1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // A hash is computed from the function, based on its type and number of
13 // basic blocks.
14 //
15 // Once all hashes are computed, we perform an expensive equality comparison
16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
17 // important that the hash function be high quality. The equality comparison
18 // iterates through each instruction in each basic block.
19 //
20 // When a match is found the functions are folded. If both functions are
21 // overridable, we move the functionality into a new internal function and
22 // leave two overridable thunks to it.
23 //
24 //===----------------------------------------------------------------------===//
25 //
26 // Future work:
27 //
28 // * virtual functions.
29 //
30 // Many functions have their address taken by the virtual function table for
31 // the object they belong to. However, as long as it's only used for a lookup
32 // and call, this is irrelevant, and we'd like to fold such functions.
33 //
34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
35 // bucket.
36 //
37 // * be smarter about bitcasts.
38 //
39 // In order to fold functions, we will sometimes add either bitcast instructions
40 // or bitcast constant expressions. Unfortunately, this can confound further
41 // analysis since the two functions differ where one has a bitcast and the
42 // other doesn't. We should learn to look through bitcasts.
43 //
44 //===----------------------------------------------------------------------===//
45
46 #define DEBUG_TYPE "mergefunc"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/Constants.h"
49 #include "llvm/IRBuilder.h"
50 #include "llvm/InlineAsm.h"
51 #include "llvm/Instructions.h"
52 #include "llvm/LLVMContext.h"
53 #include "llvm/Module.h"
54 #include "llvm/Operator.h"
55 #include "llvm/Pass.h"
56 #include "llvm/ADT/DenseSet.h"
57 #include "llvm/ADT/FoldingSet.h"
58 #include "llvm/ADT/STLExtras.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/Support/CallSite.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/ValueHandle.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetData.h"
67 #include <vector>
68 using namespace llvm;
69
70 STATISTIC(NumFunctionsMerged, "Number of functions merged");
71 STATISTIC(NumThunksWritten, "Number of thunks generated");
72 STATISTIC(NumAliasesWritten, "Number of aliases generated");
73 STATISTIC(NumDoubleWeak, "Number of new functions created");
74
75 /// Creates a hash-code for the function which is the same for any two
76 /// functions that will compare equal, without looking at the instructions
77 /// inside the function.
profileFunction(const Function * F)78 static unsigned profileFunction(const Function *F) {
79 FunctionType *FTy = F->getFunctionType();
80
81 FoldingSetNodeID ID;
82 ID.AddInteger(F->size());
83 ID.AddInteger(F->getCallingConv());
84 ID.AddBoolean(F->hasGC());
85 ID.AddBoolean(FTy->isVarArg());
86 ID.AddInteger(FTy->getReturnType()->getTypeID());
87 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
88 ID.AddInteger(FTy->getParamType(i)->getTypeID());
89 return ID.ComputeHash();
90 }
91
92 namespace {
93
94 /// ComparableFunction - A struct that pairs together functions with a
95 /// TargetData so that we can keep them together as elements in the DenseSet.
96 class ComparableFunction {
97 public:
98 static const ComparableFunction EmptyKey;
99 static const ComparableFunction TombstoneKey;
100 static TargetData * const LookupOnly;
101
ComparableFunction(Function * Func,TargetData * TD)102 ComparableFunction(Function *Func, TargetData *TD)
103 : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
104
getFunc() const105 Function *getFunc() const { return Func; }
getHash() const106 unsigned getHash() const { return Hash; }
getTD() const107 TargetData *getTD() const { return TD; }
108
109 // Drops AssertingVH reference to the function. Outside of debug mode, this
110 // does nothing.
