1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements decl-related attribute processing.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TargetAttributesSema.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Sema/DeclSpec.h"
25 #include "clang/Sema/DelayedDiagnostic.h"
26 #include "clang/Sema/Lookup.h"
27 #include "llvm/ADT/StringExtras.h"
28 using namespace clang;
29 using namespace sema;
30
31 /// These constants match the enumerated choices of
32 /// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
33 enum AttributeDeclKind {
34 ExpectedFunction,
35 ExpectedUnion,
36 ExpectedVariableOrFunction,
37 ExpectedFunctionOrMethod,
38 ExpectedParameter,
39 ExpectedFunctionMethodOrBlock,
40 ExpectedFunctionMethodOrParameter,
41 ExpectedClass,
42 ExpectedVariable,
43 ExpectedMethod,
44 ExpectedVariableFunctionOrLabel,
45 ExpectedFieldOrGlobalVar,
46 ExpectedStruct,
47 ExpectedTLSVar
48 };
49
50 //===----------------------------------------------------------------------===//
51 // Helper functions
52 //===----------------------------------------------------------------------===//
53
getFunctionType(const Decl * D,bool blocksToo=true)54 static const FunctionType *getFunctionType(const Decl *D,
55 bool blocksToo = true) {
56 QualType Ty;
57 if (const ValueDecl *decl = dyn_cast<ValueDecl>(D))
58 Ty = decl->getType();
59 else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D))
60 Ty = decl->getType();
61 else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D))
62 Ty = decl->getUnderlyingType();
63 else
64 return 0;
65
66 if (Ty->isFunctionPointerType())
67 Ty = Ty->getAs<PointerType>()->getPointeeType();
68 else if (blocksToo && Ty->isBlockPointerType())
69 Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
70
71 return Ty->getAs<FunctionType>();
72 }
73
74 // FIXME: We should provide an abstraction around a method or function
75 // to provide the following bits of information.
76
77 /// isFunction - Return true if the given decl has function
78 /// type (function or function-typed variable).
isFunction(const Decl * D)79 static bool isFunction(const Decl *D) {
80 return getFunctionType(D, false) != NULL;
81 }
82
83 /// isFunctionOrMethod - Return true if the given decl has function
84 /// type (function or function-typed variable) or an Objective-C
85 /// method.
isFunctionOrMethod(const Decl * D)86 static bool isFunctionOrMethod(const Decl *D) {
87 return isFunction(D) || isa<ObjCMethodDecl>(D);
88 }
89
90 /// isFunctionOrMethodOrBlock - Return true if the given decl has function
91 /// type (function or function-typed variable) or an Objective-C
92 /// method or a block.
isFunctionOrMethodOrBlock(const Decl * D)93 static bool isFunctionOrMethodOrBlock(const Decl *D) {
94 if (isFunctionOrMethod(D))
95 return true;
96 // check for block is more involved.
97 if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
98 QualType Ty = V->getType();
99 return Ty->isBlockPointerType();
100 }
101 return isa<BlockDecl>(D);
102 }
103
104 /// Return true if the given decl has a declarator that should have
105 /// been processed by Sema::GetTypeForDeclarator.
hasDeclarator(const Decl * D)106 static bool hasDeclarator(const Decl *D) {
107 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
108 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
109 isa<ObjCPropertyDecl>(D);
110 }
111
112 /// hasFunctionProto - Return true if the given decl has a argument
113 /// information. This decl should have already passed
114 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
hasFunctionProto(const Decl * D)115 static bool hasFunctionProto(const Decl *D) {
116 if (const FunctionType *FnTy = getFunctionType(D))
117 return isa<FunctionProtoType>(FnTy);
118 else {
119 assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D));
120 return true;
121 }
122 }
123
124 /// getFunctionOrMethodNumArgs - Return number of function or method
125 /// arguments. It is an error to call this on a K&R function (use
126 /// hasFunctionProto first).
getFunctionOrMethodNumArgs(const Decl * D)127 static unsigned getFunctionOrMethodNumArgs(const Decl *D) {
128 if (const FunctionType *FnTy = getFunctionType(D))
129 return cast<FunctionProtoType>(FnTy)->getNumArgs();
130 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
131 return BD->getNumParams();
132 return cast<ObjCMethodDecl>(D)->param_size();
133 }
134
getFunctionOrMethodArgType(const Decl * D,unsigned Idx)135 static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) {
136 if (const FunctionType *FnTy = getFunctionType(D))
137 return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
138 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
139 return BD->getParamDecl(Idx)->getType();
140
141 return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
142 }
143
getFunctionOrMethodResultType(const Decl * D)144 static QualType getFunctionOrMethodResultType(const Decl *D) {
145 if (const FunctionType *FnTy = getFunctionType(D))
146 return cast<FunctionProtoType>(FnTy)->getResultType();
147 return cast<ObjCMethodDecl>(D)->getResultType();
148 }
149
isFunctionOrMethodVariadic(const Decl * D)150 static bool isFunctionOrMethodVariadic(const Decl *D) {
151 if (const FunctionType *FnTy = getFunctionType(D)) {
152 const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
153 return proto->isVariadic();
154 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
155 return BD->isVariadic();
156 else {
157 return cast<ObjCMethodDecl>(D)->isVariadic();
158 }
159 }
160
isInstanceMethod(const Decl * D)161 static bool isInstanceMethod(const Decl *D) {
162 if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
163 return MethodDecl->isInstance();
164 return false;
165 }
166
isNSStringType(QualType T,ASTContext & Ctx)167 static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
168 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
169 if (!PT)
170 return false;
171
172 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
173 if (!Cls)
174 return false;
175
176 IdentifierInfo* ClsName = Cls->getIdentifier();
177
178 // FIXME: Should we walk the chain of classes?
179 return ClsName == &Ctx.Idents.get("NSString") ||
180 ClsName == &Ctx.Idents.get("NSMutableString");
181 }
182
isCFStringType(QualType T,ASTContext & Ctx)183 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
184 const PointerType *PT = T->getAs<PointerType>();
185 if (!PT)
186 return false;
187
188 const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
189 if (!RT)
190 return false;
191
192 const RecordDecl *RD = RT->getDecl();
193 if (RD->getTagKind() != TTK_Struct)
194 return false;
195
196 return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
197 }
198
199 /// \brief Check if the attribute has exactly as many args as Num. May
200 /// output an error.
checkAttributeNumArgs(Sema & S,const AttributeList & Attr,unsigned int Num)201 static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
202 unsigned int Num) {
203 if (Attr.getNumArgs() != Num) {
204 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Num;
205 return false;
206 }
207
208 return true;
209 }
210
211
212 /// \brief Check if the attribute has at least as many args as Num. May
213 /// output an error.
checkAttributeAtLeastNumArgs(Sema & S,const AttributeList & Attr,unsigned int Num)214 static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
215 unsigned int Num) {
216 if (Attr.getNumArgs() < Num) {
217 S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num;
218 return false;
219 }
220
221 return true;
222 }
223
224 /// \brief Check if IdxExpr is a valid argument index for a function or
225 /// instance method D. May output an error.
226 ///
227 /// \returns true if IdxExpr is a valid index.
checkFunctionOrMethodArgumentIndex(Sema & S,const Decl * D,StringRef AttrName,SourceLocation AttrLoc,unsigned AttrArgNum,const Expr * IdxExpr,uint64_t & Idx)228 static bool checkFunctionOrMethodArgumentIndex(Sema &S, const Decl *D,
229 StringRef AttrName,
230 SourceLocation AttrLoc,
231 unsigned AttrArgNum,
232 const Expr *IdxExpr,
233 uint64_t &Idx)
234 {
235 assert(isFunctionOrMethod(D) && hasFunctionProto(D));
236
237 // In C++ the implicit 'this' function parameter also counts.
238 // Parameters are counted from one.
239 const bool HasImplicitThisParam = isInstanceMethod(D);
240 const unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
241 const unsigned FirstIdx = 1;
242
243 llvm::APSInt IdxInt;
244 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
245 !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
246 S.Diag(AttrLoc, diag::err_attribute_argument_n_not_int)
247 << AttrName << AttrArgNum << IdxExpr->getSourceRange();
248 return false;
249 }
250
251 Idx = IdxInt.getLimitedValue();
252 if (Idx < FirstIdx || (!isFunctionOrMethodVariadic(D) && Idx > NumArgs)) {
253 S.Diag(AttrLoc, diag::err_attribute_argument_out_of_bounds)
254 << AttrName << AttrArgNum << IdxExpr->getSourceRange();
255 return false;
256 }
257 Idx--; // Convert to zero-based.
258 if (HasImplicitThisParam) {
259 if (Idx == 0) {
260 S.Diag(AttrLoc,
261 diag::err_attribute_invalid_implicit_this_argument)
262 << AttrName << IdxExpr->getSourceRange();
263 return false;
264 }
265 --Idx;
266 }
267
268 return true;
269 }
270
271 ///
272 /// \brief Check if passed in Decl is a field or potentially shared global var
273 /// \return true if the Decl is a field or potentially shared global variable
274 ///
mayBeSharedVariable(const Decl * D)275 static bool mayBeSharedVariable(const Decl *D) {
276 if (isa<FieldDecl>(D))
277 return true;
278 if (const VarDecl *vd = dyn_cast<VarDecl>(D))
279 return (vd->hasGlobalStorage() && !(vd->isThreadSpecified()));
280
281 return false;
282 }
283
284 /// \brief Check if the passed-in expression is of type int or bool.
isIntOrBool(Expr * Exp)285 static bool isIntOrBool(Expr *Exp) {
286 QualType QT = Exp->getType();
287 return QT->isBooleanType() || QT->isIntegerType();
288 }
289
290
291 // Check to see if the type is a smart pointer of some kind. We assume
292 // it's a smart pointer if it defines both operator-> and operator*.
threadSafetyCheckIsSmartPointer(Sema & S,const RecordType * RT)293 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
294 DeclContextLookupConstResult Res1 = RT->getDecl()->lookup(
295 S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
296 if (Res1.first == Res1.second)
297 return false;
298
299 DeclContextLookupConstResult Res2 = RT->getDecl()->lookup(
300 S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
301 if (Res2.first == Res2.second)
302 return false;
303
304 return true;
305 }
306
307 /// \brief Check if passed in Decl is a pointer type.
308 /// Note that this function may produce an error message.
309 /// \return true if the Decl is a pointer type; false otherwise
threadSafetyCheckIsPointer(Sema & S,const Decl * D,const AttributeList & Attr)310 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
311 const AttributeList &Attr) {
312 if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) {
313 QualType QT = vd->getType();
314 if (QT->isAnyPointerType())
315 return true;
316
317 if (const RecordType *RT = QT->getAs<RecordType>()) {
318 // If it's an incomplete type, it could be a smart pointer; skip it.
319 // (We don't want to force template instantiation if we can avoid it,
320 // since that would alter the order in which templates are instantiated.)
321 if (RT->isIncompleteType())
322 return true;
323
324 if (threadSafetyCheckIsSmartPointer(S, RT))
325 return true;
326 }
327
328 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
329 << Attr.getName()->getName() << QT;
330 } else {
331 S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl)
332 << Attr.getName();
333 }
334 return false;
335 }
336
337 /// \brief Checks that the passed in QualType either is of RecordType or points
338 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
getRecordType(QualType QT)339 static const RecordType *getRecordType(QualType QT) {
340 if (const RecordType *RT = QT->getAs<RecordType>())
341 return RT;
342
343 // Now check if we point to record type.
344 if (const PointerType *PT = QT->getAs<PointerType>())
345 return PT->getPointeeType()->getAs<RecordType>();
346
347 return 0;
348 }
349
350
checkBaseClassIsLockableCallback(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Unused)351 static bool checkBaseClassIsLockableCallback(const CXXBaseSpecifier *Specifier,
352 CXXBasePath &Path, void *Unused) {
353 const RecordType *RT = Specifier->getType()->getAs<RecordType>();
354 if (RT->getDecl()->getAttr<LockableAttr>())
355 return true;
356 return false;
357 }
358
359
360 /// \brief Thread Safety Analysis: Checks that the passed in RecordType
361 /// resolves to a lockable object.
checkForLockableRecord(Sema & S,Decl * D,const AttributeList & Attr,QualType Ty)362 static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr,
363 QualType Ty) {
364 const RecordType *RT = getRecordType(Ty);
365
366 // Warn if could not get record type for this argument.
367 if (!RT) {
368 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_class)
369 << Attr.getName() << Ty.getAsString();
370 return;
371 }
372
373 // Don't check for lockable if the class hasn't been defined yet.
374 if (RT->isIncompleteType())
375 return;
376
377 // Allow smart pointers to be used as lockable objects.
378 // FIXME -- Check the type that the smart pointer points to.
379 if (threadSafetyCheckIsSmartPointer(S, RT))
380 return;
381
382 // Check if the type is lockable.
383 RecordDecl *RD = RT->getDecl();
384 if (RD->getAttr<LockableAttr>())
385 return;
386
387 // Else check if any base classes are lockable.
388 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
389 CXXBasePaths BPaths(false, false);
390 if (CRD->lookupInBases(checkBaseClassIsLockableCallback, 0, BPaths))
391 return;
392 }
393
394 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
395 << Attr.getName() << Ty.getAsString();
396 }
397
398 /// \brief Thread Safety Analysis: Checks that all attribute arguments, starting
399 /// from Sidx, resolve to a lockable object.
400 /// \param Sidx The attribute argument index to start checking with.
401 /// \param ParamIdxOk Whether an argument can be indexing into a function
402 /// parameter list.
checkAttrArgsAreLockableObjs(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args,int Sidx=0,bool ParamIdxOk=false)403 static void checkAttrArgsAreLockableObjs(Sema &S, Decl *D,
404 const AttributeList &Attr,
405 SmallVectorImpl<Expr*> &Args,
406 int Sidx = 0,
407 bool ParamIdxOk = false) {
408 for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
409 Expr *ArgExp = Attr.getArg(Idx);
410
411 if (ArgExp->isTypeDependent()) {
412 // FIXME -- need to check this again on template instantiation
413 Args.push_back(ArgExp);
414 continue;
415 }
416
417 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
418 if (StrLit->getLength() == 0 ||
419 StrLit->getString() == StringRef("*")) {
420 // Pass empty strings to the analyzer without warnings.
421 // Treat "*" as the universal lock.
422 Args.push_back(ArgExp);
423 continue;
424 }
425
426 // We allow constant strings to be used as a placeholder for expressions
427 // that are not valid C++ syntax, but warn that they are ignored.
428 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
429 Attr.getName();
430 Args.push_back(ArgExp);
431 continue;
432 }
433
434 QualType ArgTy = ArgExp->getType();
435
436 // A pointer to member expression of the form &MyClass::mu is treated
437 // specially -- we need to look at the type of the member.
438 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
439 if (UOp->getOpcode() == UO_AddrOf)
440 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
441 if (DRE->getDecl()->isCXXInstanceMember())
442 ArgTy = DRE->getDecl()->getType();
443
444 // First see if we can just cast to record type, or point to record type.
445 const RecordType *RT = getRecordType(ArgTy);
446
447 // Now check if we index into a record type function param.
448 if(!RT && ParamIdxOk) {
449 FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
450 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
451 if(FD && IL) {
452 unsigned int NumParams = FD->getNumParams();
453 llvm::APInt ArgValue = IL->getValue();
454 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
455 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
456 if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
457 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
458 << Attr.getName() << Idx + 1 << NumParams;
459 continue;
460 }
461 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
462 }
463 }
464
465 checkForLockableRecord(S, D, Attr, ArgTy);
466
467 Args.push_back(ArgExp);
468 }
469 }
470
471 //===----------------------------------------------------------------------===//
472 // Attribute Implementations
473 //===----------------------------------------------------------------------===//
474
475 // FIXME: All this manual attribute parsing code is gross. At the
476 // least add some helper functions to check most argument patterns (#
477 // and types of args).
478
479 enum ThreadAttributeDeclKind {
480 ThreadExpectedFieldOrGlobalVar,
481 ThreadExpectedFunctionOrMethod,
482 ThreadExpectedClassOrStruct
483 };
484
checkGuardedVarAttrCommon(Sema & S,Decl * D,const AttributeList & Attr)485 static bool checkGuardedVarAttrCommon(Sema &S, Decl *D,
486 const AttributeList &Attr) {
487 assert(!Attr.isInvalid());
488
489 if (!checkAttributeNumArgs(S, Attr, 0))
490 return false;
491
492 // D must be either a member field or global (potentially shared) variable.
493 if (!mayBeSharedVariable(D)) {
494 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
495 << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
496 return false;
497 }
498
499 return true;
500 }
501
handleGuardedVarAttr(Sema & S,Decl * D,const AttributeList & Attr)502 static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr) {
503 if (!checkGuardedVarAttrCommon(S, D, Attr))
504 return;
505
506 D->addAttr(::new (S.Context) GuardedVarAttr(Attr.getRange(), S.Context));
507 }
508
handlePtGuardedVarAttr(Sema & S,Decl * D,const AttributeList & Attr)509 static void handlePtGuardedVarAttr(Sema &S, Decl *D,
510 const AttributeList &Attr) {
511 if (!checkGuardedVarAttrCommon(S, D, Attr))
512 return;
513
514 if (!threadSafetyCheckIsPointer(S, D, Attr))
515 return;
516
517 D->addAttr(::new (S.Context) PtGuardedVarAttr(Attr.getRange(), S.Context));
518 }
519
checkGuardedByAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,Expr * & Arg)520 static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
521 const AttributeList &Attr,
522 Expr* &Arg) {
523 assert(!Attr.isInvalid());
524
525 if (!checkAttributeNumArgs(S, Attr, 1))
526 return false;
527
528 // D must be either a member field or global (potentially shared) variable.
529 if (!mayBeSharedVariable(D)) {
530 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
531 << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
532 return false;
533 }
534
535 SmallVector<Expr*, 1> Args;
536 // check that all arguments are lockable objects
537 checkAttrArgsAreLockableObjs(S, D, Attr, Args);
538 unsigned Size = Args.size();
539 if (Size != 1)
540 return false;
541
542 Arg = Args[0];
543
544 return true;
545 }
546
handleGuardedByAttr(Sema & S,Decl * D,const AttributeList & Attr)547 static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
548 Expr *Arg = 0;
549 if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
550 return;
551
552 D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg));
553 }
554
handlePtGuardedByAttr(Sema & S,Decl * D,const AttributeList & Attr)555 static void handlePtGuardedByAttr(Sema &S, Decl *D,
556 const AttributeList &Attr) {
557 Expr *Arg = 0;
558 if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
559 return;
560
561 if (!threadSafetyCheckIsPointer(S, D, Attr))
562 return;
563
564 D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
565 S.Context, Arg));
566 }
567
checkLockableAttrCommon(Sema & S,Decl * D,const AttributeList & Attr)568 static bool checkLockableAttrCommon(Sema &S, Decl *D,
569 const AttributeList &Attr) {
570 assert(!Attr.isInvalid());
571
572 if (!checkAttributeNumArgs(S, Attr, 0))
573 return false;
574
575 // FIXME: Lockable structs for C code.
576 if (!isa<CXXRecordDecl>(D)) {
577 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
578 << Attr.getName() << ThreadExpectedClassOrStruct;
579 return false;
580 }
581
582 return true;
583 }
584
handleLockableAttr(Sema & S,Decl * D,const AttributeList & Attr)585 static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
586 if (!checkLockableAttrCommon(S, D, Attr))
587 return;
588
589 D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context));
590 }
591
handleScopedLockableAttr(Sema & S,Decl * D,const AttributeList & Attr)592 static void handleScopedLockableAttr(Sema &S, Decl *D,
593 const AttributeList &Attr) {
594 if (!checkLockableAttrCommon(S, D, Attr))
595 return;
596
597 D->addAttr(::new (S.Context) ScopedLockableAttr(Attr.getRange(), S.Context));
598 }
599
handleNoThreadSafetyAttr(Sema & S,Decl * D,const AttributeList & Attr)600 static void handleNoThreadSafetyAttr(Sema &S, Decl *D,
601 const AttributeList &Attr) {
602 assert(!Attr.isInvalid());
603
604 if (!checkAttributeNumArgs(S, Attr, 0))
605 return;
606
607 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
608 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
609 << Attr.getName() << ThreadExpectedFunctionOrMethod;
610 return;
611 }
612
613 D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(),
614 S.Context));
615 }
616
handleNoAddressSafetyAttr(Sema & S,Decl * D,const AttributeList & Attr)617 static void handleNoAddressSafetyAttr(Sema &S, Decl *D,
618 const AttributeList &Attr) {
619 assert(!Attr.isInvalid());
620
621 if (!checkAttributeNumArgs(S, Attr, 0))
622 return;
623
624 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
625 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
626 << Attr.getName() << ExpectedFunctionOrMethod;
627 return;
628 }
629
630 D->addAttr(::new (S.Context) NoAddressSafetyAnalysisAttr(Attr.getRange(),
631 S.Context));
632 }
633
checkAcquireOrderAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVector<Expr *,1> & Args)634 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
635 const AttributeList &Attr,
636 SmallVector<Expr*, 1> &Args) {
637 assert(!Attr.isInvalid());
638
639 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
640 return false;
641
642 // D must be either a member field or global (potentially shared) variable.
