1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11 // srem, urem, frem.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombine.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22
23 /// simplifyValueKnownNonZero - The specific integer value is used in a context
24 /// where it is known to be non-zero. If this allows us to simplify the
25 /// computation, do so and return the new operand, otherwise return null.
simplifyValueKnownNonZero(Value * V,InstCombiner & IC)26 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27 // If V has multiple uses, then we would have to do more analysis to determine
28 // if this is safe. For example, the use could be in dynamically unreached
29 // code.
30 if (!V->hasOneUse()) return 0;
31
32 bool MadeChange = false;
33
34 // ((1 << A) >>u B) --> (1 << (A-B))
35 // Because V cannot be zero, we know that B is less than A.
36 Value *A = 0, *B = 0, *PowerOf2 = 0;
37 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
38 m_Value(B))) &&
39 // The "1" can be any value known to be a power of 2.
40 isPowerOfTwo(PowerOf2, IC.getTargetData())) {
41 A = IC.Builder->CreateSub(A, B);
42 return IC.Builder->CreateShl(PowerOf2, A);
43 }
44
45 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46 // inexact. Similarly for <<.
47 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
48 if (I->isLogicalShift() &&
49 isPowerOfTwo(I->getOperand(0), IC.getTargetData())) {
50 // We know that this is an exact/nuw shift and that the input is a
51 // non-zero context as well.
52 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
53 I->setOperand(0, V2);
54 MadeChange = true;
55 }
56
57 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
58 I->setIsExact();
59 MadeChange = true;
60 }
61
62 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
63 I->setHasNoUnsignedWrap();
64 MadeChange = true;
65 }
66 }
67
68 // TODO: Lots more we could do here:
69 // If V is a phi node, we can call this on each of its operands.
70 // "select cond, X, 0" can simplify to "X".
71
72 return MadeChange ? V : 0;
73 }
74
75
76 /// MultiplyOverflows - True if the multiply can not be expressed in an int
77 /// this size.
MultiplyOverflows(ConstantInt * C1,ConstantInt * C2,bool sign)78 static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
79 uint32_t W = C1->getBitWidth();
80 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
81 if (sign) {
82 LHSExt = LHSExt.sext(W * 2);
83 RHSExt = RHSExt.sext(W * 2);
84 } else {
85 LHSExt = LHSExt.zext(W * 2);
86 RHSExt = RHSExt.zext(W * 2);
87 }
88
89 APInt MulExt = LHSExt * RHSExt;
90
91 if (!sign)
92 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
93
94 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
95 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
96 return MulExt.slt(Min) || MulExt.sgt(Max);
97 }
98
visitMul(BinaryOperator & I)99 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
100 bool Changed = SimplifyAssociativeOrCommutative(I);
101 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
102
103 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
104 return ReplaceInstUsesWith(I, V);
105
106 if (Value *V = SimplifyUsingDistributiveLaws(I))
107 return ReplaceInstUsesWith(I, V);
108
109 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
110 return BinaryOperator::CreateNeg(Op0, I.getName());
111
112 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
113
114 // ((X << C1)*C2) == (X * (C2 << C1))
115 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
116 if (SI->getOpcode() == Instruction::Shl)
117 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
118 return BinaryOperator::CreateMul(SI->getOperand(0),
119 ConstantExpr::getShl(CI, ShOp));
120
121 const APInt &Val = CI->getValue();
122 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
123 Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
124 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
125 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
126 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
127 return Shl;
128 }
129
130 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
131 { Value *X; ConstantInt *C1;
132 if (Op0->hasOneUse() &&
133 match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
134 Value *Add = Builder->CreateMul(X, CI);
135 return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
136 }
137 }
138
139 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
140 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
141 // The "* (2**n)" thus becomes a potential shifting opportunity.
142 {
143 const APInt & Val = CI->getValue();
144 const APInt &PosVal = Val.abs();
145 if (Val.isNegative() && PosVal.isPowerOf2()) {
146 Value *X = 0, *Y = 0;
147 if (Op0->hasOneUse()) {
148 ConstantInt *C1;
149 Value *Sub = 0;
150 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
151 Sub = Builder->CreateSub(X, Y, "suba");
152 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
153 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
154 if (Sub)
155 return
156 BinaryOperator::CreateMul(Sub,
157 ConstantInt::get(Y->getType(), PosVal));
158 }
159 }
160 }
161 }
162
163 // Simplify mul instructions with a constant RHS.
