1 //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfoImpl class, it just provides default
11 // implementations of various methods.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Target/TargetInstrInfo.h"
16 #include "llvm/Target/TargetLowering.h"
17 #include "llvm/Target/TargetMachine.h"
18 #include "llvm/Target/TargetRegisterInfo.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/MC/MCInstrItineraries.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33
34 static cl::opt<bool> DisableHazardRecognizer(
35 "disable-sched-hazard", cl::Hidden, cl::init(false),
36 cl::desc("Disable hazard detection during preRA scheduling"));
37
38 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
39 /// after it, replacing it with an unconditional branch to NewDest.
40 void
ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,MachineBasicBlock * NewDest) const41 TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
42 MachineBasicBlock *NewDest) const {
43 MachineBasicBlock *MBB = Tail->getParent();
44
45 // Remove all the old successors of MBB from the CFG.
46 while (!MBB->succ_empty())
47 MBB->removeSuccessor(MBB->succ_begin());
48
49 // Remove all the dead instructions from the end of MBB.
50 MBB->erase(Tail, MBB->end());
51
52 // If MBB isn't immediately before MBB, insert a branch to it.
53 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
54 InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
55 Tail->getDebugLoc());
56 MBB->addSuccessor(NewDest);
57 }
58
59 // commuteInstruction - The default implementation of this method just exchanges
60 // the two operands returned by findCommutedOpIndices.
commuteInstruction(MachineInstr * MI,bool NewMI) const61 MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
62 bool NewMI) const {
63 const MCInstrDesc &MCID = MI->getDesc();
64 bool HasDef = MCID.getNumDefs();
65 if (HasDef && !MI->getOperand(0).isReg())
66 // No idea how to commute this instruction. Target should implement its own.
67 return 0;
68 unsigned Idx1, Idx2;
69 if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
70 std::string msg;
71 raw_string_ostream Msg(msg);
72 Msg << "Don't know how to commute: " << *MI;
73 report_fatal_error(Msg.str());
74 }
75
76 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
77 "This only knows how to commute register operands so far");
78 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
79 unsigned Reg1 = MI->getOperand(Idx1).getReg();
80 unsigned Reg2 = MI->getOperand(Idx2).getReg();
81 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
82 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
83 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
84 bool Reg1IsKill = MI->getOperand(Idx1).isKill();
85 bool Reg2IsKill = MI->getOperand(Idx2).isKill();
86 // If destination is tied to either of the commuted source register, then
87 // it must be updated.
88 if (HasDef && Reg0 == Reg1 &&
89 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
90 Reg2IsKill = false;
91 Reg0 = Reg2;
92 SubReg0 = SubReg2;
93 } else if (HasDef && Reg0 == Reg2 &&
94 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
95 Reg1IsKill = false;
96 Reg0 = Reg1;
97 SubReg0 = SubReg1;
98 }
99
100 if (NewMI) {
101 // Create a new instruction.
102 MachineFunction &MF = *MI->getParent()->getParent();
103 MI = MF.CloneMachineInstr(MI);
104 }
105
106 if (HasDef) {
107 MI->getOperand(0).setReg(Reg0);
108 MI->getOperand(0).setSubReg(SubReg0);
109 }
110 MI->getOperand(Idx2).setReg(Reg1);
111 MI->getOperand(Idx1).setReg(Reg2);
112 MI->getOperand(Idx2).setSubReg(SubReg1);
113 MI->getOperand(Idx1).setSubReg(SubReg2);
114 MI->getOperand(Idx2).setIsKill(Reg1IsKill);
115 MI->getOperand(Idx1).setIsKill(Reg2IsKill);
116 return MI;
117 }
118
119 /// findCommutedOpIndices - If specified MI is commutable, return the two
120 /// operand indices that would swap value. Return true if the instruction
121 /// is not in a form which this routine understands.
findCommutedOpIndices(MachineInstr * MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const122 bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
123 unsigned &SrcOpIdx1,
124 unsigned &SrcOpIdx2) const {
125 assert(!MI->isBundle() &&
126 "TargetInstrInfoImpl::findCommutedOpIndices() can't handle bundles");
127
128 const MCInstrDesc &MCID = MI->getDesc();
129 if (!MCID.isCommutable())
130 return false;
131 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
132 // is not true, then the target must implement this.
