• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "llvm/CodeGen/ScheduleDAG.h"
17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18 #include "llvm/CodeGen/SelectionDAGNodes.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <climits>
26 using namespace llvm;
27 
28 #ifndef NDEBUG
29 static cl::opt<bool> StressSchedOpt(
30   "stress-sched", cl::Hidden, cl::init(false),
31   cl::desc("Stress test instruction scheduling"));
32 #endif
33 
anchor()34 void SchedulingPriorityQueue::anchor() { }
35 
ScheduleDAG(MachineFunction & mf)36 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
37   : TM(mf.getTarget()),
38     TII(TM.getInstrInfo()),
39     TRI(TM.getRegisterInfo()),
40     MF(mf), MRI(mf.getRegInfo()),
41     EntrySU(), ExitSU() {
42 #ifndef NDEBUG
43   StressSched = StressSchedOpt;
44 #endif
45 }
46 
~ScheduleDAG()47 ScheduleDAG::~ScheduleDAG() {}
48 
49 /// Clear the DAG state (e.g. between scheduling regions).
clearDAG()50 void ScheduleDAG::clearDAG() {
51   SUnits.clear();
52   EntrySU = SUnit();
53   ExitSU = SUnit();
54 }
55 
56 /// getInstrDesc helper to handle SDNodes.
getNodeDesc(const SDNode * Node) const57 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
58   if (!Node || !Node->isMachineOpcode()) return NULL;
59   return &TII->get(Node->getMachineOpcode());
60 }
61 
62 /// addPred - This adds the specified edge as a pred of the current node if
63 /// not already.  It also adds the current node as a successor of the
64 /// specified node.
addPred(const SDep & D)65 bool SUnit::addPred(const SDep &D) {
66   // If this node already has this depenence, don't add a redundant one.
67   for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
68        I != E; ++I) {
69     if (I->overlaps(D)) {
70       // Extend the latency if needed. Equivalent to removePred(I) + addPred(D).
71       if (I->getLatency() < D.getLatency()) {
72         SUnit *PredSU = I->getSUnit();
73         // Find the corresponding successor in N.
74         SDep ForwardD = *I;
75         ForwardD.setSUnit(this);
76         for (SmallVector<SDep, 4>::iterator II = PredSU->Succs.begin(),
77                EE = PredSU->Succs.end(); II != EE; ++II) {
78           if (*II == ForwardD) {
79             II->setLatency(D.getLatency());
80             break;
81           }
82         }
83         I->setLatency(D.getLatency());
84       }
85       return false;
86     }
87   }
88   // Now add a corresponding succ to N.
89   SDep P = D;
90   P.setSUnit(this);
91   SUnit *N = D.getSUnit();
92   // Update the bookkeeping.
93   if (D.getKind() == SDep::Data) {
94     assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
95     assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
96     ++NumPreds;
97     ++N->NumSuccs;
98   }
99   if (!N->isScheduled) {
100     assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
101     ++NumPredsLeft;
102   }
103   if (!isScheduled) {
104     assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
105     ++N->NumSuccsLeft;
106   }
107   Preds.push_back(D);
108   N->Succs.push_back(P);
109   if (P.getLatency() != 0) {
110     this->setDepthDirty();
111     N->setHeightDirty();
112   }
113   return true;
114 }
115 
116 /// removePred - This removes the specified edge as a pred of the current
117 /// node if it exists.  It also removes the current node as a successor of
118 /// the specified node.
removePred(const SDep & D)119 void SUnit::removePred(const SDep &D) {
120   // Find the matching predecessor.
121   for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
122        I != E; ++I)
123     if (*I == D) {
124       bool FoundSucc = false;
125       // Find the corresponding successor in N.
126       SDep P = D;
127       P.setSUnit(this);
128       SUnit *N = D.getSUnit();
129       for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
130              EE = N->Succs.end(); II != EE; ++II)
131         if (*II == P) {
132           FoundSucc = true;
133           N->Succs.erase(II);
134           break;
135         }
136       assert(FoundSucc && "Mismatching preds / succs lists!");
137       (void)FoundSucc;
138       Preds.erase(I);
139       // Update the bookkeeping.
