• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements lowering for the llvm.gc* intrinsics for targets that do
11 // not natively support them (which includes the C backend). Note that the code
12 // generated is not quite as efficient as algorithms which generate stack maps
13 // to identify roots.
14 //
15 // This pass implements the code transformation described in this paper:
16 //   "Accurate Garbage Collection in an Uncooperative Environment"
17 //   Fergus Henderson, ISMM, 2002
18 //
19 // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with
20 // ShadowStackGC.
21 //
22 // In order to support this particular transformation, all stack roots are
23 // coallocated in the stack. This allows a fully target-independent stack map
24 // while introducing only minor runtime overhead.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #define DEBUG_TYPE "shadowstackgc"
29 #include "llvm/IRBuilder.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/Module.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/CodeGen/GCStrategy.h"
34 #include "llvm/CodeGen/GCs.h"
35 #include "llvm/Support/CallSite.h"
36 
37 using namespace llvm;
38 
39 namespace {
40 
41   class ShadowStackGC : public GCStrategy {
42     /// RootChain - This is the global linked-list that contains the chain of GC
43     /// roots.
44     GlobalVariable *Head;
45 
46     /// StackEntryTy - Abstract type of a link in the shadow stack.
47     ///
48     StructType *StackEntryTy;
49     StructType *FrameMapTy;
50 
51     /// Roots - GC roots in the current function. Each is a pair of the
52     /// intrinsic call and its corresponding alloca.
53     std::vector<std::pair<CallInst*,AllocaInst*> > Roots;
54 
55   public:
56     ShadowStackGC();
57 
58     bool initializeCustomLowering(Module &M);
59     bool performCustomLowering(Function &F);
60 
61   private:
62     bool IsNullValue(Value *V);
63     Constant *GetFrameMap(Function &F);
64     Type* GetConcreteStackEntryType(Function &F);
65     void CollectRoots(Function &F);
66     static GetElementPtrInst *CreateGEP(LLVMContext &Context,
67                                         IRBuilder<> &B, Value *BasePtr,
68                                         int Idx1, const char *Name);
69     static GetElementPtrInst *CreateGEP(LLVMContext &Context,
70                                         IRBuilder<> &B, Value *BasePtr,
71                                         int Idx1, int Idx2, const char *Name);
72   };
73 
74 }
75 
76 static GCRegistry::Add<ShadowStackGC>
77 X("shadow-stack", "Very portable GC for uncooperative code generators");
78 
79 namespace {
80   /// EscapeEnumerator - This is a little algorithm to find all escape points
81   /// from a function so that "finally"-style code can be inserted. In addition
82   /// to finding the existing return and unwind instructions, it also (if
83   /// necessary) transforms any call instructions into invokes and sends them to
84   /// a landing pad.
85   ///
86   /// It's wrapped up in a state machine using the same transform C# uses for
87   /// 'yield return' enumerators, This transform allows it to be non-allocating.
88   class EscapeEnumerator {
89     Function &F;
90     const char *CleanupBBName;
91 
92     // State.
93     int State;
94     Function::iterator StateBB, StateE;
95     IRBuilder<> Builder;
96 
97   public:
EscapeEnumerator(Function & F,const char * N="cleanup")98     EscapeEnumerator(Function &F, const char *N = "cleanup")
99       : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
100 
Next()101     IRBuilder<> *Next() {
102       switch (State) {
103       default:
104         return 0;
105 
106       case 0:
107         StateBB = F.begin();
108         StateE = F.end();
109         State = 1;
110 
111       case 1:
112         // Find all 'return', 'resume', and 'unwind' instructions.
113         while (StateBB != StateE) {
114           BasicBlock *CurBB = StateBB++;
115 
116           // Branches and invokes do not escape, only unwind, resume, and return
117           // do.
118           TerminatorInst *TI = CurBB->getTerminator();
119           if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI))
120             continue;
121 
122           Builder.SetInsertPoint(TI->getParent(), TI);
123           return &Builder;
124         }
125 
126         State = 2;
127 
128         // Find all 'call' instructions.