164 if (isa<Constant>(Op1)) {
165 // Try to fold constant mul into select arguments.
166 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
167 if (Instruction *R = FoldOpIntoSelect(I, SI))
168 return R;
169
170 if (isa<PHINode>(Op0))
171 if (Instruction *NV = FoldOpIntoPhi(I))
172 return NV;
173 }
174
175 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
176 if (Value *Op1v = dyn_castNegVal(Op1))
177 return BinaryOperator::CreateMul(Op0v, Op1v);
178
179 // (X / Y) * Y = X - (X % Y)
180 // (X / Y) * -Y = (X % Y) - X
181 {
182 Value *Op1C = Op1;
183 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
184 if (!BO ||
185 (BO->getOpcode() != Instruction::UDiv &&
186 BO->getOpcode() != Instruction::SDiv)) {
187 Op1C = Op0;
188 BO = dyn_cast<BinaryOperator>(Op1);
189 }
190 Value *Neg = dyn_castNegVal(Op1C);
191 if (BO && BO->hasOneUse() &&
192 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
193 (BO->getOpcode() == Instruction::UDiv ||
194 BO->getOpcode() == Instruction::SDiv)) {
195 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
196
197 // If the division is exact, X % Y is zero, so we end up with X or -X.
198 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
199 if (SDiv->isExact()) {
200 if (Op1BO == Op1C)
201 return ReplaceInstUsesWith(I, Op0BO);
202 return BinaryOperator::CreateNeg(Op0BO);
203 }
204
205 Value *Rem;
206 if (BO->getOpcode() == Instruction::UDiv)
207 Rem = Builder->CreateURem(Op0BO, Op1BO);
208 else
209 Rem = Builder->CreateSRem(Op0BO, Op1BO);
210 Rem->takeName(BO);
211
212 if (Op1BO == Op1C)
213 return BinaryOperator::CreateSub(Op0BO, Rem);
214 return BinaryOperator::CreateSub(Rem, Op0BO);
215 }
216 }
217
218 /// i1 mul -> i1 and.
219 if (I.getType()->isIntegerTy(1))
220 return BinaryOperator::CreateAnd(Op0, Op1);
221
222 // X*(1 << Y) --> X << Y
223 // (1 << Y)*X --> X << Y
224 {
225 Value *Y;
226 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
227 return BinaryOperator::CreateShl(Op1, Y);
228 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
229 return BinaryOperator::CreateShl(Op0, Y);
230 }
231
232 // If one of the operands of the multiply is a cast from a boolean value, then
233 // we know the bool is either zero or one, so this is a 'masking' multiply.
234 // X * Y (where Y is 0 or 1) -> X & (0-Y)
235 if (!I.getType()->isVectorTy()) {
236 // -2 is "-1 << 1" so it is all bits set except the low one.
237 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
238
239 Value *BoolCast = 0, *OtherOp = 0;
240 if (MaskedValueIsZero(Op0, Negative2))
241 BoolCast = Op0, OtherOp = Op1;
242 else if (MaskedValueIsZero(Op1, Negative2))
243 BoolCast = Op1, OtherOp = Op0;
244
245 if (BoolCast) {
246 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
247 BoolCast);
248 return BinaryOperator::CreateAnd(V, OtherOp);
249 }
250 }
251
252 return Changed ? &I : 0;
253 }
254
visitFMul(BinaryOperator & I)255 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
256 bool Changed = SimplifyAssociativeOrCommutative(I);
257 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
258
259 // Simplify mul instructions with a constant RHS.
260 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
261 if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
262 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
263 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
264 if (Op1F->isExactlyValue(1.0))
265 return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
266 } else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) {
267 // As above, vector X*splat(1.0) -> X in all defined cases.
268 if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
269 if (F->isExactlyValue(1.0))
270 return ReplaceInstUsesWith(I, Op0);
271 }
272
273 // Try to fold constant mul into select arguments.
274 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
275 if (Instruction *R = FoldOpIntoSelect(I, SI))
276 return R;
277
278 if (isa<PHINode>(Op0))
279 if (Instruction *NV = FoldOpIntoPhi(I))
280 return NV;
281 }
282
283 if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
284 if (Value *Op1v = dyn_castFNegVal(Op1))
285 return BinaryOperator::CreateFMul(Op0v, Op1v);
286
287 return Changed ? &I : 0;
288 }
289
290 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
291 /// instruction.
