1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines simple local analyses for load instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/Loads.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/Operator.h"
22 using namespace llvm;
23
24 /// AreEquivalentAddressValues - Test if A and B will obviously have the same
25 /// value. This includes recognizing that %t0 and %t1 will have the same
26 /// value in code like this:
27 /// %t0 = getelementptr \@a, 0, 3
28 /// store i32 0, i32* %t0
29 /// %t1 = getelementptr \@a, 0, 3
30 /// %t2 = load i32* %t1
31 ///
AreEquivalentAddressValues(const Value * A,const Value * B)32 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
33 // Test if the values are trivially equivalent.
34 if (A == B) return true;
35
36 // Test if the values come from identical arithmetic instructions.
37 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
38 // this function is only used when one address use dominates the
39 // other, which means that they'll always either have the same
40 // value or one of them will have an undefined value.
41 if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
42 isa<PHINode>(A) || isa<GetElementPtrInst>(A))
43 if (const Instruction *BI = dyn_cast<Instruction>(B))
44 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
45 return true;
46
47 // Otherwise they may not be equivalent.
48 return false;
49 }
50
51 /// getUnderlyingObjectWithOffset - Strip off up to MaxLookup GEPs and
52 /// bitcasts to get back to the underlying object being addressed, keeping
53 /// track of the offset in bytes from the GEPs relative to the result.
54 /// This is closely related to GetUnderlyingObject but is located
55 /// here to avoid making VMCore depend on TargetData.
getUnderlyingObjectWithOffset(Value * V,const TargetData * TD,uint64_t & ByteOffset,unsigned MaxLookup=6)56 static Value *getUnderlyingObjectWithOffset(Value *V, const TargetData *TD,
57 uint64_t &ByteOffset,
58 unsigned MaxLookup = 6) {
59 if (!V->getType()->isPointerTy())
60 return V;
61 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
62 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
63 if (!GEP->hasAllConstantIndices())
64 return V;
65 SmallVector<Value*, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
66 ByteOffset += TD->getIndexedOffset(GEP->getPointerOperandType(),
67 Indices);
68 V = GEP->getPointerOperand();
69 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
70 V = cast<Operator>(V)->getOperand(0);
71 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
72 if (GA->mayBeOverridden())
73 return V;
74 V = GA->getAliasee();
75 } else {
76 return V;
77 }
78 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
79 }
80 return V;
81 }
82
83 /// isSafeToLoadUnconditionally - Return true if we know that executing a load
84 /// from this value cannot trap. If it is not obviously safe to load from the
85 /// specified pointer, we do a quick local scan of the basic block containing
86 /// ScanFrom, to determine if the address is already accessed.
isSafeToLoadUnconditionally(Value * V,Instruction * ScanFrom,unsigned Align,const TargetData * TD)87 bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
88 unsigned Align, const TargetData *TD) {
89 uint64_t ByteOffset = 0;
90 Value *Base = V;
91 if (TD)
92 Base = getUnderlyingObjectWithOffset(V, TD, ByteOffset);
93
94 Type *BaseType = 0;
95 unsigned BaseAlign = 0;
96 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
97 // An alloca is safe to load from as load as it is suitably aligned.
98 BaseType = AI->getAllocatedType();
99 BaseAlign = AI->getAlignment();
100 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(Base)) {
101 // Global variables are safe to load from but their size cannot be
102 // guaranteed if they are overridden.
103 if (!isa<GlobalAlias>(GV) && !GV->mayBeOverridden()) {
104 BaseType = GV->getType()->getElementType();
105 BaseAlign = GV->getAlignment();
106 }
107 }
108
109 if (BaseType && BaseType->isSized()) {
110 if (TD && BaseAlign == 0)
111 BaseAlign = TD->getPrefTypeAlignment(BaseType);
112
113 if (Align <= BaseAlign) {
114 if (!TD)
115 return true; // Loading directly from an alloca or global is OK.
116
117 // Check if the load is within the bounds of the underlying object.
118 PointerType *AddrTy = cast<PointerType>(V->getType());
119 uint64_t LoadSize = TD->getTypeStoreSize(AddrTy->getElementType());
120 if (ByteOffset + LoadSize <= TD->getTypeAllocSize(BaseType) &&
121 (Align == 0 || (ByteOffset % Align) == 0))
122 return true;
123 }
124 }
125
126 // Otherwise, be a little bit aggressive by scanning the local block where we
127 // want to check to see if the pointer is already being loaded or stored
128 // from/to. If so, the previous load or store would have already trapped,
129 // so there is no harm doing an extra load (also, CSE will later eliminate
130 // the load entirely).