643 ValueDecl *VD = dyn_cast<ValueDecl>(D);
644 if (!VD || !mayBeSharedVariable(D)) {
645 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
646 << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
647 return false;
648 }
649
650 // Check that this attribute only applies to lockable types.
651 QualType QT = VD->getType();
652 if (!QT->isDependentType()) {
653 const RecordType *RT = getRecordType(QT);
654 if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) {
655 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
656 << Attr.getName();
657 return false;
658 }
659 }
660
661 // Check that all arguments are lockable objects.
662 checkAttrArgsAreLockableObjs(S, D, Attr, Args);
663 if (Args.size() == 0)
664 return false;
665
666 return true;
667 }
668
handleAcquiredAfterAttr(Sema & S,Decl * D,const AttributeList & Attr)669 static void handleAcquiredAfterAttr(Sema &S, Decl *D,
670 const AttributeList &Attr) {
671 SmallVector<Expr*, 1> Args;
672 if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
673 return;
674
675 Expr **StartArg = &Args[0];
676 D->addAttr(::new (S.Context) AcquiredAfterAttr(Attr.getRange(), S.Context,
677 StartArg, Args.size()));
678 }
679
handleAcquiredBeforeAttr(Sema & S,Decl * D,const AttributeList & Attr)680 static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
681 const AttributeList &Attr) {
682 SmallVector<Expr*, 1> Args;
683 if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
684 return;
685
686 Expr **StartArg = &Args[0];
687 D->addAttr(::new (S.Context) AcquiredBeforeAttr(Attr.getRange(), S.Context,
688 StartArg, Args.size()));
689 }
690
checkLockFunAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVector<Expr *,1> & Args)691 static bool checkLockFunAttrCommon(Sema &S, Decl *D,
692 const AttributeList &Attr,
693 SmallVector<Expr*, 1> &Args) {
694 assert(!Attr.isInvalid());
695
696 // zero or more arguments ok
697
698 // check that the attribute is applied to a function
699 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
700 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
701 << Attr.getName() << ThreadExpectedFunctionOrMethod;
702 return false;
703 }
704
705 // check that all arguments are lockable objects
706 checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
707
708 return true;
709 }
710
handleSharedLockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)711 static void handleSharedLockFunctionAttr(Sema &S, Decl *D,
712 const AttributeList &Attr) {
713 SmallVector<Expr*, 1> Args;
714 if (!checkLockFunAttrCommon(S, D, Attr, Args))
715 return;
716
717 unsigned Size = Args.size();
718 Expr **StartArg = Size == 0 ? 0 : &Args[0];
719 D->addAttr(::new (S.Context) SharedLockFunctionAttr(Attr.getRange(),
720 S.Context,
721 StartArg, Size));
722 }
723
handleExclusiveLockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)724 static void handleExclusiveLockFunctionAttr(Sema &S, Decl *D,
725 const AttributeList &Attr) {
726 SmallVector<Expr*, 1> Args;
727 if (!checkLockFunAttrCommon(S, D, Attr, Args))
728 return;
729
730 unsigned Size = Args.size();
731 Expr **StartArg = Size == 0 ? 0 : &Args[0];
732 D->addAttr(::new (S.Context) ExclusiveLockFunctionAttr(Attr.getRange(),
733 S.Context,
734 StartArg, Size));
735 }
736
checkTryLockFunAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVector<Expr *,2> & Args)737 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
738 const AttributeList &Attr,
739 SmallVector<Expr*, 2> &Args) {
740 assert(!Attr.isInvalid());
741
742 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
743 return false;
744
745 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
746 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
747 << Attr.getName() << ThreadExpectedFunctionOrMethod;
748 return false;
749 }
750
751 if (!isIntOrBool(Attr.getArg(0))) {
752 S.Diag(Attr.getLoc(), diag::err_attribute_first_argument_not_int_or_bool)
753 << Attr.getName();
754 return false;
755 }
756
757 // check that all arguments are lockable objects
758 checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1);
759
760 return true;
761 }
762
handleSharedTrylockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)763 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
764 const AttributeList &Attr) {
765 SmallVector<Expr*, 2> Args;
766 if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
767 return;
768
769 unsigned Size = Args.size();
770 Expr **StartArg = Size == 0 ? 0 : &Args[0];
771 D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(Attr.getRange(),
772 S.Context,
773 Attr.getArg(0),
774 StartArg, Size));
775 }
776
handleExclusiveTrylockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)777 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
778 const AttributeList &Attr) {
779 SmallVector<Expr*, 2> Args;
780 if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
781 return;
782
783 unsigned Size = Args.size();
784 Expr **StartArg = Size == 0 ? 0 : &Args[0];
785 D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(Attr.getRange(),
786 S.Context,
787 Attr.getArg(0),
788 StartArg, Size));
789 }
790
checkLocksRequiredCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVector<Expr *,1> & Args)791 static bool checkLocksRequiredCommon(Sema &S, Decl *D,
792 const AttributeList &Attr,
793 SmallVector<Expr*, 1> &Args) {
794 assert(!Attr.isInvalid());
795
796 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
797 return false;
798
799 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
800 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
801 << Attr.getName() << ThreadExpectedFunctionOrMethod;
802 return false;
803 }
804
805 // check that all arguments are lockable objects
806 checkAttrArgsAreLockableObjs(S, D, Attr, Args);
807 if (Args.size() == 0)
808 return false;
809
810 return true;
811 }
812
handleExclusiveLocksRequiredAttr(Sema & S,Decl * D,const AttributeList & Attr)813 static void handleExclusiveLocksRequiredAttr(Sema &S, Decl *D,
814 const AttributeList &Attr) {
815 SmallVector<Expr*, 1> Args;
816 if (!checkLocksRequiredCommon(S, D, Attr, Args))
817 return;
818
819 Expr **StartArg = &Args[0];
820 D->addAttr(::new (S.Context) ExclusiveLocksRequiredAttr(Attr.getRange(),
821 S.Context,
822 StartArg,
823 Args.size()));
824 }
825
handleSharedLocksRequiredAttr(Sema & S,Decl * D,const AttributeList & Attr)826 static void handleSharedLocksRequiredAttr(Sema &S, Decl *D,
827 const AttributeList &Attr) {
828 SmallVector<Expr*, 1> Args;
829 if (!checkLocksRequiredCommon(S, D, Attr, Args))
830 return;
831
832 Expr **StartArg = &Args[0];
833 D->addAttr(::new (S.Context) SharedLocksRequiredAttr(Attr.getRange(),
834 S.Context,
835 StartArg,
836 Args.size()));
837 }
838
handleUnlockFunAttr(Sema & S,Decl * D,const AttributeList & Attr)839 static void handleUnlockFunAttr(Sema &S, Decl *D,
840 const AttributeList &Attr) {
841 assert(!Attr.isInvalid());
842
843 // zero or more arguments ok
844
845 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
846 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
847 << Attr.getName() << ThreadExpectedFunctionOrMethod;
848 return;
849 }
850
851 // check that all arguments are lockable objects
852 SmallVector<Expr*, 1> Args;
853 checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
854 unsigned Size = Args.size();
855 Expr **StartArg = Size == 0 ? 0 : &Args[0];
856
857 D->addAttr(::new (S.Context) UnlockFunctionAttr(Attr.getRange(), S.Context,
858 StartArg, Size));
859 }
860
handleLockReturnedAttr(Sema & S,Decl * D,const AttributeList & Attr)861 static void handleLockReturnedAttr(Sema &S, Decl *D,
862 const AttributeList &Attr) {
863 assert(!Attr.isInvalid());
864
865 if (!checkAttributeNumArgs(S, Attr, 1))
866 return;
867 Expr *Arg = Attr.getArg(0);
868
869 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
870 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
871 << Attr.getName() << ThreadExpectedFunctionOrMethod;
872 return;
873 }
874
875 if (Arg->isTypeDependent())
876 return;
877
878 // check that the argument is lockable object
879 SmallVector<Expr*, 1> Args;
880 checkAttrArgsAreLockableObjs(S, D, Attr, Args);
881 unsigned Size = Args.size();
882 if (Size == 0)
883 return;
884
885 D->addAttr(::new (S.Context) LockReturnedAttr(Attr.getRange(), S.Context,
886 Args[0]));
887 }
888
handleLocksExcludedAttr(Sema & S,Decl * D,const AttributeList & Attr)889 static void handleLocksExcludedAttr(Sema &S, Decl *D,
890 const AttributeList &Attr) {
891 assert(!Attr.isInvalid());
892
893 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
894 return;
895
896 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
897 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
898 << Attr.getName() << ThreadExpectedFunctionOrMethod;
899 return;
900 }
901
902 // check that all arguments are lockable objects
903 SmallVector<Expr*, 1> Args;
904 checkAttrArgsAreLockableObjs(S, D, Attr, Args);
905 unsigned Size = Args.size();
906 if (Size == 0)
907 return;
908 Expr **StartArg = &Args[0];
909
910 D->addAttr(::new (S.Context) LocksExcludedAttr(Attr.getRange(), S.Context,
911 StartArg, Size));
912 }
913
914
handleExtVectorTypeAttr(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)915 static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
916 const AttributeList &Attr) {
917 TypedefNameDecl *tDecl = dyn_cast<TypedefNameDecl>(D);
918 if (tDecl == 0) {
919 S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
920 return;
921 }
922
923 QualType curType = tDecl->getUnderlyingType();
924
925 Expr *sizeExpr;
926
927 // Special case where the argument is a template id.
928 if (Attr.getParameterName()) {
929 CXXScopeSpec SS;
930 SourceLocation TemplateKWLoc;
931 UnqualifiedId id;
932 id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
933
934 ExprResult Size = S.ActOnIdExpression(scope, SS, TemplateKWLoc, id,
935 false, false);
936 if (Size.isInvalid())
937 return;
938
939 sizeExpr = Size.get();
940 } else {
941 // check the attribute arguments.
942 if (!checkAttributeNumArgs(S, Attr, 1))
943 return;
944
945 sizeExpr = Attr.getArg(0);
946 }
947
948 // Instantiate/Install the vector type, and let Sema build the type for us.
949 // This will run the reguired checks.
950 QualType T = S.BuildExtVectorType(curType, sizeExpr, Attr.getLoc());
951 if (!T.isNull()) {
952 // FIXME: preserve the old source info.
953 tDecl->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(T));
954
955 // Remember this typedef decl, we will need it later for diagnostics.
956 S.ExtVectorDecls.push_back(tDecl);
957 }
958 }
959
handlePackedAttr(Sema & S,Decl * D,const AttributeList & Attr)960 static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
961 // check the attribute arguments.
962 if (!checkAttributeNumArgs(S, Attr, 0))
963 return;
964
965 if (TagDecl *TD = dyn_cast<TagDecl>(D))
966 TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
967 else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
968 // If the alignment is less than or equal to 8 bits, the packed attribute
969 // has no effect.
970 if (!FD->getType()->isIncompleteType() &&
971 S.Context.getTypeAlign(FD->getType()) <= 8)
972 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
973 << Attr.getName() << FD->getType();
974 else
975 FD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
976 } else
977 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
978 }
979
handleMsStructAttr(Sema & S,Decl * D,const AttributeList & Attr)980 static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) {
981 if (TagDecl *TD = dyn_cast<TagDecl>(D))
982 TD->addAttr(::new (S.Context) MsStructAttr(Attr.getRange(), S.Context));
983 else
984 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
985 }
986
handleIBAction(Sema & S,Decl * D,const AttributeList & Attr)987 static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) {
988 // check the attribute arguments.
989 if (!checkAttributeNumArgs(S, Attr, 0))
990 return;
991
992 // The IBAction attributes only apply to instance methods.
993 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
994 if (MD->isInstanceMethod()) {
995 D->addAttr(::new (S.Context) IBActionAttr(Attr.getRange(), S.Context));
996 return;
997 }
998
999 S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName();
1000 }
1001
checkIBOutletCommon(Sema & S,Decl * D,const AttributeList & Attr)1002 static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
1003 // The IBOutlet/IBOutletCollection attributes only apply to instance
1004 // variables or properties of Objective-C classes. The outlet must also
1005 // have an object reference type.
1006 if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
1007 if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1008 S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1009 << Attr.getName() << VD->getType() << 0;
1010 return false;
1011 }
1012 }
1013 else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1014 if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1015 S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1016 << Attr.getName() << PD->getType() << 1;
1017 return false;
1018 }
1019 }
1020 else {
1021 S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
1022 return false;
1023 }
1024
1025 return true;
1026 }
1027
handleIBOutlet(Sema & S,Decl * D,const AttributeList & Attr)1028 static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
1029 // check the attribute arguments.
1030 if (!checkAttributeNumArgs(S, Attr, 0))
1031 return;
1032
1033 if (!checkIBOutletCommon(S, D, Attr))
1034 return;
1035
1036 D->addAttr(::new (S.Context) IBOutletAttr(Attr.getRange(), S.Context));
1037 }
1038
handleIBOutletCollection(Sema & S,Decl * D,const AttributeList & Attr)1039 static void handleIBOutletCollection(Sema &S, Decl *D,
1040 const AttributeList &Attr) {
1041
1042 // The iboutletcollection attribute can have zero or one arguments.
1043 if (Attr.getParameterName() && Attr.getNumArgs() > 0) {
1044 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1045 return;
1046 }
1047
1048 if (!checkIBOutletCommon(S, D, Attr))
1049 return;
1050
1051 IdentifierInfo *II = Attr.getParameterName();
1052 if (!II)
1053 II = &S.Context.Idents.get("NSObject");
1054
1055 ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(),
1056 S.getScopeForContext(D->getDeclContext()->getParent()));
1057 if (!TypeRep) {
1058 S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
1059 return;
1060 }
1061 QualType QT = TypeRep.get();
1062 // Diagnose use of non-object type in iboutletcollection attribute.
1063 // FIXME. Gnu attribute extension ignores use of builtin types in
1064 // attributes. So, __attribute__((iboutletcollection(char))) will be
1065 // treated as __attribute__((iboutletcollection())).
1066 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1067 S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
1068 return;
1069 }
1070 D->addAttr(::new (S.Context) IBOutletCollectionAttr(Attr.getRange(),S.Context,
1071 QT, Attr.getParameterLoc()));
1072 }
1073
possibleTransparentUnionPointerType(QualType & T)1074 static void possibleTransparentUnionPointerType(QualType &T) {
1075 if (const RecordType *UT = T->getAsUnionType())
1076 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1077 RecordDecl *UD = UT->getDecl();
1078 for (RecordDecl::field_iterator it = UD->field_begin(),
1079 itend = UD->field_end(); it != itend; ++it) {
1080 QualType QT = it->getType();
1081 if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
1082 T = QT;
1083 return;
1084 }
1085 }
1086 }
1087 }
1088
handleAllocSizeAttr(Sema & S,Decl * D,const AttributeList & Attr)1089 static void handleAllocSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1090 if (!isFunctionOrMethod(D)) {
1091 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1092 << "alloc_size" << ExpectedFunctionOrMethod;
1093 return;
1094 }
1095
1096 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
1097 return;
1098
1099 // In C++ the implicit 'this' function parameter also counts, and they are
1100 // counted from one.
1101 bool HasImplicitThisParam = isInstanceMethod(D);
1102 unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
1103
1104 SmallVector<unsigned, 8> SizeArgs;
1105
1106 for (AttributeList::arg_iterator I = Attr.arg_begin(),
1107 E = Attr.arg_end(); I!=E; ++I) {
1108 // The argument must be an integer constant expression.
1109 Expr *Ex = *I;
1110 llvm::APSInt ArgNum;
1111 if (Ex->isTypeDependent() || Ex->isValueDependent() ||
1112 !Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
1113 S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1114 << "alloc_size" << Ex->getSourceRange();
1115 return;
1116 }
1117
1118 uint64_t x = ArgNum.getZExtValue();
1119
1120 if (x < 1 || x > NumArgs) {
1121 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
1122 << "alloc_size" << I.getArgNum() << Ex->getSourceRange();
1123 return;
1124 }
1125
1126 --x;
1127 if (HasImplicitThisParam) {
1128 if (x == 0) {
1129 S.Diag(Attr.getLoc(),
1130 diag::err_attribute_invalid_implicit_this_argument)
1131 << "alloc_size" << Ex->getSourceRange();
1132 return;
1133 }
1134 --x;
1135 }
1136
1137 // check if the function argument is of an integer type
1138 QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
1139 if (!T->isIntegerType()) {
1140 S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1141 << "alloc_size" << Ex->getSourceRange();
1142 return;
1143 }
1144
1145 SizeArgs.push_back(x);
1146 }
1147
1148 // check if the function returns a pointer
1149 if (!getFunctionType(D)->getResultType()->isAnyPointerType()) {
1150 S.Diag(Attr.getLoc(), diag::warn_ns_attribute_wrong_return_type)
1151 << "alloc_size" << 0 /*function*/<< 1 /*pointer*/ << D->getSourceRange();
1152 }
1153
1154 D->addAttr(::new (S.Context) AllocSizeAttr(Attr.getRange(), S.Context,
1155 SizeArgs.data(), SizeArgs.size()));
1156 }
1157
handleNonNullAttr(Sema & S,Decl * D,const AttributeList & Attr)1158 static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1159 // GCC ignores the nonnull attribute on K&R style function prototypes, so we
1160 // ignore it as well
1161 if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
1162 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1163 << Attr.getName() << ExpectedFunction;
1164 return;
1165 }
1166
1167 // In C++ the implicit 'this' function parameter also counts, and they are
1168 // counted from one.
1169 bool HasImplicitThisParam = isInstanceMethod(D);
1170 unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
1171
1172 // The nonnull attribute only applies to pointers.
1173 SmallVector<unsigned, 10> NonNullArgs;
1174
1175 for (AttributeList::arg_iterator I=Attr.arg_begin(),
1176 E=Attr.arg_end(); I!=E; ++I) {
1177
1178
1179 // The argument must be an integer constant expression.
1180 Expr *Ex = *I;
1181 llvm::APSInt ArgNum(32);
1182 if (Ex->isTypeDependent() || Ex->isValueDependent() ||
1183 !Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
1184 S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1185 << "nonnull" << Ex->getSourceRange();
1186 return;
1187 }
1188
1189 unsigned x = (unsigned) ArgNum.getZExtValue();
1190
1191 if (x < 1 || x > NumArgs) {
1192 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
1193 << "nonnull" << I.getArgNum() << Ex->getSourceRange();
1194 return;
1195 }
1196
1197 --x;
1198 if (HasImplicitThisParam) {
1199 if (x == 0) {
1200 S.Diag(Attr.getLoc(),
1201 diag::err_attribute_invalid_implicit_this_argument)
1202 << "nonnull" << Ex->getSourceRange();
1203 return;
1204 }
1205 --x;
1206 }
1207
1208 // Is the function argument a pointer type?
1209 QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
1210 possibleTransparentUnionPointerType(T);
1211
1212 if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
1213 // FIXME: Should also highlight argument in decl.
1214 S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only)
1215 << "nonnull" << Ex->getSourceRange();
1216 continue;
1217 }
1218
1219 NonNullArgs.push_back(x);
1220 }
1221
1222 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1223 // arguments have a nonnull attribute.
1224 if (NonNullArgs.empty()) {
1225 for (unsigned I = 0, E = getFunctionOrMethodNumArgs(D); I != E; ++I) {
1226 QualType T = getFunctionOrMethodArgType(D, I).getNonReferenceType();
1227 possibleTransparentUnionPointerType(T);
1228 if (T->isAnyPointerType() || T->isBlockPointerType())
1229 NonNullArgs.push_back(I);
1230 }
1231
1232 // No pointer arguments?
1233 if (NonNullArgs.empty()) {
1234 // Warn the trivial case only if attribute is not coming from a
1235 // macro instantiation.
1236 if (Attr.getLoc().isFileID())
1237 S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1238 return;
1239 }
1240 }
1241
1242 unsigned* start = &NonNullArgs[0];
1243 unsigned size = NonNullArgs.size();
1244 llvm::array_pod_sort(start, start + size);
1245 D->addAttr(::new (S.Context) NonNullAttr(Attr.getRange(), S.Context, start,
1246 size));
1247 }
1248
handleOwnershipAttr(Sema & S,Decl * D,const AttributeList & AL)1249 static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
1250 // This attribute must be applied to a function declaration.
1251 // The first argument to the attribute must be a string,
1252 // the name of the resource, for example "malloc".
1253 // The following arguments must be argument indexes, the arguments must be
1254 // of integer type for Returns, otherwise of pointer type.
1255 // The difference between Holds and Takes is that a pointer may still be used
1256 // after being held. free() should be __attribute((ownership_takes)), whereas
1257 // a list append function may well be __attribute((ownership_holds)).
1258
1259 if (!AL.getParameterName()) {
1260 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_not_string)
1261 << AL.getName()->getName() << 1;
1262 return;
1263 }
1264 // Figure out our Kind, and check arguments while we're at it.