SimplifyDivRemOfSelect(BinaryOperator & I)292 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
293 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
294
295 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
296 int NonNullOperand = -1;
297 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
298 if (ST->isNullValue())
299 NonNullOperand = 2;
300 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
301 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
302 if (ST->isNullValue())
303 NonNullOperand = 1;
304
305 if (NonNullOperand == -1)
306 return false;
307
308 Value *SelectCond = SI->getOperand(0);
309
310 // Change the div/rem to use 'Y' instead of the select.
311 I.setOperand(1, SI->getOperand(NonNullOperand));
312
313 // Okay, we know we replace the operand of the div/rem with 'Y' with no
314 // problem. However, the select, or the condition of the select may have
315 // multiple uses. Based on our knowledge that the operand must be non-zero,
316 // propagate the known value for the select into other uses of it, and
317 // propagate a known value of the condition into its other users.
318
319 // If the select and condition only have a single use, don't bother with this,
320 // early exit.
321 if (SI->use_empty() && SelectCond->hasOneUse())
322 return true;
323
324 // Scan the current block backward, looking for other uses of SI.
325 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
326
327 while (BBI != BBFront) {
328 --BBI;
329 // If we found a call to a function, we can't assume it will return, so
330 // information from below it cannot be propagated above it.
331 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
332 break;
333
334 // Replace uses of the select or its condition with the known values.
335 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
336 I != E; ++I) {
337 if (*I == SI) {
338 *I = SI->getOperand(NonNullOperand);
339 Worklist.Add(BBI);
340 } else if (*I == SelectCond) {
341 *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
342 ConstantInt::getFalse(BBI->getContext());
343 Worklist.Add(BBI);
344 }
345 }
346
347 // If we past the instruction, quit looking for it.
348 if (&*BBI == SI)
349 SI = 0;
350 if (&*BBI == SelectCond)
351 SelectCond = 0;
352
353 // If we ran out of things to eliminate, break out of the loop.
354 if (SelectCond == 0 && SI == 0)
355 break;
356
357 }
358 return true;
359 }
360
361
362 /// This function implements the transforms common to both integer division
363 /// instructions (udiv and sdiv). It is called by the visitors to those integer
364 /// division instructions.
365 /// @brief Common integer divide transforms
commonIDivTransforms(BinaryOperator & I)366 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
367 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
368
369 // The RHS is known non-zero.
370 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
371 I.setOperand(1, V);
372 return &I;
373 }
374
375 // Handle cases involving: [su]div X, (select Cond, Y, Z)
376 // This does not apply for fdiv.
377 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
378 return &I;
379
380 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
381 // (X / C1) / C2 -> X / (C1*C2)
382 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
383 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
384 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
385 if (MultiplyOverflows(RHS, LHSRHS,
386 I.getOpcode()==Instruction::SDiv))
387 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
388 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
389 ConstantExpr::getMul(RHS, LHSRHS));
390 }
391
392 if (!RHS->isZero()) { // avoid X udiv 0
393 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
394 if (Instruction *R = FoldOpIntoSelect(I, SI))
395 return R;
396 if (isa<PHINode>(Op0))
397 if (Instruction *NV = FoldOpIntoPhi(I))
398 return NV;
399 }
400 }
401
402 // See if we can fold away this div instruction.
403 if (SimplifyDemandedInstructionBits(I))
404 return &I;
405
406 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
407 Value *X = 0, *Z = 0;
408 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
409 bool isSigned = I.getOpcode() == Instruction::SDiv;
410 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
411 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
412 return BinaryOperator::Create(I.getOpcode(), X, Op1);
413 }
414
415 return 0;
416 }
417
418 /// dyn_castZExtVal - Checks if V is a zext or constant that can
419 /// be truncated to Ty without losing bits.
dyn_castZExtVal(Value * V,Type * Ty)420 static Value *dyn_castZExtVal(Value *V, Type *Ty) {
421 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
422 if (Z->getSrcTy() == Ty)
423 return Z->getOperand(0);
424 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
425 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
426 return ConstantExpr::getTrunc(C, Ty);
427 }
428 return 0;
429 }
430
visitUDiv(BinaryOperator & I)431 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
432 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
433
434 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
435 return ReplaceInstUsesWith(I, V);
436
437 // Handle the integer div common cases
438 if (Instruction *Common = commonIDivTransforms(I))
439 return Common;
440
441 {
442 // X udiv 2^C -> X >> C
443 // Check to see if this is an unsigned division with an exact power of 2,
444 // if so, convert to a right shift.