129         SmallVector<Instruction*,16> Calls;
130         for (Function::iterator BB = F.begin(),
131                                 E = F.end(); BB != E; ++BB)
132           for (BasicBlock::iterator II = BB->begin(),
133                                     EE = BB->end(); II != EE; ++II)
134             if (CallInst *CI = dyn_cast<CallInst>(II))
135               if (!CI->getCalledFunction() ||
136                   !CI->getCalledFunction()->getIntrinsicID())
137                 Calls.push_back(CI);
138 
139         if (Calls.empty())
140           return 0;
141 
142         // Create a cleanup block.
143         LLVMContext &C = F.getContext();
144         BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
145         Type *ExnTy = StructType::get(Type::getInt8PtrTy(C),
146                                       Type::getInt32Ty(C), NULL);
147         Constant *PersFn =
148           F.getParent()->
149           getOrInsertFunction("__gcc_personality_v0",
150                               FunctionType::get(Type::getInt32Ty(C), true));
151         LandingPadInst *LPad = LandingPadInst::Create(ExnTy, PersFn, 1,
152                                                       "cleanup.lpad",
153                                                       CleanupBB);
154         LPad->setCleanup(true);
155         ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB);
156 
157         // Transform the 'call' instructions into 'invoke's branching to the
158         // cleanup block. Go in reverse order to make prettier BB names.
159         SmallVector<Value*,16> Args;
160         for (unsigned I = Calls.size(); I != 0; ) {
161           CallInst *CI = cast<CallInst>(Calls[--I]);
162 
163           // Split the basic block containing the function call.
164           BasicBlock *CallBB = CI->getParent();
165           BasicBlock *NewBB =
166             CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
167 
168           // Remove the unconditional branch inserted at the end of CallBB.
169           CallBB->getInstList().pop_back();
170           NewBB->getInstList().remove(CI);
171 
172           // Create a new invoke instruction.
173           Args.clear();
174           CallSite CS(CI);
175           Args.append(CS.arg_begin(), CS.arg_end());
176 
177           InvokeInst *II = InvokeInst::Create(CI->getCalledValue(),
178                                               NewBB, CleanupBB,
179                                               Args, CI->getName(), CallBB);
180           II->setCallingConv(CI->getCallingConv());
181           II->setAttributes(CI->getAttributes());
182           CI->replaceAllUsesWith(II);
183           delete CI;
184         }
185 
186         Builder.SetInsertPoint(RI->getParent(), RI);
187         return &Builder;
188       }
189     }
190   };
191 }
192 
193 // -----------------------------------------------------------------------------
194 
linkShadowStackGC()195 void llvm::linkShadowStackGC() { }
196 
ShadowStackGC()197 ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
198   InitRoots = true;
199   CustomRoots = true;
200 }
201 
GetFrameMap(Function & F)202 Constant *ShadowStackGC::GetFrameMap(Function &F) {
203   // doInitialization creates the abstract type of this value.
204   Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
205 
206   // Truncate the ShadowStackDescriptor if some metadata is null.
207   unsigned NumMeta = 0;
208   SmallVector<Constant*, 16> Metadata;
209   for (unsigned I = 0; I != Roots.size(); ++I) {
210     Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
211     if (!C->isNullValue())
212       NumMeta = I + 1;
213     Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
214   }
215   Metadata.resize(NumMeta);
216 
217   Type *Int32Ty = Type::getInt32Ty(F.getContext());
218 
219   Constant *BaseElts[] = {
220     ConstantInt::get(Int32Ty, Roots.size(), false),
221     ConstantInt::get(Int32Ty, NumMeta, false),
222   };
223 
224   Constant *DescriptorElts[] = {
225     ConstantStruct::get(FrameMapTy, BaseElts),
226     ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)
227   };
228 
229   Type *EltTys[] = { DescriptorElts[0]->getType(),DescriptorElts[1]->getType()};
230   StructType *STy = StructType::create(EltTys, "gc_map."+utostr(NumMeta));
231 
232   Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
233 
234   // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
235   //        that, short of multithreaded LLVM, it should be safe; all that is
236   //        necessary is that a simple Module::iterator loop not be invalidated.
237   //        Appending to the GlobalVariable list is safe in that sense.
238   //
239   //        All of the output passes emit globals last. The ExecutionEngine
240   //        explicitly supports adding globals to the module after
241   //        initialization.
