• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012, The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "bcc/Assert.h"
18 #include "bcc/Renderscript/RSTransforms.h"
19 
20 #include <cstdlib>
21 
22 #include <llvm/DerivedTypes.h>
23 #include <llvm/Function.h>
24 #include <llvm/Instructions.h>
25 #include <llvm/IRBuilder.h>
26 #include <llvm/Module.h>
27 #include <llvm/Pass.h>
28 #include <llvm/Support/raw_ostream.h>
29 #include <llvm/Target/TargetData.h>
30 #include <llvm/Type.h>
31 
32 #include "bcc/Config/Config.h"
33 #include "bcc/Renderscript/RSInfo.h"
34 #include "bcc/Support/Log.h"
35 
36 using namespace bcc;
37 
38 namespace {
39 
40 /* RSForEachExpandPass - This pass operates on functions that are able to be
41  * called via rsForEach() or "foreach_<NAME>". We create an inner loop for the
42  * ForEach-able function to be invoked over the appropriate data cells of the
43  * input/output allocations (adjusting other relevant parameters as we go). We
44  * support doing this for any ForEach-able compute kernels. The new function
45  * name is the original function name followed by ".expand". Note that we
46  * still generate code for the original function.
47  */
48 class RSForEachExpandPass : public llvm::ModulePass {
49 private:
50   static char ID;
51 
52   llvm::Module *M;
53   llvm::LLVMContext *C;
54 
55   const RSInfo::ExportForeachFuncListTy &mFuncs;
56 
57   // Turns on optimization of allocation stride values.
58   bool mEnableStepOpt;
59 
getRootSignature(llvm::Function * F)60   uint32_t getRootSignature(llvm::Function *F) {
61     const llvm::NamedMDNode *ExportForEachMetadata =
62         M->getNamedMetadata("#rs_export_foreach");
63 
64     if (!ExportForEachMetadata) {
65       llvm::SmallVector<llvm::Type*, 8> RootArgTys;
66       for (llvm::Function::arg_iterator B = F->arg_begin(),
67                                         E = F->arg_end();
68            B != E;
69            ++B) {
70         RootArgTys.push_back(B->getType());
71       }
72 
73       // For pre-ICS bitcode, we may not have signature information. In that
74       // case, we use the size of the RootArgTys to select the number of
75       // arguments.
76       return (1 << RootArgTys.size()) - 1;
77     }
78 
79     if (ExportForEachMetadata->getNumOperands() == 0) {
80       return 0;
81     }
82 
83     bccAssert(ExportForEachMetadata->getNumOperands() > 0);
84 
85     // We only handle the case for legacy root() functions here, so this is
86     // hard-coded to look at only the first such function.
87     llvm::MDNode *SigNode = ExportForEachMetadata->getOperand(0);
88     if (SigNode != NULL && SigNode->getNumOperands() == 1) {
89       llvm::Value *SigVal = SigNode->getOperand(0);
90       if (SigVal->getValueID() == llvm::Value::MDStringVal) {
91         llvm::StringRef SigString =
92             static_cast<llvm::MDString*>(SigVal)->getString();
93         uint32_t Signature = 0;
94         if (SigString.getAsInteger(10, Signature)) {
95           ALOGE("Non-integer signature value '%s'", SigString.str().c_str());
96           return 0;
97         }
98         return Signature;
99       }
100     }
101 
102     return 0;
103   }
104 
105   // Get the actual value we should use to step through an allocation.
106   // TD - Target Data size/layout information.
107   // T - Type of allocation (should be a pointer).