release()111 void release() {
112 assert(Func &&
113 "Attempted to release function twice, or release empty/tombstone!");
114 Func = NULL;
115 }
116
117 private:
ComparableFunction(unsigned Hash)118 explicit ComparableFunction(unsigned Hash)
119 : Func(NULL), Hash(Hash), TD(NULL) {}
120
121 AssertingVH<Function> Func;
122 unsigned Hash;
123 TargetData *TD;
124 };
125
126 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
127 const ComparableFunction ComparableFunction::TombstoneKey =
128 ComparableFunction(1);
129 TargetData *const ComparableFunction::LookupOnly = (TargetData*)(-1);
130
131 }
132
133 namespace llvm {
134 template <>
135 struct DenseMapInfo<ComparableFunction> {
getEmptyKeyllvm::DenseMapInfo136 static ComparableFunction getEmptyKey() {
137 return ComparableFunction::EmptyKey;
138 }
getTombstoneKeyllvm::DenseMapInfo139 static ComparableFunction getTombstoneKey() {
140 return ComparableFunction::TombstoneKey;
141 }
getHashValuellvm::DenseMapInfo142 static unsigned getHashValue(const ComparableFunction &CF) {
143 return CF.getHash();
144 }
145 static bool isEqual(const ComparableFunction &LHS,
146 const ComparableFunction &RHS);
147 };
148 }
149
150 namespace {
151
152 /// FunctionComparator - Compares two functions to determine whether or not
153 /// they will generate machine code with the same behaviour. TargetData is
154 /// used if available. The comparator always fails conservatively (erring on the
155 /// side of claiming that two functions are different).
156 class FunctionComparator {
157 public:
FunctionComparator(const TargetData * TD,const Function * F1,const Function * F2)158 FunctionComparator(const TargetData *TD, const Function *F1,
159 const Function *F2)
160 : F1(F1), F2(F2), TD(TD) {}
161
162 /// Test whether the two functions have equivalent behaviour.
163 bool compare();
164
165 private:
166 /// Test whether two basic blocks have equivalent behaviour.
167 bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
168
169 /// Assign or look up previously assigned numbers for the two values, and
170 /// return whether the numbers are equal. Numbers are assigned in the order
171 /// visited.
172 bool enumerate(const Value *V1, const Value *V2);
173
174 /// Compare two Instructions for equivalence, similar to
175 /// Instruction::isSameOperationAs but with modifications to the type
176 /// comparison.
177 bool isEquivalentOperation(const Instruction *I1,
178 const Instruction *I2) const;
179
180 /// Compare two GEPs for equivalent pointer arithmetic.
181 bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
isEquivalentGEP(const GetElementPtrInst * GEP1,const GetElementPtrInst * GEP2)182 bool isEquivalentGEP(const GetElementPtrInst *GEP1,
183 const GetElementPtrInst *GEP2) {
184 return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
185 }
186
187 /// Compare two Types, treating all pointer types as equal.
188 bool isEquivalentType(Type *Ty1, Type *Ty2) const;
189
190 // The two functions undergoing comparison.
191 const Function *F1, *F2;
192
193 const TargetData *TD;
194
195 DenseMap<const Value *, const Value *> id_map;
196 DenseSet<const Value *> seen_values;
197 };
198
199 }
200
201 // Any two pointers in the same address space are equivalent, intptr_t and
202 // pointers are equivalent. Otherwise, standard type equivalence rules apply.
isEquivalentType(Type * Ty1,Type * Ty2) const203 bool FunctionComparator::isEquivalentType(Type *Ty1,
204 Type *Ty2) const {
205 if (Ty1 == Ty2)
206 return true;
207 if (Ty1->getTypeID() != Ty2->getTypeID()) {
208 if (TD) {
209 LLVMContext &Ctx = Ty1->getContext();
210 if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
211 if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
212 }
213 return false;
214 }
215
216 switch (Ty1->getTypeID()) {
217 default:
218 llvm_unreachable("Unknown type!");
219 // Fall through in Release mode.
220 case Type::IntegerTyID:
221 case Type::VectorTyID:
222 // Ty1 == Ty2 would have returned true earlier.
