• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // A hash is computed from the function, based on its type and number of
13 // basic blocks.
14 //
15 // Once all hashes are computed, we perform an expensive equality comparison
16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
17 // important that the hash function be high quality. The equality comparison
18 // iterates through each instruction in each basic block.
19 //
20 // When a match is found the functions are folded. If both functions are
21 // overridable, we move the functionality into a new internal function and
22 // leave two overridable thunks to it.
23 //
24 //===----------------------------------------------------------------------===//
25 //
26 // Future work:
27 //
28 // * virtual functions.
29 //
30 // Many functions have their address taken by the virtual function table for
31 // the object they belong to. However, as long as it's only used for a lookup
32 // and call, this is irrelevant, and we'd like to fold such functions.
33 //
34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
35 // bucket.
36 //
37 // * be smarter about bitcasts.
38 //
39 // In order to fold functions, we will sometimes add either bitcast instructions
40 // or bitcast constant expressions. Unfortunately, this can confound further
41 // analysis since the two functions differ where one has a bitcast and the
42 // other doesn't. We should learn to look through bitcasts.
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #define DEBUG_TYPE "mergefunc"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/Constants.h"
49 #include "llvm/IRBuilder.h"
50 #include "llvm/InlineAsm.h"
51 #include "llvm/Instructions.h"
52 #include "llvm/LLVMContext.h"
53 #include "llvm/Module.h"
54 #include "llvm/Operator.h"
55 #include "llvm/Pass.h"
56 #include "llvm/ADT/DenseSet.h"
57 #include "llvm/ADT/FoldingSet.h"
58 #include "llvm/ADT/STLExtras.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/Support/CallSite.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/ValueHandle.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetData.h"
67 #include <vector>
68 using namespace llvm;
69 
70 STATISTIC(NumFunctionsMerged, "Number of functions merged");
71 STATISTIC(NumThunksWritten, "Number of thunks generated");
72 STATISTIC(NumAliasesWritten, "Number of aliases generated");
73 STATISTIC(NumDoubleWeak, "Number of new functions created");
74 
75 /// Creates a hash-code for the function which is the same for any two
76 /// functions that will compare equal, without looking at the instructions
77 /// inside the function.
profileFunction(const Function * F)78 static unsigned profileFunction(const Function *F) {
79   FunctionType *FTy = F->getFunctionType();
80 
81   FoldingSetNodeID ID;
82   ID.AddInteger(F->size());
83   ID.AddInteger(F->getCallingConv());
84   ID.AddBoolean(F->hasGC());
85   ID.AddBoolean(FTy->isVarArg());
86   ID.AddInteger(FTy->getReturnType()->getTypeID());
87   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
88     ID.AddInteger(FTy->getParamType(i)->getTypeID());
89   return ID.ComputeHash();
90 }
91 
92 namespace {
93 
94 /// ComparableFunction - A struct that pairs together functions with a
95 /// TargetData so that we can keep them together as elements in the DenseSet.
96 class ComparableFunction {
97 public:
98   static const ComparableFunction EmptyKey;
99   static const ComparableFunction TombstoneKey;
100   static TargetData * const LookupOnly;
101 
ComparableFunction(Function * Func,TargetData * TD)102   ComparableFunction(Function *Func, TargetData *TD)
103     : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
104 
getFunc() const105   Function *getFunc() const { return Func; }
getHash() const106   unsigned getHash() const { return Hash; }
getTD() const107   TargetData *getTD() const { return TD; }
108 
109   // Drops AssertingVH reference to the function. Outside of debug mode, this
110   // does nothing.