108   // OrigStep - Original step increment (root.expand() input from driver).
getStepValue(llvm::TargetData * TD,llvm::Type * T,llvm::Value * OrigStep)109   llvm::Value *getStepValue(llvm::TargetData *TD, llvm::Type *T,
110                             llvm::Value *OrigStep) {
111     bccAssert(TD);
112     bccAssert(T);
113     bccAssert(OrigStep);
114     llvm::PointerType *PT = llvm::dyn_cast<llvm::PointerType>(T);
115     llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*C);
116     if (mEnableStepOpt && T != VoidPtrTy && PT) {
117       llvm::Type *ET = PT->getElementType();
118       uint64_t ETSize = TD->getTypeAllocSize(ET);
119       llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*C);
120       return llvm::ConstantInt::get(Int32Ty, ETSize);
121     } else {
122       return OrigStep;
123     }
124   }
125 
hasIn(uint32_t Signature)126   static bool hasIn(uint32_t Signature) {
127     return Signature & 0x01;
128   }
129 
hasOut(uint32_t Signature)130   static bool hasOut(uint32_t Signature) {
131     return Signature & 0x02;
132   }
133 
hasUsrData(uint32_t Signature)134   static bool hasUsrData(uint32_t Signature) {
135     return Signature & 0x04;
136   }
137 
hasX(uint32_t Signature)138   static bool hasX(uint32_t Signature) {
139     return Signature & 0x08;
140   }
141 
hasY(uint32_t Signature)142   static bool hasY(uint32_t Signature) {
143     return Signature & 0x10;
144   }
145 
isKernel(uint32_t Signature)146   static bool isKernel(uint32_t Signature) {
147     return Signature & 0x20;
148   }
149 
150 
151 public:
RSForEachExpandPass(const RSInfo::ExportForeachFuncListTy & pForeachFuncs,bool pEnableStepOpt)152   RSForEachExpandPass(const RSInfo::ExportForeachFuncListTy &pForeachFuncs,
153                       bool pEnableStepOpt)
154       : ModulePass(ID), M(NULL), C(NULL), mFuncs(pForeachFuncs),
155         mEnableStepOpt(pEnableStepOpt) {
156   }
157 
158   /* Performs the actual optimization on a selected function. On success, the
159    * Module will contain a new function of the name "<NAME>.expand" that
160    * invokes <NAME>() in a loop with the appropriate parameters.
161    */
ExpandFunction(llvm::Function * F,uint32_t Signature)162   bool ExpandFunction(llvm::Function *F, uint32_t Signature) {
163     ALOGV("Expanding ForEach-able Function %s", F->getName().str().c_str());
164 
165     if (!Signature) {
166       Signature = getRootSignature(F);
167       if (!Signature) {
168         // We couldn't determine how to expand this function based on its
169         // function signature.
170         return false;
171       }
172     }
173 
174     llvm::TargetData TD(M);
175 
176     llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*C);
177     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*C);
178     llvm::Type *SizeTy = Int32Ty;
179 
180     /* Defined in frameworks/base/libs/rs/rs_hal.h:
181      *
182      * struct RsForEachStubParamStruct {
183      *   const void *in;
184      *   void *out;
185      *   const void *usr;
186      *   size_t usr_len;
187      *   uint32_t x;
188      *   uint32_t y;
189      *   uint32_t z;
190      *   uint32_t lod;
191      *   enum RsAllocationCubemapFace face;
192      *   uint32_t ar[16];
193      * };
194      */
195     llvm::SmallVector<llvm::Type*, 9> StructTys;
196     StructTys.push_back(VoidPtrTy);  // const void *in
197     StructTys.push_back(VoidPtrTy);  // void *out
198     StructTys.push_back(VoidPtrTy);  // const void *usr
199     StructTys.push_back(SizeTy);     // size_t usr_len
200     StructTys.push_back(Int32Ty);    // uint32_t x
201     StructTys.push_back(Int32Ty);    // uint32_t y
202     StructTys.push_back(Int32Ty);    // uint32_t z
203     StructTys.push_back(Int32Ty);    // uint32_t lod
204     StructTys.push_back(Int32Ty);    // enum RsAllocationCubemapFace
205     StructTys.push_back(llvm::ArrayType::get(Int32Ty, 16));  // uint32_t ar[16]
206 
207     llvm::Type *ForEachStubPtrTy = llvm::StructType::create(
208         StructTys, "RsForEachStubParamStruct")->getPointerTo();
209 
210     /* Create the function signature for our expanded function.
