1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "phielim"
17 #include "PHIEliminationUtils.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Function.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include <algorithm>
35 using namespace llvm;
36
37 static cl::opt<bool>
38 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
39 cl::Hidden, cl::desc("Disable critical edge splitting "
40 "during PHI elimination"));
41
42 namespace {
43 class PHIElimination : public MachineFunctionPass {
44 MachineRegisterInfo *MRI; // Machine register information
45
46 public:
47 static char ID; // Pass identification, replacement for typeid
PHIElimination()48 PHIElimination() : MachineFunctionPass(ID) {
49 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
50 }
51
52 virtual bool runOnMachineFunction(MachineFunction &Fn);
53 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
54
55 private:
56 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
57 /// in predecessor basic blocks.
58 ///
59 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
60 void LowerAtomicPHINode(MachineBasicBlock &MBB,
61 MachineBasicBlock::iterator AfterPHIsIt);
62
63 /// analyzePHINodes - Gather information about the PHI nodes in
64 /// here. In particular, we want to map the number of uses of a virtual
65 /// register which is used in a PHI node. We map that to the BB the
66 /// vreg is coming from. This is used later to determine when the vreg
67 /// is killed in the BB.
68 ///
69 void analyzePHINodes(const MachineFunction& Fn);
70
71 /// Split critical edges where necessary for good coalescer performance.
72 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
73 LiveVariables &LV, MachineLoopInfo *MLI);
74
75 typedef std::pair<unsigned, unsigned> BBVRegPair;
76 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
77
78 VRegPHIUse VRegPHIUseCount;
79
80 // Defs of PHI sources which are implicit_def.
81 SmallPtrSet<MachineInstr*, 4> ImpDefs;
82
83 // Map reusable lowered PHI node -> incoming join register.
84 typedef DenseMap<MachineInstr*, unsigned,
85 MachineInstrExpressionTrait> LoweredPHIMap;
86 LoweredPHIMap LoweredPHIs;
87 };
88 }
89
90 STATISTIC(NumAtomic, "Number of atomic phis lowered");
91 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
92 STATISTIC(NumReused, "Number of reused lowered phis");
93
94 char PHIElimination::ID = 0;
95 char& llvm::PHIEliminationID = PHIElimination::ID;
96
97 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
98 "Eliminate PHI nodes for register allocation",
99 false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)100 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
101 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
102 "Eliminate PHI nodes for register allocation", false, false)
103
104 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
105 AU.addPreserved<LiveVariables>();
106 AU.addPreserved<MachineDominatorTree>();
107 AU.addPreserved<MachineLoopInfo>();
108 MachineFunctionPass::getAnalysisUsage(AU);
109 }
110
runOnMachineFunction(MachineFunction & MF)111 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
112 MRI = &MF.getRegInfo();
113
114 bool Changed = false;
115
116 // This pass takes the function out of SSA form.
117 MRI->leaveSSA();
118
119 // Split critical edges to help the coalescer
120 if (!DisableEdgeSplitting) {
121 if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
122 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
123 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
124 Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
125 }
126 }
127
128 // Populate VRegPHIUseCount
129 analyzePHINodes(MF);
130
131 // Eliminate PHI instructions by inserting copies into predecessor blocks.
132 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
133 Changed |= EliminatePHINodes(MF, *I);
134
135 // Remove dead IMPLICIT_DEF instructions.
136 for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
137 E = ImpDefs.end(); I != E; ++I) {
138 MachineInstr *DefMI = *I;
139 unsigned DefReg = DefMI->getOperand(0).getReg();
140 if (MRI->use_nodbg_empty(DefReg))
141 DefMI->eraseFromParent();
142 }
143
144 // Clean up the lowered PHI instructions.
145 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
146 I != E; ++I)
147 MF.DeleteMachineInstr(I->first);
148
149 LoweredPHIs.clear();
150 ImpDefs.clear();
151 VRegPHIUseCount.clear();
152
153 return Changed;
154 }
155
156 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
157 /// predecessor basic blocks.
158 ///
EliminatePHINodes(MachineFunction & MF,MachineBasicBlock & MBB)159 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
160 MachineBasicBlock &MBB) {
161 if (MBB.empty() || !MBB.front().isPHI())
162 return false; // Quick exit for basic blocks without PHIs.
163
164 // Get an iterator to the first instruction after the last PHI node (this may
165 // also be the end of the basic block).
166 MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
167
168 while (MBB.front().isPHI())
169 LowerAtomicPHINode(MBB, AfterPHIsIt);
170
171 return true;
172 }
173
174 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
175 /// This includes registers with no defs.
isImplicitlyDefined(unsigned VirtReg,const MachineRegisterInfo * MRI)176 static bool isImplicitlyDefined(unsigned VirtReg,
177 const MachineRegisterInfo *MRI) {
178 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
179 DE = MRI->def_end(); DI != DE; ++DI)
180 if (!DI->isImplicitDef())
181 return false;
182 return true;
183 }
184
185 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
186 /// are implicit_def's.
isSourceDefinedByImplicitDef(const MachineInstr * MPhi,const MachineRegisterInfo * MRI)187 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
188 const MachineRegisterInfo *MRI) {
189 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
190 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
191 return false;
192 return true;
193 }
194
195
196 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
197 /// under the assumption that it needs to be lowered in a way that supports
198 /// atomic execution of PHIs. This lowering method is always correct all of the
199 /// time.