release()111   void release() {
112     assert(Func &&
113            "Attempted to release function twice, or release empty/tombstone!");
114     Func = NULL;
115   }
116 
117 private:
ComparableFunction(unsigned Hash)118   explicit ComparableFunction(unsigned Hash)
119     : Func(NULL), Hash(Hash), TD(NULL) {}
120 
121   AssertingVH<Function> Func;
122   unsigned Hash;
123   TargetData *TD;
124 };
125 
126 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
127 const ComparableFunction ComparableFunction::TombstoneKey =
128     ComparableFunction(1);
129 TargetData *const ComparableFunction::LookupOnly = (TargetData*)(-1);
130 
131 }
132 
133 namespace llvm {
134   template <>
135   struct DenseMapInfo<ComparableFunction> {
getEmptyKeyllvm::DenseMapInfo136     static ComparableFunction getEmptyKey() {
137       return ComparableFunction::EmptyKey;
138     }
getTombstoneKeyllvm::DenseMapInfo139     static ComparableFunction getTombstoneKey() {
140       return ComparableFunction::TombstoneKey;
141     }
getHashValuellvm::DenseMapInfo142     static unsigned getHashValue(const ComparableFunction &CF) {
143       return CF.getHash();
144     }
145     static bool isEqual(const ComparableFunction &LHS,
146                         const ComparableFunction &RHS);
147   };
148 }
149 
150 namespace {
151 
152 /// FunctionComparator - Compares two functions to determine whether or not
153 /// they will generate machine code with the same behaviour. TargetData is
154 /// used if available. The comparator always fails conservatively (erring on the
155 /// side of claiming that two functions are different).
156 class FunctionComparator {
157 public:
FunctionComparator(const TargetData * TD,const Function * F1,const Function * F2)158   FunctionComparator(const TargetData *TD, const Function *F1,
159                      const Function *F2)
160     : F1(F1), F2(F2), TD(TD) {}
161 
162   /// Test whether the two functions have equivalent behaviour.
163   bool compare();
164 
165 private:
166   /// Test whether two basic blocks have equivalent behaviour.
167   bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
168 
169   /// Assign or look up previously assigned numbers for the two values, and
170   /// return whether the numbers are equal. Numbers are assigned in the order
171   /// visited.
172   bool enumerate(const Value *V1, const Value *V2);
173 
174   /// Compare two Instructions for equivalence, similar to
175   /// Instruction::isSameOperationAs but with modifications to the type
176   /// comparison.
177   bool isEquivalentOperation(const Instruction *I1,
178                              const Instruction *I2) const;
179 
180   /// Compare two GEPs for equivalent pointer arithmetic.
181   bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
isEquivalentGEP(const GetElementPtrInst * GEP1,const GetElementPtrInst * GEP2)182   bool isEquivalentGEP(const GetElementPtrInst *GEP1,
183                        const GetElementPtrInst *GEP2) {
184     return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
185   }
186 
187   /// Compare two Types, treating all pointer types as equal.
188   bool isEquivalentType(Type *Ty1, Type *Ty2) const;
189 
190   // The two functions undergoing comparison.
191   const Function *F1, *F2;
192 
193   const TargetData *TD;
194 
195   DenseMap<const Value *, const Value *> id_map;
196   DenseSet<const Value *> seen_values;
197 };
198 
199 }
200 
201 // Any two pointers in the same address space are equivalent, intptr_t and
202 // pointers are equivalent. Otherwise, standard type equivalence rules apply.
isEquivalentType(Type * Ty1,Type * Ty2) const203 bool FunctionComparator::isEquivalentType(Type *Ty1,
204                                           Type *Ty2) const {
205   if (Ty1 == Ty2)
206     return true;
207   if (Ty1->getTypeID() != Ty2->getTypeID()) {
208     if (TD) {
209       LLVMContext &Ctx = Ty1->getContext();
210       if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
211       if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
212     }
213     return false;
214   }
215 
216   switch (Ty1->getTypeID()) {
217   default:
218     llvm_unreachable("Unknown type!");
219     // Fall through in Release mode.
220   case Type::IntegerTyID:
221   case Type::VectorTyID:
222     // Ty1 == Ty2 would have returned true earlier.
