1 //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements lowering for the llvm.gc* intrinsics for targets that do
11 // not natively support them (which includes the C backend). Note that the code
12 // generated is not quite as efficient as algorithms which generate stack maps
13 // to identify roots.
14 //
15 // This pass implements the code transformation described in this paper:
16 // "Accurate Garbage Collection in an Uncooperative Environment"
17 // Fergus Henderson, ISMM, 2002
18 //
19 // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with
20 // ShadowStackGC.
21 //
22 // In order to support this particular transformation, all stack roots are
23 // coallocated in the stack. This allows a fully target-independent stack map
24 // while introducing only minor runtime overhead.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #define DEBUG_TYPE "shadowstackgc"
29 #include "llvm/IRBuilder.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/Module.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/CodeGen/GCStrategy.h"
34 #include "llvm/CodeGen/GCs.h"
35 #include "llvm/Support/CallSite.h"
36
37 using namespace llvm;
38
39 namespace {
40
41 class ShadowStackGC : public GCStrategy {
42 /// RootChain - This is the global linked-list that contains the chain of GC
43 /// roots.
44 GlobalVariable *Head;
45
46 /// StackEntryTy - Abstract type of a link in the shadow stack.
47 ///
48 StructType *StackEntryTy;
49 StructType *FrameMapTy;
50
51 /// Roots - GC roots in the current function. Each is a pair of the
52 /// intrinsic call and its corresponding alloca.
53 std::vector<std::pair<CallInst*,AllocaInst*> > Roots;
54
55 public:
56 ShadowStackGC();
57
58 bool initializeCustomLowering(Module &M);
59 bool performCustomLowering(Function &F);
60
61 private:
62 bool IsNullValue(Value *V);
63 Constant *GetFrameMap(Function &F);
64 Type* GetConcreteStackEntryType(Function &F);
65 void CollectRoots(Function &F);
66 static GetElementPtrInst *CreateGEP(LLVMContext &Context,
67 IRBuilder<> &B, Value *BasePtr,
68 int Idx1, const char *Name);
69 static GetElementPtrInst *CreateGEP(LLVMContext &Context,
70 IRBuilder<> &B, Value *BasePtr,
71 int Idx1, int Idx2, const char *Name);
72 };
73
74 }
75
76 static GCRegistry::Add<ShadowStackGC>
77 X("shadow-stack", "Very portable GC for uncooperative code generators");
78
79 namespace {
80 /// EscapeEnumerator - This is a little algorithm to find all escape points
81 /// from a function so that "finally"-style code can be inserted. In addition
82 /// to finding the existing return and unwind instructions, it also (if
83 /// necessary) transforms any call instructions into invokes and sends them to
84 /// a landing pad.
85 ///
86 /// It's wrapped up in a state machine using the same transform C# uses for
87 /// 'yield return' enumerators, This transform allows it to be non-allocating.
88 class EscapeEnumerator {
89 Function &F;
90 const char *CleanupBBName;
91
92 // State.
93 int State;
94 Function::iterator StateBB, StateE;
95 IRBuilder<> Builder;
96
97 public:
EscapeEnumerator(Function & F,const char * N="cleanup")98 EscapeEnumerator(Function &F, const char *N = "cleanup")
99 : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
100
Next()101 IRBuilder<> *Next() {
102 switch (State) {
103 default:
104 return 0;
105
106 case 0:
107 StateBB = F.begin();
108 StateE = F.end();
109 State = 1;
110
111 case 1:
112 // Find all 'return', 'resume', and 'unwind' instructions.
113 while (StateBB != StateE) {
114 BasicBlock *CurBB = StateBB++;
115
116 // Branches and invokes do not escape, only unwind, resume, and return
117 // do.
118 TerminatorInst *TI = CurBB->getTerminator();
119 if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI))
120 continue;
121
122 Builder.SetInsertPoint(TI->getParent(), TI);
123 return &Builder;
124 }
125
126 State = 2;
127
128 // Find all 'call' instructions.