133 SrcOpIdx1 = MCID.getNumDefs();
134 SrcOpIdx2 = SrcOpIdx1 + 1;
135 if (!MI->getOperand(SrcOpIdx1).isReg() ||
136 !MI->getOperand(SrcOpIdx2).isReg())
137 // No idea.
138 return false;
139 return true;
140 }
141
142
143 bool
isUnpredicatedTerminator(const MachineInstr * MI) const144 TargetInstrInfoImpl::isUnpredicatedTerminator(const MachineInstr *MI) const {
145 if (!MI->isTerminator()) return false;
146
147 // Conditional branch is a special case.
148 if (MI->isBranch() && !MI->isBarrier())
149 return true;
150 if (!MI->isPredicable())
151 return true;
152 return !isPredicated(MI);
153 }
154
155
PredicateInstruction(MachineInstr * MI,const SmallVectorImpl<MachineOperand> & Pred) const156 bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
157 const SmallVectorImpl<MachineOperand> &Pred) const {
158 bool MadeChange = false;
159
160 assert(!MI->isBundle() &&
161 "TargetInstrInfoImpl::PredicateInstruction() can't handle bundles");
162
163 const MCInstrDesc &MCID = MI->getDesc();
164 if (!MI->isPredicable())
165 return false;
166
167 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
168 if (MCID.OpInfo[i].isPredicate()) {
169 MachineOperand &MO = MI->getOperand(i);
170 if (MO.isReg()) {
171 MO.setReg(Pred[j].getReg());
172 MadeChange = true;
173 } else if (MO.isImm()) {
174 MO.setImm(Pred[j].getImm());
175 MadeChange = true;
176 } else if (MO.isMBB()) {
177 MO.setMBB(Pred[j].getMBB());
178 MadeChange = true;
179 }
180 ++j;
181 }
182 }
183 return MadeChange;
184 }
185
hasLoadFromStackSlot(const MachineInstr * MI,const MachineMemOperand * & MMO,int & FrameIndex) const186 bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI,
187 const MachineMemOperand *&MMO,
188 int &FrameIndex) const {
189 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
190 oe = MI->memoperands_end();
191 o != oe;
192 ++o) {
193 if ((*o)->isLoad() && (*o)->getValue())
194 if (const FixedStackPseudoSourceValue *Value =
195 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
196 FrameIndex = Value->getFrameIndex();
197 MMO = *o;
198 return true;
199 }
200 }
201 return false;
202 }
203
hasStoreToStackSlot(const MachineInstr * MI,const MachineMemOperand * & MMO,int & FrameIndex) const204 bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI,
205 const MachineMemOperand *&MMO,
206 int &FrameIndex) const {
207 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
208 oe = MI->memoperands_end();
209 o != oe;
210 ++o) {
211 if ((*o)->isStore() && (*o)->getValue())
212 if (const FixedStackPseudoSourceValue *Value =
213 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
214 FrameIndex = Value->getFrameIndex();
215 MMO = *o;
216 return true;
217 }
218 }
219 return false;
220 }
221
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr * Orig,const TargetRegisterInfo & TRI) const222 void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
223 MachineBasicBlock::iterator I,
224 unsigned DestReg,
225 unsigned SubIdx,
226 const MachineInstr *Orig,
227 const TargetRegisterInfo &TRI) const {
228 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
229 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
230 MBB.insert(I, MI);
231 }
232
233 bool
produceSameValue(const MachineInstr * MI0,const MachineInstr * MI1,const MachineRegisterInfo * MRI) const234 TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
235 const MachineInstr *MI1,
236 const MachineRegisterInfo *MRI) const {
237 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
238 }
239
duplicate(MachineInstr * Orig,MachineFunction & MF) const240 MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
241 MachineFunction &MF) const {
242 assert(!Orig->isNotDuplicable() &&
243 "Instruction cannot be duplicated");
244 return MF.CloneMachineInstr(Orig);
245 }
246
247 // If the COPY instruction in MI can be folded to a stack operation, return
248 // the register class to use.