223     return false;
224 
225   case Type::VoidTyID:
226   case Type::FloatTyID:
227   case Type::DoubleTyID:
228   case Type::X86_FP80TyID:
229   case Type::FP128TyID:
230   case Type::PPC_FP128TyID:
231   case Type::LabelTyID:
232   case Type::MetadataTyID:
233     return true;
234 
235   case Type::PointerTyID: {
236     PointerType *PTy1 = cast<PointerType>(Ty1);
237     PointerType *PTy2 = cast<PointerType>(Ty2);
238     return PTy1->getAddressSpace() == PTy2->getAddressSpace();
239   }
240 
241   case Type::StructTyID: {
242     StructType *STy1 = cast<StructType>(Ty1);
243     StructType *STy2 = cast<StructType>(Ty2);
244     if (STy1->getNumElements() != STy2->getNumElements())
245       return false;
246 
247     if (STy1->isPacked() != STy2->isPacked())
248       return false;
249 
250     for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
251       if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
252         return false;
253     }
254     return true;
255   }
256 
257   case Type::FunctionTyID: {
258     FunctionType *FTy1 = cast<FunctionType>(Ty1);
259     FunctionType *FTy2 = cast<FunctionType>(Ty2);
260     if (FTy1->getNumParams() != FTy2->getNumParams() ||
261         FTy1->isVarArg() != FTy2->isVarArg())
262       return false;
263 
264     if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
265       return false;
266 
267     for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
268       if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
269         return false;
270     }
271     return true;
272   }
273 
274   case Type::ArrayTyID: {
275     ArrayType *ATy1 = cast<ArrayType>(Ty1);
276     ArrayType *ATy2 = cast<ArrayType>(Ty2);
277     return ATy1->getNumElements() == ATy2->getNumElements() &&
278            isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
279   }
280   }
281 }
282 
283 // Determine whether the two operations are the same except that pointer-to-A
284 // and pointer-to-B are equivalent. This should be kept in sync with
285 // Instruction::isSameOperationAs.
isEquivalentOperation(const Instruction * I1,const Instruction * I2) const286 bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
287                                                const Instruction *I2) const {
288   // Differences from Instruction::isSameOperationAs:
289   //  * replace type comparison with calls to isEquivalentType.
290   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
291   //  * because of the above, we don't test for the tail bit on calls later on
292   if (I1->getOpcode() != I2->getOpcode() ||
293       I1->getNumOperands() != I2->getNumOperands() ||
294       !isEquivalentType(I1->getType(), I2->getType()) ||
295       !I1->hasSameSubclassOptionalData(I2))
296     return false;
297 
298   // We have two instructions of identical opcode and #operands.  Check to see
299   // if all operands are the same type
300   for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
301     if (!isEquivalentType(I1->getOperand(i)->getType(),
302                           I2->getOperand(i)->getType()))
303       return false;
304 
305   // Check special state that is a part of some instructions.
306   if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
307     return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
308            LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
309            LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
310            LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
311   if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
312     return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
313            SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
314            SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
315            SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
316   if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
317     return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
318   if (const CallInst *CI = dyn_cast<CallInst>(I1))
319     return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
320            CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
321   if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
322     return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
323            CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
324   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
325     return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
326   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
327     return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
328   if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
329     return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
330            FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
331   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
332     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
333            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
334            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
335   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
336     return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
337            RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
338            RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
339            RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
340 
341   return true;
342 }
343 
344 // Determine whether two GEP operations perform the same underlying arithmetic.
isEquivalentGEP(const GEPOperator * GEP1,const GEPOperator * GEP2)345 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
346                                          const GEPOperator *GEP2) {
347   // When we have target data, we can reduce the GEP down to the value in bytes
348   // added to the address.
349   if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
350     SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
351     SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
352     uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
353                                             Indices1);
354     uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
355                                             Indices2);
356     return Offset1 == Offset2;
357   }
358 
359   if (GEP1->getPointerOperand()->getType() !=
360       GEP2->getPointerOperand()->getType())
361     return false;
362 
363   if (GEP1->getNumOperands() != GEP2->getNumOperands())
364     return false;
365 
366   for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
367     if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
368       return false;
369   }
370 
371   return true;
372 }
373 
374 // Compare two values used by the two functions under pair-wise comparison. If
375 // this is the first time the values are seen, they're added to the mapping so
376 // that we will detect mismatches on next use.
enumerate(const Value * V1,const Value * V2)377 bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
378   // Check for function @f1 referring to itself and function @f2 referring to
379   // itself, or referring to each other, or both referring to either of them.