223 return false;
224
225 case Type::VoidTyID:
226 case Type::FloatTyID:
227 case Type::DoubleTyID:
228 case Type::X86_FP80TyID:
229 case Type::FP128TyID:
230 case Type::PPC_FP128TyID:
231 case Type::LabelTyID:
232 case Type::MetadataTyID:
233 return true;
234
235 case Type::PointerTyID: {
236 PointerType *PTy1 = cast<PointerType>(Ty1);
237 PointerType *PTy2 = cast<PointerType>(Ty2);
238 return PTy1->getAddressSpace() == PTy2->getAddressSpace();
239 }
240
241 case Type::StructTyID: {
242 StructType *STy1 = cast<StructType>(Ty1);
243 StructType *STy2 = cast<StructType>(Ty2);
244 if (STy1->getNumElements() != STy2->getNumElements())
245 return false;
246
247 if (STy1->isPacked() != STy2->isPacked())
248 return false;
249
250 for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
251 if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
252 return false;
253 }
254 return true;
255 }
256
257 case Type::FunctionTyID: {
258 FunctionType *FTy1 = cast<FunctionType>(Ty1);
259 FunctionType *FTy2 = cast<FunctionType>(Ty2);
260 if (FTy1->getNumParams() != FTy2->getNumParams() ||
261 FTy1->isVarArg() != FTy2->isVarArg())
262 return false;
263
264 if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
265 return false;
266
267 for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
268 if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
269 return false;
270 }
271 return true;
272 }
273
274 case Type::ArrayTyID: {
275 ArrayType *ATy1 = cast<ArrayType>(Ty1);
276 ArrayType *ATy2 = cast<ArrayType>(Ty2);
277 return ATy1->getNumElements() == ATy2->getNumElements() &&
278 isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
279 }
280 }
281 }
282
283 // Determine whether the two operations are the same except that pointer-to-A
284 // and pointer-to-B are equivalent. This should be kept in sync with
285 // Instruction::isSameOperationAs.
isEquivalentOperation(const Instruction * I1,const Instruction * I2) const286 bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
287 const Instruction *I2) const {
288 // Differences from Instruction::isSameOperationAs:
289 // * replace type comparison with calls to isEquivalentType.
290 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
291 // * because of the above, we don't test for the tail bit on calls later on
292 if (I1->getOpcode() != I2->getOpcode() ||
293 I1->getNumOperands() != I2->getNumOperands() ||
294 !isEquivalentType(I1->getType(), I2->getType()) ||
295 !I1->hasSameSubclassOptionalData(I2))
296 return false;
297
298 // We have two instructions of identical opcode and #operands. Check to see
299 // if all operands are the same type
300 for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
301 if (!isEquivalentType(I1->getOperand(i)->getType(),
302 I2->getOperand(i)->getType()))
303 return false;
304
305 // Check special state that is a part of some instructions.
306 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
307 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
308 LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
309 LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
310 LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
311 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
312 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
313 SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
314 SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
315 SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
316 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
317 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
318 if (const CallInst *CI = dyn_cast<CallInst>(I1))
319 return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
320 CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
321 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
322 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
323 CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
324 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
325 return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
326 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
327 return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
328 if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
329 return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
330 FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
331 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
332 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
333 CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
334 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
335 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
336 return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
337 RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
338 RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
339 RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
340
341 return true;
342 }
343
344 // Determine whether two GEP operations perform the same underlying arithmetic.
isEquivalentGEP(const GEPOperator * GEP1,const GEPOperator * GEP2)345 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
346 const GEPOperator *GEP2) {
347 // When we have target data, we can reduce the GEP down to the value in bytes
348 // added to the address.
349 if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
350 SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
351 SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
352 uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
353 Indices1);
354 uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
355 Indices2);
356 return Offset1 == Offset2;
357 }
358
359 if (GEP1->getPointerOperand()->getType() !=
360 GEP2->getPointerOperand()->getType())
361 return false;
362
363 if (GEP1->getNumOperands() != GEP2->getNumOperands())
364 return false;
365
366 for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
367 if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
368 return false;
369 }
370
371 return true;
372 }
373
374 // Compare two values used by the two functions under pair-wise comparison. If
375 // this is the first time the values are seen, they're added to the mapping so
376 // that we will detect mismatches on next use.
enumerate(const Value * V1,const Value * V2)377 bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
378 // Check for function @f1 referring to itself and function @f2 referring to
379 // itself, or referring to each other, or both referring to either of them.
