1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "llvm/CodeGen/ScheduleDAG.h"
17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18 #include "llvm/CodeGen/SelectionDAGNodes.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <climits>
26 using namespace llvm;
27
28 #ifndef NDEBUG
29 static cl::opt<bool> StressSchedOpt(
30 "stress-sched", cl::Hidden, cl::init(false),
31 cl::desc("Stress test instruction scheduling"));
32 #endif
33
anchor()34 void SchedulingPriorityQueue::anchor() { }
35
ScheduleDAG(MachineFunction & mf)36 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
37 : TM(mf.getTarget()),
38 TII(TM.getInstrInfo()),
39 TRI(TM.getRegisterInfo()),
40 MF(mf), MRI(mf.getRegInfo()),
41 EntrySU(), ExitSU() {
42 #ifndef NDEBUG
43 StressSched = StressSchedOpt;
44 #endif
45 }
46
~ScheduleDAG()47 ScheduleDAG::~ScheduleDAG() {}
48
49 /// Clear the DAG state (e.g. between scheduling regions).
clearDAG()50 void ScheduleDAG::clearDAG() {
51 SUnits.clear();
52 EntrySU = SUnit();
53 ExitSU = SUnit();
54 }
55
56 /// getInstrDesc helper to handle SDNodes.
getNodeDesc(const SDNode * Node) const57 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
58 if (!Node || !Node->isMachineOpcode()) return NULL;
59 return &TII->get(Node->getMachineOpcode());
60 }
61
62 /// addPred - This adds the specified edge as a pred of the current node if
63 /// not already. It also adds the current node as a successor of the
64 /// specified node.
addPred(const SDep & D)65 bool SUnit::addPred(const SDep &D) {
66 // If this node already has this depenence, don't add a redundant one.
67 for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
68 I != E; ++I) {
69 if (I->overlaps(D)) {
70 // Extend the latency if needed. Equivalent to removePred(I) + addPred(D).
71 if (I->getLatency() < D.getLatency()) {
72 SUnit *PredSU = I->getSUnit();
73 // Find the corresponding successor in N.
74 SDep ForwardD = *I;
75 ForwardD.setSUnit(this);
76 for (SmallVector<SDep, 4>::iterator II = PredSU->Succs.begin(),
77 EE = PredSU->Succs.end(); II != EE; ++II) {
78 if (*II == ForwardD) {
79 II->setLatency(D.getLatency());
80 break;
81 }
82 }
83 I->setLatency(D.getLatency());
84 }
85 return false;
86 }
87 }
88 // Now add a corresponding succ to N.
89 SDep P = D;
90 P.setSUnit(this);
91 SUnit *N = D.getSUnit();
92 // Update the bookkeeping.
93 if (D.getKind() == SDep::Data) {
94 assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
95 assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
96 ++NumPreds;
97 ++N->NumSuccs;
98 }
99 if (!N->isScheduled) {
100 assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
101 ++NumPredsLeft;
102 }
103 if (!isScheduled) {
104 assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
105 ++N->NumSuccsLeft;
106 }
107 Preds.push_back(D);
108 N->Succs.push_back(P);
109 if (P.getLatency() != 0) {
110 this->setDepthDirty();
111 N->setHeightDirty();
112 }
113 return true;
114 }
115
116 /// removePred - This removes the specified edge as a pred of the current
117 /// node if it exists. It also removes the current node as a successor of
118 /// the specified node.
removePred(const SDep & D)119 void SUnit::removePred(const SDep &D) {
120 // Find the matching predecessor.
121 for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
122 I != E; ++I)
123 if (*I == D) {
124 bool FoundSucc = false;
125 // Find the corresponding successor in N.
126 SDep P = D;
127 P.setSUnit(this);
128 SUnit *N = D.getSUnit();
129 for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
130 EE = N->Succs.end(); II != EE; ++II)
131 if (*II == P) {
132 FoundSucc = true;
133 N->Succs.erase(II);
134 break;
135 }
136 assert(FoundSucc && "Mismatching preds / succs lists!");
137 (void)FoundSucc;
138 Preds.erase(I);
139 // Update the bookkeeping.
