1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass statically checks for common and easily-identified constructs
11 // which produce undefined or likely unintended behavior in LLVM IR.
12 //
13 // It is not a guarantee of correctness, in two ways. First, it isn't
14 // comprehensive. There are checks which could be done statically which are
15 // not yet implemented. Some of these are indicated by TODO comments, but
16 // those aren't comprehensive either. Second, many conditions cannot be
17 // checked statically. This pass does no dynamic instrumentation, so it
18 // can't check for all possible problems.
19 //
20 // Another limitation is that it assumes all code will be executed. A store
21 // through a null pointer in a basic block which is never reached is harmless,
22 // but this pass will warn about it anyway. This is the main reason why most
23 // of these checks live here instead of in the Verifier pass.
24 //
25 // Optimization passes may make conditions that this pass checks for more or
26 // less obvious. If an optimization pass appears to be introducing a warning,
27 // it may be that the optimization pass is merely exposing an existing
28 // condition in the code.
29 //
30 // This code may be run before instcombine. In many cases, instcombine checks
31 // for the same kinds of things and turns instructions with undefined behavior
32 // into unreachable (or equivalent). Because of this, this pass makes some
33 // effort to look through bitcasts and so on.
34 //
35 //===----------------------------------------------------------------------===//
36
37 #include "llvm/Analysis/Passes.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/Analysis/InstructionSimplify.h"
40 #include "llvm/Analysis/ConstantFolding.h"
41 #include "llvm/Analysis/Dominators.h"
42 #include "llvm/Analysis/Lint.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/Assembly/Writer.h"
46 #include "llvm/Target/TargetData.h"
47 #include "llvm/Target/TargetLibraryInfo.h"
48 #include "llvm/Pass.h"
49 #include "llvm/PassManager.h"
50 #include "llvm/IntrinsicInst.h"
51 #include "llvm/Function.h"
52 #include "llvm/Support/CallSite.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/InstVisitor.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/ADT/STLExtras.h"
57 using namespace llvm;
58
59 namespace {
60 namespace MemRef {
61 static unsigned Read = 1;
62 static unsigned Write = 2;
63 static unsigned Callee = 4;
64 static unsigned Branchee = 8;
65 }
66
67 class Lint : public FunctionPass, public InstVisitor<Lint> {
68 friend class InstVisitor<Lint>;
69
70 void visitFunction(Function &F);
71
72 void visitCallSite(CallSite CS);
73 void visitMemoryReference(Instruction &I, Value *Ptr,
74 uint64_t Size, unsigned Align,
75 Type *Ty, unsigned Flags);
76
77 void visitCallInst(CallInst &I);
78 void visitInvokeInst(InvokeInst &I);
79 void visitReturnInst(ReturnInst &I);
80 void visitLoadInst(LoadInst &I);
81 void visitStoreInst(StoreInst &I);
82 void visitXor(BinaryOperator &I);
83 void visitSub(BinaryOperator &I);
84 void visitLShr(BinaryOperator &I);
85 void visitAShr(BinaryOperator &I);
86 void visitShl(BinaryOperator &I);
87 void visitSDiv(BinaryOperator &I);
88 void visitUDiv(BinaryOperator &I);
89 void visitSRem(BinaryOperator &I);
90 void visitURem(BinaryOperator &I);
91 void visitAllocaInst(AllocaInst &I);
92 void visitVAArgInst(VAArgInst &I);
93 void visitIndirectBrInst(IndirectBrInst &I);
94 void visitExtractElementInst(ExtractElementInst &I);
95 void visitInsertElementInst(InsertElementInst &I);
96 void visitUnreachableInst(UnreachableInst &I);
97
98 Value *findValue(Value *V, bool OffsetOk) const;
99 Value *findValueImpl(Value *V, bool OffsetOk,
100 SmallPtrSet<Value *, 4> &Visited) const;
101
102 public:
103 Module *Mod;
104 AliasAnalysis *AA;
105 DominatorTree *DT;
106 TargetData *TD;
107 TargetLibraryInfo *TLI;
108
109 std::string Messages;
110 raw_string_ostream MessagesStr;
111
112 static char ID; // Pass identification, replacement for typeid
Lint()113 Lint() : FunctionPass(ID), MessagesStr(Messages) {
114 initializeLintPass(*PassRegistry::getPassRegistry());
115 }
116
117 virtual bool runOnFunction(Function &F);
118
getAnalysisUsage(AnalysisUsage & AU) const119 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
120 AU.setPreservesAll();
121 AU.addRequired<AliasAnalysis>();
122 AU.addRequired<TargetLibraryInfo>();
123 AU.addRequired<DominatorTree>();
124 }
print(raw_ostream & O,const Module * M) const125 virtual void print(raw_ostream &O, const Module *M) const {}
126
WriteValue(const Value * V)127 void WriteValue(const Value *V) {
128 if (!V) return;
129 if (isa<Instruction>(V)) {
130 MessagesStr << *V << '\n';
131 } else {
132 WriteAsOperand(MessagesStr, V, true, Mod);
133 MessagesStr << '\n';
134 }
135 }
136
137 // CheckFailed - A check failed, so print out the condition and the message
138 // that failed. This provides a nice place to put a breakpoint if you want
139 // to see why something is not correct.