211      * void (const RsForEachStubParamStruct *p, uint32_t x1, uint32_t x2,
212      *       uint32_t instep, uint32_t outstep)
213      */
214     llvm::SmallVector<llvm::Type*, 8> ParamTys;
215     ParamTys.push_back(ForEachStubPtrTy);  // const RsForEachStubParamStruct *p
216     ParamTys.push_back(Int32Ty);           // uint32_t x1
217     ParamTys.push_back(Int32Ty);           // uint32_t x2
218     ParamTys.push_back(Int32Ty);           // uint32_t instep
219     ParamTys.push_back(Int32Ty);           // uint32_t outstep
220 
221     llvm::FunctionType *FT =
222         llvm::FunctionType::get(llvm::Type::getVoidTy(*C), ParamTys, false);
223     llvm::Function *ExpandedFunc =
224         llvm::Function::Create(FT,
225                                llvm::GlobalValue::ExternalLinkage,
226                                F->getName() + ".expand", M);
227 
228     // Create and name the actual arguments to this expanded function.
229     llvm::SmallVector<llvm::Argument*, 8> ArgVec;
230     for (llvm::Function::arg_iterator B = ExpandedFunc->arg_begin(),
231                                       E = ExpandedFunc->arg_end();
232          B != E;
233          ++B) {
234       ArgVec.push_back(B);
235     }
236 
237     if (ArgVec.size() != 5) {
238       ALOGE("Incorrect number of arguments to function: %zu",
239             ArgVec.size());
240       return false;
241     }
242     llvm::Value *Arg_p = ArgVec[0];
243     llvm::Value *Arg_x1 = ArgVec[1];
244     llvm::Value *Arg_x2 = ArgVec[2];
245     llvm::Value *Arg_instep = ArgVec[3];
246     llvm::Value *Arg_outstep = ArgVec[4];
247 
248     Arg_p->setName("p");
249     Arg_x1->setName("x1");
250     Arg_x2->setName("x2");
251     Arg_instep->setName("arg_instep");
252     Arg_outstep->setName("arg_outstep");
253 
254     llvm::Value *InStep = NULL;
255     llvm::Value *OutStep = NULL;
256 
257     // Construct the actual function body.
258     llvm::BasicBlock *Begin =
259         llvm::BasicBlock::Create(*C, "Begin", ExpandedFunc);
260     llvm::IRBuilder<> Builder(Begin);
261 
262     // uint32_t X = x1;
263     llvm::AllocaInst *AX = Builder.CreateAlloca(Int32Ty, 0, "AX");
264     Builder.CreateStore(Arg_x1, AX);
265 
266     // Collect and construct the arguments for the kernel().
267     // Note that we load any loop-invariant arguments before entering the Loop.