1265 OwnershipAttr::OwnershipKind K;
1266 switch (AL.getKind()) {
1267 case AttributeList::AT_ownership_takes:
1268 K = OwnershipAttr::Takes;
1269 if (AL.getNumArgs() < 1) {
1270 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
1271 return;
1272 }
1273 break;
1274 case AttributeList::AT_ownership_holds:
1275 K = OwnershipAttr::Holds;
1276 if (AL.getNumArgs() < 1) {
1277 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
1278 return;
1279 }
1280 break;
1281 case AttributeList::AT_ownership_returns:
1282 K = OwnershipAttr::Returns;
1283 if (AL.getNumArgs() > 1) {
1284 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
1285 << AL.getNumArgs() + 1;
1286 return;
1287 }
1288 break;
1289 default:
1290 // This should never happen given how we are called.
1291 llvm_unreachable("Unknown ownership attribute");
1292 }
1293
1294 if (!isFunction(D) || !hasFunctionProto(D)) {
1295 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
1296 << AL.getName() << ExpectedFunction;
1297 return;
1298 }
1299
1300 // In C++ the implicit 'this' function parameter also counts, and they are
1301 // counted from one.
1302 bool HasImplicitThisParam = isInstanceMethod(D);
1303 unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
1304
1305 StringRef Module = AL.getParameterName()->getName();
1306
1307 // Normalize the argument, __foo__ becomes foo.
1308 if (Module.startswith("__") && Module.endswith("__"))
1309 Module = Module.substr(2, Module.size() - 4);
1310
1311 SmallVector<unsigned, 10> OwnershipArgs;
1312
1313 for (AttributeList::arg_iterator I = AL.arg_begin(), E = AL.arg_end(); I != E;
1314 ++I) {
1315
1316 Expr *IdxExpr = *I;
1317 llvm::APSInt ArgNum(32);
1318 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
1319 || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
1320 S.Diag(AL.getLoc(), diag::err_attribute_argument_not_int)
1321 << AL.getName()->getName() << IdxExpr->getSourceRange();
1322 continue;
1323 }
1324
1325 unsigned x = (unsigned) ArgNum.getZExtValue();
1326
1327 if (x > NumArgs || x < 1) {
1328 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
1329 << AL.getName()->getName() << x << IdxExpr->getSourceRange();
1330 continue;
1331 }
1332 --x;
1333 if (HasImplicitThisParam) {
1334 if (x == 0) {
1335 S.Diag(AL.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
1336 << "ownership" << IdxExpr->getSourceRange();
1337 return;
1338 }
1339 --x;
1340 }
1341
1342 switch (K) {
1343 case OwnershipAttr::Takes:
1344 case OwnershipAttr::Holds: {
1345 // Is the function argument a pointer type?
1346 QualType T = getFunctionOrMethodArgType(D, x);
1347 if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
1348 // FIXME: Should also highlight argument in decl.
1349 S.Diag(AL.getLoc(), diag::err_ownership_type)
1350 << ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds")
1351 << "pointer"
1352 << IdxExpr->getSourceRange();
1353 continue;
1354 }
1355 break;
1356 }
1357 case OwnershipAttr::Returns: {
1358 if (AL.getNumArgs() > 1) {
1359 // Is the function argument an integer type?
1360 Expr *IdxExpr = AL.getArg(0);
1361 llvm::APSInt ArgNum(32);
1362 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
1363 || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
1364 S.Diag(AL.getLoc(), diag::err_ownership_type)
1365 << "ownership_returns" << "integer"
1366 << IdxExpr->getSourceRange();
1367 return;
1368 }
1369 }
1370 break;
1371 }
1372 } // switch
1373
1374 // Check we don't have a conflict with another ownership attribute.
1375 for (specific_attr_iterator<OwnershipAttr>
1376 i = D->specific_attr_begin<OwnershipAttr>(),
1377 e = D->specific_attr_end<OwnershipAttr>();
1378 i != e; ++i) {
1379 if ((*i)->getOwnKind() != K) {
1380 for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end();
1381 I!=E; ++I) {
1382 if (x == *I) {
1383 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1384 << AL.getName()->getName() << "ownership_*";
1385 }
1386 }
1387 }
1388 }
1389 OwnershipArgs.push_back(x);
1390 }
1391
1392 unsigned* start = OwnershipArgs.data();
1393 unsigned size = OwnershipArgs.size();
1394 llvm::array_pod_sort(start, start + size);
1395
1396 if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) {
1397 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
1398 return;
1399 }
1400
1401 D->addAttr(::new (S.Context) OwnershipAttr(AL.getLoc(), S.Context, K, Module,
1402 start, size));
1403 }
1404
1405 /// Whether this declaration has internal linkage for the purposes of
1406 /// things that want to complain about things not have internal linkage.
hasEffectivelyInternalLinkage(NamedDecl * D)1407 static bool hasEffectivelyInternalLinkage(NamedDecl *D) {
1408 switch (D->getLinkage()) {
1409 case NoLinkage:
1410 case InternalLinkage:
1411 return true;
1412
1413 // Template instantiations that go from external to unique-external
1414 // shouldn't get diagnosed.
1415 case UniqueExternalLinkage:
1416 return true;
1417
1418 case ExternalLinkage:
1419 return false;
1420 }
1421 llvm_unreachable("unknown linkage kind!");
1422 }
1423
handleWeakRefAttr(Sema & S,Decl * D,const AttributeList & Attr)1424 static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1425 // Check the attribute arguments.
1426 if (Attr.getNumArgs() > 1) {
1427 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1428 return;
1429 }
1430
1431 if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
1432 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1433 << Attr.getName() << ExpectedVariableOrFunction;
1434 return;
1435 }
1436
1437 NamedDecl *nd = cast<NamedDecl>(D);
1438
1439 // gcc rejects
1440 // class c {
1441 // static int a __attribute__((weakref ("v2")));
1442 // static int b() __attribute__((weakref ("f3")));
1443 // };
1444 // and ignores the attributes of
1445 // void f(void) {
1446 // static int a __attribute__((weakref ("v2")));
1447 // }
1448 // we reject them
1449 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1450 if (!Ctx->isFileContext()) {
1451 S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) <<
1452 nd->getNameAsString();
1453 return;
1454 }
1455
1456 // The GCC manual says
1457 //
1458 // At present, a declaration to which `weakref' is attached can only
1459 // be `static'.
1460 //
1461 // It also says
1462 //
1463 // Without a TARGET,
1464 // given as an argument to `weakref' or to `alias', `weakref' is
1465 // equivalent to `weak'.
1466 //
1467 // gcc 4.4.1 will accept
1468 // int a7 __attribute__((weakref));
1469 // as
1470 // int a7 __attribute__((weak));
1471 // This looks like a bug in gcc. We reject that for now. We should revisit
1472 // it if this behaviour is actually used.
1473
1474 if (!hasEffectivelyInternalLinkage(nd)) {
1475 S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_static);
1476 return;
1477 }
1478
1479 // GCC rejects
1480 // static ((alias ("y"), weakref)).
1481 // Should we? How to check that weakref is before or after alias?
1482
1483 if (Attr.getNumArgs() == 1) {
1484 Expr *Arg = Attr.getArg(0);
1485 Arg = Arg->IgnoreParenCasts();
1486 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1487
1488 if (!Str || !Str->isAscii()) {
1489 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1490 << "weakref" << 1;
1491 return;
1492 }
1493 // GCC will accept anything as the argument of weakref. Should we
1494 // check for an existing decl?
1495 D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
1496 Str->getString()));
1497 }
1498
1499 D->addAttr(::new (S.Context) WeakRefAttr(Attr.getRange(), S.Context));
1500 }
1501
handleAliasAttr(Sema & S,Decl * D,const AttributeList & Attr)1502 static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1503 // check the attribute arguments.
1504 if (Attr.getNumArgs() != 1) {
1505 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1506 return;
1507 }
1508
1509 Expr *Arg = Attr.getArg(0);
1510 Arg = Arg->IgnoreParenCasts();
1511 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1512
1513 if (!Str || !Str->isAscii()) {
1514 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1515 << "alias" << 1;
1516 return;
1517 }
1518
1519 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1520 S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
1521 return;
1522 }
1523
1524 // FIXME: check if target symbol exists in current file
1525
1526 D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
1527 Str->getString()));
1528 }
1529
handleColdAttr(Sema & S,Decl * D,const AttributeList & Attr)1530 static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1531 // Check the attribute arguments.
1532 if (!checkAttributeNumArgs(S, Attr, 0))
1533 return;
1534
1535 if (!isa<FunctionDecl>(D)) {
1536 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1537 << Attr.getName() << ExpectedFunction;
1538 return;
1539 }
1540
1541 if (D->hasAttr<HotAttr>()) {
1542 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1543 << Attr.getName() << "hot";
1544 return;
1545 }
1546
1547 D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context));
1548 }
1549
handleHotAttr(Sema & S,Decl * D,const AttributeList & Attr)1550 static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1551 // Check the attribute arguments.
1552 if (!checkAttributeNumArgs(S, Attr, 0))
1553 return;
1554
1555 if (!isa<FunctionDecl>(D)) {
1556 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1557 << Attr.getName() << ExpectedFunction;
1558 return;
1559 }
1560
1561 if (D->hasAttr<ColdAttr>()) {
1562 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1563 << Attr.getName() << "cold";
1564 return;
1565 }
1566
1567 D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context));
1568 }
1569
handleNakedAttr(Sema & S,Decl * D,const AttributeList & Attr)1570 static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1571 // Check the attribute arguments.
1572 if (!checkAttributeNumArgs(S, Attr, 0))
1573 return;
1574
1575 if (!isa<FunctionDecl>(D)) {
1576 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1577 << Attr.getName() << ExpectedFunction;
1578 return;
1579 }
1580
1581 D->addAttr(::new (S.Context) NakedAttr(Attr.getRange(), S.Context));
1582 }
1583
handleAlwaysInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)1584 static void handleAlwaysInlineAttr(Sema &S, Decl *D,
1585 const AttributeList &Attr) {
1586 // Check the attribute arguments.
1587 if (Attr.hasParameterOrArguments()) {
1588 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1589 return;
1590 }
1591
1592 if (!isa<FunctionDecl>(D)) {
1593 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1594 << Attr.getName() << ExpectedFunction;
1595 return;
1596 }
1597
1598 D->addAttr(::new (S.Context) AlwaysInlineAttr(Attr.getRange(), S.Context));
1599 }
1600
handleTLSModelAttr(Sema & S,Decl * D,const AttributeList & Attr)1601 static void handleTLSModelAttr(Sema &S, Decl *D,
1602 const AttributeList &Attr) {
1603 // Check the attribute arguments.
1604 if (Attr.getNumArgs() != 1) {
1605 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1606 return;
1607 }
1608
1609 Expr *Arg = Attr.getArg(0);
1610 Arg = Arg->IgnoreParenCasts();
1611 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1612
1613 // Check that it is a string.
1614 if (!Str) {
1615 S.Diag(Attr.getLoc(), diag::err_attribute_not_string) << "tls_model";
1616 return;
1617 }
1618
1619 if (!isa<VarDecl>(D) || !cast<VarDecl>(D)->isThreadSpecified()) {
1620 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1621 << Attr.getName() << ExpectedTLSVar;
1622 return;
1623 }
1624
1625 // Check that the value.
1626 StringRef Model = Str->getString();
1627 if (Model != "global-dynamic" && Model != "local-dynamic"
1628 && Model != "initial-exec" && Model != "local-exec") {
1629 S.Diag(Attr.getLoc(), diag::err_attr_tlsmodel_arg);
1630 return;
1631 }
1632
1633 D->addAttr(::new (S.Context) TLSModelAttr(Attr.getRange(), S.Context,
1634 Model));
1635 }
1636
handleMallocAttr(Sema & S,Decl * D,const AttributeList & Attr)1637 static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1638 // Check the attribute arguments.
1639 if (Attr.hasParameterOrArguments()) {
1640 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1641 return;
1642 }
1643
1644 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1645 QualType RetTy = FD->getResultType();
1646 if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
1647 D->addAttr(::new (S.Context) MallocAttr(Attr.getRange(), S.Context));
1648 return;
1649 }
1650 }
1651
1652 S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
1653 }
1654
handleMayAliasAttr(Sema & S,Decl * D,const AttributeList & Attr)1655 static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1656 // check the attribute arguments.
1657 if (!checkAttributeNumArgs(S, Attr, 0))
1658 return;
1659
1660 D->addAttr(::new (S.Context) MayAliasAttr(Attr.getRange(), S.Context));
1661 }
1662
handleNoCommonAttr(Sema & S,Decl * D,const AttributeList & Attr)1663 static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1664 assert(!Attr.isInvalid());
1665 if (isa<VarDecl>(D))
1666 D->addAttr(::new (S.Context) NoCommonAttr(Attr.getRange(), S.Context));
1667 else
1668 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1669 << Attr.getName() << ExpectedVariable;
1670 }
1671
handleCommonAttr(Sema & S,Decl * D,const AttributeList & Attr)1672 static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1673 assert(!Attr.isInvalid());
1674 if (isa<VarDecl>(D))
1675 D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context));
1676 else
1677 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1678 << Attr.getName() << ExpectedVariable;
1679 }
1680
handleNoReturnAttr(Sema & S,Decl * D,const AttributeList & attr)1681 static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
1682 if (hasDeclarator(D)) return;
1683
1684 if (S.CheckNoReturnAttr(attr)) return;
1685
1686 if (!isa<ObjCMethodDecl>(D)) {
1687 S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1688 << attr.getName() << ExpectedFunctionOrMethod;
1689 return;
1690 }
1691
1692 D->addAttr(::new (S.Context) NoReturnAttr(attr.getRange(), S.Context));
1693 }
1694
CheckNoReturnAttr(const AttributeList & attr)1695 bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
1696 if (attr.hasParameterOrArguments()) {
1697 Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1698 attr.setInvalid();
1699 return true;
1700 }
1701
1702 return false;
1703 }
1704
handleAnalyzerNoReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1705 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
1706 const AttributeList &Attr) {
1707
1708 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
1709 // because 'analyzer_noreturn' does not impact the type.
1710
1711 if(!checkAttributeNumArgs(S, Attr, 0))
1712 return;
1713
1714 if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
1715 ValueDecl *VD = dyn_cast<ValueDecl>(D);
1716 if (VD == 0 || (!VD->getType()->isBlockPointerType()
1717 && !VD->getType()->isFunctionPointerType())) {
1718 S.Diag(Attr.getLoc(),
1719 Attr.isCXX0XAttribute() ? diag::err_attribute_wrong_decl_type
1720 : diag::warn_attribute_wrong_decl_type)
1721 << Attr.getName() << ExpectedFunctionMethodOrBlock;
1722 return;
1723 }
1724 }
1725
1726 D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(Attr.getRange(), S.Context));
1727 }
1728
1729 // PS3 PPU-specific.
handleVecReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1730 static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1731 /*
1732 Returning a Vector Class in Registers
1733
1734 According to the PPU ABI specifications, a class with a single member of
1735 vector type is returned in memory when used as the return value of a function.
1736 This results in inefficient code when implementing vector classes. To return
1737 the value in a single vector register, add the vecreturn attribute to the
1738 class definition. This attribute is also applicable to struct types.
1739
1740 Example:
1741
1742 struct Vector
1743 {
1744 __vector float xyzw;
1745 } __attribute__((vecreturn));
1746
1747 Vector Add(Vector lhs, Vector rhs)
1748 {
1749 Vector result;
1750 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
1751 return result; // This will be returned in a register
1752 }
1753 */
1754 if (!isa<RecordDecl>(D)) {
1755 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1756 << Attr.getName() << ExpectedClass;
1757 return;
1758 }
1759
1760 if (D->getAttr<VecReturnAttr>()) {
1761 S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn";
1762 return;
1763 }
1764
1765 RecordDecl *record = cast<RecordDecl>(D);
1766 int count = 0;
1767
1768 if (!isa<CXXRecordDecl>(record)) {
1769 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1770 return;
1771 }
1772
1773 if (!cast<CXXRecordDecl>(record)->isPOD()) {
1774 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
1775 return;
1776 }
1777
1778 for (RecordDecl::field_iterator iter = record->field_begin();
1779 iter != record->field_end(); iter++) {
1780 if ((count == 1) || !iter->getType()->isVectorType()) {
1781 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1782 return;
1783 }
1784 count++;
1785 }
1786
1787 D->addAttr(::new (S.Context) VecReturnAttr(Attr.getRange(), S.Context));
1788 }
1789
handleDependencyAttr(Sema & S,Decl * D,const AttributeList & Attr)1790 static void handleDependencyAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1791 if (!isFunctionOrMethod(D) && !isa<ParmVarDecl>(D)) {
1792 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1793 << Attr.getName() << ExpectedFunctionMethodOrParameter;
1794 return;
1795 }
1796 // FIXME: Actually store the attribute on the declaration
1797 }
1798
handleUnusedAttr(Sema & S,Decl * D,const AttributeList & Attr)1799 static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1800 // check the attribute arguments.
1801 if (Attr.hasParameterOrArguments()) {
1802 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1803 return;
1804 }
1805
1806 if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) &&
1807 !isa<TypeDecl>(D) && !isa<LabelDecl>(D) && !isa<FieldDecl>(D)) {
1808 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1809 << Attr.getName() << ExpectedVariableFunctionOrLabel;
1810 return;
1811 }
1812
1813 D->addAttr(::new (S.Context) UnusedAttr(Attr.getRange(), S.Context));
1814 }
1815
handleReturnsTwiceAttr(Sema & S,Decl * D,const AttributeList & Attr)1816 static void handleReturnsTwiceAttr(Sema &S, Decl *D,
1817 const AttributeList &Attr) {
1818 // check the attribute arguments.
1819 if (Attr.hasParameterOrArguments()) {
1820 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1821 return;
1822 }
1823
1824 if (!isa<FunctionDecl>(D)) {
1825 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1826 << Attr.getName() << ExpectedFunction;
1827 return;
1828 }
1829
1830 D->addAttr(::new (S.Context) ReturnsTwiceAttr(Attr.getRange(), S.Context));
1831 }
1832
handleUsedAttr(Sema & S,Decl * D,const AttributeList & Attr)1833 static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1834 // check the attribute arguments.
1835 if (Attr.hasParameterOrArguments()) {
1836 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1837 return;
1838 }
1839
1840 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1841 if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
1842 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
1843 return;
1844 }
1845 } else if (!isFunctionOrMethod(D)) {
1846 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1847 << Attr.getName() << ExpectedVariableOrFunction;
1848 return;
1849 }
1850
1851 D->addAttr(::new (S.Context) UsedAttr(Attr.getRange(), S.Context));
1852 }
1853
handleConstructorAttr(Sema & S,Decl * D,const AttributeList & Attr)1854 static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1855 // check the attribute arguments.
1856 if (Attr.getNumArgs() > 1) {
1857 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1858 return;
1859 }
1860
1861 int priority = 65535; // FIXME: Do not hardcode such constants.
1862 if (Attr.getNumArgs() > 0) {
1863 Expr *E = Attr.getArg(0);
1864 llvm::APSInt Idx(32);
1865 if (E->isTypeDependent() || E->isValueDependent() ||
1866 !E->isIntegerConstantExpr(Idx, S.Context)) {
1867 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1868 << "constructor" << 1 << E->getSourceRange();
1869 return;
1870 }
1871 priority = Idx.getZExtValue();
1872 }
1873
1874 if (!isa<FunctionDecl>(D)) {
1875 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1876 << Attr.getName() << ExpectedFunction;
1877 return;
1878 }
1879
1880 D->addAttr(::new (S.Context) ConstructorAttr(Attr.getRange(), S.Context,
1881 priority));
1882 }
1883
handleDestructorAttr(Sema & S,Decl * D,const AttributeList & Attr)1884 static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1885 // check the attribute arguments.
1886 if (Attr.getNumArgs() > 1) {
1887 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1888 return;
1889 }
1890
1891 int priority = 65535; // FIXME: Do not hardcode such constants.
1892 if (Attr.getNumArgs() > 0) {
1893 Expr *E = Attr.getArg(0);
1894 llvm::APSInt Idx(32);
1895 if (E->isTypeDependent() || E->isValueDependent() ||
1896 !E->isIntegerConstantExpr(Idx, S.Context)) {
1897 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1898 << "destructor" << 1 << E->getSourceRange();
1899 return;
1900 }
1901 priority = Idx.getZExtValue();
1902 }
1903
1904 if (!isa<FunctionDecl>(D)) {
1905 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1906 << Attr.getName() << ExpectedFunction;
1907 return;
1908 }
1909
1910 D->addAttr(::new (S.Context) DestructorAttr(Attr.getRange(), S.Context,
1911 priority));
1912 }
1913
1914 template <typename AttrTy>
handleAttrWithMessage(Sema & S,Decl * D,const AttributeList & Attr,const char * Name)1915 static void handleAttrWithMessage(Sema &S, Decl *D, const AttributeList &Attr,
1916 const char *Name) {
1917 unsigned NumArgs = Attr.getNumArgs();
1918 if (NumArgs > 1) {
1919 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1920 return;
1921 }
1922
1923 // Handle the case where the attribute has a text message.