445 const APInt *C;
446 if (match(Op1, m_Power2(C))) {
447 BinaryOperator *LShr =
448 BinaryOperator::CreateLShr(Op0,
449 ConstantInt::get(Op0->getType(),
450 C->logBase2()));
451 if (I.isExact()) LShr->setIsExact();
452 return LShr;
453 }
454 }
455
456 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
457 // X udiv C, where C >= signbit
458 if (C->getValue().isNegative()) {
459 Value *IC = Builder->CreateICmpULT(Op0, C);
460 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
461 ConstantInt::get(I.getType(), 1));
462 }
463 }
464
465 // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
466 if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
467 Value *X;
468 ConstantInt *C1;
469 if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
470 APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
471 return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
472 }
473 }
474
475 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
476 { const APInt *CI; Value *N;
477 if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
478 match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
479 if (*CI != 1)
480 N = Builder->CreateAdd(N, ConstantInt::get(I.getType(),CI->logBase2()));
481 if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
482 N = Builder->CreateZExt(N, Z->getDestTy());
483 if (I.isExact())
484 return BinaryOperator::CreateExactLShr(Op0, N);
485 return BinaryOperator::CreateLShr(Op0, N);
486 }
487 }
488
489 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
490 // where C1&C2 are powers of two.
491 { Value *Cond; const APInt *C1, *C2;
492 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
493 // Construct the "on true" case of the select
494 Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
495 I.isExact());
496
497 // Construct the "on false" case of the select
498 Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
499 I.isExact());
500
501 // construct the select instruction and return it.
502 return SelectInst::Create(Cond, TSI, FSI);
503 }
504 }
505
506 // (zext A) udiv (zext B) --> zext (A udiv B)
507 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
508 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
509 return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
510 I.isExact()),
511 I.getType());
512
513 return 0;
514 }
515
visitSDiv(BinaryOperator & I)516 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
517 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
518
519 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
520 return ReplaceInstUsesWith(I, V);
521
522 // Handle the integer div common cases
523 if (Instruction *Common = commonIDivTransforms(I))
524 return Common;
525
526 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
527 // sdiv X, -1 == -X
528 if (RHS->isAllOnesValue())
529 return BinaryOperator::CreateNeg(Op0);
530
531 // sdiv X, C --> ashr exact X, log2(C)
532 if (I.isExact() && RHS->getValue().isNonNegative() &&
533 RHS->getValue().isPowerOf2()) {
534 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
535 RHS->getValue().exactLogBase2());
536 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
537 }
538
539 // -X/C --> X/-C provided the negation doesn't overflow.
540 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
541 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
542 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
543 ConstantExpr::getNeg(RHS));
544 }
545
546 // If the sign bits of both operands are zero (i.e. we can prove they are
547 // unsigned inputs), turn this into a udiv.
548 if (I.getType()->isIntegerTy()) {
549 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
550 if (MaskedValueIsZero(Op0, Mask)) {
551 if (MaskedValueIsZero(Op1, Mask)) {
552 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
553 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
554 }
555
556 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
557 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
558 // Safe because the only negative value (1 << Y) can take on is
559 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
560 // the sign bit set.
561 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
562 }
563 }
564 }
565
566 return 0;
567 }
568
visitFDiv(BinaryOperator & I)569 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
570 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
571
572 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
573 return ReplaceInstUsesWith(I, V);
574
575 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
576 const APFloat &Op1F = Op1C->getValueAPF();
577
578 // If the divisor has an exact multiplicative inverse we can turn the fdiv
579 // into a cheaper fmul.
580 APFloat Reciprocal(Op1F.getSemantics());
581 if (Op1F.getExactInverse(&Reciprocal)) {
582 ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
583 return BinaryOperator::CreateFMul(Op0, RFP);
584 }
585 }
586
587 return 0;
588 }
589
590 /// This function implements the transforms common to both integer remainder
591 /// instructions (urem and srem). It is called by the visitors to those integer
592 /// remainder instructions.
593 /// @brief Common integer remainder transforms
commonIRemTransforms(BinaryOperator & I)594 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
595 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
596
597 // The RHS is known non-zero.