140 if (P.getKind() == SDep::Data) {
141 assert(NumPreds > 0 && "NumPreds will underflow!");
142 assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
143 --NumPreds;
144 --N->NumSuccs;
145 }
146 if (!N->isScheduled) {
147 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
148 --NumPredsLeft;
149 }
150 if (!isScheduled) {
151 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
152 --N->NumSuccsLeft;
153 }
154 if (P.getLatency() != 0) {
155 this->setDepthDirty();
156 N->setHeightDirty();
157 }
158 return;
159 }
160 }
161
setDepthDirty()162 void SUnit::setDepthDirty() {
163 if (!isDepthCurrent) return;
164 SmallVector<SUnit*, 8> WorkList;
165 WorkList.push_back(this);
166 do {
167 SUnit *SU = WorkList.pop_back_val();
168 SU->isDepthCurrent = false;
169 for (SUnit::const_succ_iterator I = SU->Succs.begin(),
170 E = SU->Succs.end(); I != E; ++I) {
171 SUnit *SuccSU = I->getSUnit();
172 if (SuccSU->isDepthCurrent)
173 WorkList.push_back(SuccSU);
174 }
175 } while (!WorkList.empty());
176 }
177
setHeightDirty()178 void SUnit::setHeightDirty() {
179 if (!isHeightCurrent) return;
180 SmallVector<SUnit*, 8> WorkList;
181 WorkList.push_back(this);
182 do {
183 SUnit *SU = WorkList.pop_back_val();
184 SU->isHeightCurrent = false;
185 for (SUnit::const_pred_iterator I = SU->Preds.begin(),
186 E = SU->Preds.end(); I != E; ++I) {
187 SUnit *PredSU = I->getSUnit();
188 if (PredSU->isHeightCurrent)
189 WorkList.push_back(PredSU);
190 }
191 } while (!WorkList.empty());
192 }
193
194 /// setDepthToAtLeast - Update this node's successors to reflect the
195 /// fact that this node's depth just increased.
196 ///
setDepthToAtLeast(unsigned NewDepth)197 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
198 if (NewDepth <= getDepth())
199 return;
200 setDepthDirty();
201 Depth = NewDepth;
202 isDepthCurrent = true;
203 }
204
205 /// setHeightToAtLeast - Update this node's predecessors to reflect the
206 /// fact that this node's height just increased.
207 ///
setHeightToAtLeast(unsigned NewHeight)208 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
209 if (NewHeight <= getHeight())
210 return;
211 setHeightDirty();
212 Height = NewHeight;
213 isHeightCurrent = true;
214 }
215
216 /// ComputeDepth - Calculate the maximal path from the node to the exit.
217 ///
ComputeDepth()218 void SUnit::ComputeDepth() {
219 SmallVector<SUnit*, 8> WorkList;
220 WorkList.push_back(this);
221 do {
222 SUnit *Cur = WorkList.back();
223
224 bool Done = true;
225 unsigned MaxPredDepth = 0;
226 for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
227 E = Cur->Preds.end(); I != E; ++I) {
228 SUnit *PredSU = I->getSUnit();
229 if (PredSU->isDepthCurrent)
230 MaxPredDepth = std::max(MaxPredDepth,
231 PredSU->Depth + I->getLatency());
232 else {
233 Done = false;
234 WorkList.push_back(PredSU);
235 }
236 }
237
238 if (Done) {
239 WorkList.pop_back();
240 if (MaxPredDepth != Cur->Depth) {
241 Cur->setDepthDirty();
242 Cur->Depth = MaxPredDepth;
243 }
244 Cur->isDepthCurrent = true;
245 }
246 } while (!WorkList.empty());
247 }
248
249 /// ComputeHeight - Calculate the maximal path from the node to the entry.