129 SmallVector<Instruction*,16> Calls;
130 for (Function::iterator BB = F.begin(),
131 E = F.end(); BB != E; ++BB)
132 for (BasicBlock::iterator II = BB->begin(),
133 EE = BB->end(); II != EE; ++II)
134 if (CallInst *CI = dyn_cast<CallInst>(II))
135 if (!CI->getCalledFunction() ||
136 !CI->getCalledFunction()->getIntrinsicID())
137 Calls.push_back(CI);
138
139 if (Calls.empty())
140 return 0;
141
142 // Create a cleanup block.
143 LLVMContext &C = F.getContext();
144 BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
145 Type *ExnTy = StructType::get(Type::getInt8PtrTy(C),
146 Type::getInt32Ty(C), NULL);
147 Constant *PersFn =
148 F.getParent()->
149 getOrInsertFunction("__gcc_personality_v0",
150 FunctionType::get(Type::getInt32Ty(C), true));
151 LandingPadInst *LPad = LandingPadInst::Create(ExnTy, PersFn, 1,
152 "cleanup.lpad",
153 CleanupBB);
154 LPad->setCleanup(true);
155 ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB);
156
157 // Transform the 'call' instructions into 'invoke's branching to the
158 // cleanup block. Go in reverse order to make prettier BB names.
159 SmallVector<Value*,16> Args;
160 for (unsigned I = Calls.size(); I != 0; ) {
161 CallInst *CI = cast<CallInst>(Calls[--I]);
162
163 // Split the basic block containing the function call.
164 BasicBlock *CallBB = CI->getParent();
165 BasicBlock *NewBB =
166 CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
167
168 // Remove the unconditional branch inserted at the end of CallBB.
169 CallBB->getInstList().pop_back();
170 NewBB->getInstList().remove(CI);
171
172 // Create a new invoke instruction.
173 Args.clear();
174 CallSite CS(CI);
175 Args.append(CS.arg_begin(), CS.arg_end());
176
177 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(),
178 NewBB, CleanupBB,
179 Args, CI->getName(), CallBB);
180 II->setCallingConv(CI->getCallingConv());
181 II->setAttributes(CI->getAttributes());
182 CI->replaceAllUsesWith(II);
183 delete CI;
184 }
185
186 Builder.SetInsertPoint(RI->getParent(), RI);
187 return &Builder;
188 }
189 }
190 };
191 }
192
193 // -----------------------------------------------------------------------------
194
linkShadowStackGC()195 void llvm::linkShadowStackGC() { }
196
ShadowStackGC()197 ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
198 InitRoots = true;
199 CustomRoots = true;
200 }
201
GetFrameMap(Function & F)202 Constant *ShadowStackGC::GetFrameMap(Function &F) {
203 // doInitialization creates the abstract type of this value.
204 Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
205
206 // Truncate the ShadowStackDescriptor if some metadata is null.
207 unsigned NumMeta = 0;
208 SmallVector<Constant*, 16> Metadata;
209 for (unsigned I = 0; I != Roots.size(); ++I) {
210 Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
211 if (!C->isNullValue())
212 NumMeta = I + 1;
213 Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
214 }
215 Metadata.resize(NumMeta);
216
217 Type *Int32Ty = Type::getInt32Ty(F.getContext());
218
219 Constant *BaseElts[] = {
220 ConstantInt::get(Int32Ty, Roots.size(), false),
221 ConstantInt::get(Int32Ty, NumMeta, false),
222 };
223
224 Constant *DescriptorElts[] = {
225 ConstantStruct::get(FrameMapTy, BaseElts),
226 ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)
227 };
228
229 Type *EltTys[] = { DescriptorElts[0]->getType(),DescriptorElts[1]->getType()};
230 StructType *STy = StructType::create(EltTys, "gc_map."+utostr(NumMeta));
231
232 Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
233
234 // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
235 // that, short of multithreaded LLVM, it should be safe; all that is
236 // necessary is that a simple Module::iterator loop not be invalidated.
237 // Appending to the GlobalVariable list is safe in that sense.
238 //
239 // All of the output passes emit globals last. The ExecutionEngine
240 // explicitly supports adding globals to the module after
241 // initialization.