140       if (P.getKind() == SDep::Data) {
141         assert(NumPreds > 0 && "NumPreds will underflow!");
142         assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
143         --NumPreds;
144         --N->NumSuccs;
145       }
146       if (!N->isScheduled) {
147         assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
148         --NumPredsLeft;
149       }
150       if (!isScheduled) {
151         assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
152         --N->NumSuccsLeft;
153       }
154       if (P.getLatency() != 0) {
155         this->setDepthDirty();
156         N->setHeightDirty();
157       }
158       return;
159     }
160 }
161 
setDepthDirty()162 void SUnit::setDepthDirty() {
163   if (!isDepthCurrent) return;
164   SmallVector<SUnit*, 8> WorkList;
165   WorkList.push_back(this);
166   do {
167     SUnit *SU = WorkList.pop_back_val();
168     SU->isDepthCurrent = false;
169     for (SUnit::const_succ_iterator I = SU->Succs.begin(),
170          E = SU->Succs.end(); I != E; ++I) {
171       SUnit *SuccSU = I->getSUnit();
172       if (SuccSU->isDepthCurrent)
173         WorkList.push_back(SuccSU);
174     }
175   } while (!WorkList.empty());
176 }
177 
setHeightDirty()178 void SUnit::setHeightDirty() {
179   if (!isHeightCurrent) return;
180   SmallVector<SUnit*, 8> WorkList;
181   WorkList.push_back(this);
182   do {
183     SUnit *SU = WorkList.pop_back_val();
184     SU->isHeightCurrent = false;
185     for (SUnit::const_pred_iterator I = SU->Preds.begin(),
186          E = SU->Preds.end(); I != E; ++I) {
187       SUnit *PredSU = I->getSUnit();
188       if (PredSU->isHeightCurrent)
189         WorkList.push_back(PredSU);
190     }
191   } while (!WorkList.empty());
192 }
193 
194 /// setDepthToAtLeast - Update this node's successors to reflect the
195 /// fact that this node's depth just increased.
196 ///
setDepthToAtLeast(unsigned NewDepth)197 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
198   if (NewDepth <= getDepth())
199     return;
200   setDepthDirty();
201   Depth = NewDepth;
202   isDepthCurrent = true;
203 }
204 
205 /// setHeightToAtLeast - Update this node's predecessors to reflect the
206 /// fact that this node's height just increased.
207 ///
setHeightToAtLeast(unsigned NewHeight)208 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
209   if (NewHeight <= getHeight())
210     return;
211   setHeightDirty();
212   Height = NewHeight;
213   isHeightCurrent = true;
214 }
215 
216 /// ComputeDepth - Calculate the maximal path from the node to the exit.
217 ///
ComputeDepth()218 void SUnit::ComputeDepth() {
219   SmallVector<SUnit*, 8> WorkList;
220   WorkList.push_back(this);
221   do {
222     SUnit *Cur = WorkList.back();
223 
224     bool Done = true;
225     unsigned MaxPredDepth = 0;
226     for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
227          E = Cur->Preds.end(); I != E; ++I) {
228       SUnit *PredSU = I->getSUnit();
229       if (PredSU->isDepthCurrent)
230         MaxPredDepth = std::max(MaxPredDepth,
231                                 PredSU->Depth + I->getLatency());
232       else {
233         Done = false;
234         WorkList.push_back(PredSU);
235       }
236     }
237 
238     if (Done) {
239       WorkList.pop_back();
240       if (MaxPredDepth != Cur->Depth) {
241         Cur->setDepthDirty();
242         Cur->Depth = MaxPredDepth;
243       }
244       Cur->isDepthCurrent = true;
245     }
246   } while (!WorkList.empty());
247 }
248 
249 /// ComputeHeight - Calculate the maximal path from the node to the entry.