250 ///
ComputeHeight()251 void SUnit::ComputeHeight() {
252 SmallVector<SUnit*, 8> WorkList;
253 WorkList.push_back(this);
254 do {
255 SUnit *Cur = WorkList.back();
256
257 bool Done = true;
258 unsigned MaxSuccHeight = 0;
259 for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
260 E = Cur->Succs.end(); I != E; ++I) {
261 SUnit *SuccSU = I->getSUnit();
262 if (SuccSU->isHeightCurrent)
263 MaxSuccHeight = std::max(MaxSuccHeight,
264 SuccSU->Height + I->getLatency());
265 else {
266 Done = false;
267 WorkList.push_back(SuccSU);
268 }
269 }
270
271 if (Done) {
272 WorkList.pop_back();
273 if (MaxSuccHeight != Cur->Height) {
274 Cur->setHeightDirty();
275 Cur->Height = MaxSuccHeight;
276 }
277 Cur->isHeightCurrent = true;
278 }
279 } while (!WorkList.empty());
280 }
281
282 #ifndef NDEBUG
283 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
284 /// a group of nodes flagged together.
dump(const ScheduleDAG * G) const285 void SUnit::dump(const ScheduleDAG *G) const {
286 dbgs() << "SU(" << NodeNum << "): ";
287 G->dumpNode(this);
288 }
289
dumpAll(const ScheduleDAG * G) const290 void SUnit::dumpAll(const ScheduleDAG *G) const {
291 dump(G);
292
293 dbgs() << " # preds left : " << NumPredsLeft << "\n";
294 dbgs() << " # succs left : " << NumSuccsLeft << "\n";
295 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n";
296 dbgs() << " Latency : " << Latency << "\n";
297 dbgs() << " Depth : " << Depth << "\n";
298 dbgs() << " Height : " << Height << "\n";
299
300 if (Preds.size() != 0) {
301 dbgs() << " Predecessors:\n";
302 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
303 I != E; ++I) {
304 dbgs() << " ";
305 switch (I->getKind()) {
306 case SDep::Data: dbgs() << "val "; break;
307 case SDep::Anti: dbgs() << "anti"; break;
308 case SDep::Output: dbgs() << "out "; break;
309 case SDep::Order: dbgs() << "ch "; break;
310 }
311 dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
312 if (I->isArtificial())
313 dbgs() << " *";
314 dbgs() << ": Latency=" << I->getLatency();
315 if (I->isAssignedRegDep())
316 dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
317 dbgs() << "\n";
318 }
319 }
320 if (Succs.size() != 0) {
321 dbgs() << " Successors:\n";
322 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
323 I != E; ++I) {
324 dbgs() << " ";
325 switch (I->getKind()) {
326 case SDep::Data: dbgs() << "val "; break;
327 case SDep::Anti: dbgs() << "anti"; break;
328 case SDep::Output: dbgs() << "out "; break;
329 case SDep::Order: dbgs() << "ch "; break;
330 }
331 dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
332 if (I->isArtificial())
333 dbgs() << " *";
334 dbgs() << ": Latency=" << I->getLatency();
335 dbgs() << "\n";
336 }
337 }
338 dbgs() << "\n";
339 }
340 #endif
341
342 #ifndef NDEBUG
343 /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
344 /// their state is consistent. Return the number of scheduled nodes.