canFoldCopy(const MachineInstr * MI,unsigned FoldIdx)249 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
250 unsigned FoldIdx) {
251 assert(MI->isCopy() && "MI must be a COPY instruction");
252 if (MI->getNumOperands() != 2)
253 return 0;
254 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
255
256 const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
257 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
258
259 if (FoldOp.getSubReg() || LiveOp.getSubReg())
260 return 0;
261
262 unsigned FoldReg = FoldOp.getReg();
263 unsigned LiveReg = LiveOp.getReg();
264
265 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
266 "Cannot fold physregs");
267
268 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
269 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
270
271 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
272 return RC->contains(LiveOp.getReg()) ? RC : 0;
273
274 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
275 return RC;
276
277 // FIXME: Allow folding when register classes are memory compatible.
278 return 0;
279 }
280
281 bool TargetInstrInfoImpl::
canFoldMemoryOperand(const MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops) const282 canFoldMemoryOperand(const MachineInstr *MI,
283 const SmallVectorImpl<unsigned> &Ops) const {
284 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
285 }
286
287 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
288 /// slot into the specified machine instruction for the specified operand(s).
289 /// If this is possible, a new instruction is returned with the specified
290 /// operand folded, otherwise NULL is returned. The client is responsible for
291 /// removing the old instruction and adding the new one in the instruction
292 /// stream.
293 MachineInstr*
foldMemoryOperand(MachineBasicBlock::iterator MI,const SmallVectorImpl<unsigned> & Ops,int FI) const294 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
295 const SmallVectorImpl<unsigned> &Ops,
296 int FI) const {
297 unsigned Flags = 0;
298 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
299 if (MI->getOperand(Ops[i]).isDef())
300 Flags |= MachineMemOperand::MOStore;
301 else
302 Flags |= MachineMemOperand::MOLoad;
303
304 MachineBasicBlock *MBB = MI->getParent();
305 assert(MBB && "foldMemoryOperand needs an inserted instruction");
306 MachineFunction &MF = *MBB->getParent();
307
308 // Ask the target to do the actual folding.
309 if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
310 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
311 assert((!(Flags & MachineMemOperand::MOStore) ||
312 NewMI->mayStore()) &&
313 "Folded a def to a non-store!");
314 assert((!(Flags & MachineMemOperand::MOLoad) ||
315 NewMI->mayLoad()) &&
316 "Folded a use to a non-load!");
317 const MachineFrameInfo &MFI = *MF.getFrameInfo();
318 assert(MFI.getObjectOffset(FI) != -1);
319 MachineMemOperand *MMO =
320 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
321 Flags, MFI.getObjectSize(FI),
322 MFI.getObjectAlignment(FI));
323 NewMI->addMemOperand(MF, MMO);
324
325 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
326 return MBB->insert(MI, NewMI);
327 }
328
329 // Straight COPY may fold as load/store.
330 if (!MI->isCopy() || Ops.size() != 1)
331 return 0;
332
333 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
334 if (!RC)
335 return 0;
336
337 const MachineOperand &MO = MI->getOperand(1-Ops[0]);
338 MachineBasicBlock::iterator Pos = MI;
339 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
340
341 if (Flags == MachineMemOperand::MOStore)
342 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
343 else
344 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
345 return --Pos;
346 }
347
348 /// foldMemoryOperand - Same as the previous version except it allows folding
349 /// of any load and store from / to any address, not just from a specific
350 /// stack slot.