242 //
243 // Still, if it isn't deemed acceptable, then this transformation needs
244 // to be a ModulePass (which means it cannot be in the 'llc' pipeline
245 // (which uses a FunctionPassManager (which segfaults (not asserts) if
246 // provided a ModulePass))).
247 Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
248 GlobalVariable::InternalLinkage,
249 FrameMap, "__gc_" + F.getName());
250
251 Constant *GEPIndices[2] = {
252 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
253 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)
254 };
255 return ConstantExpr::getGetElementPtr(GV, GEPIndices);
256 }
257
GetConcreteStackEntryType(Function & F)258 Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) {
259 // doInitialization creates the generic version of this type.
260 std::vector<Type*> EltTys;
261 EltTys.push_back(StackEntryTy);
262 for (size_t I = 0; I != Roots.size(); I++)
263 EltTys.push_back(Roots[I].second->getAllocatedType());
264
265 return StructType::create(EltTys, "gc_stackentry."+F.getName().str());
266 }
267
268 /// doInitialization - If this module uses the GC intrinsics, find them now. If
269 /// not, exit fast.
initializeCustomLowering(Module & M)270 bool ShadowStackGC::initializeCustomLowering(Module &M) {
271 // struct FrameMap {
272 // int32_t NumRoots; // Number of roots in stack frame.
273 // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots.
274 // void *Meta[]; // May be absent for roots without metadata.
275 // };
276 std::vector<Type*> EltTys;
277 // 32 bits is ok up to a 32GB stack frame. :)
278 EltTys.push_back(Type::getInt32Ty(M.getContext()));
279 // Specifies length of variable length array.
280 EltTys.push_back(Type::getInt32Ty(M.getContext()));
281 FrameMapTy = StructType::create(EltTys, "gc_map");
282 PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
283
284 // struct StackEntry {
285 // ShadowStackEntry *Next; // Caller's stack entry.
286 // FrameMap *Map; // Pointer to constant FrameMap.
287 // void *Roots[]; // Stack roots (in-place array, so we pretend).
288 // };
289
290 StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
291
292 EltTys.clear();
293 EltTys.push_back(PointerType::getUnqual(StackEntryTy));
294 EltTys.push_back(FrameMapPtrTy);
295 StackEntryTy->setBody(EltTys);
296 PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
297
298 // Get the root chain if it already exists.
299 Head = M.getGlobalVariable("llvm_gc_root_chain");
300 if (!Head) {
301 // If the root chain does not exist, insert a new one with linkonce
302 // linkage!
303 Head = new GlobalVariable(M, StackEntryPtrTy, false,
304 GlobalValue::LinkOnceAnyLinkage,
305 Constant::getNullValue(StackEntryPtrTy),
306 "llvm_gc_root_chain");
307 } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
308 Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
309 Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
310 }
311
312 return true;
313 }
314
IsNullValue(Value * V)315 bool ShadowStackGC::IsNullValue(Value *V) {
316 if (Constant *C = dyn_cast<Constant>(V))
317 return C->isNullValue();
318 return false;
319 }
320
CollectRoots(Function & F)321 void ShadowStackGC::CollectRoots(Function &F) {
322 // FIXME: Account for original alignment. Could fragment the root array.
323 // Approach 1: Null initialize empty slots at runtime. Yuck.
324 // Approach 2: Emit a map of the array instead of just a count.
325
326 assert(Roots.empty() && "Not cleaned up?");
327
328 SmallVector<std::pair<CallInst*, AllocaInst*>, 16> MetaRoots;
329
330 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
331 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
332 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
333 if (Function *F = CI->getCalledFunction())
334 if (F->getIntrinsicID() == Intrinsic::gcroot) {
335 std::pair<CallInst*, AllocaInst*> Pair = std::make_pair(
336 CI, cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
337 if (IsNullValue(CI->getArgOperand(1)))
338 Roots.push_back(Pair);
339 else
340 MetaRoots.push_back(Pair);
341 }
342
343 // Number roots with metadata (usually empty) at the beginning, so that the
344 // FrameMap::Meta array can be elided.