268     llvm::Function::arg_iterator Args = F->arg_begin();
269 
270     llvm::Type *InTy = NULL;
271     llvm::AllocaInst *AIn = NULL;
272     if (hasIn(Signature)) {
273       InTy = Args->getType();
274       AIn = Builder.CreateAlloca(InTy, 0, "AIn");
275       InStep = getStepValue(&TD, InTy, Arg_instep);
276       InStep->setName("instep");
277       Builder.CreateStore(Builder.CreatePointerCast(Builder.CreateLoad(
278           Builder.CreateStructGEP(Arg_p, 0)), InTy), AIn);
279       Args++;
280     }
281 
282     llvm::Type *OutTy = NULL;
283     llvm::AllocaInst *AOut = NULL;
284     if (hasOut(Signature)) {
285       OutTy = Args->getType();
286       AOut = Builder.CreateAlloca(OutTy, 0, "AOut");
287       OutStep = getStepValue(&TD, OutTy, Arg_outstep);
288       OutStep->setName("outstep");
289       Builder.CreateStore(Builder.CreatePointerCast(Builder.CreateLoad(
290           Builder.CreateStructGEP(Arg_p, 1)), OutTy), AOut);
291       Args++;
292     }
293 
294     llvm::Value *UsrData = NULL;
295     if (hasUsrData(Signature)) {
296       llvm::Type *UsrDataTy = Args->getType();
297       UsrData = Builder.CreatePointerCast(Builder.CreateLoad(
298           Builder.CreateStructGEP(Arg_p, 2)), UsrDataTy);
299       UsrData->setName("UsrData");
300       Args++;
301     }
302 
303     if (hasX(Signature)) {
304       Args++;
305     }
306 
307     llvm::Value *Y = NULL;
308     if (hasY(Signature)) {
309       Y = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 5), "Y");
310       Args++;
311     }
312 
313     bccAssert(Args == F->arg_end());
314 
315     llvm::BasicBlock *Loop = llvm::BasicBlock::Create(*C, "Loop", ExpandedFunc);
316     llvm::BasicBlock *Exit = llvm::BasicBlock::Create(*C, "Exit", ExpandedFunc);
317 
318     // if (x1 < x2) goto Loop; else goto Exit;
319     llvm::Value *Cond = Builder.CreateICmpSLT(Arg_x1, Arg_x2);
320     Builder.CreateCondBr(Cond, Loop, Exit);
321 
322     // Loop:
323     Builder.SetInsertPoint(Loop);
324 
325     // Populate the actual call to kernel().
326     llvm::SmallVector<llvm::Value*, 8> RootArgs;
327 
328     llvm::Value *InPtr = NULL;
329     llvm::Value *OutPtr = NULL;
330 
331     if (AIn) {
332       InPtr = Builder.CreateLoad(AIn, "InPtr");
333       RootArgs.push_back(InPtr);
334     }
335 
336     if (AOut) {
337       OutPtr = Builder.CreateLoad(AOut, "OutPtr");
338       RootArgs.push_back(OutPtr);
339     }
340 
341     if (UsrData) {
342       RootArgs.push_back(UsrData);
343     }
344 
345     // We always have to load X, since it is used to iterate through the loop.
346     llvm::Value *X = Builder.CreateLoad(AX, "X");
347     if (hasX(Signature)) {
348       RootArgs.push_back(X);
349     }
350 
351     if (Y) {
352       RootArgs.push_back(Y);
353     }
354 
355     Builder.CreateCall(F, RootArgs);
356 
357     if (InPtr) {
358       // InPtr += instep
359       llvm::Value *NewIn = Builder.CreateIntToPtr(Builder.CreateNUWAdd(
360           Builder.CreatePtrToInt(InPtr, Int32Ty), InStep), InTy);
361       Builder.CreateStore(NewIn, AIn);
362     }
363 
364     if (OutPtr) {
365       // OutPtr += outstep
366       llvm::Value *NewOut = Builder.CreateIntToPtr(Builder.CreateNUWAdd(
367           Builder.CreatePtrToInt(OutPtr, Int32Ty), OutStep), OutTy);
368       Builder.CreateStore(NewOut, AOut);
369     }
370 
371     // X++;
372     llvm::Value *XPlusOne =
373         Builder.CreateNUWAdd(X, llvm::ConstantInt::get(Int32Ty, 1));
374     Builder.CreateStore(XPlusOne, AX);
375 
376     // If (X < x2) goto Loop; else goto Exit;
377     Cond = Builder.CreateICmpSLT(XPlusOne, Arg_x2);
378     Builder.CreateCondBr(Cond, Loop, Exit);
379 
380     // Exit:
381     Builder.SetInsertPoint(Exit);
382     Builder.CreateRetVoid();
383 
384     return true;
385   }
386 
387   /* Expand a pass-by-value kernel.