351 MachineInstr*
foldMemoryOperand(MachineBasicBlock::iterator MI,const SmallVectorImpl<unsigned> & Ops,MachineInstr * LoadMI) const352 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
353 const SmallVectorImpl<unsigned> &Ops,
354 MachineInstr* LoadMI) const {
355 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
356 #ifndef NDEBUG
357 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
358 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
359 #endif
360 MachineBasicBlock &MBB = *MI->getParent();
361 MachineFunction &MF = *MBB.getParent();
362
363 // Ask the target to do the actual folding.
364 MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
365 if (!NewMI) return 0;
366
367 NewMI = MBB.insert(MI, NewMI);
368
369 // Copy the memoperands from the load to the folded instruction.
370 NewMI->setMemRefs(LoadMI->memoperands_begin(),
371 LoadMI->memoperands_end());
372
373 return NewMI;
374 }
375
376 bool TargetInstrInfo::
isReallyTriviallyReMaterializableGeneric(const MachineInstr * MI,AliasAnalysis * AA) const377 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
378 AliasAnalysis *AA) const {
379 const MachineFunction &MF = *MI->getParent()->getParent();
380 const MachineRegisterInfo &MRI = MF.getRegInfo();
381 const TargetMachine &TM = MF.getTarget();
382 const TargetInstrInfo &TII = *TM.getInstrInfo();
383
384 // Remat clients assume operand 0 is the defined register.
385 if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
386 return false;
387 unsigned DefReg = MI->getOperand(0).getReg();
388
389 // A sub-register definition can only be rematerialized if the instruction
390 // doesn't read the other parts of the register. Otherwise it is really a
391 // read-modify-write operation on the full virtual register which cannot be
392 // moved safely.
393 if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
394 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
395 return false;
396
397 // A load from a fixed stack slot can be rematerialized. This may be
398 // redundant with subsequent checks, but it's target-independent,
399 // simple, and a common case.
400 int FrameIdx = 0;
401 if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
402 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
403 return true;
404
405 // Avoid instructions obviously unsafe for remat.
406 if (MI->isNotDuplicable() || MI->mayStore() ||
407 MI->hasUnmodeledSideEffects())
408 return false;
409
410 // Don't remat inline asm. We have no idea how expensive it is
411 // even if it's side effect free.
412 if (MI->isInlineAsm())
413 return false;
414
415 // Avoid instructions which load from potentially varying memory.
416 if (MI->mayLoad() && !MI->isInvariantLoad(AA))
417 return false;
418
419 // If any of the registers accessed are non-constant, conservatively assume
420 // the instruction is not rematerializable.
421 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
422 const MachineOperand &MO = MI->getOperand(i);
423 if (!MO.isReg()) continue;
424 unsigned Reg = MO.getReg();
425 if (Reg == 0)
426 continue;
427
428 // Check for a well-behaved physical register.
429 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
430 if (MO.isUse()) {
431 // If the physreg has no defs anywhere, it's just an ambient register
432 // and we can freely move its uses. Alternatively, if it's allocatable,
433 // it could get allocated to something with a def during allocation.
434 if (!MRI.isConstantPhysReg(Reg, MF))
435 return false;
436 } else {
437 // A physreg def. We can't remat it.
438 return false;
439 }
440 continue;
441 }
442
443 // Only allow one virtual-register def. There may be multiple defs of the
444 // same virtual register, though.
445 if (MO.isDef() && Reg != DefReg)
446 return false;
447
448 // Don't allow any virtual-register uses. Rematting an instruction with
449 // virtual register uses would length the live ranges of the uses, which
450 // is not necessarily a good idea, certainly not "trivial".
451 if (MO.isUse())
452 return false;
453 }
454
455 // Everything checked out.