380   // They're all equivalent if the two functions are otherwise equivalent.
381   if (V1 == F1 && V2 == F2)
382     return true;
383   if (V1 == F2 && V2 == F1)
384     return true;
385 
386   if (const Constant *C1 = dyn_cast<Constant>(V1)) {
387     if (V1 == V2) return true;
388     const Constant *C2 = dyn_cast<Constant>(V2);
389     if (!C2) return false;
390     // TODO: constant expressions with GEP or references to F1 or F2.
391     if (C1->isNullValue() && C2->isNullValue() &&
392         isEquivalentType(C1->getType(), C2->getType()))
393       return true;
394     // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
395     // then they must have equal bit patterns.
396     return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
397       C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
398   }
399 
400   if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
401     return V1 == V2;
402 
403   // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
404   // check whether it's equal to V2. When there is no mapping then we need to
405   // ensure that V2 isn't already equivalent to something else. For this
406   // purpose, we track the V2 values in a set.
407 
408   const Value *&map_elem = id_map[V1];
409   if (map_elem)
410     return map_elem == V2;
411   if (!seen_values.insert(V2).second)
412     return false;
413   map_elem = V2;
414   return true;
415 }
416 
417 // Test whether two basic blocks have equivalent behaviour.
compare(const BasicBlock * BB1,const BasicBlock * BB2)418 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
419   BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
420   BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
421 
422   do {
423     if (!enumerate(F1I, F2I))
424       return false;
425 
426     if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
427       const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
428       if (!GEP2)
429         return false;
430 
431       if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
432         return false;
433 
434       if (!isEquivalentGEP(GEP1, GEP2))
435         return false;
436     } else {
437       if (!isEquivalentOperation(F1I, F2I))
438         return false;
439 
440       assert(F1I->getNumOperands() == F2I->getNumOperands());
441       for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
442         Value *OpF1 = F1I->getOperand(i);
443         Value *OpF2 = F2I->getOperand(i);
444 
445         if (!enumerate(OpF1, OpF2))
446           return false;
447 
448         if (OpF1->getValueID() != OpF2->getValueID() ||
449             !isEquivalentType(OpF1->getType(), OpF2->getType()))
450           return false;
451       }
452     }
453 
454     ++F1I, ++F2I;
455   } while (F1I != F1E && F2I != F2E);
456 
457   return F1I == F1E && F2I == F2E;
458 }
459 
460 // Test whether the two functions have equivalent behaviour.
compare()461 bool FunctionComparator::compare() {
462   // We need to recheck everything, but check the things that weren't included
463   // in the hash first.
464 
465   if (F1->getAttributes() != F2->getAttributes())
466     return false;
467 
468   if (F1->hasGC() != F2->hasGC())
469     return false;
470 
471   if (F1->hasGC() && F1->getGC() != F2->getGC())
472     return false;
473 
474   if (F1->hasSection() != F2->hasSection())
475     return false;
476 
477   if (F1->hasSection() && F1->getSection() != F2->getSection())
478     return false;
479 
480   if (F1->isVarArg() != F2->isVarArg())
481     return false;
482 
483   // TODO: if it's internal and only used in direct calls, we could handle this
484   // case too.
485   if (F1->getCallingConv() != F2->getCallingConv())
486     return false;
487 
488   if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
489     return false;
490 
491   assert(F1->arg_size() == F2->arg_size() &&
492          "Identically typed functions have different numbers of args!");
493 
494   // Visit the arguments so that they get enumerated in the order they're
495   // passed in.