1924 StringRef Str;
1925 if (NumArgs == 1) {
1926 StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
1927 if (!SE) {
1928 S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string)
1929 << Name;
1930 return;
1931 }
1932 Str = SE->getString();
1933 }
1934
1935 D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str));
1936 }
1937
handleArcWeakrefUnavailableAttr(Sema & S,Decl * D,const AttributeList & Attr)1938 static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D,
1939 const AttributeList &Attr) {
1940 unsigned NumArgs = Attr.getNumArgs();
1941 if (NumArgs > 0) {
1942 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
1943 return;
1944 }
1945
1946 D->addAttr(::new (S.Context) ArcWeakrefUnavailableAttr(
1947 Attr.getRange(), S.Context));
1948 }
1949
handleObjCRootClassAttr(Sema & S,Decl * D,const AttributeList & Attr)1950 static void handleObjCRootClassAttr(Sema &S, Decl *D,
1951 const AttributeList &Attr) {
1952 if (!isa<ObjCInterfaceDecl>(D)) {
1953 S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
1954 return;
1955 }
1956
1957 unsigned NumArgs = Attr.getNumArgs();
1958 if (NumArgs > 0) {
1959 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
1960 return;
1961 }
1962
1963 D->addAttr(::new (S.Context) ObjCRootClassAttr(Attr.getRange(), S.Context));
1964 }
1965
handleObjCRequiresPropertyDefsAttr(Sema & S,Decl * D,const AttributeList & Attr)1966 static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D,
1967 const AttributeList &Attr) {
1968 if (!isa<ObjCInterfaceDecl>(D)) {
1969 S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis);
1970 return;
1971 }
1972
1973 unsigned NumArgs = Attr.getNumArgs();
1974 if (NumArgs > 0) {
1975 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
1976 return;
1977 }
1978
1979 D->addAttr(::new (S.Context) ObjCRequiresPropertyDefsAttr(
1980 Attr.getRange(), S.Context));
1981 }
1982
checkAvailabilityAttr(Sema & S,SourceRange Range,IdentifierInfo * Platform,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted)1983 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
1984 IdentifierInfo *Platform,
1985 VersionTuple Introduced,
1986 VersionTuple Deprecated,
1987 VersionTuple Obsoleted) {
1988 StringRef PlatformName
1989 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
1990 if (PlatformName.empty())
1991 PlatformName = Platform->getName();
1992
1993 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
1994 // of these steps are needed).
1995 if (!Introduced.empty() && !Deprecated.empty() &&
1996 !(Introduced <= Deprecated)) {
1997 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1998 << 1 << PlatformName << Deprecated.getAsString()
1999 << 0 << Introduced.getAsString();
2000 return true;
2001 }
2002
2003 if (!Introduced.empty() && !Obsoleted.empty() &&
2004 !(Introduced <= Obsoleted)) {
2005 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2006 << 2 << PlatformName << Obsoleted.getAsString()
2007 << 0 << Introduced.getAsString();
2008 return true;
2009 }
2010
2011 if (!Deprecated.empty() && !Obsoleted.empty() &&
2012 !(Deprecated <= Obsoleted)) {
2013 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2014 << 2 << PlatformName << Obsoleted.getAsString()
2015 << 1 << Deprecated.getAsString();
2016 return true;
2017 }
2018
2019 return false;
2020 }
2021
mergeAvailabilityAttr(Decl * D,SourceRange Range,IdentifierInfo * Platform,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted,bool IsUnavailable,StringRef Message)2022 AvailabilityAttr *Sema::mergeAvailabilityAttr(Decl *D, SourceRange Range,
2023 IdentifierInfo *Platform,
2024 VersionTuple Introduced,
2025 VersionTuple Deprecated,
2026 VersionTuple Obsoleted,
2027 bool IsUnavailable,
2028 StringRef Message) {
2029 VersionTuple MergedIntroduced = Introduced;
2030 VersionTuple MergedDeprecated = Deprecated;
2031 VersionTuple MergedObsoleted = Obsoleted;
2032 bool FoundAny = false;
2033
2034 if (D->hasAttrs()) {
2035 AttrVec &Attrs = D->getAttrs();
2036 for (unsigned i = 0, e = Attrs.size(); i != e;) {
2037 const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2038 if (!OldAA) {
2039 ++i;
2040 continue;
2041 }
2042
2043 IdentifierInfo *OldPlatform = OldAA->getPlatform();
2044 if (OldPlatform != Platform) {
2045 ++i;
2046 continue;
2047 }
2048
2049 FoundAny = true;
2050 VersionTuple OldIntroduced = OldAA->getIntroduced();
2051 VersionTuple OldDeprecated = OldAA->getDeprecated();
2052 VersionTuple OldObsoleted = OldAA->getObsoleted();
2053 bool OldIsUnavailable = OldAA->getUnavailable();
2054 StringRef OldMessage = OldAA->getMessage();
2055
2056 if ((!OldIntroduced.empty() && !Introduced.empty() &&
2057 OldIntroduced != Introduced) ||
2058 (!OldDeprecated.empty() && !Deprecated.empty() &&
2059 OldDeprecated != Deprecated) ||
2060 (!OldObsoleted.empty() && !Obsoleted.empty() &&
2061 OldObsoleted != Obsoleted) ||
2062 (OldIsUnavailable != IsUnavailable) ||
2063 (OldMessage != Message)) {
2064 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2065 Diag(Range.getBegin(), diag::note_previous_attribute);
2066 Attrs.erase(Attrs.begin() + i);
2067 --e;
2068 continue;
2069 }
2070
2071 VersionTuple MergedIntroduced2 = MergedIntroduced;
2072 VersionTuple MergedDeprecated2 = MergedDeprecated;
2073 VersionTuple MergedObsoleted2 = MergedObsoleted;
2074
2075 if (MergedIntroduced2.empty())
2076 MergedIntroduced2 = OldIntroduced;
2077 if (MergedDeprecated2.empty())
2078 MergedDeprecated2 = OldDeprecated;
2079 if (MergedObsoleted2.empty())
2080 MergedObsoleted2 = OldObsoleted;
2081
2082 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2083 MergedIntroduced2, MergedDeprecated2,
2084 MergedObsoleted2)) {
2085 Attrs.erase(Attrs.begin() + i);
2086 --e;
2087 continue;
2088 }
2089
2090 MergedIntroduced = MergedIntroduced2;
2091 MergedDeprecated = MergedDeprecated2;
2092 MergedObsoleted = MergedObsoleted2;
2093 ++i;
2094 }
2095 }
2096
2097 if (FoundAny &&
2098 MergedIntroduced == Introduced &&
2099 MergedDeprecated == Deprecated &&
2100 MergedObsoleted == Obsoleted)
2101 return NULL;
2102
2103 if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
2104 MergedDeprecated, MergedObsoleted)) {
2105 return ::new (Context) AvailabilityAttr(Range, Context, Platform,
2106 Introduced, Deprecated,
2107 Obsoleted, IsUnavailable, Message);
2108 }
2109 return NULL;
2110 }
2111
handleAvailabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)2112 static void handleAvailabilityAttr(Sema &S, Decl *D,
2113 const AttributeList &Attr) {
2114 IdentifierInfo *Platform = Attr.getParameterName();
2115 SourceLocation PlatformLoc = Attr.getParameterLoc();
2116
2117 if (AvailabilityAttr::getPrettyPlatformName(Platform->getName()).empty())
2118 S.Diag(PlatformLoc, diag::warn_availability_unknown_platform)
2119 << Platform;
2120
2121 AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
2122 AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
2123 AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
2124 bool IsUnavailable = Attr.getUnavailableLoc().isValid();
2125 StringRef Str;
2126 const StringLiteral *SE =
2127 dyn_cast_or_null<const StringLiteral>(Attr.getMessageExpr());
2128 if (SE)
2129 Str = SE->getString();
2130
2131 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(D, Attr.getRange(),
2132 Platform,
2133 Introduced.Version,
2134 Deprecated.Version,
2135 Obsoleted.Version,
2136 IsUnavailable, Str);
2137 if (NewAttr)
2138 D->addAttr(NewAttr);
2139 }
2140
mergeVisibilityAttr(Decl * D,SourceRange Range,VisibilityAttr::VisibilityType Vis)2141 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
2142 VisibilityAttr::VisibilityType Vis) {
2143 if (isa<TypedefNameDecl>(D)) {
2144 Diag(Range.getBegin(), diag::warn_attribute_ignored) << "visibility";
2145 return NULL;
2146 }
2147 VisibilityAttr *ExistingAttr = D->getAttr<VisibilityAttr>();
2148 if (ExistingAttr) {
2149 VisibilityAttr::VisibilityType ExistingVis = ExistingAttr->getVisibility();
2150 if (ExistingVis == Vis)
2151 return NULL;
2152 Diag(ExistingAttr->getLocation(), diag::err_mismatched_visibility);
2153 Diag(Range.getBegin(), diag::note_previous_attribute);
2154 D->dropAttr<VisibilityAttr>();
2155 }
2156 return ::new (Context) VisibilityAttr(Range, Context, Vis);
2157 }
2158
handleVisibilityAttr(Sema & S,Decl * D,const AttributeList & Attr)2159 static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2160 // check the attribute arguments.
2161 if(!checkAttributeNumArgs(S, Attr, 1))
2162 return;
2163
2164 Expr *Arg = Attr.getArg(0);
2165 Arg = Arg->IgnoreParenCasts();
2166 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2167
2168 if (!Str || !Str->isAscii()) {
2169 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
2170 << "visibility" << 1;
2171 return;
2172 }
2173
2174 StringRef TypeStr = Str->getString();
2175 VisibilityAttr::VisibilityType type;
2176
2177 if (TypeStr == "default")
2178 type = VisibilityAttr::Default;
2179 else if (TypeStr == "hidden")
2180 type = VisibilityAttr::Hidden;
2181 else if (TypeStr == "internal")
2182 type = VisibilityAttr::Hidden; // FIXME
2183 else if (TypeStr == "protected") {
2184 // Complain about attempts to use protected visibility on targets
2185 // (like Darwin) that don't support it.
2186 if (!S.Context.getTargetInfo().hasProtectedVisibility()) {
2187 S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
2188 type = VisibilityAttr::Default;
2189 } else {
2190 type = VisibilityAttr::Protected;
2191 }
2192 } else {
2193 S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
2194 return;
2195 }
2196
2197 VisibilityAttr *NewAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type);
2198 if (NewAttr)
2199 D->addAttr(NewAttr);
2200 }
2201
handleObjCMethodFamilyAttr(Sema & S,Decl * decl,const AttributeList & Attr)2202 static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
2203 const AttributeList &Attr) {
2204 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl);
2205 if (!method) {
2206 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
2207 << ExpectedMethod;
2208 return;
2209 }
2210
2211 if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) {
2212 if (!Attr.getParameterName() && Attr.getNumArgs() == 1) {
2213 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
2214 << "objc_method_family" << 1;
2215 } else {
2216 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2217 }
2218 Attr.setInvalid();
2219 return;
2220 }
2221
2222 StringRef param = Attr.getParameterName()->getName();
2223 ObjCMethodFamilyAttr::FamilyKind family;
2224 if (param == "none")
2225 family = ObjCMethodFamilyAttr::OMF_None;
2226 else if (param == "alloc")
2227 family = ObjCMethodFamilyAttr::OMF_alloc;
2228 else if (param == "copy")
2229 family = ObjCMethodFamilyAttr::OMF_copy;
2230 else if (param == "init")
2231 family = ObjCMethodFamilyAttr::OMF_init;
2232 else if (param == "mutableCopy")
2233 family = ObjCMethodFamilyAttr::OMF_mutableCopy;
2234 else if (param == "new")
2235 family = ObjCMethodFamilyAttr::OMF_new;
2236 else {
2237 // Just warn and ignore it. This is future-proof against new
2238 // families being used in system headers.
2239 S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family);
2240 return;
2241 }
2242
2243 if (family == ObjCMethodFamilyAttr::OMF_init &&
2244 !method->getResultType()->isObjCObjectPointerType()) {
2245 S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
2246 << method->getResultType();
2247 // Ignore the attribute.
2248 return;
2249 }
2250
2251 method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
2252 S.Context, family));
2253 }
2254
handleObjCExceptionAttr(Sema & S,Decl * D,const AttributeList & Attr)2255 static void handleObjCExceptionAttr(Sema &S, Decl *D,
2256 const AttributeList &Attr) {
2257 if (!checkAttributeNumArgs(S, Attr, 0))
2258 return;
2259
2260 ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
2261 if (OCI == 0) {
2262 S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
2263 return;
2264 }
2265
2266 D->addAttr(::new (S.Context) ObjCExceptionAttr(Attr.getRange(), S.Context));
2267 }
2268
handleObjCNSObject(Sema & S,Decl * D,const AttributeList & Attr)2269 static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
2270 if (Attr.getNumArgs() != 0) {
2271 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2272 return;
2273 }
2274 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
2275 QualType T = TD->getUnderlyingType();
2276 if (!T->isCARCBridgableType()) {
2277 S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2278 return;
2279 }
2280 }
2281 else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2282 QualType T = PD->getType();
2283 if (!T->isCARCBridgableType()) {
2284 S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2285 return;
2286 }
2287 }
2288 else {
2289 // It is okay to include this attribute on properties, e.g.:
2290 //
2291 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2292 //
2293 // In this case it follows tradition and suppresses an error in the above
2294 // case.
2295 S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2296 }
2297 D->addAttr(::new (S.Context) ObjCNSObjectAttr(Attr.getRange(), S.Context));
2298 }
2299
2300 static void
handleOverloadableAttr(Sema & S,Decl * D,const AttributeList & Attr)2301 handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2302 if (Attr.getNumArgs() != 0) {
2303 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2304 return;
2305 }
2306
2307 if (!isa<FunctionDecl>(D)) {
2308 S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
2309 return;
2310 }
2311
2312 D->addAttr(::new (S.Context) OverloadableAttr(Attr.getRange(), S.Context));
2313 }
2314
handleBlocksAttr(Sema & S,Decl * D,const AttributeList & Attr)2315 static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2316 if (!Attr.getParameterName()) {
2317 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
2318 << "blocks" << 1;
2319 return;
2320 }
2321
2322 if (Attr.getNumArgs() != 0) {
2323 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2324 return;
2325 }
2326
2327 BlocksAttr::BlockType type;
2328 if (Attr.getParameterName()->isStr("byref"))
2329 type = BlocksAttr::ByRef;
2330 else {
2331 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2332 << "blocks" << Attr.getParameterName();
2333 return;
2334 }
2335
2336 D->addAttr(::new (S.Context) BlocksAttr(Attr.getRange(), S.Context, type));
2337 }
2338
handleSentinelAttr(Sema & S,Decl * D,const AttributeList & Attr)2339 static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2340 // check the attribute arguments.
2341 if (Attr.getNumArgs() > 2) {
2342 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
2343 return;
2344 }
2345
2346 unsigned sentinel = 0;
2347 if (Attr.getNumArgs() > 0) {
2348 Expr *E = Attr.getArg(0);
2349 llvm::APSInt Idx(32);
2350 if (E->isTypeDependent() || E->isValueDependent() ||
2351 !E->isIntegerConstantExpr(Idx, S.Context)) {
2352 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2353 << "sentinel" << 1 << E->getSourceRange();
2354 return;
2355 }
2356
2357 if (Idx.isSigned() && Idx.isNegative()) {
2358 S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2359 << E->getSourceRange();
2360 return;
2361 }
2362
2363 sentinel = Idx.getZExtValue();
2364 }
2365
2366 unsigned nullPos = 0;
2367 if (Attr.getNumArgs() > 1) {
2368 Expr *E = Attr.getArg(1);
2369 llvm::APSInt Idx(32);
2370 if (E->isTypeDependent() || E->isValueDependent() ||
2371 !E->isIntegerConstantExpr(Idx, S.Context)) {
2372 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2373 << "sentinel" << 2 << E->getSourceRange();
2374 return;
2375 }
2376 nullPos = Idx.getZExtValue();
2377
2378 if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2379 // FIXME: This error message could be improved, it would be nice
2380 // to say what the bounds actually are.
2381 S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2382 << E->getSourceRange();
2383 return;
2384 }
2385 }
2386
2387 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2388 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2389 if (isa<FunctionNoProtoType>(FT)) {
2390 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2391 return;
2392 }
2393
2394 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2395 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2396 return;
2397 }
2398 } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
2399 if (!MD->isVariadic()) {
2400 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2401 return;
2402 }
2403 } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
2404 if (!BD->isVariadic()) {
2405 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2406 return;
2407 }
2408 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
2409 QualType Ty = V->getType();
2410 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2411 const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D)
2412 : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2413 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2414 int m = Ty->isFunctionPointerType() ? 0 : 1;
2415 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2416 return;
2417 }
2418 } else {
2419 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2420 << Attr.getName() << ExpectedFunctionMethodOrBlock;
2421 return;
2422 }
2423 } else {
2424 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2425 << Attr.getName() << ExpectedFunctionMethodOrBlock;
2426 return;
2427 }
2428 D->addAttr(::new (S.Context) SentinelAttr(Attr.getRange(), S.Context, sentinel,
2429 nullPos));
2430 }
2431
handleWarnUnusedResult(Sema & S,Decl * D,const AttributeList & Attr)2432 static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
2433 // check the attribute arguments.
2434 if (!checkAttributeNumArgs(S, Attr, 0))
2435 return;
2436
2437 if (!isFunction(D) && !isa<ObjCMethodDecl>(D)) {
2438 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2439 << Attr.getName() << ExpectedFunctionOrMethod;
2440 return;
2441 }
2442
2443 if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) {
2444 S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2445 << Attr.getName() << 0;
2446 return;
2447 }
2448 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
2449 if (MD->getResultType()->isVoidType()) {
2450 S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2451 << Attr.getName() << 1;
2452 return;
2453 }
2454
2455 D->addAttr(::new (S.Context) WarnUnusedResultAttr(Attr.getRange(), S.Context));
2456 }
2457
handleWeakAttr(Sema & S,Decl * D,const AttributeList & Attr)2458 static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2459 // check the attribute arguments.
2460 if (Attr.hasParameterOrArguments()) {
2461 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2462 return;
2463 }
2464
2465 if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
2466 if (isa<CXXRecordDecl>(D)) {
2467 D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
2468 return;
2469 }
2470 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2471 << Attr.getName() << ExpectedVariableOrFunction;
2472 return;
2473 }
2474
2475 NamedDecl *nd = cast<NamedDecl>(D);
2476
2477 // 'weak' only applies to declarations with external linkage.
2478 if (hasEffectivelyInternalLinkage(nd)) {
2479 S.Diag(Attr.getLoc(), diag::err_attribute_weak_static);
2480 return;
2481 }
2482
2483 nd->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
2484 }
2485
handleWeakImportAttr(Sema & S,Decl * D,const AttributeList & Attr)2486 static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2487 // check the attribute arguments.
2488 if (!checkAttributeNumArgs(S, Attr, 0))
2489 return;
2490
2491
2492 // weak_import only applies to variable & function declarations.
2493 bool isDef = false;
2494 if (!D->canBeWeakImported(isDef)) {
2495 if (isDef)
2496 S.Diag(Attr.getLoc(),
2497 diag::warn_attribute_weak_import_invalid_on_definition)
2498 << "weak_import" << 2 /*variable and function*/;
2499 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2500 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2501 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2502 // Nothing to warn about here.
2503 } else
2504 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2505 << Attr.getName() << ExpectedVariableOrFunction;
2506
2507 return;
2508 }
2509
2510 D->addAttr(::new (S.Context) WeakImportAttr(Attr.getRange(), S.Context));
2511 }
2512
2513 // Handles reqd_work_group_size and work_group_size_hint.
handleWorkGroupSize(Sema & S,Decl * D,const AttributeList & Attr)2514 static void handleWorkGroupSize(Sema &S, Decl *D,
2515 const AttributeList &Attr) {
2516 assert(Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize
2517 || Attr.getKind() == AttributeList::AT_WorkGroupSizeHint);
2518
2519 // Attribute has 3 arguments.
2520 if (!checkAttributeNumArgs(S, Attr, 3)) return;
2521
2522 unsigned WGSize[3];
2523 for (unsigned i = 0; i < 3; ++i) {
2524 Expr *E = Attr.getArg(i);
2525 llvm::APSInt ArgNum(32);
2526 if (E->isTypeDependent() || E->isValueDependent() ||
2527 !E->isIntegerConstantExpr(ArgNum, S.Context)) {
2528 S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
2529 << Attr.getName()->getName() << E->getSourceRange();
2530 return;
2531 }
2532 WGSize[i] = (unsigned) ArgNum.getZExtValue();
2533 }
2534
2535 if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize
2536 && D->hasAttr<ReqdWorkGroupSizeAttr>()) {
2537 ReqdWorkGroupSizeAttr *A = D->getAttr<ReqdWorkGroupSizeAttr>();
2538 if (!(A->getXDim() == WGSize[0] &&
2539 A->getYDim() == WGSize[1] &&
2540 A->getZDim() == WGSize[2])) {
2541 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) <<
2542 Attr.getName();
2543 }
2544 }
2545
2546 if (Attr.getKind() == AttributeList::AT_WorkGroupSizeHint
2547 && D->hasAttr<WorkGroupSizeHintAttr>()) {
2548 WorkGroupSizeHintAttr *A = D->getAttr<WorkGroupSizeHintAttr>();
2549 if (!(A->getXDim() == WGSize[0] &&
2550 A->getYDim() == WGSize[1] &&
2551 A->getZDim() == WGSize[2])) {
2552 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) <<
2553 Attr.getName();
2554 }
2555 }
2556
2557 if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize)
2558 D->addAttr(::new (S.Context)
2559 ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context,
2560 WGSize[0], WGSize[1], WGSize[2]));
2561 else
2562 D->addAttr(::new (S.Context)
2563 WorkGroupSizeHintAttr(Attr.getRange(), S.Context,
2564 WGSize[0], WGSize[1], WGSize[2]));
2565 }
2566
mergeSectionAttr(Decl * D,SourceRange Range,StringRef Name)2567 SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
2568 StringRef Name) {
2569 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2570 if (ExistingAttr->getName() == Name)
2571 return NULL;
2572 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
2573 Diag(Range.getBegin(), diag::note_previous_attribute);
2574 return NULL;
2575 }
2576 return ::new (Context) SectionAttr(Range, Context, Name);
2577 }
2578
handleSectionAttr(Sema & S,Decl * D,const AttributeList & Attr)2579 static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2580 // Attribute has no arguments.