388    */
ExpandKernel(llvm::Function * F,uint32_t Signature)389   bool ExpandKernel(llvm::Function *F, uint32_t Signature) {
390     bccAssert(isKernel(Signature));
391     ALOGV("Expanding kernel Function %s", F->getName().str().c_str());
392 
393     // TODO: Refactor this to share functionality with ExpandFunction.
394     llvm::TargetData TD(M);
395 
396     llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*C);
397     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*C);
398     llvm::Type *SizeTy = Int32Ty;
399 
400     /* Defined in frameworks/base/libs/rs/rs_hal.h:
401      *
402      * struct RsForEachStubParamStruct {
403      *   const void *in;
404      *   void *out;
405      *   const void *usr;
406      *   size_t usr_len;
407      *   uint32_t x;
408      *   uint32_t y;
409      *   uint32_t z;
410      *   uint32_t lod;
411      *   enum RsAllocationCubemapFace face;
412      *   uint32_t ar[16];
413      * };
414      */
415     llvm::SmallVector<llvm::Type*, 9> StructTys;
416     StructTys.push_back(VoidPtrTy);  // const void *in
417     StructTys.push_back(VoidPtrTy);  // void *out
418     StructTys.push_back(VoidPtrTy);  // const void *usr
419     StructTys.push_back(SizeTy);     // size_t usr_len
420     StructTys.push_back(Int32Ty);    // uint32_t x
421     StructTys.push_back(Int32Ty);    // uint32_t y
422     StructTys.push_back(Int32Ty);    // uint32_t z
423     StructTys.push_back(Int32Ty);    // uint32_t lod
424     StructTys.push_back(Int32Ty);    // enum RsAllocationCubemapFace
425     StructTys.push_back(llvm::ArrayType::get(Int32Ty, 16));  // uint32_t ar[16]
426 
427     llvm::Type *ForEachStubPtrTy = llvm::StructType::create(
428         StructTys, "RsForEachStubParamStruct")->getPointerTo();
429 
430     /* Create the function signature for our expanded function.
431      * void (const RsForEachStubParamStruct *p, uint32_t x1, uint32_t x2,
432      *       uint32_t instep, uint32_t outstep)
433      */
434     llvm::SmallVector<llvm::Type*, 8> ParamTys;
435     ParamTys.push_back(ForEachStubPtrTy);  // const RsForEachStubParamStruct *p
436     ParamTys.push_back(Int32Ty);           // uint32_t x1
437     ParamTys.push_back(Int32Ty);           // uint32_t x2
438     ParamTys.push_back(Int32Ty);           // uint32_t instep
439     ParamTys.push_back(Int32Ty);           // uint32_t outstep
440 
441     llvm::FunctionType *FT =
442         llvm::FunctionType::get(llvm::Type::getVoidTy(*C), ParamTys, false);
443     llvm::Function *ExpandedFunc =
444         llvm::Function::Create(FT,
445                                llvm::GlobalValue::ExternalLinkage,
446                                F->getName() + ".expand", M);
447 
448     // Create and name the actual arguments to this expanded function.
449     llvm::SmallVector<llvm::Argument*, 8> ArgVec;
450     for (llvm::Function::arg_iterator B = ExpandedFunc->arg_begin(),
451                                       E = ExpandedFunc->arg_end();
452          B != E;
453          ++B) {
454       ArgVec.push_back(B);
455     }
456 
457     if (ArgVec.size() != 5) {
458       ALOGE("Incorrect number of arguments to function: %zu",
459             ArgVec.size());
460       return false;
461     }
462     llvm::Value *Arg_p = ArgVec[0];
463     llvm::Value *Arg_x1 = ArgVec[1];
464     llvm::Value *Arg_x2 = ArgVec[2];
465     llvm::Value *Arg_instep = ArgVec[3];
466     llvm::Value *Arg_outstep = ArgVec[4];
467 
468     Arg_p->setName("p");
469     Arg_x1->setName("x1");
470     Arg_x2->setName("x2");
471     Arg_instep->setName("arg_instep");
472     Arg_outstep->setName("arg_outstep");
473 
474     llvm::Value *InStep = NULL;
475     llvm::Value *OutStep = NULL;
476 
477     // Construct the actual function body.