CheckFailed(const Twine & Message,const Value * V1=0,const Value * V2=0,const Value * V3=0,const Value * V4=0)140 void CheckFailed(const Twine &Message,
141 const Value *V1 = 0, const Value *V2 = 0,
142 const Value *V3 = 0, const Value *V4 = 0) {
143 MessagesStr << Message.str() << "\n";
144 WriteValue(V1);
145 WriteValue(V2);
146 WriteValue(V3);
147 WriteValue(V4);
148 }
149 };
150 }
151
152 char Lint::ID = 0;
153 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
154 false, true)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
156 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
157 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
158 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
159 false, true)
160
161 // Assert - We know that cond should be true, if not print an error message.
162 #define Assert(C, M) \
163 do { if (!(C)) { CheckFailed(M); return; } } while (0)
164 #define Assert1(C, M, V1) \
165 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
166 #define Assert2(C, M, V1, V2) \
167 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
168 #define Assert3(C, M, V1, V2, V3) \
169 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
170 #define Assert4(C, M, V1, V2, V3, V4) \
171 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
172
173 // Lint::run - This is the main Analysis entry point for a
174 // function.
175 //
176 bool Lint::runOnFunction(Function &F) {
177 Mod = F.getParent();
178 AA = &getAnalysis<AliasAnalysis>();
179 DT = &getAnalysis<DominatorTree>();
180 TD = getAnalysisIfAvailable<TargetData>();
181 TLI = &getAnalysis<TargetLibraryInfo>();
182 visit(F);
183 dbgs() << MessagesStr.str();
184 Messages.clear();
185 return false;
186 }
187
visitFunction(Function & F)188 void Lint::visitFunction(Function &F) {
189 // This isn't undefined behavior, it's just a little unusual, and it's a
190 // fairly common mistake to neglect to name a function.
191 Assert1(F.hasName() || F.hasLocalLinkage(),
192 "Unusual: Unnamed function with non-local linkage", &F);
193
194 // TODO: Check for irreducible control flow.
195 }
196
visitCallSite(CallSite CS)197 void Lint::visitCallSite(CallSite CS) {
198 Instruction &I = *CS.getInstruction();
199 Value *Callee = CS.getCalledValue();
200
201 visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
202 0, 0, MemRef::Callee);
203
204 if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
205 Assert1(CS.getCallingConv() == F->getCallingConv(),
206 "Undefined behavior: Caller and callee calling convention differ",
207 &I);
208
209 FunctionType *FT = F->getFunctionType();
210 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
211
212 Assert1(FT->isVarArg() ?
213 FT->getNumParams() <= NumActualArgs :
214 FT->getNumParams() == NumActualArgs,
215 "Undefined behavior: Call argument count mismatches callee "
216 "argument count", &I);
217
218 Assert1(FT->getReturnType() == I.getType(),
219 "Undefined behavior: Call return type mismatches "
220 "callee return type", &I);
221
222 // Check argument types (in case the callee was casted) and attributes.
223 // TODO: Verify that caller and callee attributes are compatible.