380 // They're all equivalent if the two functions are otherwise equivalent.
381 if (V1 == F1 && V2 == F2)
382 return true;
383 if (V1 == F2 && V2 == F1)
384 return true;
385
386 if (const Constant *C1 = dyn_cast<Constant>(V1)) {
387 if (V1 == V2) return true;
388 const Constant *C2 = dyn_cast<Constant>(V2);
389 if (!C2) return false;
390 // TODO: constant expressions with GEP or references to F1 or F2.
391 if (C1->isNullValue() && C2->isNullValue() &&
392 isEquivalentType(C1->getType(), C2->getType()))
393 return true;
394 // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
395 // then they must have equal bit patterns.
396 return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
397 C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
398 }
399
400 if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
401 return V1 == V2;
402
403 // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
404 // check whether it's equal to V2. When there is no mapping then we need to
405 // ensure that V2 isn't already equivalent to something else. For this
406 // purpose, we track the V2 values in a set.
407
408 const Value *&map_elem = id_map[V1];
409 if (map_elem)
410 return map_elem == V2;
411 if (!seen_values.insert(V2).second)
412 return false;
413 map_elem = V2;
414 return true;
415 }
416
417 // Test whether two basic blocks have equivalent behaviour.
compare(const BasicBlock * BB1,const BasicBlock * BB2)418 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
419 BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
420 BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
421
422 do {
423 if (!enumerate(F1I, F2I))
424 return false;
425
426 if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
427 const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
428 if (!GEP2)
429 return false;
430
431 if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
432 return false;
433
434 if (!isEquivalentGEP(GEP1, GEP2))
435 return false;
436 } else {
437 if (!isEquivalentOperation(F1I, F2I))
438 return false;
439
440 assert(F1I->getNumOperands() == F2I->getNumOperands());
441 for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
442 Value *OpF1 = F1I->getOperand(i);
443 Value *OpF2 = F2I->getOperand(i);
444
445 if (!enumerate(OpF1, OpF2))
446 return false;
447
448 if (OpF1->getValueID() != OpF2->getValueID() ||
449 !isEquivalentType(OpF1->getType(), OpF2->getType()))
450 return false;
451 }
452 }
453
454 ++F1I, ++F2I;
455 } while (F1I != F1E && F2I != F2E);
456
457 return F1I == F1E && F2I == F2E;
458 }
459
460 // Test whether the two functions have equivalent behaviour.
compare()461 bool FunctionComparator::compare() {
462 // We need to recheck everything, but check the things that weren't included
463 // in the hash first.
464
465 if (F1->getAttributes() != F2->getAttributes())
466 return false;
467
468 if (F1->hasGC() != F2->hasGC())
469 return false;
470
471 if (F1->hasGC() && F1->getGC() != F2->getGC())
472 return false;
473
474 if (F1->hasSection() != F2->hasSection())
475 return false;
476
477 if (F1->hasSection() && F1->getSection() != F2->getSection())
478 return false;
479
480 if (F1->isVarArg() != F2->isVarArg())
481 return false;
482
483 // TODO: if it's internal and only used in direct calls, we could handle this
484 // case too.
485 if (F1->getCallingConv() != F2->getCallingConv())
486 return false;
487
488 if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
489 return false;
490
491 assert(F1->arg_size() == F2->arg_size() &&
492 "Identically typed functions have different numbers of args!");
493
494 // Visit the arguments so that they get enumerated in the order they're
495 // passed in.