200 ///
LowerAtomicPHINode(MachineBasicBlock & MBB,MachineBasicBlock::iterator AfterPHIsIt)201 void PHIElimination::LowerAtomicPHINode(
202 MachineBasicBlock &MBB,
203 MachineBasicBlock::iterator AfterPHIsIt) {
204 ++NumAtomic;
205 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
206 MachineInstr *MPhi = MBB.remove(MBB.begin());
207
208 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
209 unsigned DestReg = MPhi->getOperand(0).getReg();
210 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
211 bool isDead = MPhi->getOperand(0).isDead();
212
213 // Create a new register for the incoming PHI arguments.
214 MachineFunction &MF = *MBB.getParent();
215 unsigned IncomingReg = 0;
216 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
217
218 // Insert a register to register copy at the top of the current block (but
219 // after any remaining phi nodes) which copies the new incoming register
220 // into the phi node destination.
221 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
222 if (isSourceDefinedByImplicitDef(MPhi, MRI))
223 // If all sources of a PHI node are implicit_def, just emit an
224 // implicit_def instead of a copy.
225 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
226 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
227 else {
228 // Can we reuse an earlier PHI node? This only happens for critical edges,
229 // typically those created by tail duplication.
230 unsigned &entry = LoweredPHIs[MPhi];
231 if (entry) {
232 // An identical PHI node was already lowered. Reuse the incoming register.
233 IncomingReg = entry;
234 reusedIncoming = true;
235 ++NumReused;
236 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
237 } else {
238 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
239 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
240 }
241 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
242 TII->get(TargetOpcode::COPY), DestReg)
243 .addReg(IncomingReg);
244 }
245
246 // Update live variable information if there is any.
247 LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
248 if (LV) {
249 MachineInstr *PHICopy = prior(AfterPHIsIt);
250
251 if (IncomingReg) {
252 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
253
254 // Increment use count of the newly created virtual register.
255 LV->setPHIJoin(IncomingReg);
256
257 // When we are reusing the incoming register, it may already have been
258 // killed in this block. The old kill will also have been inserted at
259 // AfterPHIsIt, so it appears before the current PHICopy.
260 if (reusedIncoming)
261 if (MachineInstr *OldKill = VI.findKill(&MBB)) {
262 DEBUG(dbgs() << "Remove old kill from " << *OldKill);
263 LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
264 DEBUG(MBB.dump());
265 }
266
267 // Add information to LiveVariables to know that the incoming value is
268 // killed. Note that because the value is defined in several places (once
269 // each for each incoming block), the "def" block and instruction fields
270 // for the VarInfo is not filled in.
271 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
272 }
273
274 // Since we are going to be deleting the PHI node, if it is the last use of
275 // any registers, or if the value itself is dead, we need to move this
276 // information over to the new copy we just inserted.
277 LV->removeVirtualRegistersKilled(MPhi);
278
279 // If the result is dead, update LV.
280 if (isDead) {
281 LV->addVirtualRegisterDead(DestReg, PHICopy);
282 LV->removeVirtualRegisterDead(DestReg, MPhi);
283 }
284 }
285
286 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
287 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
288 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
289 MPhi->getOperand(i).getReg())];
290
291 // Now loop over all of the incoming arguments, changing them to copy into the
292 // IncomingReg register in the corresponding predecessor basic block.
293 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
294 for (int i = NumSrcs - 1; i >= 0; --i) {
295 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
296 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
297 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
298 isImplicitlyDefined(SrcReg, MRI);
299 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
300 "Machine PHI Operands must all be virtual registers!");
301
302 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
303 // path the PHI.
304 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
305
306 // Check to make sure we haven't already emitted the copy for this block.
307 // This can happen because PHI nodes may have multiple entries for the same
308 // basic block.
309 if (!MBBsInsertedInto.insert(&opBlock))
310 continue; // If the copy has already been emitted, we're done.
311
312 // Find a safe location to insert the copy, this may be the first terminator
313 // in the block (or end()).
314 MachineBasicBlock::iterator InsertPos =
315 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
316
317 // Insert the copy.
318 if (!reusedIncoming && IncomingReg) {
319 if (SrcUndef) {
320 // The source register is undefined, so there is no need for a real
321 // COPY, but we still need to ensure joint dominance by defs.
322 // Insert an IMPLICIT_DEF instruction.
323 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
324 TII->get(TargetOpcode::IMPLICIT_DEF), IncomingReg);
325
326 // Clean up the old implicit-def, if there even was one.
327 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
328 if (DefMI->isImplicitDef())
329 ImpDefs.insert(DefMI);
330 } else {
331 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
332 TII->get(TargetOpcode::COPY), IncomingReg)
333 .addReg(SrcReg, 0, SrcSubReg);
334 }
335 }
336
337 // Now update live variable information if we have it. Otherwise we're done
338 if (SrcUndef || !LV) continue;
339
340 // We want to be able to insert a kill of the register if this PHI (aka, the
341 // copy we just inserted) is the last use of the source value. Live
342 // variable analysis conservatively handles this by saying that the value is
343 // live until the end of the block the PHI entry lives in. If the value
344 // really is dead at the PHI copy, there will be no successor blocks which
345 // have the value live-in.