456 return true;
457 }
458
459 /// isSchedulingBoundary - Test if the given instruction should be
460 /// considered a scheduling boundary. This primarily includes labels
461 /// and terminators.
isSchedulingBoundary(const MachineInstr * MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const462 bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
463 const MachineBasicBlock *MBB,
464 const MachineFunction &MF) const{
465 // Terminators and labels can't be scheduled around.
466 if (MI->isTerminator() || MI->isLabel())
467 return true;
468
469 // Don't attempt to schedule around any instruction that defines
470 // a stack-oriented pointer, as it's unlikely to be profitable. This
471 // saves compile time, because it doesn't require every single
472 // stack slot reference to depend on the instruction that does the
473 // modification.
474 const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
475 if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
476 return true;
477
478 return false;
479 }
480
481 // Provide a global flag for disabling the PreRA hazard recognizer that targets
482 // may choose to honor.
usePreRAHazardRecognizer() const483 bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
484 return !DisableHazardRecognizer;
485 }
486
487 // Default implementation of CreateTargetRAHazardRecognizer.
488 ScheduleHazardRecognizer *TargetInstrInfoImpl::
CreateTargetHazardRecognizer(const TargetMachine * TM,const ScheduleDAG * DAG) const489 CreateTargetHazardRecognizer(const TargetMachine *TM,
490 const ScheduleDAG *DAG) const {
491 // Dummy hazard recognizer allows all instructions to issue.
492 return new ScheduleHazardRecognizer();
493 }
494
495 // Default implementation of CreateTargetMIHazardRecognizer.
496 ScheduleHazardRecognizer *TargetInstrInfoImpl::
CreateTargetMIHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const497 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
498 const ScheduleDAG *DAG) const {
499 return (ScheduleHazardRecognizer *)
500 new ScoreboardHazardRecognizer(II, DAG, "misched");
501 }
502
503 // Default implementation of CreateTargetPostRAHazardRecognizer.
504 ScheduleHazardRecognizer *TargetInstrInfoImpl::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const505 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
506 const ScheduleDAG *DAG) const {
507 return (ScheduleHazardRecognizer *)
508 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
509 }
510
511 //===----------------------------------------------------------------------===//
512 // SelectionDAG latency interface.
513 //===----------------------------------------------------------------------===//
514
515 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const516 TargetInstrInfoImpl::getOperandLatency(const InstrItineraryData *ItinData,
517 SDNode *DefNode, unsigned DefIdx,
518 SDNode *UseNode, unsigned UseIdx) const {
519 if (!ItinData || ItinData->isEmpty())
520 return -1;
521
522 if (!DefNode->isMachineOpcode())
523 return -1;
524
525 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
526 if (!UseNode->isMachineOpcode())
527 return ItinData->getOperandCycle(DefClass, DefIdx);
528 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
529 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
530 }
531
getInstrLatency(const InstrItineraryData * ItinData,SDNode * N) const532 int TargetInstrInfoImpl::getInstrLatency(const InstrItineraryData *ItinData,
533 SDNode *N) const {
534 if (!ItinData || ItinData->isEmpty())
535 return 1;
536
537 if (!N->isMachineOpcode())
538 return 1;
539
540 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
541 }
542
543 //===----------------------------------------------------------------------===//
544 // MachineInstr latency interface.
545 //===----------------------------------------------------------------------===//
546
547 unsigned
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr * MI) const548 TargetInstrInfoImpl::getNumMicroOps(const InstrItineraryData *ItinData,
549 const MachineInstr *MI) const {
550 if (!ItinData || ItinData->isEmpty())
551 return 1;
552
553 unsigned Class = MI->getDesc().getSchedClass();
554 int UOps = ItinData->Itineraries[Class].NumMicroOps;
555 if (UOps >= 0)
556 return UOps;
557
558 // The # of u-ops is dynamically determined. The specific target should
559 // override this function to return the right number.