2581 if (!checkAttributeNumArgs(S, Attr, 1))
2582 return;
2583
2584 // Make sure that there is a string literal as the sections's single
2585 // argument.
2586 Expr *ArgExpr = Attr.getArg(0);
2587 StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
2588 if (!SE) {
2589 S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section";
2590 return;
2591 }
2592
2593 // If the target wants to validate the section specifier, make it happen.
2594 std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(SE->getString());
2595 if (!Error.empty()) {
2596 S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target)
2597 << Error;
2598 return;
2599 }
2600
2601 // This attribute cannot be applied to local variables.
2602 if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) {
2603 S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable);
2604 return;
2605 }
2606 SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(),
2607 SE->getString());
2608 if (NewAttr)
2609 D->addAttr(NewAttr);
2610 }
2611
2612
handleNothrowAttr(Sema & S,Decl * D,const AttributeList & Attr)2613 static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2614 // check the attribute arguments.
2615 if (Attr.hasParameterOrArguments()) {
2616 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2617 return;
2618 }
2619
2620 if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) {
2621 if (Existing->getLocation().isInvalid())
2622 Existing->setRange(Attr.getRange());
2623 } else {
2624 D->addAttr(::new (S.Context) NoThrowAttr(Attr.getRange(), S.Context));
2625 }
2626 }
2627
handleConstAttr(Sema & S,Decl * D,const AttributeList & Attr)2628 static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2629 // check the attribute arguments.
2630 if (Attr.hasParameterOrArguments()) {
2631 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2632 return;
2633 }
2634
2635 if (ConstAttr *Existing = D->getAttr<ConstAttr>()) {
2636 if (Existing->getLocation().isInvalid())
2637 Existing->setRange(Attr.getRange());
2638 } else {
2639 D->addAttr(::new (S.Context) ConstAttr(Attr.getRange(), S.Context));
2640 }
2641 }
2642
handlePureAttr(Sema & S,Decl * D,const AttributeList & Attr)2643 static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2644 // check the attribute arguments.
2645 if (!checkAttributeNumArgs(S, Attr, 0))
2646 return;
2647
2648 D->addAttr(::new (S.Context) PureAttr(Attr.getRange(), S.Context));
2649 }
2650
handleCleanupAttr(Sema & S,Decl * D,const AttributeList & Attr)2651 static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2652 if (!Attr.getParameterName()) {
2653 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2654 return;
2655 }
2656
2657 if (Attr.getNumArgs() != 0) {
2658 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2659 return;
2660 }
2661
2662 VarDecl *VD = dyn_cast<VarDecl>(D);
2663
2664 if (!VD || !VD->hasLocalStorage()) {
2665 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
2666 return;
2667 }
2668
2669 // Look up the function
2670 // FIXME: Lookup probably isn't looking in the right place
2671 NamedDecl *CleanupDecl
2672 = S.LookupSingleName(S.TUScope, Attr.getParameterName(),
2673 Attr.getParameterLoc(), Sema::LookupOrdinaryName);
2674 if (!CleanupDecl) {
2675 S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) <<
2676 Attr.getParameterName();
2677 return;
2678 }
2679
2680 FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
2681 if (!FD) {
2682 S.Diag(Attr.getParameterLoc(),
2683 diag::err_attribute_cleanup_arg_not_function)
2684 << Attr.getParameterName();
2685 return;
2686 }
2687
2688 if (FD->getNumParams() != 1) {
2689 S.Diag(Attr.getParameterLoc(),
2690 diag::err_attribute_cleanup_func_must_take_one_arg)
2691 << Attr.getParameterName();
2692 return;
2693 }
2694
2695 // We're currently more strict than GCC about what function types we accept.
2696 // If this ever proves to be a problem it should be easy to fix.
2697 QualType Ty = S.Context.getPointerType(VD->getType());
2698 QualType ParamTy = FD->getParamDecl(0)->getType();
2699 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
2700 ParamTy, Ty) != Sema::Compatible) {
2701 S.Diag(Attr.getParameterLoc(),
2702 diag::err_attribute_cleanup_func_arg_incompatible_type) <<
2703 Attr.getParameterName() << ParamTy << Ty;
2704 return;
2705 }
2706
2707 D->addAttr(::new (S.Context) CleanupAttr(Attr.getRange(), S.Context, FD));
2708 S.MarkFunctionReferenced(Attr.getParameterLoc(), FD);
2709 }
2710
2711 /// Handle __attribute__((format_arg((idx)))) attribute based on
2712 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatArgAttr(Sema & S,Decl * D,const AttributeList & Attr)2713 static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2714 if (!checkAttributeNumArgs(S, Attr, 1))
2715 return;
2716
2717 if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
2718 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2719 << Attr.getName() << ExpectedFunction;
2720 return;
2721 }
2722
2723 // In C++ the implicit 'this' function parameter also counts, and they are
2724 // counted from one.
2725 bool HasImplicitThisParam = isInstanceMethod(D);
2726 unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
2727 unsigned FirstIdx = 1;
2728
2729 // checks for the 2nd argument
2730 Expr *IdxExpr = Attr.getArg(0);
2731 llvm::APSInt Idx(32);
2732 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
2733 !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
2734 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2735 << "format" << 2 << IdxExpr->getSourceRange();
2736 return;
2737 }
2738
2739 if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2740 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2741 << "format" << 2 << IdxExpr->getSourceRange();
2742 return;
2743 }
2744
2745 unsigned ArgIdx = Idx.getZExtValue() - 1;
2746
2747 if (HasImplicitThisParam) {
2748 if (ArgIdx == 0) {
2749 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
2750 << "format_arg" << IdxExpr->getSourceRange();
2751 return;
2752 }
2753 ArgIdx--;
2754 }
2755
2756 // make sure the format string is really a string
2757 QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
2758
2759 bool not_nsstring_type = !isNSStringType(Ty, S.Context);
2760 if (not_nsstring_type &&
2761 !isCFStringType(Ty, S.Context) &&
2762 (!Ty->isPointerType() ||
2763 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2764 // FIXME: Should highlight the actual expression that has the wrong type.
2765 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2766 << (not_nsstring_type ? "a string type" : "an NSString")
2767 << IdxExpr->getSourceRange();
2768 return;
2769 }
2770 Ty = getFunctionOrMethodResultType(D);
2771 if (!isNSStringType(Ty, S.Context) &&
2772 !isCFStringType(Ty, S.Context) &&
2773 (!Ty->isPointerType() ||
2774 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2775 // FIXME: Should highlight the actual expression that has the wrong type.
2776 S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
2777 << (not_nsstring_type ? "string type" : "NSString")
2778 << IdxExpr->getSourceRange();
2779 return;
2780 }
2781
2782 D->addAttr(::new (S.Context) FormatArgAttr(Attr.getRange(), S.Context,
2783 Idx.getZExtValue()));
2784 }
2785
2786 enum FormatAttrKind {
2787 CFStringFormat,
2788 NSStringFormat,
2789 StrftimeFormat,
2790 SupportedFormat,
2791 IgnoredFormat,
2792 InvalidFormat
2793 };
2794
2795 /// getFormatAttrKind - Map from format attribute names to supported format
2796 /// types.
getFormatAttrKind(StringRef Format)2797 static FormatAttrKind getFormatAttrKind(StringRef Format) {
2798 return llvm::StringSwitch<FormatAttrKind>(Format)
2799 // Check for formats that get handled specially.
2800 .Case("NSString", NSStringFormat)
2801 .Case("CFString", CFStringFormat)
2802 .Case("strftime", StrftimeFormat)
2803
2804 // Otherwise, check for supported formats.
2805 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
2806 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
2807 .Case("kprintf", SupportedFormat) // OpenBSD.
2808
2809 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
2810 .Default(InvalidFormat);
2811 }
2812
2813 /// Handle __attribute__((init_priority(priority))) attributes based on
2814 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
handleInitPriorityAttr(Sema & S,Decl * D,const AttributeList & Attr)2815 static void handleInitPriorityAttr(Sema &S, Decl *D,
2816 const AttributeList &Attr) {
2817 if (!S.getLangOpts().CPlusPlus) {
2818 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2819 return;
2820 }
2821
2822 if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) {
2823 S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2824 Attr.setInvalid();
2825 return;
2826 }
2827 QualType T = dyn_cast<VarDecl>(D)->getType();
2828 if (S.Context.getAsArrayType(T))
2829 T = S.Context.getBaseElementType(T);
2830 if (!T->getAs<RecordType>()) {
2831 S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2832 Attr.setInvalid();
2833 return;
2834 }
2835
2836 if (Attr.getNumArgs() != 1) {
2837 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2838 Attr.setInvalid();
2839 return;
2840 }
2841 Expr *priorityExpr = Attr.getArg(0);
2842
2843 llvm::APSInt priority(32);
2844 if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() ||
2845 !priorityExpr->isIntegerConstantExpr(priority, S.Context)) {
2846 S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
2847 << "init_priority" << priorityExpr->getSourceRange();
2848 Attr.setInvalid();
2849 return;
2850 }
2851 unsigned prioritynum = priority.getZExtValue();
2852 if (prioritynum < 101 || prioritynum > 65535) {
2853 S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
2854 << priorityExpr->getSourceRange();
2855 Attr.setInvalid();
2856 return;
2857 }
2858 D->addAttr(::new (S.Context) InitPriorityAttr(Attr.getRange(), S.Context,
2859 prioritynum));
2860 }
2861
mergeFormatAttr(Decl * D,SourceRange Range,StringRef Format,int FormatIdx,int FirstArg)2862 FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range, StringRef Format,
2863 int FormatIdx, int FirstArg) {
2864 // Check whether we already have an equivalent format attribute.
2865 for (specific_attr_iterator<FormatAttr>
2866 i = D->specific_attr_begin<FormatAttr>(),
2867 e = D->specific_attr_end<FormatAttr>();
2868 i != e ; ++i) {
2869 FormatAttr *f = *i;
2870 if (f->getType() == Format &&
2871 f->getFormatIdx() == FormatIdx &&
2872 f->getFirstArg() == FirstArg) {
2873 // If we don't have a valid location for this attribute, adopt the
2874 // location.
2875 if (f->getLocation().isInvalid())
2876 f->setRange(Range);
2877 return NULL;
2878 }
2879 }
2880
2881 return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
2882 FirstArg);
2883 }
2884
2885 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
2886 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatAttr(Sema & S,Decl * D,const AttributeList & Attr)2887 static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2888
2889 if (!Attr.getParameterName()) {
2890 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
2891 << "format" << 1;
2892 return;
2893 }
2894
2895 if (Attr.getNumArgs() != 2) {
2896 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3;
2897 return;
2898 }
2899
2900 if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) {
2901 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2902 << Attr.getName() << ExpectedFunction;
2903 return;
2904 }
2905
2906 // In C++ the implicit 'this' function parameter also counts, and they are
2907 // counted from one.
2908 bool HasImplicitThisParam = isInstanceMethod(D);
2909 unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
2910 unsigned FirstIdx = 1;
2911
2912 StringRef Format = Attr.getParameterName()->getName();
2913
2914 // Normalize the argument, __foo__ becomes foo.
2915 if (Format.startswith("__") && Format.endswith("__"))
2916 Format = Format.substr(2, Format.size() - 4);
2917
2918 // Check for supported formats.
2919 FormatAttrKind Kind = getFormatAttrKind(Format);
2920
2921 if (Kind == IgnoredFormat)
2922 return;
2923
2924 if (Kind == InvalidFormat) {
2925 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2926 << "format" << Attr.getParameterName()->getName();
2927 return;
2928 }
2929
2930 // checks for the 2nd argument
2931 Expr *IdxExpr = Attr.getArg(0);
2932 llvm::APSInt Idx(32);
2933 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
2934 !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
2935 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2936 << "format" << 2 << IdxExpr->getSourceRange();
2937 return;
2938 }
2939
2940 if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2941 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2942 << "format" << 2 << IdxExpr->getSourceRange();
2943 return;
2944 }
2945
2946 // FIXME: Do we need to bounds check?
2947 unsigned ArgIdx = Idx.getZExtValue() - 1;
2948
2949 if (HasImplicitThisParam) {
2950 if (ArgIdx == 0) {
2951 S.Diag(Attr.getLoc(),
2952 diag::err_format_attribute_implicit_this_format_string)
2953 << IdxExpr->getSourceRange();
2954 return;
2955 }
2956 ArgIdx--;
2957 }
2958
2959 // make sure the format string is really a string
2960 QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
2961
2962 if (Kind == CFStringFormat) {
2963 if (!isCFStringType(Ty, S.Context)) {
2964 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2965 << "a CFString" << IdxExpr->getSourceRange();
2966 return;
2967 }
2968 } else if (Kind == NSStringFormat) {
2969 // FIXME: do we need to check if the type is NSString*? What are the
2970 // semantics?
2971 if (!isNSStringType(Ty, S.Context)) {
2972 // FIXME: Should highlight the actual expression that has the wrong type.
2973 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2974 << "an NSString" << IdxExpr->getSourceRange();
2975 return;
2976 }
2977 } else if (!Ty->isPointerType() ||
2978 !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
2979 // FIXME: Should highlight the actual expression that has the wrong type.
2980 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2981 << "a string type" << IdxExpr->getSourceRange();
2982 return;
2983 }
2984
2985 // check the 3rd argument
2986 Expr *FirstArgExpr = Attr.getArg(1);
2987 llvm::APSInt FirstArg(32);
2988 if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() ||
2989 !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
2990 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2991 << "format" << 3 << FirstArgExpr->getSourceRange();
2992 return;
2993 }
2994
2995 // check if the function is variadic if the 3rd argument non-zero
2996 if (FirstArg != 0) {
2997 if (isFunctionOrMethodVariadic(D)) {
2998 ++NumArgs; // +1 for ...
2999 } else {
3000 S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3001 return;
3002 }
3003 }
3004
3005 // strftime requires FirstArg to be 0 because it doesn't read from any
3006 // variable the input is just the current time + the format string.
3007 if (Kind == StrftimeFormat) {
3008 if (FirstArg != 0) {
3009 S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
3010 << FirstArgExpr->getSourceRange();
3011 return;
3012 }
3013 // if 0 it disables parameter checking (to use with e.g. va_list)
3014 } else if (FirstArg != 0 && FirstArg != NumArgs) {
3015 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
3016 << "format" << 3 << FirstArgExpr->getSourceRange();
3017 return;
3018 }
3019
3020 FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), Format,
3021 Idx.getZExtValue(),
3022 FirstArg.getZExtValue());
3023 if (NewAttr)
3024 D->addAttr(NewAttr);
3025 }
3026
handleTransparentUnionAttr(Sema & S,Decl * D,const AttributeList & Attr)3027 static void handleTransparentUnionAttr(Sema &S, Decl *D,
3028 const AttributeList &Attr) {
3029 // check the attribute arguments.
3030 if (!checkAttributeNumArgs(S, Attr, 0))
3031 return;
3032
3033
3034 // Try to find the underlying union declaration.
3035 RecordDecl *RD = 0;
3036 TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
3037 if (TD && TD->getUnderlyingType()->isUnionType())
3038 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
3039 else
3040 RD = dyn_cast<RecordDecl>(D);
3041
3042 if (!RD || !RD->isUnion()) {
3043 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3044 << Attr.getName() << ExpectedUnion;
3045 return;
3046 }
3047
3048 if (!RD->isCompleteDefinition()) {
3049 S.Diag(Attr.getLoc(),
3050 diag::warn_transparent_union_attribute_not_definition);
3051 return;
3052 }
3053
3054 RecordDecl::field_iterator Field = RD->field_begin(),
3055 FieldEnd = RD->field_end();
3056 if (Field == FieldEnd) {
3057 S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
3058 return;
3059 }
3060
3061 FieldDecl *FirstField = *Field;
3062 QualType FirstType = FirstField->getType();
3063 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
3064 S.Diag(FirstField->getLocation(),
3065 diag::warn_transparent_union_attribute_floating)
3066 << FirstType->isVectorType() << FirstType;
3067 return;
3068 }
3069
3070 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
3071 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
3072 for (; Field != FieldEnd; ++Field) {
3073 QualType FieldType = Field->getType();
3074 if (S.Context.getTypeSize(FieldType) != FirstSize ||
3075 S.Context.getTypeAlign(FieldType) != FirstAlign) {
3076 // Warn if we drop the attribute.
3077 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
3078 unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
3079 : S.Context.getTypeAlign(FieldType);
3080 S.Diag(Field->getLocation(),
3081 diag::warn_transparent_union_attribute_field_size_align)
3082 << isSize << Field->getDeclName() << FieldBits;
3083 unsigned FirstBits = isSize? FirstSize : FirstAlign;
3084 S.Diag(FirstField->getLocation(),
3085 diag::note_transparent_union_first_field_size_align)
3086 << isSize << FirstBits;
3087 return;
3088 }
3089 }
3090
3091 RD->addAttr(::new (S.Context) TransparentUnionAttr(Attr.getRange(), S.Context));
3092 }
3093
handleAnnotateAttr(Sema & S,Decl * D,const AttributeList & Attr)3094 static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3095 // check the attribute arguments.
3096 if (!checkAttributeNumArgs(S, Attr, 1))
3097 return;
3098
3099 Expr *ArgExpr = Attr.getArg(0);
3100 StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
3101
3102 // Make sure that there is a string literal as the annotation's single
3103 // argument.
3104 if (!SE) {
3105 S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate";
3106 return;
3107 }
3108
3109 // Don't duplicate annotations that are already set.
3110 for (specific_attr_iterator<AnnotateAttr>
3111 i = D->specific_attr_begin<AnnotateAttr>(),
3112 e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) {
3113 if ((*i)->getAnnotation() == SE->getString())
3114 return;
3115 }
3116 D->addAttr(::new (S.Context) AnnotateAttr(Attr.getRange(), S.Context,
3117 SE->getString()));
3118 }
3119
handleAlignedAttr(Sema & S,Decl * D,const AttributeList & Attr)3120 static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3121 // check the attribute arguments.
3122 if (Attr.getNumArgs() > 1) {
3123 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3124 return;
3125 }
3126
3127 //FIXME: The C++0x version of this attribute has more limited applicabilty
3128 // than GNU's, and should error out when it is used to specify a
3129 // weaker alignment, rather than being silently ignored.
3130
3131 if (Attr.getNumArgs() == 0) {
3132 D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
3133 true, 0, Attr.isDeclspecAttribute()));
3134 return;
3135 }
3136
3137 S.AddAlignedAttr(Attr.getRange(), D, Attr.getArg(0),
3138 Attr.isDeclspecAttribute());
3139 }
3140
AddAlignedAttr(SourceRange AttrRange,Decl * D,Expr * E,bool isDeclSpec)3141 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
3142 bool isDeclSpec) {
3143 // FIXME: Handle pack-expansions here.
3144 if (DiagnoseUnexpandedParameterPack(E))
3145 return;
3146
3147 if (E->isTypeDependent() || E->isValueDependent()) {
3148 // Save dependent expressions in the AST to be instantiated.
3149 D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, E,
3150 isDeclSpec));
3151 return;
3152 }
3153
3154 SourceLocation AttrLoc = AttrRange.getBegin();
3155 // FIXME: Cache the number on the Attr object?
3156 llvm::APSInt Alignment(32);
3157 ExprResult ICE
3158 = VerifyIntegerConstantExpression(E, &Alignment,
3159 diag::err_aligned_attribute_argument_not_int,
3160 /*AllowFold*/ false);
3161 if (ICE.isInvalid())
3162 return;
3163 if (!llvm::isPowerOf2_64(Alignment.getZExtValue())) {
3164 Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
3165 << E->getSourceRange();
3166 return;
3167 }
3168 if (isDeclSpec) {
3169 // We've already verified it's a power of 2, now let's make sure it's
3170 // 8192 or less.