345 Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
346 }
347
348 GetElementPtrInst *
CreateGEP(LLVMContext & Context,IRBuilder<> & B,Value * BasePtr,int Idx,int Idx2,const char * Name)349 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
350 int Idx, int Idx2, const char *Name) {
351 Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
352 ConstantInt::get(Type::getInt32Ty(Context), Idx),
353 ConstantInt::get(Type::getInt32Ty(Context), Idx2) };
354 Value* Val = B.CreateGEP(BasePtr, Indices, Name);
355
356 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
357
358 return dyn_cast<GetElementPtrInst>(Val);
359 }
360
361 GetElementPtrInst *
CreateGEP(LLVMContext & Context,IRBuilder<> & B,Value * BasePtr,int Idx,const char * Name)362 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
363 int Idx, const char *Name) {
364 Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
365 ConstantInt::get(Type::getInt32Ty(Context), Idx) };
366 Value *Val = B.CreateGEP(BasePtr, Indices, Name);
367
368 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
369
370 return dyn_cast<GetElementPtrInst>(Val);
371 }
372
373 /// runOnFunction - Insert code to maintain the shadow stack.
performCustomLowering(Function & F)374 bool ShadowStackGC::performCustomLowering(Function &F) {
375 LLVMContext &Context = F.getContext();
376
377 // Find calls to llvm.gcroot.
378 CollectRoots(F);
379
380 // If there are no roots in this function, then there is no need to add a
381 // stack map entry for it.
382 if (Roots.empty())
383 return false;
384
385 // Build the constant map and figure the type of the shadow stack entry.
386 Value *FrameMap = GetFrameMap(F);
387 Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
388
389 // Build the shadow stack entry at the very start of the function.
390 BasicBlock::iterator IP = F.getEntryBlock().begin();
391 IRBuilder<> AtEntry(IP->getParent(), IP);
392
393 Instruction *StackEntry = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0,
394 "gc_frame");
395
396 while (isa<AllocaInst>(IP)) ++IP;
397 AtEntry.SetInsertPoint(IP->getParent(), IP);
398
399 // Initialize the map pointer and load the current head of the shadow stack.
400 Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
401 Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, StackEntry,
402 0,1,"gc_frame.map");
403 AtEntry.CreateStore(FrameMap, EntryMapPtr);
404
405 // After all the allocas...
406 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
407 // For each root, find the corresponding slot in the aggregate...
408 Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root");
409
410 // And use it in lieu of the alloca.
411 AllocaInst *OriginalAlloca = Roots[I].second;
412 SlotPtr->takeName(OriginalAlloca);
413 OriginalAlloca->replaceAllUsesWith(SlotPtr);
414 }
415
416 // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
417 // really necessary (the collector would never see the intermediate state at
418 // runtime), but it's nicer not to push the half-initialized entry onto the
419 // shadow stack.
420 while (isa<StoreInst>(IP)) ++IP;
421 AtEntry.SetInsertPoint(IP->getParent(), IP);
422
423 // Push the entry onto the shadow stack.
424 Instruction *EntryNextPtr = CreateGEP(Context, AtEntry,
425 StackEntry,0,0,"gc_frame.next");
426 Instruction *NewHeadVal = CreateGEP(Context, AtEntry,
427 StackEntry, 0, "gc_newhead");
428 AtEntry.CreateStore(CurrentHead, EntryNextPtr);
429 AtEntry.CreateStore(NewHeadVal, Head);
430
431 // For each instruction that escapes...
432 EscapeEnumerator EE(F, "gc_cleanup");
433 while (IRBuilder<> *AtExit = EE.Next()) {
434 // Pop the entry from the shadow stack. Don't reuse CurrentHead from
435 // AtEntry, since that would make the value live for the entire function.
436 Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0,
437 "gc_frame.next");
438 Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
439 AtExit->CreateStore(SavedHead, Head);
440 }
441
442 // Delete the original allocas (which are no longer used) and the intrinsic
443 // calls (which are no longer valid). Doing this last avoids invalidating
444 // iterators.
445 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
446 Roots[I].first->eraseFromParent();
447 Roots[I].second->eraseFromParent();
448 }
449
450 Roots.clear();
451 return true;
452 }
453