478     llvm::BasicBlock *Begin =
479         llvm::BasicBlock::Create(*C, "Begin", ExpandedFunc);
480     llvm::IRBuilder<> Builder(Begin);
481 
482     // uint32_t X = x1;
483     llvm::AllocaInst *AX = Builder.CreateAlloca(Int32Ty, 0, "AX");
484     Builder.CreateStore(Arg_x1, AX);
485 
486     // Collect and construct the arguments for the kernel().
487     // Note that we load any loop-invariant arguments before entering the Loop.
488     llvm::Function::arg_iterator Args = F->arg_begin();
489 
490     llvm::Type *OutTy = NULL;
491     llvm::AllocaInst *AOut = NULL;
492     bool PassOutByReference = false;
493     if (hasOut(Signature)) {
494       llvm::Type *OutBaseTy = F->getReturnType();
495       if (OutBaseTy->isVoidTy()) {
496         PassOutByReference = true;
497         OutTy = Args->getType();
498         Args++;
499       } else {
500         OutTy = OutBaseTy->getPointerTo();
501         // We don't increment Args, since we are using the actual return type.
502       }
503       AOut = Builder.CreateAlloca(OutTy, 0, "AOut");
504       OutStep = getStepValue(&TD, OutTy, Arg_outstep);
505       OutStep->setName("outstep");
506       Builder.CreateStore(Builder.CreatePointerCast(Builder.CreateLoad(
507           Builder.CreateStructGEP(Arg_p, 1)), OutTy), AOut);
508     }
509 
510     llvm::Type *InBaseTy = NULL;
511     llvm::Type *InTy = NULL;
512     llvm::AllocaInst *AIn = NULL;
513     if (hasIn(Signature)) {
514       InBaseTy = Args->getType();
515       InTy =InBaseTy->getPointerTo();
516       AIn = Builder.CreateAlloca(InTy, 0, "AIn");
517       InStep = getStepValue(&TD, InTy, Arg_instep);
518       InStep->setName("instep");
519       Builder.CreateStore(Builder.CreatePointerCast(Builder.CreateLoad(
520           Builder.CreateStructGEP(Arg_p, 0)), InTy), AIn);
521       Args++;
522     }
523 
524     // No usrData parameter on kernels.
525     bccAssert(!hasUsrData(Signature));
526 
527     if (hasX(Signature)) {
528       Args++;
529     }
530 
531     llvm::Value *Y = NULL;
532     if (hasY(Signature)) {
533       Y = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 5), "Y");
534       Args++;
535     }
536 
537     bccAssert(Args == F->arg_end());
538 
539     llvm::BasicBlock *Loop = llvm::BasicBlock::Create(*C, "Loop", ExpandedFunc);
540     llvm::BasicBlock *Exit = llvm::BasicBlock::Create(*C, "Exit", ExpandedFunc);
541 
542     // if (x1 < x2) goto Loop; else goto Exit;
543     llvm::Value *Cond = Builder.CreateICmpSLT(Arg_x1, Arg_x2);
544     Builder.CreateCondBr(Cond, Loop, Exit);
545 
546     // Loop:
547     Builder.SetInsertPoint(Loop);
548 
549     // Populate the actual call to kernel().