242   //
243   //        Still, if it isn't deemed acceptable, then this transformation needs
244   //        to be a ModulePass (which means it cannot be in the 'llc' pipeline
245   //        (which uses a FunctionPassManager (which segfaults (not asserts) if
246   //        provided a ModulePass))).
247   Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
248                                     GlobalVariable::InternalLinkage,
249                                     FrameMap, "__gc_" + F.getName());
250 
251   Constant *GEPIndices[2] = {
252                           ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
253                           ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)
254                           };
255   return ConstantExpr::getGetElementPtr(GV, GEPIndices);
256 }
257 
GetConcreteStackEntryType(Function & F)258 Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) {
259   // doInitialization creates the generic version of this type.
260   std::vector<Type*> EltTys;
261   EltTys.push_back(StackEntryTy);
262   for (size_t I = 0; I != Roots.size(); I++)
263     EltTys.push_back(Roots[I].second->getAllocatedType());
264 
265   return StructType::create(EltTys, "gc_stackentry."+F.getName().str());
266 }
267 
268 /// doInitialization - If this module uses the GC intrinsics, find them now. If
269 /// not, exit fast.
initializeCustomLowering(Module & M)270 bool ShadowStackGC::initializeCustomLowering(Module &M) {
271   // struct FrameMap {
272   //   int32_t NumRoots; // Number of roots in stack frame.
273   //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots.
274   //   void *Meta[];     // May be absent for roots without metadata.
275   // };
276   std::vector<Type*> EltTys;
277   // 32 bits is ok up to a 32GB stack frame. :)
278   EltTys.push_back(Type::getInt32Ty(M.getContext()));
279   // Specifies length of variable length array.
280   EltTys.push_back(Type::getInt32Ty(M.getContext()));
281   FrameMapTy = StructType::create(EltTys, "gc_map");
282   PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
283 
284   // struct StackEntry {
285   //   ShadowStackEntry *Next; // Caller's stack entry.
286   //   FrameMap *Map;          // Pointer to constant FrameMap.
287   //   void *Roots[];          // Stack roots (in-place array, so we pretend).
288   // };
289 
290   StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
291 
292   EltTys.clear();
293   EltTys.push_back(PointerType::getUnqual(StackEntryTy));
294   EltTys.push_back(FrameMapPtrTy);
295   StackEntryTy->setBody(EltTys);
296   PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
297 
298   // Get the root chain if it already exists.
299   Head = M.getGlobalVariable("llvm_gc_root_chain");
300   if (!Head) {
301     // If the root chain does not exist, insert a new one with linkonce
302     // linkage!
303     Head = new GlobalVariable(M, StackEntryPtrTy, false,
304                               GlobalValue::LinkOnceAnyLinkage,
305                               Constant::getNullValue(StackEntryPtrTy),
306                               "llvm_gc_root_chain");
307   } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
308     Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
309     Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
310   }
311 
312   return true;
313 }
314 
IsNullValue(Value * V)315 bool ShadowStackGC::IsNullValue(Value *V) {
316   if (Constant *C = dyn_cast<Constant>(V))
317     return C->isNullValue();
318   return false;
319 }
320 
CollectRoots(Function & F)321 void ShadowStackGC::CollectRoots(Function &F) {
322   // FIXME: Account for original alignment. Could fragment the root array.
323   //   Approach 1: Null initialize empty slots at runtime. Yuck.
324   //   Approach 2: Emit a map of the array instead of just a count.
325 
326   assert(Roots.empty() && "Not cleaned up?");
327 
328   SmallVector<std::pair<CallInst*, AllocaInst*>, 16> MetaRoots;
329 
330   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
331     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
332       if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
333         if (Function *F = CI->getCalledFunction())
334           if (F->getIntrinsicID() == Intrinsic::gcroot) {
335             std::pair<CallInst*, AllocaInst*> Pair = std::make_pair(
336               CI, cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
337             if (IsNullValue(CI->getArgOperand(1)))
338               Roots.push_back(Pair);
339             else
340               MetaRoots.push_back(Pair);
341           }
342 
343   // Number roots with metadata (usually empty) at the beginning, so that the
344   // FrameMap::Meta array can be elided.