3171 if (Alignment.getZExtValue() > 8192) {
3172 Diag(AttrLoc, diag::err_attribute_aligned_greater_than_8192)
3173 << E->getSourceRange();
3174 return;
3175 }
3176 }
3177
3178 D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, ICE.take(),
3179 isDeclSpec));
3180 }
3181
AddAlignedAttr(SourceRange AttrRange,Decl * D,TypeSourceInfo * TS,bool isDeclSpec)3182 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
3183 bool isDeclSpec) {
3184 // FIXME: Cache the number on the Attr object if non-dependent?
3185 // FIXME: Perform checking of type validity
3186 D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, false, TS,
3187 isDeclSpec));
3188 return;
3189 }
3190
3191 /// handleModeAttr - This attribute modifies the width of a decl with primitive
3192 /// type.
3193 ///
3194 /// Despite what would be logical, the mode attribute is a decl attribute, not a
3195 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
3196 /// HImode, not an intermediate pointer.
handleModeAttr(Sema & S,Decl * D,const AttributeList & Attr)3197 static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3198 // This attribute isn't documented, but glibc uses it. It changes
3199 // the width of an int or unsigned int to the specified size.
3200
3201 // Check that there aren't any arguments
3202 if (!checkAttributeNumArgs(S, Attr, 0))
3203 return;
3204
3205
3206 IdentifierInfo *Name = Attr.getParameterName();
3207 if (!Name) {
3208 S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
3209 return;
3210 }
3211
3212 StringRef Str = Attr.getParameterName()->getName();
3213
3214 // Normalize the attribute name, __foo__ becomes foo.
3215 if (Str.startswith("__") && Str.endswith("__"))
3216 Str = Str.substr(2, Str.size() - 4);
3217
3218 unsigned DestWidth = 0;
3219 bool IntegerMode = true;
3220 bool ComplexMode = false;
3221 switch (Str.size()) {
3222 case 2:
3223 switch (Str[0]) {
3224 case 'Q': DestWidth = 8; break;
3225 case 'H': DestWidth = 16; break;
3226 case 'S': DestWidth = 32; break;
3227 case 'D': DestWidth = 64; break;
3228 case 'X': DestWidth = 96; break;
3229 case 'T': DestWidth = 128; break;
3230 }
3231 if (Str[1] == 'F') {
3232 IntegerMode = false;
3233 } else if (Str[1] == 'C') {
3234 IntegerMode = false;
3235 ComplexMode = true;
3236 } else if (Str[1] != 'I') {
3237 DestWidth = 0;
3238 }
3239 break;
3240 case 4:
3241 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
3242 // pointer on PIC16 and other embedded platforms.
3243 if (Str == "word")
3244 DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3245 else if (Str == "byte")
3246 DestWidth = S.Context.getTargetInfo().getCharWidth();
3247 break;
3248 case 7:
3249 if (Str == "pointer")
3250 DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3251 break;
3252 }
3253
3254 QualType OldTy;
3255 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3256 OldTy = TD->getUnderlyingType();
3257 else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
3258 OldTy = VD->getType();
3259 else {
3260 S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
3261 << "mode" << Attr.getRange();
3262 return;
3263 }
3264
3265 if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
3266 S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
3267 else if (IntegerMode) {
3268 if (!OldTy->isIntegralOrEnumerationType())
3269 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3270 } else if (ComplexMode) {
3271 if (!OldTy->isComplexType())
3272 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3273 } else {
3274 if (!OldTy->isFloatingType())
3275 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3276 }
3277
3278 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
3279 // and friends, at least with glibc.
3280 // FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong
3281 // width on unusual platforms.
3282 // FIXME: Make sure floating-point mappings are accurate
3283 // FIXME: Support XF and TF types
3284 QualType NewTy;
3285 switch (DestWidth) {
3286 case 0:
3287 S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
3288 return;
3289 default:
3290 S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3291 return;
3292 case 8:
3293 if (!IntegerMode) {
3294 S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3295 return;
3296 }
3297 if (OldTy->isSignedIntegerType())
3298 NewTy = S.Context.SignedCharTy;
3299 else
3300 NewTy = S.Context.UnsignedCharTy;
3301 break;
3302 case 16:
3303 if (!IntegerMode) {
3304 S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3305 return;
3306 }
3307 if (OldTy->isSignedIntegerType())
3308 NewTy = S.Context.ShortTy;
3309 else
3310 NewTy = S.Context.UnsignedShortTy;
3311 break;
3312 case 32:
3313 if (!IntegerMode)
3314 NewTy = S.Context.FloatTy;
3315 else if (OldTy->isSignedIntegerType())
3316 NewTy = S.Context.IntTy;
3317 else
3318 NewTy = S.Context.UnsignedIntTy;
3319 break;
3320 case 64:
3321 if (!IntegerMode)
3322 NewTy = S.Context.DoubleTy;
3323 else if (OldTy->isSignedIntegerType())
3324 if (S.Context.getTargetInfo().getLongWidth() == 64)
3325 NewTy = S.Context.LongTy;
3326 else
3327 NewTy = S.Context.LongLongTy;
3328 else
3329 if (S.Context.getTargetInfo().getLongWidth() == 64)
3330 NewTy = S.Context.UnsignedLongTy;
3331 else
3332 NewTy = S.Context.UnsignedLongLongTy;
3333 break;
3334 case 96:
3335 NewTy = S.Context.LongDoubleTy;
3336 break;
3337 case 128:
3338 if (!IntegerMode) {
3339 S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3340 return;
3341 }
3342 if (OldTy->isSignedIntegerType())
3343 NewTy = S.Context.Int128Ty;
3344 else
3345 NewTy = S.Context.UnsignedInt128Ty;
3346 break;
3347 }
3348
3349 if (ComplexMode) {
3350 NewTy = S.Context.getComplexType(NewTy);
3351 }
3352
3353 // Install the new type.
3354 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
3355 // FIXME: preserve existing source info.
3356 TD->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(NewTy));
3357 } else
3358 cast<ValueDecl>(D)->setType(NewTy);
3359 }
3360
handleNoDebugAttr(Sema & S,Decl * D,const AttributeList & Attr)3361 static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3362 // check the attribute arguments.
3363 if (!checkAttributeNumArgs(S, Attr, 0))
3364 return;
3365
3366 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3367 if (!VD->hasGlobalStorage())
3368 S.Diag(Attr.getLoc(),
3369 diag::warn_attribute_requires_functions_or_static_globals)
3370 << Attr.getName();
3371 } else if (!isFunctionOrMethod(D)) {
3372 S.Diag(Attr.getLoc(),
3373 diag::warn_attribute_requires_functions_or_static_globals)
3374 << Attr.getName();
3375 return;
3376 }
3377
3378 D->addAttr(::new (S.Context) NoDebugAttr(Attr.getRange(), S.Context));
3379 }
3380
handleNoInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)3381 static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3382 // check the attribute arguments.
3383 if (!checkAttributeNumArgs(S, Attr, 0))
3384 return;
3385
3386
3387 if (!isa<FunctionDecl>(D)) {
3388 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3389 << Attr.getName() << ExpectedFunction;
3390 return;
3391 }
3392
3393 D->addAttr(::new (S.Context) NoInlineAttr(Attr.getRange(), S.Context));
3394 }
3395
handleNoInstrumentFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)3396 static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D,
3397 const AttributeList &Attr) {
3398 // check the attribute arguments.
3399 if (!checkAttributeNumArgs(S, Attr, 0))
3400 return;
3401
3402
3403 if (!isa<FunctionDecl>(D)) {
3404 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3405 << Attr.getName() << ExpectedFunction;
3406 return;
3407 }
3408
3409 D->addAttr(::new (S.Context) NoInstrumentFunctionAttr(Attr.getRange(),
3410 S.Context));
3411 }
3412
handleKernelAttr(Sema & S,Decl * D,const AttributeList & Attr)3413 static void handleKernelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3414 if (S.LangOpts.Renderscript) {
3415 D->addAttr(::new (S.Context) KernelAttr(Attr.getRange(), S.Context));
3416 } else {
3417 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "kernel";
3418 }
3419 }
3420
handleConstantAttr(Sema & S,Decl * D,const AttributeList & Attr)3421 static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3422 if (S.LangOpts.CUDA) {
3423 // check the attribute arguments.
3424 if (Attr.hasParameterOrArguments()) {
3425 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
3426 return;
3427 }
3428
3429 if (!isa<VarDecl>(D)) {
3430 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3431 << Attr.getName() << ExpectedVariable;
3432 return;
3433 }
3434
3435 D->addAttr(::new (S.Context) CUDAConstantAttr(Attr.getRange(), S.Context));
3436 } else {
3437 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant";
3438 }
3439 }
3440
handleDeviceAttr(Sema & S,Decl * D,const AttributeList & Attr)3441 static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3442 if (S.LangOpts.CUDA) {
3443 // check the attribute arguments.
3444 if (Attr.getNumArgs() != 0) {
3445 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
3446 return;
3447 }
3448
3449 if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
3450 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3451 << Attr.getName() << ExpectedVariableOrFunction;
3452 return;
3453 }
3454
3455 D->addAttr(::new (S.Context) CUDADeviceAttr(Attr.getRange(), S.Context));
3456 } else {
3457 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device";
3458 }
3459 }
3460
handleGlobalAttr(Sema & S,Decl * D,const AttributeList & Attr)3461 static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3462 if (S.LangOpts.CUDA) {
3463 // check the attribute arguments.
3464 if (!checkAttributeNumArgs(S, Attr, 0))
3465 return;
3466
3467 if (!isa<FunctionDecl>(D)) {
3468 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3469 << Attr.getName() << ExpectedFunction;
3470 return;
3471 }
3472
3473 FunctionDecl *FD = cast<FunctionDecl>(D);
3474 if (!FD->getResultType()->isVoidType()) {
3475 TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
3476 if (FunctionTypeLoc* FTL = dyn_cast<FunctionTypeLoc>(&TL)) {
3477 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3478 << FD->getType()
3479 << FixItHint::CreateReplacement(FTL->getResultLoc().getSourceRange(),
3480 "void");
3481 } else {
3482 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3483 << FD->getType();
3484 }
3485 return;
3486 }
3487
3488 D->addAttr(::new (S.Context) CUDAGlobalAttr(Attr.getRange(), S.Context));
3489 } else {
3490 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global";
3491 }
3492 }
3493
handleHostAttr(Sema & S,Decl * D,const AttributeList & Attr)3494 static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3495 if (S.LangOpts.CUDA) {
3496 // check the attribute arguments.
3497 if (!checkAttributeNumArgs(S, Attr, 0))
3498 return;
3499
3500
3501 if (!isa<FunctionDecl>(D)) {
3502 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3503 << Attr.getName() << ExpectedFunction;
3504 return;
3505 }
3506
3507 D->addAttr(::new (S.Context) CUDAHostAttr(Attr.getRange(), S.Context));
3508 } else {
3509 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host";
3510 }
3511 }
3512
handleSharedAttr(Sema & S,Decl * D,const AttributeList & Attr)3513 static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3514 if (S.LangOpts.CUDA) {
3515 // check the attribute arguments.
3516 if (!checkAttributeNumArgs(S, Attr, 0))
3517 return;
3518
3519
3520 if (!isa<VarDecl>(D)) {
3521 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3522 << Attr.getName() << ExpectedVariable;
3523 return;
3524 }
3525
3526 D->addAttr(::new (S.Context) CUDASharedAttr(Attr.getRange(), S.Context));
3527 } else {
3528 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared";
3529 }
3530 }
3531
handleGNUInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)3532 static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3533 // check the attribute arguments.
3534 if (!checkAttributeNumArgs(S, Attr, 0))
3535 return;
3536
3537 FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
3538 if (Fn == 0) {
3539 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3540 << Attr.getName() << ExpectedFunction;
3541 return;
3542 }
3543
3544 if (!Fn->isInlineSpecified()) {
3545 S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
3546 return;
3547 }
3548
3549 D->addAttr(::new (S.Context) GNUInlineAttr(Attr.getRange(), S.Context));
3550 }
3551
handleCallConvAttr(Sema & S,Decl * D,const AttributeList & Attr)3552 static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3553 if (hasDeclarator(D)) return;
3554
3555 // Diagnostic is emitted elsewhere: here we store the (valid) Attr
3556 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
3557 CallingConv CC;
3558 if (S.CheckCallingConvAttr(Attr, CC))
3559 return;
3560
3561 if (!isa<ObjCMethodDecl>(D)) {
3562 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3563 << Attr.getName() << ExpectedFunctionOrMethod;
3564 return;
3565 }
3566
3567 switch (Attr.getKind()) {
3568 case AttributeList::AT_FastCall:
3569 D->addAttr(::new (S.Context) FastCallAttr(Attr.getRange(), S.Context));
3570 return;
3571 case AttributeList::AT_StdCall:
3572 D->addAttr(::new (S.Context) StdCallAttr(Attr.getRange(), S.Context));
3573 return;
3574 case AttributeList::AT_ThisCall:
3575 D->addAttr(::new (S.Context) ThisCallAttr(Attr.getRange(), S.Context));
3576 return;
3577 case AttributeList::AT_CDecl:
3578 D->addAttr(::new (S.Context) CDeclAttr(Attr.getRange(), S.Context));
3579 return;
3580 case AttributeList::AT_Pascal:
3581 D->addAttr(::new (S.Context) PascalAttr(Attr.getRange(), S.Context));
3582 return;
3583 case AttributeList::AT_Pcs: {
3584 PcsAttr::PCSType PCS;
3585 switch (CC) {
3586 case CC_AAPCS:
3587 PCS = PcsAttr::AAPCS;
3588 break;
3589 case CC_AAPCS_VFP:
3590 PCS = PcsAttr::AAPCS_VFP;
3591 break;
3592 default:
3593 llvm_unreachable("unexpected calling convention in pcs attribute");
3594 }
3595
3596 D->addAttr(::new (S.Context) PcsAttr(Attr.getRange(), S.Context, PCS));
3597 }
3598 default:
3599 llvm_unreachable("unexpected attribute kind");
3600 }
3601 }
3602
handleOpenCLKernelAttr(Sema & S,Decl * D,const AttributeList & Attr)3603 static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){
3604 assert(!Attr.isInvalid());
3605 D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context));
3606 }
3607
CheckCallingConvAttr(const AttributeList & attr,CallingConv & CC)3608 bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC) {
3609 if (attr.isInvalid())
3610 return true;
3611
3612 unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
3613 if (attr.getNumArgs() != ReqArgs || attr.getParameterName()) {
3614 Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << ReqArgs;
3615 attr.setInvalid();
3616 return true;
3617 }
3618
3619 // TODO: diagnose uses of these conventions on the wrong target. Or, better
3620 // move to TargetAttributesSema one day.
3621 switch (attr.getKind()) {
3622 case AttributeList::AT_CDecl: CC = CC_C; break;
3623 case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
3624 case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
3625 case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
3626 case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
3627 case AttributeList::AT_Pcs: {
3628 Expr *Arg = attr.getArg(0);
3629 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
3630 if (!Str || !Str->isAscii()) {
3631 Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3632 << "pcs" << 1;
3633 attr.setInvalid();
3634 return true;
3635 }
3636
3637 StringRef StrRef = Str->getString();
3638 if (StrRef == "aapcs") {
3639 CC = CC_AAPCS;
3640 break;
3641 } else if (StrRef == "aapcs-vfp") {
3642 CC = CC_AAPCS_VFP;
3643 break;
3644 }
3645
3646 attr.setInvalid();
3647 Diag(attr.getLoc(), diag::err_invalid_pcs);
3648 return true;
3649 }
3650 default: llvm_unreachable("unexpected attribute kind");
3651 }
3652
3653 return false;
3654 }
3655
handleRegparmAttr(Sema & S,Decl * D,const AttributeList & Attr)3656 static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3657 if (hasDeclarator(D)) return;
3658
3659 unsigned numParams;
3660 if (S.CheckRegparmAttr(Attr, numParams))
3661 return;
3662
3663 if (!isa<ObjCMethodDecl>(D)) {
3664 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3665 << Attr.getName() << ExpectedFunctionOrMethod;
3666 return;
3667 }
3668
3669 D->addAttr(::new (S.Context) RegparmAttr(Attr.getRange(), S.Context, numParams));
3670 }
3671
3672 /// Checks a regparm attribute, returning true if it is ill-formed and
3673 /// otherwise setting numParams to the appropriate value.
CheckRegparmAttr(const AttributeList & Attr,unsigned & numParams)3674 bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
3675 if (Attr.isInvalid())
3676 return true;
3677
3678 if (Attr.getNumArgs() != 1) {
3679 Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3680 Attr.setInvalid();
3681 return true;
3682 }
3683
3684 Expr *NumParamsExpr = Attr.getArg(0);
3685 llvm::APSInt NumParams(32);
3686 if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
3687 !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) {
3688 Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3689 << "regparm" << NumParamsExpr->getSourceRange();
3690 Attr.setInvalid();
3691 return true;
3692 }
3693
3694 if (Context.getTargetInfo().getRegParmMax() == 0) {
3695 Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
3696 << NumParamsExpr->getSourceRange();
3697 Attr.setInvalid();
3698 return true;
3699 }
3700
3701 numParams = NumParams.getZExtValue();
3702 if (numParams > Context.getTargetInfo().getRegParmMax()) {
3703 Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
3704 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
3705 Attr.setInvalid();
3706 return true;
3707 }
3708
3709 return false;
3710 }
3711
handleLaunchBoundsAttr(Sema & S,Decl * D,const AttributeList & Attr)3712 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){
3713 if (S.LangOpts.CUDA) {
3714 // check the attribute arguments.
3715 if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
3716 // FIXME: 0 is not okay.
3717 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
3718 return;
3719 }
3720
3721 if (!isFunctionOrMethod(D)) {
3722 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3723 << Attr.getName() << ExpectedFunctionOrMethod;
3724 return;
3725 }
3726
3727 Expr *MaxThreadsExpr = Attr.getArg(0);
3728 llvm::APSInt MaxThreads(32);
3729 if (MaxThreadsExpr->isTypeDependent() ||
3730 MaxThreadsExpr->isValueDependent() ||
3731 !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) {
3732 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
3733 << "launch_bounds" << 1 << MaxThreadsExpr->getSourceRange();
3734 return;
3735 }
3736
3737 llvm::APSInt MinBlocks(32);
3738 if (Attr.getNumArgs() > 1) {
3739 Expr *MinBlocksExpr = Attr.getArg(1);
3740 if (MinBlocksExpr->isTypeDependent() ||
3741 MinBlocksExpr->isValueDependent() ||
3742 !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) {
3743 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
3744 << "launch_bounds" << 2 << MinBlocksExpr->getSourceRange();
3745 return;
3746 }
3747 }
3748
3749 D->addAttr(::new (S.Context) CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
3750 MaxThreads.getZExtValue(),
3751 MinBlocks.getZExtValue()));
3752 } else {
3753 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds";
3754 }
3755 }
3756
handleArgumentWithTypeTagAttr(Sema & S,Decl * D,const AttributeList & Attr)3757 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
3758 const AttributeList &Attr) {
3759 StringRef AttrName = Attr.getName()->getName();
3760 if (!Attr.getParameterName()) {
3761 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_identifier)
3762 << Attr.getName() << /* arg num = */ 1;
3763 return;
3764 }
3765
3766 if (Attr.getNumArgs() != 2) {
3767 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3768 << /* required args = */ 3;
3769 return;
3770 }
3771
3772 IdentifierInfo *ArgumentKind = Attr.getParameterName();
3773
3774 if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
3775 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
3776 << Attr.getName() << ExpectedFunctionOrMethod;
3777 return;
3778 }
3779
3780 uint64_t ArgumentIdx;
3781 if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName,
3782 Attr.getLoc(), 2,
3783 Attr.getArg(0), ArgumentIdx))
3784 return;
3785
3786 uint64_t TypeTagIdx;
3787 if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName,
3788 Attr.getLoc(), 3,
3789 Attr.getArg(1), TypeTagIdx))
3790 return;
3791
3792 bool IsPointer = (AttrName == "pointer_with_type_tag");
3793 if (IsPointer) {
3794 // Ensure that buffer has a pointer type.
3795 QualType BufferTy = getFunctionOrMethodArgType(D, ArgumentIdx);
3796 if (!BufferTy->isPointerType()) {
3797 S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
3798 << AttrName;
3799 }
3800 }
3801
3802 D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(Attr.getRange(),
3803 S.Context,
3804 ArgumentKind,
3805 ArgumentIdx,
3806 TypeTagIdx,
3807 IsPointer));
3808 }
3809
handleTypeTagForDatatypeAttr(Sema & S,Decl * D,const AttributeList & Attr)3810 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
3811 const AttributeList &Attr) {
3812 IdentifierInfo *PointerKind = Attr.getParameterName();
3813 if (!PointerKind) {
3814 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_identifier)
3815 << "type_tag_for_datatype" << 1;
3816 return;
3817 }
3818
3819 QualType MatchingCType = S.GetTypeFromParser(Attr.getMatchingCType(), NULL);
3820
3821 D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
3822 Attr.getRange(),
3823 S.Context,
3824 PointerKind,
3825 MatchingCType,
3826 Attr.getLayoutCompatible(),
3827 Attr.getMustBeNull()));
3828 }
3829
3830 //===----------------------------------------------------------------------===//
3831 // Checker-specific attribute handlers.