250 ///
ComputeHeight()251 void SUnit::ComputeHeight() {
252   SmallVector<SUnit*, 8> WorkList;
253   WorkList.push_back(this);
254   do {
255     SUnit *Cur = WorkList.back();
256 
257     bool Done = true;
258     unsigned MaxSuccHeight = 0;
259     for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
260          E = Cur->Succs.end(); I != E; ++I) {
261       SUnit *SuccSU = I->getSUnit();
262       if (SuccSU->isHeightCurrent)
263         MaxSuccHeight = std::max(MaxSuccHeight,
264                                  SuccSU->Height + I->getLatency());
265       else {
266         Done = false;
267         WorkList.push_back(SuccSU);
268       }
269     }
270 
271     if (Done) {
272       WorkList.pop_back();
273       if (MaxSuccHeight != Cur->Height) {
274         Cur->setHeightDirty();
275         Cur->Height = MaxSuccHeight;
276       }
277       Cur->isHeightCurrent = true;
278     }
279   } while (!WorkList.empty());
280 }
281 
282 #ifndef NDEBUG
283 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
284 /// a group of nodes flagged together.
dump(const ScheduleDAG * G) const285 void SUnit::dump(const ScheduleDAG *G) const {
286   dbgs() << "SU(" << NodeNum << "): ";
287   G->dumpNode(this);
288 }
289 
dumpAll(const ScheduleDAG * G) const290 void SUnit::dumpAll(const ScheduleDAG *G) const {
291   dump(G);
292 
293   dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
294   dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
295   dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
296   dbgs() << "  Latency            : " << Latency << "\n";
297   dbgs() << "  Depth              : " << Depth << "\n";
298   dbgs() << "  Height             : " << Height << "\n";
299 
300   if (Preds.size() != 0) {
301     dbgs() << "  Predecessors:\n";
302     for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
303          I != E; ++I) {
304       dbgs() << "   ";
305       switch (I->getKind()) {
306       case SDep::Data:        dbgs() << "val "; break;
307       case SDep::Anti:        dbgs() << "anti"; break;
308       case SDep::Output:      dbgs() << "out "; break;
309       case SDep::Order:       dbgs() << "ch  "; break;
310       }
311       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
312       if (I->isArtificial())
313         dbgs() << " *";
314       dbgs() << ": Latency=" << I->getLatency();
315       if (I->isAssignedRegDep())
316         dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
317       dbgs() << "\n";
318     }
319   }
320   if (Succs.size() != 0) {
321     dbgs() << "  Successors:\n";
322     for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
323          I != E; ++I) {
324       dbgs() << "   ";
325       switch (I->getKind()) {
326       case SDep::Data:        dbgs() << "val "; break;
327       case SDep::Anti:        dbgs() << "anti"; break;
328       case SDep::Output:      dbgs() << "out "; break;
329       case SDep::Order:       dbgs() << "ch  "; break;
330       }
331       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
332       if (I->isArtificial())
333         dbgs() << " *";
334       dbgs() << ": Latency=" << I->getLatency();
335       dbgs() << "\n";
336     }
337   }
338   dbgs() << "\n";
339 }
340 #endif
341 
342 #ifndef NDEBUG
343 /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
344 /// their state is consistent. Return the number of scheduled nodes.