345   Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
346 }
347 
348 GetElementPtrInst *
CreateGEP(LLVMContext & Context,IRBuilder<> & B,Value * BasePtr,int Idx,int Idx2,const char * Name)349 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
350                          int Idx, int Idx2, const char *Name) {
351   Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
352                        ConstantInt::get(Type::getInt32Ty(Context), Idx),
353                        ConstantInt::get(Type::getInt32Ty(Context), Idx2) };
354   Value* Val = B.CreateGEP(BasePtr, Indices, Name);
355 
356   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
357 
358   return dyn_cast<GetElementPtrInst>(Val);
359 }
360 
361 GetElementPtrInst *
CreateGEP(LLVMContext & Context,IRBuilder<> & B,Value * BasePtr,int Idx,const char * Name)362 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
363                          int Idx, const char *Name) {
364   Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
365                        ConstantInt::get(Type::getInt32Ty(Context), Idx) };
366   Value *Val = B.CreateGEP(BasePtr, Indices, Name);
367 
368   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
369 
370   return dyn_cast<GetElementPtrInst>(Val);
371 }
372 
373 /// runOnFunction - Insert code to maintain the shadow stack.
performCustomLowering(Function & F)374 bool ShadowStackGC::performCustomLowering(Function &F) {
375   LLVMContext &Context = F.getContext();
376 
377   // Find calls to llvm.gcroot.
378   CollectRoots(F);
379 
380   // If there are no roots in this function, then there is no need to add a
381   // stack map entry for it.
382   if (Roots.empty())
383     return false;
384 
385   // Build the constant map and figure the type of the shadow stack entry.
386   Value *FrameMap = GetFrameMap(F);
387   Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
388 
389   // Build the shadow stack entry at the very start of the function.
390   BasicBlock::iterator IP = F.getEntryBlock().begin();
391   IRBuilder<> AtEntry(IP->getParent(), IP);
392 
393   Instruction *StackEntry   = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0,
394                                                    "gc_frame");
395 
396   while (isa<AllocaInst>(IP)) ++IP;
397   AtEntry.SetInsertPoint(IP->getParent(), IP);
398 
399   // Initialize the map pointer and load the current head of the shadow stack.
400   Instruction *CurrentHead  = AtEntry.CreateLoad(Head, "gc_currhead");
401   Instruction *EntryMapPtr  = CreateGEP(Context, AtEntry, StackEntry,
402                                         0,1,"gc_frame.map");
403   AtEntry.CreateStore(FrameMap, EntryMapPtr);
404 
405   // After all the allocas...
406   for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
407     // For each root, find the corresponding slot in the aggregate...
408     Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root");
409 
410     // And use it in lieu of the alloca.
411     AllocaInst *OriginalAlloca = Roots[I].second;
412     SlotPtr->takeName(OriginalAlloca);
413     OriginalAlloca->replaceAllUsesWith(SlotPtr);
414   }
415 
416   // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
417   // really necessary (the collector would never see the intermediate state at
418   // runtime), but it's nicer not to push the half-initialized entry onto the
419   // shadow stack.
420   while (isa<StoreInst>(IP)) ++IP;
421   AtEntry.SetInsertPoint(IP->getParent(), IP);
422 
423   // Push the entry onto the shadow stack.
424   Instruction *EntryNextPtr = CreateGEP(Context, AtEntry,
425                                         StackEntry,0,0,"gc_frame.next");
426   Instruction *NewHeadVal   = CreateGEP(Context, AtEntry,
427                                         StackEntry, 0, "gc_newhead");
428   AtEntry.CreateStore(CurrentHead, EntryNextPtr);
429   AtEntry.CreateStore(NewHeadVal, Head);
430 
431   // For each instruction that escapes...
432   EscapeEnumerator EE(F, "gc_cleanup");
433   while (IRBuilder<> *AtExit = EE.Next()) {
434     // Pop the entry from the shadow stack. Don't reuse CurrentHead from
435     // AtEntry, since that would make the value live for the entire function.
436     Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0,
437                                            "gc_frame.next");
438     Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
439                        AtExit->CreateStore(SavedHead, Head);
440   }
441 
442   // Delete the original allocas (which are no longer used) and the intrinsic
443   // calls (which are no longer valid). Doing this last avoids invalidating
444   // iterators.
445   for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
446     Roots[I].first->eraseFromParent();
447     Roots[I].second->eraseFromParent();
448   }
449 
450   Roots.clear();
451   return true;
452 }
453