224 Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
225 CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
226 for (; AI != AE; ++AI) {
227 Value *Actual = *AI;
228 if (PI != PE) {
229 Argument *Formal = PI++;
230 Assert1(Formal->getType() == Actual->getType(),
231 "Undefined behavior: Call argument type mismatches "
232 "callee parameter type", &I);
233
234 // Check that noalias arguments don't alias other arguments. This is
235 // not fully precise because we don't know the sizes of the dereferenced
236 // memory regions.
237 if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
238 for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
239 if (AI != BI && (*BI)->getType()->isPointerTy()) {
240 AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
241 Assert1(Result != AliasAnalysis::MustAlias &&
242 Result != AliasAnalysis::PartialAlias,
243 "Unusual: noalias argument aliases another argument", &I);
244 }
245
246 // Check that an sret argument points to valid memory.
247 if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
248 Type *Ty =
249 cast<PointerType>(Formal->getType())->getElementType();
250 visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
251 TD ? TD->getABITypeAlignment(Ty) : 0,
252 Ty, MemRef::Read | MemRef::Write);
253 }
254 }
255 }
256 }
257
258 if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
259 for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
260 AI != AE; ++AI) {
261 Value *Obj = findValue(*AI, /*OffsetOk=*/true);
262 Assert1(!isa<AllocaInst>(Obj),
263 "Undefined behavior: Call with \"tail\" keyword references "
264 "alloca", &I);
265 }
266
267
268 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
269 switch (II->getIntrinsicID()) {
270 default: break;
271
272 // TODO: Check more intrinsics
273
274 case Intrinsic::memcpy: {
275 MemCpyInst *MCI = cast<MemCpyInst>(&I);
276 // TODO: If the size is known, use it.
277 visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
278 MCI->getAlignment(), 0,
279 MemRef::Write);
280 visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
281 MCI->getAlignment(), 0,
282 MemRef::Read);
283
284 // Check that the memcpy arguments don't overlap. The AliasAnalysis API
285 // isn't expressive enough for what we really want to do. Known partial
286 // overlap is not distinguished from the case where nothing is known.
287 uint64_t Size = 0;
288 if (const ConstantInt *Len =
289 dyn_cast<ConstantInt>(findValue(MCI->getLength(),
290 /*OffsetOk=*/false)))
291 if (Len->getValue().isIntN(32))
292 Size = Len->getValue().getZExtValue();
293 Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
294 AliasAnalysis::MustAlias,
295 "Undefined behavior: memcpy source and destination overlap", &I);
296 break;
297 }
298 case Intrinsic::memmove: {
299 MemMoveInst *MMI = cast<MemMoveInst>(&I);
300 // TODO: If the size is known, use it.
301 visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
302 MMI->getAlignment(), 0,
303 MemRef::Write);
304 visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
305 MMI->getAlignment(), 0,
306 MemRef::Read);
307 break;
308 }
309 case Intrinsic::memset: {
310 MemSetInst *MSI = cast<MemSetInst>(&I);
311 // TODO: If the size is known, use it.
312 visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
313 MSI->getAlignment(), 0,
314 MemRef::Write);
315 break;
316 }
317
318 case Intrinsic::vastart:
319 Assert1(I.getParent()->getParent()->isVarArg(),
320 "Undefined behavior: va_start called in a non-varargs function",
321 &I);
322
323 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
324 0, 0, MemRef::Read | MemRef::Write);
325 break;
326 case Intrinsic::vacopy:
327 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
328 0, 0, MemRef::Write);
329 visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
330 0, 0, MemRef::Read);
331 break;
332 case Intrinsic::vaend:
333 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
334 0, 0, MemRef::Read | MemRef::Write);
335 break;
336
337 case Intrinsic::stackrestore:
338 // Stackrestore doesn't read or write memory, but it sets the
339 // stack pointer, which the compiler may read from or write to
340 // at any time, so check it for both readability and writeability.