496   for (Function::const_arg_iterator f1i = F1->arg_begin(),
497          f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
498     if (!enumerate(f1i, f2i))
499       llvm_unreachable("Arguments repeat!");
500   }
501 
502   // We do a CFG-ordered walk since the actual ordering of the blocks in the
503   // linked list is immaterial. Our walk starts at the entry block for both
504   // functions, then takes each block from each terminator in order. As an
505   // artifact, this also means that unreachable blocks are ignored.
506   SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
507   SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
508 
509   F1BBs.push_back(&F1->getEntryBlock());
510   F2BBs.push_back(&F2->getEntryBlock());
511 
512   VisitedBBs.insert(F1BBs[0]);
513   while (!F1BBs.empty()) {
514     const BasicBlock *F1BB = F1BBs.pop_back_val();
515     const BasicBlock *F2BB = F2BBs.pop_back_val();
516 
517     if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
518       return false;
519 
520     const TerminatorInst *F1TI = F1BB->getTerminator();
521     const TerminatorInst *F2TI = F2BB->getTerminator();
522 
523     assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
524     for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
525       if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
526         continue;
527 
528       F1BBs.push_back(F1TI->getSuccessor(i));
529       F2BBs.push_back(F2TI->getSuccessor(i));
530     }
531   }
532   return true;
533 }
534 
535 namespace {
536 
537 /// MergeFunctions finds functions which will generate identical machine code,
538 /// by considering all pointer types to be equivalent. Once identified,
539 /// MergeFunctions will fold them by replacing a call to one to a call to a
540 /// bitcast of the other.
541 ///
542 class MergeFunctions : public ModulePass {
543 public:
544   static char ID;
MergeFunctions()545   MergeFunctions()
546     : ModulePass(ID), HasGlobalAliases(false) {
547     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
548   }
549 
550   bool runOnModule(Module &M);
551 
552 private:
553   typedef DenseSet<ComparableFunction> FnSetType;
554 
555   /// A work queue of functions that may have been modified and should be
556   /// analyzed again.
557   std::vector<WeakVH> Deferred;
558 
559   /// Insert a ComparableFunction into the FnSet, or merge it away if it's
560   /// equal to one that's already present.
561   bool insert(ComparableFunction &NewF);
562 
563   /// Remove a Function from the FnSet and queue it up for a second sweep of
564   /// analysis.
565   void remove(Function *F);
566 
567   /// Find the functions that use this Value and remove them from FnSet and
568   /// queue the functions.
569   void removeUsers(Value *V);
570 
571   /// Replace all direct calls of Old with calls of New. Will bitcast New if
572   /// necessary to make types match.
573   void replaceDirectCallers(Function *Old, Function *New);
574 
575   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
576   /// be converted into a thunk. In either case, it should never be visited
577   /// again.
578   void mergeTwoFunctions(Function *F, Function *G);
579 
580   /// Replace G with a thunk or an alias to F. Deletes G.
581   void writeThunkOrAlias(Function *F, Function *G);
582 
583   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
584   /// of G with bitcast(F). Deletes G.
585   void writeThunk(Function *F, Function *G);
586 
587   /// Replace G with an alias to F. Deletes G.
588   void writeAlias(Function *F, Function *G);
589 
590   /// The set of all distinct functions. Use the insert() and remove() methods
591   /// to modify it.
592   FnSetType FnSet;
593 
594   /// TargetData for more accurate GEP comparisons. May be NULL.
595   TargetData *TD;
596 
597   /// Whether or not the target supports global aliases.
598   bool HasGlobalAliases;
599 };
600 
601 }  // end anonymous namespace
602 
603 char MergeFunctions::ID = 0;
604 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
605 
createMergeFunctionsPass()606 ModulePass *llvm::createMergeFunctionsPass() {
607   return new MergeFunctions();
608 }
609 
runOnModule(Module & M)610 bool MergeFunctions::runOnModule(Module &M) {
611   bool Changed = false;
612   TD = getAnalysisIfAvailable<TargetData>();
613 
614   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
615     if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
616       Deferred.push_back(WeakVH(I));
617   }
618   FnSet.resize(Deferred.size());
619 
620   do {
621     std::vector<WeakVH> Worklist;
622     Deferred.swap(Worklist);
623 
624     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
625     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
626 
627     // Insert only strong functions and merge them. Strong function merging
628     // always deletes one of them.