496 for (Function::const_arg_iterator f1i = F1->arg_begin(),
497 f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
498 if (!enumerate(f1i, f2i))
499 llvm_unreachable("Arguments repeat!");
500 }
501
502 // We do a CFG-ordered walk since the actual ordering of the blocks in the
503 // linked list is immaterial. Our walk starts at the entry block for both
504 // functions, then takes each block from each terminator in order. As an
505 // artifact, this also means that unreachable blocks are ignored.
506 SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
507 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
508
509 F1BBs.push_back(&F1->getEntryBlock());
510 F2BBs.push_back(&F2->getEntryBlock());
511
512 VisitedBBs.insert(F1BBs[0]);
513 while (!F1BBs.empty()) {
514 const BasicBlock *F1BB = F1BBs.pop_back_val();
515 const BasicBlock *F2BB = F2BBs.pop_back_val();
516
517 if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
518 return false;
519
520 const TerminatorInst *F1TI = F1BB->getTerminator();
521 const TerminatorInst *F2TI = F2BB->getTerminator();
522
523 assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
524 for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
525 if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
526 continue;
527
528 F1BBs.push_back(F1TI->getSuccessor(i));
529 F2BBs.push_back(F2TI->getSuccessor(i));
530 }
531 }
532 return true;
533 }
534
535 namespace {
536
537 /// MergeFunctions finds functions which will generate identical machine code,
538 /// by considering all pointer types to be equivalent. Once identified,
539 /// MergeFunctions will fold them by replacing a call to one to a call to a
540 /// bitcast of the other.
541 ///
542 class MergeFunctions : public ModulePass {
543 public:
544 static char ID;
MergeFunctions()545 MergeFunctions()
546 : ModulePass(ID), HasGlobalAliases(false) {
547 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
548 }
549
550 bool runOnModule(Module &M);
551
552 private:
553 typedef DenseSet<ComparableFunction> FnSetType;
554
555 /// A work queue of functions that may have been modified and should be
556 /// analyzed again.
557 std::vector<WeakVH> Deferred;
558
559 /// Insert a ComparableFunction into the FnSet, or merge it away if it's
560 /// equal to one that's already present.
561 bool insert(ComparableFunction &NewF);
562
563 /// Remove a Function from the FnSet and queue it up for a second sweep of
564 /// analysis.
565 void remove(Function *F);
566
567 /// Find the functions that use this Value and remove them from FnSet and
568 /// queue the functions.
569 void removeUsers(Value *V);
570
571 /// Replace all direct calls of Old with calls of New. Will bitcast New if
572 /// necessary to make types match.
573 void replaceDirectCallers(Function *Old, Function *New);
574
575 /// Merge two equivalent functions. Upon completion, G may be deleted, or may
576 /// be converted into a thunk. In either case, it should never be visited
577 /// again.
578 void mergeTwoFunctions(Function *F, Function *G);
579
580 /// Replace G with a thunk or an alias to F. Deletes G.
581 void writeThunkOrAlias(Function *F, Function *G);
582
583 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
584 /// of G with bitcast(F). Deletes G.
585 void writeThunk(Function *F, Function *G);
586
587 /// Replace G with an alias to F. Deletes G.
588 void writeAlias(Function *F, Function *G);
589
590 /// The set of all distinct functions. Use the insert() and remove() methods
591 /// to modify it.
592 FnSetType FnSet;
593
594 /// TargetData for more accurate GEP comparisons. May be NULL.
595 TargetData *TD;
596
597 /// Whether or not the target supports global aliases.
598 bool HasGlobalAliases;
599 };
600
601 } // end anonymous namespace
602
603 char MergeFunctions::ID = 0;
604 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
605
createMergeFunctionsPass()606 ModulePass *llvm::createMergeFunctionsPass() {
607 return new MergeFunctions();
608 }
609
runOnModule(Module & M)610 bool MergeFunctions::runOnModule(Module &M) {
611 bool Changed = false;
612 TD = getAnalysisIfAvailable<TargetData>();
613
614 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
615 if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
616 Deferred.push_back(WeakVH(I));
617 }
618 FnSet.resize(Deferred.size());
619
620 do {
621 std::vector<WeakVH> Worklist;
622 Deferred.swap(Worklist);
623
624 DEBUG(dbgs() << "size of module: " << M.size() << '\n');
625 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
626
627 // Insert only strong functions and merge them. Strong function merging
628 // always deletes one of them.