345 ///
VerifyScheduledDAG(bool isBottomUp)346 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
347   bool AnyNotSched = false;
348   unsigned DeadNodes = 0;
349   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
350     if (!SUnits[i].isScheduled) {
351       if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
352         ++DeadNodes;
353         continue;
354       }
355       if (!AnyNotSched)
356         dbgs() << "*** Scheduling failed! ***\n";
357       SUnits[i].dump(this);
358       dbgs() << "has not been scheduled!\n";
359       AnyNotSched = true;
360     }
361     if (SUnits[i].isScheduled &&
362         (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
363           unsigned(INT_MAX)) {
364       if (!AnyNotSched)
365         dbgs() << "*** Scheduling failed! ***\n";
366       SUnits[i].dump(this);
367       dbgs() << "has an unexpected "
368            << (isBottomUp ? "Height" : "Depth") << " value!\n";
369       AnyNotSched = true;
370     }
371     if (isBottomUp) {
372       if (SUnits[i].NumSuccsLeft != 0) {
373         if (!AnyNotSched)
374           dbgs() << "*** Scheduling failed! ***\n";
375         SUnits[i].dump(this);
376         dbgs() << "has successors left!\n";
377         AnyNotSched = true;
378       }
379     } else {
380       if (SUnits[i].NumPredsLeft != 0) {
381         if (!AnyNotSched)
382           dbgs() << "*** Scheduling failed! ***\n";
383         SUnits[i].dump(this);
384         dbgs() << "has predecessors left!\n";
385         AnyNotSched = true;
386       }
387     }
388   }
389   assert(!AnyNotSched);
390   return SUnits.size() - DeadNodes;
391 }
392 #endif
393 
394 /// InitDAGTopologicalSorting - create the initial topological
395 /// ordering from the DAG to be scheduled.
396 ///
397 /// The idea of the algorithm is taken from
398 /// "Online algorithms for managing the topological order of
399 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
400 /// This is the MNR algorithm, which was first introduced by
401 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
402 /// "Maintaining a topological order under edge insertions".
403 ///
404 /// Short description of the algorithm:
405 ///
406 /// Topological ordering, ord, of a DAG maps each node to a topological
407 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
408 ///
409 /// This means that if there is a path from the node X to the node Z,
410 /// then ord(X) < ord(Z).
411 ///
412 /// This property can be used to check for reachability of nodes:
413 /// if Z is reachable from X, then an insertion of the edge Z->X would
414 /// create a cycle.
415 ///
416 /// The algorithm first computes a topological ordering for the DAG by
417 /// initializing the Index2Node and Node2Index arrays and then tries to keep
418 /// the ordering up-to-date after edge insertions by reordering the DAG.
419 ///
420 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
421 /// the nodes reachable from Y, and then shifts them using Shift to lie
422 /// immediately after X in Index2Node.
InitDAGTopologicalSorting()423 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
424   unsigned DAGSize = SUnits.size();
425   std::vector<SUnit*> WorkList;
426   WorkList.reserve(DAGSize);
427 
428   Index2Node.resize(DAGSize);
429   Node2Index.resize(DAGSize);
430 
431   // Initialize the data structures.
432   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
433     SUnit *SU = &SUnits[i];
434     int NodeNum = SU->NodeNum;
435     unsigned Degree = SU->Succs.size();
436     // Temporarily use the Node2Index array as scratch space for degree counts.
437     Node2Index[NodeNum] = Degree;
438 
439     // Is it a node without dependencies?
440     if (Degree == 0) {
441       assert(SU->Succs.empty() && "SUnit should have no successors");
442       // Collect leaf nodes.
443       WorkList.push_back(SU);
444     }
445   }
446 
447   int Id = DAGSize;
448   while (!WorkList.empty()) {
449     SUnit *SU = WorkList.back();
450     WorkList.pop_back();
451     Allocate(SU->NodeNum, --Id);
452     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
453          I != E; ++I) {
454       SUnit *SU = I->getSUnit();
455       if (!--Node2Index[SU->NodeNum])
456         // If all dependencies of the node are processed already,
457         // then the node can be computed now.
458         WorkList.push_back(SU);
459     }
460   }
461 
462   Visited.resize(DAGSize);
463 
464 #ifndef NDEBUG
465   // Check correctness of the ordering
466   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
467     SUnit *SU = &SUnits[i];
468     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
469          I != E; ++I) {
470       assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
471       "Wrong topological sorting");
472     }
473   }
474 #endif
475 }
476 
477 /// AddPred - Updates the topological ordering to accommodate an edge
478 /// to be added from SUnit X to SUnit Y.
AddPred(SUnit * Y,SUnit * X)479 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
480   int UpperBound, LowerBound;
481   LowerBound = Node2Index[Y->NodeNum];
482   UpperBound = Node2Index[X->NodeNum];
483   bool HasLoop = false;
484   // Is Ord(X) < Ord(Y) ?