341 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
342 0, 0, MemRef::Read | MemRef::Write);
343 break;
344 }
345 }
346
visitCallInst(CallInst & I)347 void Lint::visitCallInst(CallInst &I) {
348 return visitCallSite(&I);
349 }
350
visitInvokeInst(InvokeInst & I)351 void Lint::visitInvokeInst(InvokeInst &I) {
352 return visitCallSite(&I);
353 }
354
visitReturnInst(ReturnInst & I)355 void Lint::visitReturnInst(ReturnInst &I) {
356 Function *F = I.getParent()->getParent();
357 Assert1(!F->doesNotReturn(),
358 "Unusual: Return statement in function with noreturn attribute",
359 &I);
360
361 if (Value *V = I.getReturnValue()) {
362 Value *Obj = findValue(V, /*OffsetOk=*/true);
363 Assert1(!isa<AllocaInst>(Obj),
364 "Unusual: Returning alloca value", &I);
365 }
366 }
367
368 // TODO: Check that the reference is in bounds.
369 // TODO: Check readnone/readonly function attributes.
visitMemoryReference(Instruction & I,Value * Ptr,uint64_t Size,unsigned Align,Type * Ty,unsigned Flags)370 void Lint::visitMemoryReference(Instruction &I,
371 Value *Ptr, uint64_t Size, unsigned Align,
372 Type *Ty, unsigned Flags) {
373 // If no memory is being referenced, it doesn't matter if the pointer
374 // is valid.
375 if (Size == 0)
376 return;
377
378 Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
379 Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
380 "Undefined behavior: Null pointer dereference", &I);
381 Assert1(!isa<UndefValue>(UnderlyingObject),
382 "Undefined behavior: Undef pointer dereference", &I);
383 Assert1(!isa<ConstantInt>(UnderlyingObject) ||
384 !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
385 "Unusual: All-ones pointer dereference", &I);
386 Assert1(!isa<ConstantInt>(UnderlyingObject) ||
387 !cast<ConstantInt>(UnderlyingObject)->isOne(),
388 "Unusual: Address one pointer dereference", &I);
389
390 if (Flags & MemRef::Write) {
391 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
392 Assert1(!GV->isConstant(),
393 "Undefined behavior: Write to read-only memory", &I);
394 Assert1(!isa<Function>(UnderlyingObject) &&
395 !isa<BlockAddress>(UnderlyingObject),
396 "Undefined behavior: Write to text section", &I);
397 }
398 if (Flags & MemRef::Read) {
399 Assert1(!isa<Function>(UnderlyingObject),
400 "Unusual: Load from function body", &I);
401 Assert1(!isa<BlockAddress>(UnderlyingObject),
402 "Undefined behavior: Load from block address", &I);
403 }
404 if (Flags & MemRef::Callee) {
405 Assert1(!isa<BlockAddress>(UnderlyingObject),
406 "Undefined behavior: Call to block address", &I);
407 }
408 if (Flags & MemRef::Branchee) {
409 Assert1(!isa<Constant>(UnderlyingObject) ||
410 isa<BlockAddress>(UnderlyingObject),
411 "Undefined behavior: Branch to non-blockaddress", &I);
412 }
413
414 if (TD) {
415 if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty);
416
417 if (Align != 0) {
418 unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType());
419 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
420 ComputeMaskedBits(Ptr, KnownZero, KnownOne, TD);
421 Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))),
422 "Undefined behavior: Memory reference address is misaligned", &I);
423 }
424 }
425 }
426
visitLoadInst(LoadInst & I)427 void Lint::visitLoadInst(LoadInst &I) {
428 visitMemoryReference(I, I.getPointerOperand(),
429 AA->getTypeStoreSize(I.getType()), I.getAlignment(),
430 I.getType(), MemRef::Read);
431 }
432
visitStoreInst(StoreInst & I)433 void Lint::visitStoreInst(StoreInst &I) {
434 visitMemoryReference(I, I.getPointerOperand(),
435 AA->getTypeStoreSize(I.getOperand(0)->getType()),
436 I.getAlignment(),
437 I.getOperand(0)->getType(), MemRef::Write);
438 }
439
visitXor(BinaryOperator & I)440 void Lint::visitXor(BinaryOperator &I) {
441 Assert1(!isa<UndefValue>(I.getOperand(0)) ||
442 !isa<UndefValue>(I.getOperand(1)),
443 "Undefined result: xor(undef, undef)", &I);
444 }
445
visitSub(BinaryOperator & I)446 void Lint::visitSub(BinaryOperator &I) {
447 Assert1(!isa<UndefValue>(I.getOperand(0)) ||
448 !isa<UndefValue>(I.getOperand(1)),
449 "Undefined result: sub(undef, undef)", &I);
450 }
451
visitLShr(BinaryOperator & I)452 void Lint::visitLShr(BinaryOperator &I) {
453 if (ConstantInt *CI =
454 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
455 Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
456 "Undefined result: Shift count out of range", &I);
457 }
458
visitAShr(BinaryOperator & I)459 void Lint::visitAShr(BinaryOperator &I) {
460 if (ConstantInt *CI =
461 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
462 Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
463 "Undefined result: Shift count out of range", &I);
464 }
465
visitShl(BinaryOperator & I)466 void Lint::visitShl(BinaryOperator &I) {
467 if (ConstantInt *CI =
468 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
469 Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
470 "Undefined result: Shift count out of range", &I);
471 }
472
isZero(Value * V,TargetData * TD)473 static bool isZero(Value *V, TargetData *TD) {
474 // Assume undef could be zero.