598 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
599 I.setOperand(1, V);
600 return &I;
601 }
602
603 // Handle cases involving: rem X, (select Cond, Y, Z)
604 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
605 return &I;
606
607 if (isa<ConstantInt>(Op1)) {
608 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
609 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
610 if (Instruction *R = FoldOpIntoSelect(I, SI))
611 return R;
612 } else if (isa<PHINode>(Op0I)) {
613 if (Instruction *NV = FoldOpIntoPhi(I))
614 return NV;
615 }
616
617 // See if we can fold away this rem instruction.
618 if (SimplifyDemandedInstructionBits(I))
619 return &I;
620 }
621 }
622
623 return 0;
624 }
625
visitURem(BinaryOperator & I)626 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
627 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
628
629 if (Value *V = SimplifyURemInst(Op0, Op1, TD))
630 return ReplaceInstUsesWith(I, V);
631
632 if (Instruction *common = commonIRemTransforms(I))
633 return common;
634
635 // X urem C^2 -> X and C-1
636 { const APInt *C;
637 if (match(Op1, m_Power2(C)))
638 return BinaryOperator::CreateAnd(Op0,
639 ConstantInt::get(I.getType(), *C-1));
640 }
641
642 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
643 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
644 Constant *N1 = Constant::getAllOnesValue(I.getType());
645 Value *Add = Builder->CreateAdd(Op1, N1);
646 return BinaryOperator::CreateAnd(Op0, Add);
647 }
648
649 // urem X, (select Cond, 2^C1, 2^C2) -->
650 // select Cond, (and X, C1-1), (and X, C2-1)
651 // when C1&C2 are powers of two.
652 { Value *Cond; const APInt *C1, *C2;
653 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
654 Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
655 Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
656 return SelectInst::Create(Cond, TrueAnd, FalseAnd);
657 }
658 }
659
660 // (zext A) urem (zext B) --> zext (A urem B)
661 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
662 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
663 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
664 I.getType());
665
666 return 0;
667 }
668
visitSRem(BinaryOperator & I)669 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
670 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
671
672 if (Value *V = SimplifySRemInst(Op0, Op1, TD))
673 return ReplaceInstUsesWith(I, V);
674
675 // Handle the integer rem common cases
676 if (Instruction *Common = commonIRemTransforms(I))
677 return Common;
678
679 if (Value *RHSNeg = dyn_castNegVal(Op1))
680 if (!isa<Constant>(RHSNeg) ||
681 (isa<ConstantInt>(RHSNeg) &&
682 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
683 // X % -Y -> X % Y
684 Worklist.AddValue(I.getOperand(1));
685 I.setOperand(1, RHSNeg);
686 return &I;
687 }
688
689 // If the sign bits of both operands are zero (i.e. we can prove they are
690 // unsigned inputs), turn this into a urem.
691 if (I.getType()->isIntegerTy()) {
692 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
693 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
694 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
695 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
696 }
697 }
698
699 // If it's a constant vector, flip any negative values positive.
700 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
701 Constant *C = cast<Constant>(Op1);
702 unsigned VWidth = C->getType()->getVectorNumElements();
703
704 bool hasNegative = false;
705 bool hasMissing = false;
706 for (unsigned i = 0; i != VWidth; ++i) {
707 Constant *Elt = C->getAggregateElement(i);
708 if (Elt == 0) {
709 hasMissing = true;
710 break;
711 }
712
713 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
714 if (RHS->isNegative())
715 hasNegative = true;
716 }
717
718 if (hasNegative && !hasMissing) {
719 SmallVector<Constant *, 16> Elts(VWidth);
720 for (unsigned i = 0; i != VWidth; ++i) {
721 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
722 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
723 if (RHS->isNegative())
724 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
725 }
726 }
727
728 Constant *NewRHSV = ConstantVector::get(Elts);
729 if (NewRHSV != C) { // Don't loop on -MININT
730 Worklist.AddValue(I.getOperand(1));
731 I.setOperand(1, NewRHSV);
732 return &I;
733 }
734 }
735 }
736
737 return 0;
738 }
739
visitFRem(BinaryOperator & I)740 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
741 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
742
743 if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
744 return ReplaceInstUsesWith(I, V);
745
746 // Handle cases involving: rem X, (select Cond, Y, Z)
747 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
748 return &I;
749
750 return 0;
751 }
752