3832 //===----------------------------------------------------------------------===//
3833
isValidSubjectOfNSAttribute(Sema & S,QualType type)3834 static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
3835 return type->isDependentType() ||
3836 type->isObjCObjectPointerType() ||
3837 S.Context.isObjCNSObjectType(type);
3838 }
isValidSubjectOfCFAttribute(Sema & S,QualType type)3839 static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
3840 return type->isDependentType() ||
3841 type->isPointerType() ||
3842 isValidSubjectOfNSAttribute(S, type);
3843 }
3844
handleNSConsumedAttr(Sema & S,Decl * D,const AttributeList & Attr)3845 static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3846 ParmVarDecl *param = dyn_cast<ParmVarDecl>(D);
3847 if (!param) {
3848 S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3849 << Attr.getRange() << Attr.getName() << ExpectedParameter;
3850 return;
3851 }
3852
3853 bool typeOK, cf;
3854 if (Attr.getKind() == AttributeList::AT_NSConsumed) {
3855 typeOK = isValidSubjectOfNSAttribute(S, param->getType());
3856 cf = false;
3857 } else {
3858 typeOK = isValidSubjectOfCFAttribute(S, param->getType());
3859 cf = true;
3860 }
3861
3862 if (!typeOK) {
3863 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
3864 << Attr.getRange() << Attr.getName() << cf;
3865 return;
3866 }
3867
3868 if (cf)
3869 param->addAttr(::new (S.Context) CFConsumedAttr(Attr.getRange(), S.Context));
3870 else
3871 param->addAttr(::new (S.Context) NSConsumedAttr(Attr.getRange(), S.Context));
3872 }
3873
handleNSConsumesSelfAttr(Sema & S,Decl * D,const AttributeList & Attr)3874 static void handleNSConsumesSelfAttr(Sema &S, Decl *D,
3875 const AttributeList &Attr) {
3876 if (!isa<ObjCMethodDecl>(D)) {
3877 S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3878 << Attr.getRange() << Attr.getName() << ExpectedMethod;
3879 return;
3880 }
3881
3882 D->addAttr(::new (S.Context) NSConsumesSelfAttr(Attr.getRange(), S.Context));
3883 }
3884
handleNSReturnsRetainedAttr(Sema & S,Decl * D,const AttributeList & Attr)3885 static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
3886 const AttributeList &Attr) {
3887
3888 QualType returnType;
3889
3890 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
3891 returnType = MD->getResultType();
3892 else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
3893 (Attr.getKind() == AttributeList::AT_NSReturnsRetained))
3894 return; // ignore: was handled as a type attribute
3895 else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
3896 returnType = PD->getType();
3897 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
3898 returnType = FD->getResultType();
3899 else {
3900 S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3901 << Attr.getRange() << Attr.getName()
3902 << ExpectedFunctionOrMethod;
3903 return;
3904 }
3905
3906 bool typeOK;
3907 bool cf;
3908 switch (Attr.getKind()) {
3909 default: llvm_unreachable("invalid ownership attribute");
3910 case AttributeList::AT_NSReturnsAutoreleased:
3911 case AttributeList::AT_NSReturnsRetained:
3912 case AttributeList::AT_NSReturnsNotRetained:
3913 typeOK = isValidSubjectOfNSAttribute(S, returnType);
3914 cf = false;
3915 break;
3916
3917 case AttributeList::AT_CFReturnsRetained:
3918 case AttributeList::AT_CFReturnsNotRetained:
3919 typeOK = isValidSubjectOfCFAttribute(S, returnType);
3920 cf = true;
3921 break;
3922 }
3923
3924 if (!typeOK) {
3925 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3926 << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
3927 return;
3928 }
3929
3930 switch (Attr.getKind()) {
3931 default:
3932 llvm_unreachable("invalid ownership attribute");
3933 case AttributeList::AT_NSReturnsAutoreleased:
3934 D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(Attr.getRange(),
3935 S.Context));
3936 return;
3937 case AttributeList::AT_CFReturnsNotRetained:
3938 D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(Attr.getRange(),
3939 S.Context));
3940 return;
3941 case AttributeList::AT_NSReturnsNotRetained:
3942 D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(Attr.getRange(),
3943 S.Context));
3944 return;
3945 case AttributeList::AT_CFReturnsRetained:
3946 D->addAttr(::new (S.Context) CFReturnsRetainedAttr(Attr.getRange(),
3947 S.Context));
3948 return;
3949 case AttributeList::AT_NSReturnsRetained:
3950 D->addAttr(::new (S.Context) NSReturnsRetainedAttr(Attr.getRange(),
3951 S.Context));
3952 return;
3953 };
3954 }
3955
handleObjCReturnsInnerPointerAttr(Sema & S,Decl * D,const AttributeList & attr)3956 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
3957 const AttributeList &attr) {
3958 SourceLocation loc = attr.getLoc();
3959
3960 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
3961
3962 if (!method) {
3963 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3964 << SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
3965 return;
3966 }
3967
3968 // Check that the method returns a normal pointer.
3969 QualType resultType = method->getResultType();
3970
3971 if (!resultType->isReferenceType() &&
3972 (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
3973 S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3974 << SourceRange(loc)
3975 << attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2;
3976
3977 // Drop the attribute.
3978 return;
3979 }
3980
3981 method->addAttr(
3982 ::new (S.Context) ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context));
3983 }
3984
handleObjCRequiresSuperAttr(Sema & S,Decl * D,const AttributeList & attr)3985 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
3986 const AttributeList &attr) {
3987 SourceLocation loc = attr.getLoc();
3988 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
3989
3990 if (!method) {
3991 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3992 << SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
3993 return;
3994 }
3995 DeclContext *DC = method->getDeclContext();
3996 if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
3997 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
3998 << attr.getName() << 0;
3999 S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
4000 return;
4001 }
4002 if (method->getMethodFamily() == OMF_dealloc) {
4003 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
4004 << attr.getName() << 1;
4005 return;
4006 }
4007
4008 method->addAttr(
4009 ::new (S.Context) ObjCRequiresSuperAttr(attr.getRange(), S.Context));
4010 }
4011
4012 /// Handle cf_audited_transfer and cf_unknown_transfer.
handleCFTransferAttr(Sema & S,Decl * D,const AttributeList & A)4013 static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) {
4014 if (!isa<FunctionDecl>(D)) {
4015 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4016 << A.getRange() << A.getName() << ExpectedFunction;
4017 return;
4018 }
4019
4020 bool IsAudited = (A.getKind() == AttributeList::AT_CFAuditedTransfer);
4021
4022 // Check whether there's a conflicting attribute already present.
4023 Attr *Existing;
4024 if (IsAudited) {
4025 Existing = D->getAttr<CFUnknownTransferAttr>();
4026 } else {
4027 Existing = D->getAttr<CFAuditedTransferAttr>();
4028 }
4029 if (Existing) {
4030 S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible)
4031 << A.getName()
4032 << (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer")
4033 << A.getRange() << Existing->getRange();
4034 return;
4035 }
4036
4037 // All clear; add the attribute.
4038 if (IsAudited) {
4039 D->addAttr(
4040 ::new (S.Context) CFAuditedTransferAttr(A.getRange(), S.Context));
4041 } else {
4042 D->addAttr(
4043 ::new (S.Context) CFUnknownTransferAttr(A.getRange(), S.Context));
4044 }
4045 }
4046
handleNSBridgedAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)4047 static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D,
4048 const AttributeList &Attr) {
4049 RecordDecl *RD = dyn_cast<RecordDecl>(D);
4050 if (!RD || RD->isUnion()) {
4051 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4052 << Attr.getRange() << Attr.getName() << ExpectedStruct;
4053 }
4054
4055 IdentifierInfo *ParmName = Attr.getParameterName();
4056
4057 // In Objective-C, verify that the type names an Objective-C type.
4058 // We don't want to check this outside of ObjC because people sometimes
4059 // do crazy C declarations of Objective-C types.
4060 if (ParmName && S.getLangOpts().ObjC1) {
4061 // Check for an existing type with this name.
4062 LookupResult R(S, DeclarationName(ParmName), Attr.getParameterLoc(),
4063 Sema::LookupOrdinaryName);
4064 if (S.LookupName(R, Sc)) {
4065 NamedDecl *Target = R.getFoundDecl();
4066 if (Target && !isa<ObjCInterfaceDecl>(Target)) {
4067 S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface);
4068 S.Diag(Target->getLocStart(), diag::note_declared_at);
4069 }
4070 }
4071 }
4072
4073 D->addAttr(::new (S.Context) NSBridgedAttr(Attr.getRange(), S.Context,
4074 ParmName));
4075 }
4076
handleObjCOwnershipAttr(Sema & S,Decl * D,const AttributeList & Attr)4077 static void handleObjCOwnershipAttr(Sema &S, Decl *D,
4078 const AttributeList &Attr) {
4079 if (hasDeclarator(D)) return;
4080
4081 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4082 << Attr.getRange() << Attr.getName() << ExpectedVariable;
4083 }
4084
handleObjCPreciseLifetimeAttr(Sema & S,Decl * D,const AttributeList & Attr)4085 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
4086 const AttributeList &Attr) {
4087 if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) {
4088 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4089 << Attr.getRange() << Attr.getName() << ExpectedVariable;
4090 return;
4091 }
4092
4093 ValueDecl *vd = cast<ValueDecl>(D);
4094 QualType type = vd->getType();
4095
4096 if (!type->isDependentType() &&
4097 !type->isObjCLifetimeType()) {
4098 S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
4099 << type;
4100 return;
4101 }
4102
4103 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4104
4105 // If we have no lifetime yet, check the lifetime we're presumably
4106 // going to infer.
4107 if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
4108 lifetime = type->getObjCARCImplicitLifetime();
4109
4110 switch (lifetime) {
4111 case Qualifiers::OCL_None:
4112 assert(type->isDependentType() &&
4113 "didn't infer lifetime for non-dependent type?");
4114 break;
4115
4116 case Qualifiers::OCL_Weak: // meaningful
4117 case Qualifiers::OCL_Strong: // meaningful
4118 break;
4119
4120 case Qualifiers::OCL_ExplicitNone:
4121 case Qualifiers::OCL_Autoreleasing:
4122 S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
4123 << (lifetime == Qualifiers::OCL_Autoreleasing);
4124 break;
4125 }
4126
4127 D->addAttr(::new (S.Context)
4128 ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context));
4129 }
4130
4131 //===----------------------------------------------------------------------===//
4132 // Microsoft specific attribute handlers.
4133 //===----------------------------------------------------------------------===//
4134
handleUuidAttr(Sema & S,Decl * D,const AttributeList & Attr)4135 static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4136 if (S.LangOpts.MicrosoftExt || S.LangOpts.Borland) {
4137 // check the attribute arguments.
4138 if (!checkAttributeNumArgs(S, Attr, 1))
4139 return;
4140
4141 Expr *Arg = Attr.getArg(0);
4142 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
4143 if (!Str || !Str->isAscii()) {
4144 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
4145 << "uuid" << 1;
4146 return;
4147 }
4148
4149 StringRef StrRef = Str->getString();
4150
4151 bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' &&
4152 StrRef.back() == '}';
4153
4154 // Validate GUID length.
4155 if (IsCurly && StrRef.size() != 38) {
4156 S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
4157 return;
4158 }
4159 if (!IsCurly && StrRef.size() != 36) {
4160 S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
4161 return;
4162 }
4163
4164 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
4165 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"
4166 StringRef::iterator I = StrRef.begin();
4167 if (IsCurly) // Skip the optional '{'
4168 ++I;
4169
4170 for (int i = 0; i < 36; ++i) {
4171 if (i == 8 || i == 13 || i == 18 || i == 23) {
4172 if (*I != '-') {
4173 S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
4174 return;
4175 }
4176 } else if (!isxdigit(*I)) {
4177 S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
4178 return;
4179 }
4180 I++;
4181 }
4182
4183 D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context,
4184 Str->getString()));
4185 } else
4186 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "uuid";
4187 }
4188
handleInheritanceAttr(Sema & S,Decl * D,const AttributeList & Attr)4189 static void handleInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4190 if (S.LangOpts.MicrosoftExt) {
4191 AttributeList::Kind Kind = Attr.getKind();
4192 if (Kind == AttributeList::AT_SingleInheritance)
4193 D->addAttr(
4194 ::new (S.Context) SingleInheritanceAttr(Attr.getRange(), S.Context));
4195 else if (Kind == AttributeList::AT_MultipleInheritance)
4196 D->addAttr(
4197 ::new (S.Context) MultipleInheritanceAttr(Attr.getRange(), S.Context));
4198 else if (Kind == AttributeList::AT_VirtualInheritance)
4199 D->addAttr(
4200 ::new (S.Context) VirtualInheritanceAttr(Attr.getRange(), S.Context));
4201 } else
4202 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
4203 }
4204
handlePortabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4205 static void handlePortabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4206 if (S.LangOpts.MicrosoftExt) {
4207 AttributeList::Kind Kind = Attr.getKind();
4208 if (Kind == AttributeList::AT_Ptr32)
4209 D->addAttr(
4210 ::new (S.Context) Ptr32Attr(Attr.getRange(), S.Context));
4211 else if (Kind == AttributeList::AT_Ptr64)
4212 D->addAttr(
4213 ::new (S.Context) Ptr64Attr(Attr.getRange(), S.Context));
4214 else if (Kind == AttributeList::AT_Win64)
4215 D->addAttr(
4216 ::new (S.Context) Win64Attr(Attr.getRange(), S.Context));
4217 } else
4218 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
4219 }
4220
handleForceInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)4221 static void handleForceInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4222 if (S.LangOpts.MicrosoftExt)
4223 D->addAttr(::new (S.Context) ForceInlineAttr(Attr.getRange(), S.Context));
4224 else
4225 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
4226 }
4227
4228 //===----------------------------------------------------------------------===//
4229 // Top Level Sema Entry Points
4230 //===----------------------------------------------------------------------===//
4231
ProcessNonInheritableDeclAttr(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)4232 static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
4233 const AttributeList &Attr) {
4234 switch (Attr.getKind()) {
4235 case AttributeList::AT_CUDADevice: handleDeviceAttr (S, D, Attr); break;
4236 case AttributeList::AT_CUDAHost: handleHostAttr (S, D, Attr); break;
4237 case AttributeList::AT_Overloadable:handleOverloadableAttr(S, D, Attr); break;
4238 case AttributeList::AT_Kernel: handleKernelAttr (S, D, Attr); break;
4239 default:
4240 break;
4241 }
4242 }
4243
ProcessInheritableDeclAttr(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)4244 static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
4245 const AttributeList &Attr) {
4246 switch (Attr.getKind()) {
4247 case AttributeList::AT_IBAction: handleIBAction(S, D, Attr); break;
4248 case AttributeList::AT_IBOutlet: handleIBOutlet(S, D, Attr); break;
4249 case AttributeList::AT_IBOutletCollection:
4250 handleIBOutletCollection(S, D, Attr); break;
4251 case AttributeList::AT_AddressSpace:
4252 case AttributeList::AT_OpenCLImageAccess:
4253 case AttributeList::AT_ObjCGC:
4254 case AttributeList::AT_VectorSize:
4255 case AttributeList::AT_NeonVectorType:
4256 case AttributeList::AT_NeonPolyVectorType:
4257 // Ignore these, these are type attributes, handled by
4258 // ProcessTypeAttributes.
4259 break;
4260 case AttributeList::AT_CUDADevice:
4261 case AttributeList::AT_CUDAHost:
4262 case AttributeList::AT_Overloadable:
4263 case AttributeList::AT_Kernel:
4264 // Ignore, this is a non-inheritable attribute, handled
4265 // by ProcessNonInheritableDeclAttr.
4266 break;
4267 case AttributeList::AT_Alias: handleAliasAttr (S, D, Attr); break;
4268 case AttributeList::AT_Aligned: handleAlignedAttr (S, D, Attr); break;
4269 case AttributeList::AT_AllocSize: handleAllocSizeAttr (S, D, Attr); break;
4270 case AttributeList::AT_AlwaysInline:
4271 handleAlwaysInlineAttr (S, D, Attr); break;
4272 case AttributeList::AT_AnalyzerNoReturn:
4273 handleAnalyzerNoReturnAttr (S, D, Attr); break;
4274 case AttributeList::AT_TLSModel: handleTLSModelAttr (S, D, Attr); break;
4275 case AttributeList::AT_Annotate: handleAnnotateAttr (S, D, Attr); break;
4276 case AttributeList::AT_Availability:handleAvailabilityAttr(S, D, Attr); break;
4277 case AttributeList::AT_CarriesDependency:
4278 handleDependencyAttr (S, D, Attr); break;
4279 case AttributeList::AT_Common: handleCommonAttr (S, D, Attr); break;
4280 case AttributeList::AT_CUDAConstant:handleConstantAttr (S, D, Attr); break;
4281 case AttributeList::AT_Constructor: handleConstructorAttr (S, D, Attr); break;
4282 case AttributeList::AT_Deprecated:
4283 handleAttrWithMessage<DeprecatedAttr>(S, D, Attr, "deprecated");
4284 break;
4285 case AttributeList::AT_Destructor: handleDestructorAttr (S, D, Attr); break;
4286 case AttributeList::AT_ExtVectorType:
4287 handleExtVectorTypeAttr(S, scope, D, Attr);
4288 break;
4289 case AttributeList::AT_Format: handleFormatAttr (S, D, Attr); break;
4290 case AttributeList::AT_FormatArg: handleFormatArgAttr (S, D, Attr); break;
4291 case AttributeList::AT_CUDAGlobal: handleGlobalAttr (S, D, Attr); break;
4292 case AttributeList::AT_GNUInline: handleGNUInlineAttr (S, D, Attr); break;
4293 case AttributeList::AT_CUDALaunchBounds:
4294 handleLaunchBoundsAttr(S, D, Attr);
4295 break;
4296 case AttributeList::AT_Mode: handleModeAttr (S, D, Attr); break;
4297 case AttributeList::AT_Malloc: handleMallocAttr (S, D, Attr); break;
4298 case AttributeList::AT_MayAlias: handleMayAliasAttr (S, D, Attr); break;
4299 case AttributeList::AT_NoCommon: handleNoCommonAttr (S, D, Attr); break;
4300 case AttributeList::AT_NonNull: handleNonNullAttr (S, D, Attr); break;
4301 case AttributeList::AT_ownership_returns:
4302 case AttributeList::AT_ownership_takes:
4303 case AttributeList::AT_ownership_holds:
4304 handleOwnershipAttr (S, D, Attr); break;
4305 case AttributeList::AT_Cold: handleColdAttr (S, D, Attr); break;
4306 case AttributeList::AT_Hot: handleHotAttr (S, D, Attr); break;
4307 case AttributeList::AT_Naked: handleNakedAttr (S, D, Attr); break;
4308 case AttributeList::AT_NoReturn: handleNoReturnAttr (S, D, Attr); break;
4309 case AttributeList::AT_NoThrow: handleNothrowAttr (S, D, Attr); break;
4310 case AttributeList::AT_CUDAShared: handleSharedAttr (S, D, Attr); break;
4311 case AttributeList::AT_VecReturn: handleVecReturnAttr (S, D, Attr); break;
4312
4313 case AttributeList::AT_ObjCOwnership:
4314 handleObjCOwnershipAttr(S, D, Attr); break;
4315 case AttributeList::AT_ObjCPreciseLifetime:
4316 handleObjCPreciseLifetimeAttr(S, D, Attr); break;
4317
4318 case AttributeList::AT_ObjCReturnsInnerPointer:
4319 handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
4320
4321 case AttributeList::AT_ObjCRequiresSuper:
4322 handleObjCRequiresSuperAttr(S, D, Attr); break;
4323
4324 case AttributeList::AT_NSBridged:
4325 handleNSBridgedAttr(S, scope, D, Attr); break;
4326
4327 case AttributeList::AT_CFAuditedTransfer:
4328 case AttributeList::AT_CFUnknownTransfer:
4329 handleCFTransferAttr(S, D, Attr); break;
4330
4331 // Checker-specific.