629 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
630 E = Worklist.end(); I != E; ++I) {
631 if (!*I) continue;
632 Function *F = cast<Function>(*I);
633 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
634 !F->mayBeOverridden()) {
635 ComparableFunction CF = ComparableFunction(F, TD);
636 Changed |= insert(CF);
637 }
638 }
639
640 // Insert only weak functions and merge them. By doing these second we
641 // create thunks to the strong function when possible. When two weak
642 // functions are identical, we create a new strong function with two weak
643 // weak thunks to it which are identical but not mergable.
644 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
645 E = Worklist.end(); I != E; ++I) {
646 if (!*I) continue;
647 Function *F = cast<Function>(*I);
648 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
649 F->mayBeOverridden()) {
650 ComparableFunction CF = ComparableFunction(F, TD);
651 Changed |= insert(CF);
652 }
653 }
654 DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
655 } while (!Deferred.empty());
656
657 FnSet.clear();
658
659 return Changed;
660 }
661
isEqual(const ComparableFunction & LHS,const ComparableFunction & RHS)662 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
663 const ComparableFunction &RHS) {
664 if (LHS.getFunc() == RHS.getFunc() &&
665 LHS.getHash() == RHS.getHash())
666 return true;
667 if (!LHS.getFunc() || !RHS.getFunc())
668 return false;
669
670 // One of these is a special "underlying pointer comparison only" object.
671 if (LHS.getTD() == ComparableFunction::LookupOnly ||
672 RHS.getTD() == ComparableFunction::LookupOnly)
673 return false;
674
675 assert(LHS.getTD() == RHS.getTD() &&
676 "Comparing functions for different targets");
677
678 return FunctionComparator(LHS.getTD(), LHS.getFunc(),
679 RHS.getFunc()).compare();
680 }
681
682 // Replace direct callers of Old with New.
replaceDirectCallers(Function * Old,Function * New)683 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
684 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
685 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
686 UI != UE;) {
687 Value::use_iterator TheIter = UI;
688 ++UI;
689 CallSite CS(*TheIter);
690 if (CS && CS.isCallee(TheIter)) {
691 remove(CS.getInstruction()->getParent()->getParent());
692 TheIter.getUse().set(BitcastNew);
693 }
694 }
695 }
696
697 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
writeThunkOrAlias(Function * F,Function * G)698 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
699 if (HasGlobalAliases && G->hasUnnamedAddr()) {
700 if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
701 G->hasWeakLinkage()) {
702 writeAlias(F, G);
703 return;
704 }
705 }
706
707 writeThunk(F, G);
708 }
709
710 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
711 // of G with bitcast(F). Deletes G.
writeThunk(Function * F,Function * G)712 void MergeFunctions::writeThunk(Function *F, Function *G) {
713 if (!G->mayBeOverridden()) {
714 // Redirect direct callers of G to F.
715 replaceDirectCallers(G, F);
716 }
717
718 // If G was internal then we may have replaced all uses of G with F. If so,
719 // stop here and delete G. There's no need for a thunk.
720 if (G->hasLocalLinkage() && G->use_empty()) {
721 G->eraseFromParent();
722 return;
723 }
724
725 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
726 G->getParent());
727 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
728 IRBuilder<false> Builder(BB);
729
730 SmallVector<Value *, 16> Args;
731 unsigned i = 0;
732 FunctionType *FFTy = F->getFunctionType();
733 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
734 AI != AE; ++AI) {
735 Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
736 ++i;
737 }
738
739 CallInst *CI = Builder.CreateCall(F, Args);
740 CI->setTailCall();
741 CI->setCallingConv(F->getCallingConv());
742 if (NewG->getReturnType()->isVoidTy()) {
743 Builder.CreateRetVoid();
744 } else {
745 Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
746 }
747
748 NewG->copyAttributesFrom(G);
749 NewG->takeName(G);
750 removeUsers(G);
751 G->replaceAllUsesWith(NewG);
752 G->eraseFromParent();
753
754 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
755 ++NumThunksWritten;
756 }
757
758 // Replace G with an alias to F and delete G.