550     llvm::SmallVector<llvm::Value*, 8> RootArgs;
551 
552     llvm::Value *InPtr = NULL;
553     llvm::Value *In = NULL;
554     llvm::Value *OutPtr = NULL;
555 
556     if (PassOutByReference) {
557       OutPtr = Builder.CreateLoad(AOut, "OutPtr");
558       RootArgs.push_back(OutPtr);
559     }
560 
561     if (AIn) {
562       InPtr = Builder.CreateLoad(AIn, "InPtr");
563       In = Builder.CreateLoad(InPtr, "In");
564       RootArgs.push_back(In);
565     }
566 
567     // We always have to load X, since it is used to iterate through the loop.
568     llvm::Value *X = Builder.CreateLoad(AX, "X");
569     if (hasX(Signature)) {
570       RootArgs.push_back(X);
571     }
572 
573     if (Y) {
574       RootArgs.push_back(Y);
575     }
576 
577     llvm::Value *RetVal = Builder.CreateCall(F, RootArgs);
578 
579     if (AOut && !PassOutByReference) {
580       OutPtr = Builder.CreateLoad(AOut, "OutPtr");
581       Builder.CreateStore(RetVal, OutPtr);
582     }
583 
584     if (InPtr) {
585       // InPtr += instep
586       llvm::Value *NewIn = Builder.CreateIntToPtr(Builder.CreateNUWAdd(
587           Builder.CreatePtrToInt(InPtr, Int32Ty), InStep), InTy);
588       Builder.CreateStore(NewIn, AIn);
589     }
590 
591     if (OutPtr) {
592       // OutPtr += outstep
593       llvm::Value *NewOut = Builder.CreateIntToPtr(Builder.CreateNUWAdd(
594           Builder.CreatePtrToInt(OutPtr, Int32Ty), OutStep), OutTy);
595       Builder.CreateStore(NewOut, AOut);
596     }
597 
598     // X++;
599     llvm::Value *XPlusOne =
600         Builder.CreateNUWAdd(X, llvm::ConstantInt::get(Int32Ty, 1));
601     Builder.CreateStore(XPlusOne, AX);
602 
603     // If (X < x2) goto Loop; else goto Exit;
604     Cond = Builder.CreateICmpSLT(XPlusOne, Arg_x2);
605     Builder.CreateCondBr(Cond, Loop, Exit);
606 
607     // Exit:
608     Builder.SetInsertPoint(Exit);
609     Builder.CreateRetVoid();
610 
611     return true;
612   }
613 
runOnModule(llvm::Module & M)614   virtual bool runOnModule(llvm::Module &M) {
615     bool Changed = false;
616     this->M = &M;
617     C = &M.getContext();
618 
619     for (RSInfo::ExportForeachFuncListTy::const_iterator
620              func_iter = mFuncs.begin(), func_end = mFuncs.end();
621          func_iter != func_end; func_iter++) {
622       const char *name = func_iter->first;
623       uint32_t signature = func_iter->second;
624       llvm::Function *kernel = M.getFunction(name);
625       if (kernel && isKernel(signature)) {
626         Changed |= ExpandKernel(kernel, signature);
627       }
628       else if (kernel && kernel->getReturnType()->isVoidTy()) {
629         Changed |= ExpandFunction(kernel, signature);
630       }
631     }
632 
633     return Changed;
634   }
635 
getPassName() const636   virtual const char *getPassName() const {
637     return "ForEach-able Function Expansion";
638   }
639 
640 }; // end RSForEachExpandPass
641 
642 } // end anonymous namespace
643 
644 char RSForEachExpandPass::ID = 0;
645 
646 namespace bcc {
647 
648 llvm::ModulePass *
createRSForEachExpandPass(const RSInfo::ExportForeachFuncListTy & pForeachFuncs,bool pEnableStepOpt)649 createRSForEachExpandPass(const RSInfo::ExportForeachFuncListTy &pForeachFuncs,
650                           bool pEnableStepOpt){
651   return new RSForEachExpandPass(pForeachFuncs, pEnableStepOpt);
652 }
653 
654 } // end namespace bcc
655