4332 case AttributeList::AT_CFConsumed:
4333 case AttributeList::AT_NSConsumed: handleNSConsumedAttr (S, D, Attr); break;
4334 case AttributeList::AT_NSConsumesSelf:
4335 handleNSConsumesSelfAttr(S, D, Attr); break;
4336
4337 case AttributeList::AT_NSReturnsAutoreleased:
4338 case AttributeList::AT_NSReturnsNotRetained:
4339 case AttributeList::AT_CFReturnsNotRetained:
4340 case AttributeList::AT_NSReturnsRetained:
4341 case AttributeList::AT_CFReturnsRetained:
4342 handleNSReturnsRetainedAttr(S, D, Attr); break;
4343
4344 case AttributeList::AT_WorkGroupSizeHint:
4345 case AttributeList::AT_ReqdWorkGroupSize:
4346 handleWorkGroupSize(S, D, Attr); break;
4347
4348 case AttributeList::AT_InitPriority:
4349 handleInitPriorityAttr(S, D, Attr); break;
4350
4351 case AttributeList::AT_Packed: handlePackedAttr (S, D, Attr); break;
4352 case AttributeList::AT_Section: handleSectionAttr (S, D, Attr); break;
4353 case AttributeList::AT_Unavailable:
4354 handleAttrWithMessage<UnavailableAttr>(S, D, Attr, "unavailable");
4355 break;
4356 case AttributeList::AT_ArcWeakrefUnavailable:
4357 handleArcWeakrefUnavailableAttr (S, D, Attr);
4358 break;
4359 case AttributeList::AT_ObjCRootClass:
4360 handleObjCRootClassAttr(S, D, Attr);
4361 break;
4362 case AttributeList::AT_ObjCRequiresPropertyDefs:
4363 handleObjCRequiresPropertyDefsAttr (S, D, Attr);
4364 break;
4365 case AttributeList::AT_Unused: handleUnusedAttr (S, D, Attr); break;
4366 case AttributeList::AT_ReturnsTwice:
4367 handleReturnsTwiceAttr(S, D, Attr);
4368 break;
4369 case AttributeList::AT_Used: handleUsedAttr (S, D, Attr); break;
4370 case AttributeList::AT_Visibility: handleVisibilityAttr (S, D, Attr); break;
4371 case AttributeList::AT_WarnUnusedResult: handleWarnUnusedResult(S, D, Attr);
4372 break;
4373 case AttributeList::AT_Weak: handleWeakAttr (S, D, Attr); break;
4374 case AttributeList::AT_WeakRef: handleWeakRefAttr (S, D, Attr); break;
4375 case AttributeList::AT_WeakImport: handleWeakImportAttr (S, D, Attr); break;
4376 case AttributeList::AT_TransparentUnion:
4377 handleTransparentUnionAttr(S, D, Attr);
4378 break;
4379 case AttributeList::AT_ObjCException:
4380 handleObjCExceptionAttr(S, D, Attr);
4381 break;
4382 case AttributeList::AT_ObjCMethodFamily:
4383 handleObjCMethodFamilyAttr(S, D, Attr);
4384 break;
4385 case AttributeList::AT_ObjCNSObject:handleObjCNSObject (S, D, Attr); break;
4386 case AttributeList::AT_Blocks: handleBlocksAttr (S, D, Attr); break;
4387 case AttributeList::AT_Sentinel: handleSentinelAttr (S, D, Attr); break;
4388 case AttributeList::AT_Const: handleConstAttr (S, D, Attr); break;
4389 case AttributeList::AT_Pure: handlePureAttr (S, D, Attr); break;
4390 case AttributeList::AT_Cleanup: handleCleanupAttr (S, D, Attr); break;
4391 case AttributeList::AT_NoDebug: handleNoDebugAttr (S, D, Attr); break;
4392 case AttributeList::AT_NoInline: handleNoInlineAttr (S, D, Attr); break;
4393 case AttributeList::AT_Regparm: handleRegparmAttr (S, D, Attr); break;
4394 case AttributeList::IgnoredAttribute:
4395 // Just ignore
4396 break;
4397 case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
4398 handleNoInstrumentFunctionAttr(S, D, Attr);
4399 break;
4400 case AttributeList::AT_StdCall:
4401 case AttributeList::AT_CDecl:
4402 case AttributeList::AT_FastCall:
4403 case AttributeList::AT_ThisCall:
4404 case AttributeList::AT_Pascal:
4405 case AttributeList::AT_Pcs:
4406 handleCallConvAttr(S, D, Attr);
4407 break;
4408 case AttributeList::AT_OpenCLKernel:
4409 handleOpenCLKernelAttr(S, D, Attr);
4410 break;
4411
4412 // Microsoft attributes:
4413 case AttributeList::AT_MsStruct:
4414 handleMsStructAttr(S, D, Attr);
4415 break;
4416 case AttributeList::AT_Uuid:
4417 handleUuidAttr(S, D, Attr);
4418 break;
4419 case AttributeList::AT_SingleInheritance:
4420 case AttributeList::AT_MultipleInheritance:
4421 case AttributeList::AT_VirtualInheritance:
4422 handleInheritanceAttr(S, D, Attr);
4423 break;
4424 case AttributeList::AT_Win64:
4425 case AttributeList::AT_Ptr32:
4426 case AttributeList::AT_Ptr64:
4427 handlePortabilityAttr(S, D, Attr);
4428 break;
4429 case AttributeList::AT_ForceInline:
4430 handleForceInlineAttr(S, D, Attr);
4431 break;
4432
4433 // Thread safety attributes:
4434 case AttributeList::AT_GuardedVar:
4435 handleGuardedVarAttr(S, D, Attr);
4436 break;
4437 case AttributeList::AT_PtGuardedVar:
4438 handlePtGuardedVarAttr(S, D, Attr);
4439 break;
4440 case AttributeList::AT_ScopedLockable:
4441 handleScopedLockableAttr(S, D, Attr);
4442 break;
4443 case AttributeList::AT_NoAddressSafetyAnalysis:
4444 handleNoAddressSafetyAttr(S, D, Attr);
4445 break;
4446 case AttributeList::AT_NoThreadSafetyAnalysis:
4447 handleNoThreadSafetyAttr(S, D, Attr);
4448 break;
4449 case AttributeList::AT_Lockable:
4450 handleLockableAttr(S, D, Attr);
4451 break;
4452 case AttributeList::AT_GuardedBy:
4453 handleGuardedByAttr(S, D, Attr);
4454 break;
4455 case AttributeList::AT_PtGuardedBy:
4456 handlePtGuardedByAttr(S, D, Attr);
4457 break;
4458 case AttributeList::AT_ExclusiveLockFunction:
4459 handleExclusiveLockFunctionAttr(S, D, Attr);
4460 break;
4461 case AttributeList::AT_ExclusiveLocksRequired:
4462 handleExclusiveLocksRequiredAttr(S, D, Attr);
4463 break;
4464 case AttributeList::AT_ExclusiveTrylockFunction:
4465 handleExclusiveTrylockFunctionAttr(S, D, Attr);
4466 break;
4467 case AttributeList::AT_LockReturned:
4468 handleLockReturnedAttr(S, D, Attr);
4469 break;
4470 case AttributeList::AT_LocksExcluded:
4471 handleLocksExcludedAttr(S, D, Attr);
4472 break;
4473 case AttributeList::AT_SharedLockFunction:
4474 handleSharedLockFunctionAttr(S, D, Attr);
4475 break;
4476 case AttributeList::AT_SharedLocksRequired:
4477 handleSharedLocksRequiredAttr(S, D, Attr);
4478 break;
4479 case AttributeList::AT_SharedTrylockFunction:
4480 handleSharedTrylockFunctionAttr(S, D, Attr);
4481 break;
4482 case AttributeList::AT_UnlockFunction:
4483 handleUnlockFunAttr(S, D, Attr);
4484 break;
4485 case AttributeList::AT_AcquiredBefore:
4486 handleAcquiredBeforeAttr(S, D, Attr);
4487 break;
4488 case AttributeList::AT_AcquiredAfter:
4489 handleAcquiredAfterAttr(S, D, Attr);
4490 break;
4491
4492 // Type safety attributes.
4493 case AttributeList::AT_ArgumentWithTypeTag:
4494 handleArgumentWithTypeTagAttr(S, D, Attr);
4495 break;
4496 case AttributeList::AT_TypeTagForDatatype:
4497 handleTypeTagForDatatypeAttr(S, D, Attr);
4498 break;
4499
4500 default:
4501 // Ask target about the attribute.
4502 const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema();
4503 if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S))
4504 S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute() ?
4505 diag::warn_unhandled_ms_attribute_ignored :
4506 diag::warn_unknown_attribute_ignored) << Attr.getName();
4507 break;
4508 }
4509 }
4510
4511 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
4512 /// the attribute applies to decls. If the attribute is a type attribute, just
4513 /// silently ignore it if a GNU attribute. FIXME: Applying a C++0x attribute to
4514 /// the wrong thing is illegal (C++0x [dcl.attr.grammar]/4).
ProcessDeclAttribute(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr,bool NonInheritable,bool Inheritable)4515 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
4516 const AttributeList &Attr,
4517 bool NonInheritable, bool Inheritable) {
4518 if (Attr.isInvalid())
4519 return;
4520
4521 // Type attributes are still treated as declaration attributes by
4522 // ParseMicrosoftTypeAttributes and ParseBorlandTypeAttributes. We don't
4523 // want to process them, however, because we will simply warn about ignoring
4524 // them. So instead, we will bail out early.
4525 if (Attr.isMSTypespecAttribute())
4526 return;
4527
4528 if (NonInheritable)
4529 ProcessNonInheritableDeclAttr(S, scope, D, Attr);
4530
4531 if (Inheritable)
4532 ProcessInheritableDeclAttr(S, scope, D, Attr);
4533 }
4534
4535 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
4536 /// attribute list to the specified decl, ignoring any type attributes.
ProcessDeclAttributeList(Scope * S,Decl * D,const AttributeList * AttrList,bool NonInheritable,bool Inheritable)4537 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
4538 const AttributeList *AttrList,
4539 bool NonInheritable, bool Inheritable) {
4540 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4541 ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable);
4542 }
4543
4544 // GCC accepts
4545 // static int a9 __attribute__((weakref));
4546 // but that looks really pointless. We reject it.
4547 if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
4548 Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) <<
4549 dyn_cast<NamedDecl>(D)->getNameAsString();
4550 return;
4551 }
4552 }
4553
4554 // Annotation attributes are the only attributes allowed after an access
4555 // specifier.
ProcessAccessDeclAttributeList(AccessSpecDecl * ASDecl,const AttributeList * AttrList)4556 bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4557 const AttributeList *AttrList) {
4558 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4559 if (l->getKind() == AttributeList::AT_Annotate) {
4560 handleAnnotateAttr(*this, ASDecl, *l);
4561 } else {
4562 Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
4563 return true;
4564 }
4565 }
4566
4567 return false;
4568 }
4569
4570 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
4571 /// contains any decl attributes that we should warn about.
checkUnusedDeclAttributes(Sema & S,const AttributeList * A)4572 static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
4573 for ( ; A; A = A->getNext()) {
4574 // Only warn if the attribute is an unignored, non-type attribute.
4575 if (A->isUsedAsTypeAttr()) continue;
4576 if (A->getKind() == AttributeList::IgnoredAttribute) continue;
4577
4578 if (A->getKind() == AttributeList::UnknownAttribute) {
4579 S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
4580 << A->getName() << A->getRange();
4581 } else {
4582 S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
4583 << A->getName() << A->getRange();
4584 }
4585 }
4586 }
4587
4588 /// checkUnusedDeclAttributes - Given a declarator which is not being
4589 /// used to build a declaration, complain about any decl attributes
4590 /// which might be lying around on it.
checkUnusedDeclAttributes(Declarator & D)4591 void Sema::checkUnusedDeclAttributes(Declarator &D) {
4592 ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
4593 ::checkUnusedDeclAttributes(*this, D.getAttributes());
4594 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
4595 ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
4596 }
4597
4598 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
4599 /// \#pragma weak needs a non-definition decl and source may not have one.
DeclClonePragmaWeak(NamedDecl * ND,IdentifierInfo * II,SourceLocation Loc)4600 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
4601 SourceLocation Loc) {
4602 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
4603 NamedDecl *NewD = 0;
4604 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
4605 FunctionDecl *NewFD;
4606 // FIXME: Missing call to CheckFunctionDeclaration().
4607 // FIXME: Mangling?
4608 // FIXME: Is the qualifier info correct?
4609 // FIXME: Is the DeclContext correct?
4610 NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
4611 Loc, Loc, DeclarationName(II),
4612 FD->getType(), FD->getTypeSourceInfo(),
4613 SC_None, SC_None,
4614 false/*isInlineSpecified*/,
4615 FD->hasPrototype(),
4616 false/*isConstexprSpecified*/);
4617 NewD = NewFD;
4618
4619 if (FD->getQualifier())
4620 NewFD->setQualifierInfo(FD->getQualifierLoc());
4621
4622 // Fake up parameter variables; they are declared as if this were
4623 // a typedef.
4624 QualType FDTy = FD->getType();
4625 if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
4626 SmallVector<ParmVarDecl*, 16> Params;
4627 for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4628 AE = FT->arg_type_end(); AI != AE; ++AI) {
4629 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI);
4630 Param->setScopeInfo(0, Params.size());
4631 Params.push_back(Param);
4632 }
4633 NewFD->setParams(Params);
4634 }
4635 } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
4636 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
4637 VD->getInnerLocStart(), VD->getLocation(), II,
4638 VD->getType(), VD->getTypeSourceInfo(),
4639 VD->getStorageClass(),
4640 VD->getStorageClassAsWritten());
4641 if (VD->getQualifier()) {
4642 VarDecl *NewVD = cast<VarDecl>(NewD);
4643 NewVD->setQualifierInfo(VD->getQualifierLoc());
4644 }
4645 }
4646 return NewD;
4647 }
4648
4649 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
4650 /// applied to it, possibly with an alias.
DeclApplyPragmaWeak(Scope * S,NamedDecl * ND,WeakInfo & W)4651 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
4652 if (W.getUsed()) return; // only do this once
4653 W.setUsed(true);
4654 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
4655 IdentifierInfo *NDId = ND->getIdentifier();
4656 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
4657 NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context,
4658 NDId->getName()));
4659 NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
4660 WeakTopLevelDecl.push_back(NewD);
4661 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
4662 // to insert Decl at TU scope, sorry.
4663 DeclContext *SavedContext = CurContext;
4664 CurContext = Context.getTranslationUnitDecl();
4665 PushOnScopeChains(NewD, S);
4666 CurContext = SavedContext;
4667 } else { // just add weak to existing
4668 ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
4669 }
4670 }
4671
4672 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
4673 /// it, apply them to D. This is a bit tricky because PD can have attributes
4674 /// specified in many different places, and we need to find and apply them all.
ProcessDeclAttributes(Scope * S,Decl * D,const Declarator & PD,bool NonInheritable,bool Inheritable)4675 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD,
4676 bool NonInheritable, bool Inheritable) {
4677 // It's valid to "forward-declare" #pragma weak, in which case we
4678 // have to do this.
4679 if (Inheritable) {
4680 LoadExternalWeakUndeclaredIdentifiers();
4681 if (!WeakUndeclaredIdentifiers.empty()) {
4682 if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
4683 if (IdentifierInfo *Id = ND->getIdentifier()) {
4684 llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
4685 = WeakUndeclaredIdentifiers.find(Id);
4686 if (I != WeakUndeclaredIdentifiers.end() && ND->hasLinkage()) {
4687 WeakInfo W = I->second;
4688 DeclApplyPragmaWeak(S, ND, W);
4689 WeakUndeclaredIdentifiers[Id] = W;
4690 }
4691 }
4692 }
4693 }
4694 }
4695
4696 // Apply decl attributes from the DeclSpec if present.
4697 if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
4698 ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
4699
4700 // Walk the declarator structure, applying decl attributes that were in a type
4701 // position to the decl itself. This handles cases like:
4702 // int *__attr__(x)** D;
4703 // when X is a decl attribute.
4704 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
4705 if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
4706 ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
4707
4708 // Finally, apply any attributes on the decl itself.
4709 if (const AttributeList *Attrs = PD.getAttributes())
4710 ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
4711 }
4712
4713 /// Is the given declaration allowed to use a forbidden type?
isForbiddenTypeAllowed(Sema & S,Decl * decl)4714 static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
4715 // Private ivars are always okay. Unfortunately, people don't
4716 // always properly make their ivars private, even in system headers.
4717 // Plus we need to make fields okay, too.
4718 // Function declarations in sys headers will be marked unavailable.
4719 if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
4720 !isa<FunctionDecl>(decl))
4721 return false;
4722
4723 // Require it to be declared in a system header.
4724 return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
4725 }
4726
4727 /// Handle a delayed forbidden-type diagnostic.
handleDelayedForbiddenType(Sema & S,DelayedDiagnostic & diag,Decl * decl)4728 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
4729 Decl *decl) {
4730 if (decl && isForbiddenTypeAllowed(S, decl)) {
4731 decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context,
4732 "this system declaration uses an unsupported type"));
4733 return;
4734 }
4735 if (S.getLangOpts().ObjCAutoRefCount)
4736 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
4737 // FIXME: we may want to suppress diagnostics for all
4738 // kind of forbidden type messages on unavailable functions.
4739 if (FD->hasAttr<UnavailableAttr>() &&
4740 diag.getForbiddenTypeDiagnostic() ==
4741 diag::err_arc_array_param_no_ownership) {
4742 diag.Triggered = true;
4743 return;
4744 }
4745 }
4746
4747 S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
4748 << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
4749 diag.Triggered = true;
4750 }
4751
PopParsingDeclaration(ParsingDeclState state,Decl * decl)4752 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
4753 assert(DelayedDiagnostics.getCurrentPool());
4754 DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
4755 DelayedDiagnostics.popWithoutEmitting(state);
4756
4757 // When delaying diagnostics to run in the context of a parsed
4758 // declaration, we only want to actually emit anything if parsing
4759 // succeeds.
4760 if (!decl) return;
4761
4762 // We emit all the active diagnostics in this pool or any of its
4763 // parents. In general, we'll get one pool for the decl spec
4764 // and a child pool for each declarator; in a decl group like:
4765 // deprecated_typedef foo, *bar, baz();
4766 // only the declarator pops will be passed decls. This is correct;
4767 // we really do need to consider delayed diagnostics from the decl spec
4768 // for each of the different declarations.
4769 const DelayedDiagnosticPool *pool = &poppedPool;
4770 do {
4771 for (DelayedDiagnosticPool::pool_iterator
4772 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
4773 // This const_cast is a bit lame. Really, Triggered should be mutable.
4774 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
4775 if (diag.Triggered)
4776 continue;
4777
4778 switch (diag.Kind) {
4779 case DelayedDiagnostic::Deprecation:
4780 // Don't bother giving deprecation diagnostics if the decl is invalid.
4781 if (!decl->isInvalidDecl())
4782 HandleDelayedDeprecationCheck(diag, decl);
4783 break;
4784
4785 case DelayedDiagnostic::Access:
4786 HandleDelayedAccessCheck(diag, decl);
4787 break;
4788
4789 case DelayedDiagnostic::ForbiddenType:
4790 handleDelayedForbiddenType(*this, diag, decl);
4791 break;
4792 }
4793 }
4794 } while ((pool = pool->getParent()));
4795 }
4796
4797 /// Given a set of delayed diagnostics, re-emit them as if they had
4798 /// been delayed in the current context instead of in the given pool.
4799 /// Essentially, this just moves them to the current pool.
redelayDiagnostics(DelayedDiagnosticPool & pool)4800 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
4801 DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
4802 assert(curPool && "re-emitting in undelayed context not supported");
4803 curPool->steal(pool);
4804 }
4805
isDeclDeprecated(Decl * D)4806 static bool isDeclDeprecated(Decl *D) {
4807 do {
4808 if (D->isDeprecated())
4809 return true;
4810 // A category implicitly has the availability of the interface.
4811 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
4812 return CatD->getClassInterface()->isDeprecated();
4813 } while ((D = cast_or_null<Decl>(D->getDeclContext())));
4814 return false;
4815 }
4816
4817 static void
DoEmitDeprecationWarning(Sema & S,const NamedDecl * D,StringRef Message,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)4818 DoEmitDeprecationWarning(Sema &S, const NamedDecl *D, StringRef Message,
4819 SourceLocation Loc,
4820 const ObjCInterfaceDecl *UnknownObjCClass) {
4821 DeclarationName Name = D->getDeclName();
4822 if (!Message.empty()) {
4823 S.Diag(Loc, diag::warn_deprecated_message) << Name << Message;
4824 S.Diag(D->getLocation(),
4825 isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
4826 : diag::note_previous_decl) << Name;
4827 } else if (!UnknownObjCClass) {
4828 S.Diag(Loc, diag::warn_deprecated) << D->getDeclName();
4829 S.Diag(D->getLocation(),
4830 isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
4831 : diag::note_previous_decl) << Name;
4832 } else {
4833 S.Diag(Loc, diag::warn_deprecated_fwdclass_message) << Name;
4834 S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
4835 }
4836 }
4837
HandleDelayedDeprecationCheck(DelayedDiagnostic & DD,Decl * Ctx)4838 void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD,
4839 Decl *Ctx) {
4840 if (isDeclDeprecated(Ctx))
4841 return;
4842
4843 DD.Triggered = true;
4844 DoEmitDeprecationWarning(*this, DD.getDeprecationDecl(),
4845 DD.getDeprecationMessage(), DD.Loc,
4846 DD.getUnknownObjCClass());
4847 }
4848
EmitDeprecationWarning(NamedDecl * D,StringRef Message,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)4849 void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message,
4850 SourceLocation Loc,
4851 const ObjCInterfaceDecl *UnknownObjCClass) {
4852 // Delay if we're currently parsing a declaration.
4853 if (DelayedDiagnostics.shouldDelayDiagnostics()) {
4854 DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D,
4855 UnknownObjCClass,
4856 Message));
4857 return;
4858 }
4859
4860 // Otherwise, don't warn if our current context is deprecated.
4861 if (isDeclDeprecated(cast<Decl>(getCurLexicalContext())))
4862 return;
4863 DoEmitDeprecationWarning(*this, D, Message, Loc, UnknownObjCClass);
4864 }
4865