345 ///
VerifyScheduledDAG(bool isBottomUp)346 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
347 bool AnyNotSched = false;
348 unsigned DeadNodes = 0;
349 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
350 if (!SUnits[i].isScheduled) {
351 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
352 ++DeadNodes;
353 continue;
354 }
355 if (!AnyNotSched)
356 dbgs() << "*** Scheduling failed! ***\n";
357 SUnits[i].dump(this);
358 dbgs() << "has not been scheduled!\n";
359 AnyNotSched = true;
360 }
361 if (SUnits[i].isScheduled &&
362 (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
363 unsigned(INT_MAX)) {
364 if (!AnyNotSched)
365 dbgs() << "*** Scheduling failed! ***\n";
366 SUnits[i].dump(this);
367 dbgs() << "has an unexpected "
368 << (isBottomUp ? "Height" : "Depth") << " value!\n";
369 AnyNotSched = true;
370 }
371 if (isBottomUp) {
372 if (SUnits[i].NumSuccsLeft != 0) {
373 if (!AnyNotSched)
374 dbgs() << "*** Scheduling failed! ***\n";
375 SUnits[i].dump(this);
376 dbgs() << "has successors left!\n";
377 AnyNotSched = true;
378 }
379 } else {
380 if (SUnits[i].NumPredsLeft != 0) {
381 if (!AnyNotSched)
382 dbgs() << "*** Scheduling failed! ***\n";
383 SUnits[i].dump(this);
384 dbgs() << "has predecessors left!\n";
385 AnyNotSched = true;
386 }
387 }
388 }
389 assert(!AnyNotSched);
390 return SUnits.size() - DeadNodes;
391 }
392 #endif
393
394 /// InitDAGTopologicalSorting - create the initial topological
395 /// ordering from the DAG to be scheduled.
396 ///
397 /// The idea of the algorithm is taken from
398 /// "Online algorithms for managing the topological order of
399 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
400 /// This is the MNR algorithm, which was first introduced by
401 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
402 /// "Maintaining a topological order under edge insertions".
403 ///
404 /// Short description of the algorithm:
405 ///
406 /// Topological ordering, ord, of a DAG maps each node to a topological
407 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
408 ///
409 /// This means that if there is a path from the node X to the node Z,
410 /// then ord(X) < ord(Z).
411 ///
412 /// This property can be used to check for reachability of nodes:
413 /// if Z is reachable from X, then an insertion of the edge Z->X would
414 /// create a cycle.
415 ///
416 /// The algorithm first computes a topological ordering for the DAG by
417 /// initializing the Index2Node and Node2Index arrays and then tries to keep
418 /// the ordering up-to-date after edge insertions by reordering the DAG.
419 ///
420 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
421 /// the nodes reachable from Y, and then shifts them using Shift to lie
422 /// immediately after X in Index2Node.
InitDAGTopologicalSorting()423 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
424 unsigned DAGSize = SUnits.size();
425 std::vector<SUnit*> WorkList;
426 WorkList.reserve(DAGSize);
427
428 Index2Node.resize(DAGSize);
429 Node2Index.resize(DAGSize);
430
431 // Initialize the data structures.
432 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
433 SUnit *SU = &SUnits[i];
434 int NodeNum = SU->NodeNum;
435 unsigned Degree = SU->Succs.size();
436 // Temporarily use the Node2Index array as scratch space for degree counts.
437 Node2Index[NodeNum] = Degree;
438
439 // Is it a node without dependencies?
440 if (Degree == 0) {
441 assert(SU->Succs.empty() && "SUnit should have no successors");
442 // Collect leaf nodes.
443 WorkList.push_back(SU);
444 }
445 }
446
447 int Id = DAGSize;
448 while (!WorkList.empty()) {
449 SUnit *SU = WorkList.back();
450 WorkList.pop_back();
451 Allocate(SU->NodeNum, --Id);
452 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
453 I != E; ++I) {
454 SUnit *SU = I->getSUnit();
455 if (!--Node2Index[SU->NodeNum])
456 // If all dependencies of the node are processed already,
457 // then the node can be computed now.
458 WorkList.push_back(SU);
459 }
460 }
461
462 Visited.resize(DAGSize);
463
464 #ifndef NDEBUG
465 // Check correctness of the ordering
466 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
467 SUnit *SU = &SUnits[i];
468 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
469 I != E; ++I) {
470 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
471 "Wrong topological sorting");
472 }
473 }
474 #endif
475 }
476
477 /// AddPred - Updates the topological ordering to accommodate an edge
478 /// to be added from SUnit X to SUnit Y.
AddPred(SUnit * Y,SUnit * X)479 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
480 int UpperBound, LowerBound;
481 LowerBound = Node2Index[Y->NodeNum];
482 UpperBound = Node2Index[X->NodeNum];
483 bool HasLoop = false;
484 // Is Ord(X) < Ord(Y) ?