475 if (isa<UndefValue>(V)) return true;
476
477 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
478 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
479 ComputeMaskedBits(V, KnownZero, KnownOne, TD);
480 return KnownZero.isAllOnesValue();
481 }
482
visitSDiv(BinaryOperator & I)483 void Lint::visitSDiv(BinaryOperator &I) {
484 Assert1(!isZero(I.getOperand(1), TD),
485 "Undefined behavior: Division by zero", &I);
486 }
487
visitUDiv(BinaryOperator & I)488 void Lint::visitUDiv(BinaryOperator &I) {
489 Assert1(!isZero(I.getOperand(1), TD),
490 "Undefined behavior: Division by zero", &I);
491 }
492
visitSRem(BinaryOperator & I)493 void Lint::visitSRem(BinaryOperator &I) {
494 Assert1(!isZero(I.getOperand(1), TD),
495 "Undefined behavior: Division by zero", &I);
496 }
497
visitURem(BinaryOperator & I)498 void Lint::visitURem(BinaryOperator &I) {
499 Assert1(!isZero(I.getOperand(1), TD),
500 "Undefined behavior: Division by zero", &I);
501 }
502
visitAllocaInst(AllocaInst & I)503 void Lint::visitAllocaInst(AllocaInst &I) {
504 if (isa<ConstantInt>(I.getArraySize()))
505 // This isn't undefined behavior, it's just an obvious pessimization.
506 Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
507 "Pessimization: Static alloca outside of entry block", &I);
508
509 // TODO: Check for an unusual size (MSB set?)
510 }
511
visitVAArgInst(VAArgInst & I)512 void Lint::visitVAArgInst(VAArgInst &I) {
513 visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
514 MemRef::Read | MemRef::Write);
515 }
516
visitIndirectBrInst(IndirectBrInst & I)517 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
518 visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
519 MemRef::Branchee);
520
521 Assert1(I.getNumDestinations() != 0,
522 "Undefined behavior: indirectbr with no destinations", &I);
523 }
524
visitExtractElementInst(ExtractElementInst & I)525 void Lint::visitExtractElementInst(ExtractElementInst &I) {
526 if (ConstantInt *CI =
527 dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
528 /*OffsetOk=*/false)))
529 Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
530 "Undefined result: extractelement index out of range", &I);
531 }
532
visitInsertElementInst(InsertElementInst & I)533 void Lint::visitInsertElementInst(InsertElementInst &I) {
534 if (ConstantInt *CI =
535 dyn_cast<ConstantInt>(findValue(I.getOperand(2),
536 /*OffsetOk=*/false)))
537 Assert1(CI->getValue().ult(I.getType()->getNumElements()),
538 "Undefined result: insertelement index out of range", &I);
539 }
540
visitUnreachableInst(UnreachableInst & I)541 void Lint::visitUnreachableInst(UnreachableInst &I) {
542 // This isn't undefined behavior, it's merely suspicious.
543 Assert1(&I == I.getParent()->begin() ||
544 prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
545 "Unusual: unreachable immediately preceded by instruction without "
546 "side effects", &I);
547 }
548
549 /// findValue - Look through bitcasts and simple memory reference patterns
550 /// to identify an equivalent, but more informative, value. If OffsetOk
551 /// is true, look through getelementptrs with non-zero offsets too.