629     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
630            E = Worklist.end(); I != E; ++I) {
631       if (!*I) continue;
632       Function *F = cast<Function>(*I);
633       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
634           !F->mayBeOverridden()) {
635         ComparableFunction CF = ComparableFunction(F, TD);
636         Changed |= insert(CF);
637       }
638     }
639 
640     // Insert only weak functions and merge them. By doing these second we
641     // create thunks to the strong function when possible. When two weak
642     // functions are identical, we create a new strong function with two weak
643     // weak thunks to it which are identical but not mergable.
644     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
645            E = Worklist.end(); I != E; ++I) {
646       if (!*I) continue;
647       Function *F = cast<Function>(*I);
648       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
649           F->mayBeOverridden()) {
650         ComparableFunction CF = ComparableFunction(F, TD);
651         Changed |= insert(CF);
652       }
653     }
654     DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
655   } while (!Deferred.empty());
656 
657   FnSet.clear();
658 
659   return Changed;
660 }
661 
isEqual(const ComparableFunction & LHS,const ComparableFunction & RHS)662 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
663                                                const ComparableFunction &RHS) {
664   if (LHS.getFunc() == RHS.getFunc() &&
665       LHS.getHash() == RHS.getHash())
666     return true;
667   if (!LHS.getFunc() || !RHS.getFunc())
668     return false;
669 
670   // One of these is a special "underlying pointer comparison only" object.
671   if (LHS.getTD() == ComparableFunction::LookupOnly ||
672       RHS.getTD() == ComparableFunction::LookupOnly)
673     return false;
674 
675   assert(LHS.getTD() == RHS.getTD() &&
676          "Comparing functions for different targets");
677 
678   return FunctionComparator(LHS.getTD(), LHS.getFunc(),
679                             RHS.getFunc()).compare();
680 }
681 
682 // Replace direct callers of Old with New.
replaceDirectCallers(Function * Old,Function * New)683 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
684   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
685   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
686        UI != UE;) {
687     Value::use_iterator TheIter = UI;
688     ++UI;
689     CallSite CS(*TheIter);
690     if (CS && CS.isCallee(TheIter)) {
691       remove(CS.getInstruction()->getParent()->getParent());
692       TheIter.getUse().set(BitcastNew);
693     }
694   }
695 }
696 
697 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
writeThunkOrAlias(Function * F,Function * G)698 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
699   if (HasGlobalAliases && G->hasUnnamedAddr()) {
700     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
701         G->hasWeakLinkage()) {
702       writeAlias(F, G);
703       return;
704     }
705   }
706 
707   writeThunk(F, G);
708 }
709 
710 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
711 // of G with bitcast(F). Deletes G.
writeThunk(Function * F,Function * G)712 void MergeFunctions::writeThunk(Function *F, Function *G) {
713   if (!G->mayBeOverridden()) {
714     // Redirect direct callers of G to F.
715     replaceDirectCallers(G, F);
716   }
717 
718   // If G was internal then we may have replaced all uses of G with F. If so,
719   // stop here and delete G. There's no need for a thunk.
720   if (G->hasLocalLinkage() && G->use_empty()) {
721     G->eraseFromParent();
722     return;
723   }
724 
725   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
726                                     G->getParent());
727   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
728   IRBuilder<false> Builder(BB);
729 
730   SmallVector<Value *, 16> Args;
731   unsigned i = 0;
732   FunctionType *FFTy = F->getFunctionType();
733   for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
734        AI != AE; ++AI) {
735     Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
736     ++i;
737   }
738 
739   CallInst *CI = Builder.CreateCall(F, Args);
740   CI->setTailCall();
741   CI->setCallingConv(F->getCallingConv());
742   if (NewG->getReturnType()->isVoidTy()) {
743     Builder.CreateRetVoid();
744   } else {
745     Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
746   }
747 
748   NewG->copyAttributesFrom(G);
749   NewG->takeName(G);
750   removeUsers(G);
751   G->replaceAllUsesWith(NewG);
752   G->eraseFromParent();
753 
754   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
755   ++NumThunksWritten;
756 }
757 
758 // Replace G with an alias to F and delete G.