writeAlias(Function * F,Function * G)759 void MergeFunctions::writeAlias(Function *F, Function *G) {
760 Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
761 GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
762 BitcastF, G->getParent());
763 F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
764 GA->takeName(G);
765 GA->setVisibility(G->getVisibility());
766 removeUsers(G);
767 G->replaceAllUsesWith(GA);
768 G->eraseFromParent();
769
770 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
771 ++NumAliasesWritten;
772 }
773
774 // Merge two equivalent functions. Upon completion, Function G is deleted.
mergeTwoFunctions(Function * F,Function * G)775 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
776 if (F->mayBeOverridden()) {
777 assert(G->mayBeOverridden());
778
779 if (HasGlobalAliases) {
780 // Make them both thunks to the same internal function.
781 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
782 F->getParent());
783 H->copyAttributesFrom(F);
784 H->takeName(F);
785 removeUsers(F);
786 F->replaceAllUsesWith(H);
787
788 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
789
790 writeAlias(F, G);
791 writeAlias(F, H);
792
793 F->setAlignment(MaxAlignment);
794 F->setLinkage(GlobalValue::PrivateLinkage);
795 } else {
796 // We can't merge them. Instead, pick one and update all direct callers
797 // to call it and hope that we improve the instruction cache hit rate.
798 replaceDirectCallers(G, F);
799 }
800
801 ++NumDoubleWeak;
802 } else {
803 writeThunkOrAlias(F, G);
804 }
805
806 ++NumFunctionsMerged;
807 }
808
809 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one
810 // that was already inserted.
insert(ComparableFunction & NewF)811 bool MergeFunctions::insert(ComparableFunction &NewF) {
812 std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
813 if (Result.second) {
814 DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
815 return false;
816 }
817
818 const ComparableFunction &OldF = *Result.first;
819
820 // Never thunk a strong function to a weak function.
821 assert(!OldF.getFunc()->mayBeOverridden() ||
822 NewF.getFunc()->mayBeOverridden());
823
824 DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == "
825 << NewF.getFunc()->getName() << '\n');
826
827 Function *DeleteF = NewF.getFunc();
828 NewF.release();
829 mergeTwoFunctions(OldF.getFunc(), DeleteF);
830 return true;
831 }
832
833 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred
834 // so that we'll look at it in the next round.
remove(Function * F)835 void MergeFunctions::remove(Function *F) {
836 // We need to make sure we remove F, not a function "equal" to F per the
837 // function equality comparator.
838 //
839 // The special "lookup only" ComparableFunction bypasses the expensive
840 // function comparison in favour of a pointer comparison on the underlying
841 // Function*'s.
842 ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
843 if (FnSet.erase(CF)) {
844 DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
845 Deferred.push_back(F);
846 }
847 }
848
849 // For each instruction used by the value, remove() the function that contains
850 // the instruction. This should happen right before a call to RAUW.
removeUsers(Value * V)851 void MergeFunctions::removeUsers(Value *V) {
852 std::vector<Value *> Worklist;
853 Worklist.push_back(V);
854 while (!Worklist.empty()) {
855 Value *V = Worklist.back();
856 Worklist.pop_back();
857
858 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
859 UI != UE; ++UI) {
860 Use &U = UI.getUse();
861 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
862 remove(I->getParent()->getParent());
863 } else if (isa<GlobalValue>(U.getUser())) {
864 // do nothing
865 } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
866 for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
867 CUI != CUE; ++CUI)
868 Worklist.push_back(*CUI);
869 }
870 }
871 }
872 }
873