552 ///
553 /// Most analysis passes don't require this logic, because instcombine
554 /// will simplify most of these kinds of things away. But it's a goal of
555 /// this Lint pass to be useful even on non-optimized IR.
findValue(Value * V,bool OffsetOk) const556 Value *Lint::findValue(Value *V, bool OffsetOk) const {
557 SmallPtrSet<Value *, 4> Visited;
558 return findValueImpl(V, OffsetOk, Visited);
559 }
560
561 /// findValueImpl - Implementation helper for findValue.
findValueImpl(Value * V,bool OffsetOk,SmallPtrSet<Value *,4> & Visited) const562 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
563 SmallPtrSet<Value *, 4> &Visited) const {
564 // Detect self-referential values.
565 if (!Visited.insert(V))
566 return UndefValue::get(V->getType());
567
568 // TODO: Look through sext or zext cast, when the result is known to
569 // be interpreted as signed or unsigned, respectively.
570 // TODO: Look through eliminable cast pairs.
571 // TODO: Look through calls with unique return values.
572 // TODO: Look through vector insert/extract/shuffle.
573 V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
574 if (LoadInst *L = dyn_cast<LoadInst>(V)) {
575 BasicBlock::iterator BBI = L;
576 BasicBlock *BB = L->getParent();
577 SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
578 for (;;) {
579 if (!VisitedBlocks.insert(BB)) break;
580 if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
581 BB, BBI, 6, AA))
582 return findValueImpl(U, OffsetOk, Visited);
583 if (BBI != BB->begin()) break;
584 BB = BB->getUniquePredecessor();
585 if (!BB) break;
586 BBI = BB->end();
587 }
588 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
589 if (Value *W = PN->hasConstantValue())
590 if (W != V)
591 return findValueImpl(W, OffsetOk, Visited);
592 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
593 if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
594 Type::getInt64Ty(V->getContext())))
595 return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
596 } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
597 if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
598 Ex->getIndices()))
599 if (W != V)
600 return findValueImpl(W, OffsetOk, Visited);
601 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
602 // Same as above, but for ConstantExpr instead of Instruction.
603 if (Instruction::isCast(CE->getOpcode())) {
604 if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
605 CE->getOperand(0)->getType(),
606 CE->getType(),
607 TD ? TD->getIntPtrType(V->getContext()) :
608 Type::getInt64Ty(V->getContext())))
609 return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
610 } else if (CE->getOpcode() == Instruction::ExtractValue) {
611 ArrayRef<unsigned> Indices = CE->getIndices();
612 if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
613 if (W != V)
614 return findValueImpl(W, OffsetOk, Visited);
615 }
616 }
617
618 // As a last resort, try SimplifyInstruction or constant folding.
619 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
620 if (Value *W = SimplifyInstruction(Inst, TD, TLI, DT))
621 return findValueImpl(W, OffsetOk, Visited);
622 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
623 if (Value *W = ConstantFoldConstantExpression(CE, TD, TLI))
624 if (W != V)
625 return findValueImpl(W, OffsetOk, Visited);
626 }
627
628 return V;
629 }
630
631 //===----------------------------------------------------------------------===//
632 // Implement the public interfaces to this file...
633 //===----------------------------------------------------------------------===//
634
createLintPass()635 FunctionPass *llvm::createLintPass() {
636 return new Lint();
637 }
638
639 /// lintFunction - Check a function for errors, printing messages on stderr.
640 ///
lintFunction(const Function & f)641 void llvm::lintFunction(const Function &f) {
642 Function &F = const_cast<Function&>(f);
643 assert(!F.isDeclaration() && "Cannot lint external functions");
644
645 FunctionPassManager FPM(F.getParent());
646 Lint *V = new Lint();
647 FPM.add(V);
648 FPM.run(F);
649 }
650
651 /// lintModule - Check a module for errors, printing messages on stderr.
652 ///
lintModule(const Module & M)653 void llvm::lintModule(const Module &M) {
654 PassManager PM;
655 Lint *V = new Lint();
656 PM.add(V);
657 PM.run(const_cast<Module&>(M));
658 }
659