writeAlias(Function * F,Function * G)759 void MergeFunctions::writeAlias(Function *F, Function *G) {
760   Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
761   GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
762                                     BitcastF, G->getParent());
763   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
764   GA->takeName(G);
765   GA->setVisibility(G->getVisibility());
766   removeUsers(G);
767   G->replaceAllUsesWith(GA);
768   G->eraseFromParent();
769 
770   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
771   ++NumAliasesWritten;
772 }
773 
774 // Merge two equivalent functions. Upon completion, Function G is deleted.
mergeTwoFunctions(Function * F,Function * G)775 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
776   if (F->mayBeOverridden()) {
777     assert(G->mayBeOverridden());
778 
779     if (HasGlobalAliases) {
780       // Make them both thunks to the same internal function.
781       Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
782                                      F->getParent());
783       H->copyAttributesFrom(F);
784       H->takeName(F);
785       removeUsers(F);
786       F->replaceAllUsesWith(H);
787 
788       unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
789 
790       writeAlias(F, G);
791       writeAlias(F, H);
792 
793       F->setAlignment(MaxAlignment);
794       F->setLinkage(GlobalValue::PrivateLinkage);
795     } else {
796       // We can't merge them. Instead, pick one and update all direct callers
797       // to call it and hope that we improve the instruction cache hit rate.
798       replaceDirectCallers(G, F);
799     }
800 
801     ++NumDoubleWeak;
802   } else {
803     writeThunkOrAlias(F, G);
804   }
805 
806   ++NumFunctionsMerged;
807 }
808 
809 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one
810 // that was already inserted.
insert(ComparableFunction & NewF)811 bool MergeFunctions::insert(ComparableFunction &NewF) {
812   std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
813   if (Result.second) {
814     DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
815     return false;
816   }
817 
818   const ComparableFunction &OldF = *Result.first;
819 
820   // Never thunk a strong function to a weak function.
821   assert(!OldF.getFunc()->mayBeOverridden() ||
822          NewF.getFunc()->mayBeOverridden());
823 
824   DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
825                << NewF.getFunc()->getName() << '\n');
826 
827   Function *DeleteF = NewF.getFunc();
828   NewF.release();
829   mergeTwoFunctions(OldF.getFunc(), DeleteF);
830   return true;
831 }
832 
833 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred
834 // so that we'll look at it in the next round.
remove(Function * F)835 void MergeFunctions::remove(Function *F) {
836   // We need to make sure we remove F, not a function "equal" to F per the
837   // function equality comparator.
838   //
839   // The special "lookup only" ComparableFunction bypasses the expensive
840   // function comparison in favour of a pointer comparison on the underlying
841   // Function*'s.
842   ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
843   if (FnSet.erase(CF)) {
844     DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
845     Deferred.push_back(F);
846   }
847 }
848 
849 // For each instruction used by the value, remove() the function that contains
850 // the instruction. This should happen right before a call to RAUW.
removeUsers(Value * V)851 void MergeFunctions::removeUsers(Value *V) {
852   std::vector<Value *> Worklist;
853   Worklist.push_back(V);
854   while (!Worklist.empty()) {
855     Value *V = Worklist.back();
856     Worklist.pop_back();
857 
858     for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
859          UI != UE; ++UI) {
860       Use &U = UI.getUse();
861       if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
862         remove(I->getParent()->getParent());
863       } else if (isa<GlobalValue>(U.getUser())) {
864         // do nothing
865       } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
866         for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
867              CUI != CUE; ++CUI)
868           Worklist.push_back(*CUI);
869       }
870     }
871   }
872 }
873