485   if (LowerBound < UpperBound) {
486     // Update the topological order.
487     Visited.reset();
488     DFS(Y, UpperBound, HasLoop);
489     assert(!HasLoop && "Inserted edge creates a loop!");
490     // Recompute topological indexes.
491     Shift(Visited, LowerBound, UpperBound);
492   }
493 }
494 
495 /// RemovePred - Updates the topological ordering to accommodate an
496 /// an edge to be removed from the specified node N from the predecessors
497 /// of the current node M.
RemovePred(SUnit * M,SUnit * N)498 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
499   // InitDAGTopologicalSorting();
500 }
501 
502 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
503 /// all nodes affected by the edge insertion. These nodes will later get new
504 /// topological indexes by means of the Shift method.
DFS(const SUnit * SU,int UpperBound,bool & HasLoop)505 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
506                                      bool &HasLoop) {
507   std::vector<const SUnit*> WorkList;
508   WorkList.reserve(SUnits.size());
509 
510   WorkList.push_back(SU);
511   do {
512     SU = WorkList.back();
513     WorkList.pop_back();
514     Visited.set(SU->NodeNum);
515     for (int I = SU->Succs.size()-1; I >= 0; --I) {
516       int s = SU->Succs[I].getSUnit()->NodeNum;
517       if (Node2Index[s] == UpperBound) {
518         HasLoop = true;
519         return;
520       }
521       // Visit successors if not already and in affected region.
522       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
523         WorkList.push_back(SU->Succs[I].getSUnit());
524       }
525     }
526   } while (!WorkList.empty());
527 }
528 
529 /// Shift - Renumber the nodes so that the topological ordering is
530 /// preserved.
Shift(BitVector & Visited,int LowerBound,int UpperBound)531 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
532                                        int UpperBound) {
533   std::vector<int> L;
534   int shift = 0;
535   int i;
536 
537   for (i = LowerBound; i <= UpperBound; ++i) {
538     // w is node at topological index i.
539     int w = Index2Node[i];
540     if (Visited.test(w)) {
541       // Unmark.
542       Visited.reset(w);
543       L.push_back(w);
544       shift = shift + 1;
545     } else {
546       Allocate(w, i - shift);
547     }
548   }
549 
550   for (unsigned j = 0; j < L.size(); ++j) {
551     Allocate(L[j], i - shift);
552     i = i + 1;
553   }
554 }
555 
556 
557 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
558 /// create a cycle.
WillCreateCycle(SUnit * SU,SUnit * TargetSU)559 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
560   if (IsReachable(TargetSU, SU))
561     return true;
562   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
563        I != E; ++I)
564     if (I->isAssignedRegDep() &&
565         IsReachable(TargetSU, I->getSUnit()))
566       return true;
567   return false;
568 }
569 
570 /// IsReachable - Checks if SU is reachable from TargetSU.
IsReachable(const SUnit * SU,const SUnit * TargetSU)571 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
572                                              const SUnit *TargetSU) {
573   // If insertion of the edge SU->TargetSU would create a cycle
574   // then there is a path from TargetSU to SU.
575   int UpperBound, LowerBound;
576   LowerBound = Node2Index[TargetSU->NodeNum];
577   UpperBound = Node2Index[SU->NodeNum];
578   bool HasLoop = false;
579   // Is Ord(TargetSU) < Ord(SU) ?
580   if (LowerBound < UpperBound) {
581     Visited.reset();
582     // There may be a path from TargetSU to SU. Check for it.
583     DFS(TargetSU, UpperBound, HasLoop);
584   }
585   return HasLoop;
586 }
587 
588 /// Allocate - assign the topological index to the node n.
Allocate(int n,int index)589 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
590   Node2Index[n] = index;
591   Index2Node[index] = n;
592 }
593 
594 ScheduleDAGTopologicalSort::
ScheduleDAGTopologicalSort(std::vector<SUnit> & sunits)595 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits) : SUnits(sunits) {}
596 
~ScheduleHazardRecognizer()597 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
598