346
347 // Also check to see if this register is in use by another PHI node which
348 // has not yet been eliminated. If so, it will be killed at an appropriate
349 // point later.
350
351 // Is it used by any PHI instructions in this block?
352 bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
353
354 // Okay, if we now know that the value is not live out of the block, we can
355 // add a kill marker in this block saying that it kills the incoming value!
356 if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
357 // In our final twist, we have to decide which instruction kills the
358 // register. In most cases this is the copy, however, terminator
359 // instructions at the end of the block may also use the value. In this
360 // case, we should mark the last such terminator as being the killing
361 // block, not the copy.
362 MachineBasicBlock::iterator KillInst = opBlock.end();
363 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
364 for (MachineBasicBlock::iterator Term = FirstTerm;
365 Term != opBlock.end(); ++Term) {
366 if (Term->readsRegister(SrcReg))
367 KillInst = Term;
368 }
369
370 if (KillInst == opBlock.end()) {
371 // No terminator uses the register.
372
373 if (reusedIncoming || !IncomingReg) {
374 // We may have to rewind a bit if we didn't insert a copy this time.
375 KillInst = FirstTerm;
376 while (KillInst != opBlock.begin()) {
377 --KillInst;
378 if (KillInst->isDebugValue())
379 continue;
380 if (KillInst->readsRegister(SrcReg))
381 break;
382 }
383 } else {
384 // We just inserted this copy.
385 KillInst = prior(InsertPos);
386 }
387 }
388 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
389
390 // Finally, mark it killed.
391 LV->addVirtualRegisterKilled(SrcReg, KillInst);
392
393 // This vreg no longer lives all of the way through opBlock.
394 unsigned opBlockNum = opBlock.getNumber();
395 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
396 }
397 }
398
399 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
400 if (reusedIncoming || !IncomingReg)
401 MF.DeleteMachineInstr(MPhi);
402 }
403
404 /// analyzePHINodes - Gather information about the PHI nodes in here. In
405 /// particular, we want to map the number of uses of a virtual register which is
406 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
407 /// used later to determine when the vreg is killed in the BB.
408 ///
analyzePHINodes(const MachineFunction & MF)409 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
410 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
411 I != E; ++I)
412 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
413 BBI != BBE && BBI->isPHI(); ++BBI)
414 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
415 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
416 BBI->getOperand(i).getReg())];
417 }
418
SplitPHIEdges(MachineFunction & MF,MachineBasicBlock & MBB,LiveVariables & LV,MachineLoopInfo * MLI)419 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
420 MachineBasicBlock &MBB,
421 LiveVariables &LV,
422 MachineLoopInfo *MLI) {
423 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
424 return false; // Quick exit for basic blocks without PHIs.
425
426 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
427 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
428
429 bool Changed = false;
430 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
431 BBI != BBE && BBI->isPHI(); ++BBI) {
432 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
433 unsigned Reg = BBI->getOperand(i).getReg();
434 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
435 // Is there a critical edge from PreMBB to MBB?
436 if (PreMBB->succ_size() == 1)
437 continue;
438
439 // Avoid splitting backedges of loops. It would introduce small
440 // out-of-line blocks into the loop which is very bad for code placement.
441 if (PreMBB == &MBB)
442 continue;
443 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
444 if (IsLoopHeader && PreLoop == CurLoop)
445 continue;
446
447 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
448 // when the source register is live-out for some other reason than a phi
449 // use. That means the copy we will insert in PreMBB won't be a kill, and
450 // there is a risk it may not be coalesced away.
451 //
452 // If the copy would be a kill, there is no need to split the edge.
453 if (!LV.isLiveOut(Reg, *PreMBB))
454 continue;
455
456 DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
457 << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
458 << ": " << *BBI);
459
460 // If Reg is not live-in to MBB, it means it must be live-in to some
461 // other PreMBB successor, and we can avoid the interference by splitting
462 // the edge.
463 //
464 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
465 // is likely to be left after coalescing. If we are looking at a loop
466 // exiting edge, split it so we won't insert code in the loop, otherwise
467 // don't bother.
468 bool ShouldSplit = !LV.isLiveIn(Reg, MBB);
469
470 // Check for a loop exiting edge.
471 if (!ShouldSplit && CurLoop != PreLoop) {
472 DEBUG({
473 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
474 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
475 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
476 });
477 // This edge could be entering a loop, exiting a loop, or it could be
478 // both: Jumping directly form one loop to the header of a sibling
479 // loop.
480 // Split unless this edge is entering CurLoop from an outer loop.
481 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
482 }
483 if (!ShouldSplit)
484 continue;
485 if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
486 DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
487 continue;
488 }
489 Changed = true;
490 ++NumCriticalEdgesSplit;
491 }
492 }
493 return Changed;
494 }
495