485 if (LowerBound < UpperBound) {
486 // Update the topological order.
487 Visited.reset();
488 DFS(Y, UpperBound, HasLoop);
489 assert(!HasLoop && "Inserted edge creates a loop!");
490 // Recompute topological indexes.
491 Shift(Visited, LowerBound, UpperBound);
492 }
493 }
494
495 /// RemovePred - Updates the topological ordering to accommodate an
496 /// an edge to be removed from the specified node N from the predecessors
497 /// of the current node M.
RemovePred(SUnit * M,SUnit * N)498 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
499 // InitDAGTopologicalSorting();
500 }
501
502 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
503 /// all nodes affected by the edge insertion. These nodes will later get new
504 /// topological indexes by means of the Shift method.
DFS(const SUnit * SU,int UpperBound,bool & HasLoop)505 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
506 bool &HasLoop) {
507 std::vector<const SUnit*> WorkList;
508 WorkList.reserve(SUnits.size());
509
510 WorkList.push_back(SU);
511 do {
512 SU = WorkList.back();
513 WorkList.pop_back();
514 Visited.set(SU->NodeNum);
515 for (int I = SU->Succs.size()-1; I >= 0; --I) {
516 int s = SU->Succs[I].getSUnit()->NodeNum;
517 if (Node2Index[s] == UpperBound) {
518 HasLoop = true;
519 return;
520 }
521 // Visit successors if not already and in affected region.
522 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
523 WorkList.push_back(SU->Succs[I].getSUnit());
524 }
525 }
526 } while (!WorkList.empty());
527 }
528
529 /// Shift - Renumber the nodes so that the topological ordering is
530 /// preserved.
Shift(BitVector & Visited,int LowerBound,int UpperBound)531 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
532 int UpperBound) {
533 std::vector<int> L;
534 int shift = 0;
535 int i;
536
537 for (i = LowerBound; i <= UpperBound; ++i) {
538 // w is node at topological index i.
539 int w = Index2Node[i];
540 if (Visited.test(w)) {
541 // Unmark.
542 Visited.reset(w);
543 L.push_back(w);
544 shift = shift + 1;
545 } else {
546 Allocate(w, i - shift);
547 }
548 }
549
550 for (unsigned j = 0; j < L.size(); ++j) {
551 Allocate(L[j], i - shift);
552 i = i + 1;
553 }
554 }
555
556
557 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
558 /// create a cycle.
WillCreateCycle(SUnit * SU,SUnit * TargetSU)559 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
560 if (IsReachable(TargetSU, SU))
561 return true;
562 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
563 I != E; ++I)
564 if (I->isAssignedRegDep() &&
565 IsReachable(TargetSU, I->getSUnit()))
566 return true;
567 return false;
568 }
569
570 /// IsReachable - Checks if SU is reachable from TargetSU.
IsReachable(const SUnit * SU,const SUnit * TargetSU)571 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
572 const SUnit *TargetSU) {
573 // If insertion of the edge SU->TargetSU would create a cycle
574 // then there is a path from TargetSU to SU.
575 int UpperBound, LowerBound;
576 LowerBound = Node2Index[TargetSU->NodeNum];
577 UpperBound = Node2Index[SU->NodeNum];
578 bool HasLoop = false;
579 // Is Ord(TargetSU) < Ord(SU) ?
580 if (LowerBound < UpperBound) {
581 Visited.reset();
582 // There may be a path from TargetSU to SU. Check for it.
583 DFS(TargetSU, UpperBound, HasLoop);
584 }
585 return HasLoop;
586 }
587
588 /// Allocate - assign the topological index to the node n.
Allocate(int n,int index)589 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
590 Node2Index[n] = index;
591 Index2Node[index] = n;
592 }
593
594 ScheduleDAGTopologicalSort::
ScheduleDAGTopologicalSort(std::vector<SUnit> & sunits)595 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits) : SUnits(sunits) {}
596
~ScheduleHazardRecognizer()597 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
598