131 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
132
133 while (BBI != E) {
134 --BBI;
135
136 // If we see a free or a call which may write to memory (i.e. which might do
137 // a free) the pointer could be marked invalid.
138 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
139 !isa<DbgInfoIntrinsic>(BBI))
140 return false;
141
142 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
143 if (AreEquivalentAddressValues(LI->getOperand(0), V)) return true;
144 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
145 if (AreEquivalentAddressValues(SI->getOperand(1), V)) return true;
146 }
147 }
148 return false;
149 }
150
151 /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
152 /// instruction before ScanFrom) checking to see if we have the value at the
153 /// memory address *Ptr locally available within a small number of instructions.
154 /// If the value is available, return it.
155 ///
156 /// If not, return the iterator for the last validated instruction that the
157 /// value would be live through. If we scanned the entire block and didn't find
158 /// something that invalidates *Ptr or provides it, ScanFrom would be left at
159 /// begin() and this returns null. ScanFrom could also be left
160 ///
161 /// MaxInstsToScan specifies the maximum instructions to scan in the block. If
162 /// it is set to 0, it will scan the whole block. You can also optionally
163 /// specify an alias analysis implementation, which makes this more precise.
164 ///
165 /// If TBAATag is non-null and a load or store is found, the TBAA tag from the
166 /// load or store is recorded there. If there is no TBAA tag or if no access
167 /// is found, it is left unmodified.
FindAvailableLoadedValue(Value * Ptr,BasicBlock * ScanBB,BasicBlock::iterator & ScanFrom,unsigned MaxInstsToScan,AliasAnalysis * AA,MDNode ** TBAATag)168 Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
169 BasicBlock::iterator &ScanFrom,
170 unsigned MaxInstsToScan,
171 AliasAnalysis *AA,
172 MDNode **TBAATag) {
173 if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
174
175 // If we're using alias analysis to disambiguate get the size of *Ptr.
176 uint64_t AccessSize = 0;
177 if (AA) {
178 Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
179 AccessSize = AA->getTypeStoreSize(AccessTy);
180 }
181
182 while (ScanFrom != ScanBB->begin()) {
183 // We must ignore debug info directives when counting (otherwise they
184 // would affect codegen).
185 Instruction *Inst = --ScanFrom;
186 if (isa<DbgInfoIntrinsic>(Inst))
187 continue;
188
189 // Restore ScanFrom to expected value in case next test succeeds
190 ScanFrom++;
191
192 // Don't scan huge blocks.
193 if (MaxInstsToScan-- == 0) return 0;
194
195 --ScanFrom;
196 // If this is a load of Ptr, the loaded value is available.
197 // (This is true even if the load is volatile or atomic, although
198 // those cases are unlikely.)
199 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
200 if (AreEquivalentAddressValues(LI->getOperand(0), Ptr)) {
201 if (TBAATag) *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
202 return LI;
203 }
204
205 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
206 // If this is a store through Ptr, the value is available!
207 // (This is true even if the store is volatile or atomic, although
208 // those cases are unlikely.)
209 if (AreEquivalentAddressValues(SI->getOperand(1), Ptr)) {
210 if (TBAATag) *TBAATag = SI->getMetadata(LLVMContext::MD_tbaa);
211 return SI->getOperand(0);
212 }
213
214 // If Ptr is an alloca and this is a store to a different alloca, ignore
215 // the store. This is a trivial form of alias analysis that is important
216 // for reg2mem'd code.
217 if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
218 (isa<AllocaInst>(SI->getOperand(1)) ||
219 isa<GlobalVariable>(SI->getOperand(1))))
220 continue;
221
222 // If we have alias analysis and it says the store won't modify the loaded
223 // value, ignore the store.
224 if (AA &&
225 (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
226 continue;
227
228 // Otherwise the store that may or may not alias the pointer, bail out.
229 ++ScanFrom;
230 return 0;
231 }
232
233 // If this is some other instruction that may clobber Ptr, bail out.
234 if (Inst->mayWriteToMemory()) {
235 // If alias analysis claims that it really won't modify the load,
236 // ignore it.
237 if (AA &&
238 (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
239 continue;
240
241 // May modify the pointer, bail out.
242 ++ScanFrom;
243 return 0;
244 }
245 }
246
247 // Got to the start of the block, we didn't find it, but are done for this
248 // block.
249 return 0;
250 }
251