value *New = RetVals[index];
265 if (New) {
266 if (Argument *A = dyn_cast<Argument>(New))
267 // Was an argument returned? Then find the corresponding argument in
268 // the call instruction and use that.
269 New = CS.getArgument(A->getArgNo());
270 Ins->replaceAllUsesWith(New);
271 Ins->eraseFromParent();
272 }
273 }
274 }
275 }
276
277 if (MadeChange) ++NumReturnValProped;
278 return MadeChange;
279 }
280