560 return 1;
561 }
562
563 /// Return the default expected latency for a def based on it's opcode.
defaultDefLatency(const MCSchedModel * SchedModel,const MachineInstr * DefMI) const564 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
565 const MachineInstr *DefMI) const {
566 if (DefMI->mayLoad())
567 return SchedModel->LoadLatency;
568 if (isHighLatencyDef(DefMI->getOpcode()))
569 return SchedModel->HighLatency;
570 return 1;
571 }
572
573 unsigned TargetInstrInfoImpl::
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr * MI,unsigned * PredCost) const574 getInstrLatency(const InstrItineraryData *ItinData,
575 const MachineInstr *MI,
576 unsigned *PredCost) const {
577 // Default to one cycle for no itinerary. However, an "empty" itinerary may
578 // still have a MinLatency property, which getStageLatency checks.
579 if (!ItinData)
580 return MI->mayLoad() ? 2 : 1;
581
582 return ItinData->getStageLatency(MI->getDesc().getSchedClass());
583 }
584
hasLowDefLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx) const585 bool TargetInstrInfoImpl::hasLowDefLatency(const InstrItineraryData *ItinData,
586 const MachineInstr *DefMI,
587 unsigned DefIdx) const {
588 if (!ItinData || ItinData->isEmpty())
589 return false;
590
591 unsigned DefClass = DefMI->getDesc().getSchedClass();
592 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
593 return (DefCycle != -1 && DefCycle <= 1);
594 }
595
596 /// Both DefMI and UseMI must be valid. By default, call directly to the
597 /// itinerary. This may be overriden by the target.
598 int TargetInstrInfoImpl::
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx) const599 getOperandLatency(const InstrItineraryData *ItinData,
600 const MachineInstr *DefMI, unsigned DefIdx,
601 const MachineInstr *UseMI, unsigned UseIdx) const {
602 unsigned DefClass = DefMI->getDesc().getSchedClass();
603 unsigned UseClass = UseMI->getDesc().getSchedClass();
604 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
605 }
606
607 /// If we can determine the operand latency from the def only, without itinerary
608 /// lookup, do so. Otherwise return -1.
computeDefOperandLatency(const TargetInstrInfo * TII,const InstrItineraryData * ItinData,const MachineInstr * DefMI,bool FindMin)609 static int computeDefOperandLatency(
610 const TargetInstrInfo *TII, const InstrItineraryData *ItinData,
611 const MachineInstr *DefMI, bool FindMin) {
612
613 // Let the target hook getInstrLatency handle missing itineraries.
614 if (!ItinData)
615 return TII->getInstrLatency(ItinData, DefMI);
616
617 // Return a latency based on the itinerary properties and defining instruction
618 // if possible. Some common subtargets don't require per-operand latency,
619 // especially for minimum latencies.
620 if (FindMin) {
621 // If MinLatency is valid, call getInstrLatency. This uses Stage latency if
622 // it exists before defaulting to MinLatency.
623 if (ItinData->SchedModel->MinLatency >= 0)
624 return TII->getInstrLatency(ItinData, DefMI);
625
626 // If MinLatency is invalid, OperandLatency is interpreted as MinLatency.
627 // For empty itineraries, short-cirtuit the check and default to one cycle.
628 if (ItinData->isEmpty())
629 return 1;
630 }
631 else if(ItinData->isEmpty())
632 return TII->defaultDefLatency(ItinData->SchedModel, DefMI);
633
634 // ...operand lookup required
635 return -1;
636 }
637
638 /// computeOperandLatency - Compute and return the latency of the given data
639 /// dependent def and use when the operand indices are already known. UseMI may
640 /// be NULL for an unknown use.
641 ///
642 /// FindMin may be set to get the minimum vs. expected latency. Minimum
643 /// latency is used for scheduling groups, while expected latency is for
644 /// instruction cost and critical path.
645 ///
646 /// Depending on the subtarget's itinerary properties, this may or may not need
647 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
648 /// UseIdx to compute min latency.
649 unsigned TargetInstrInfo::
computeOperandLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx,bool FindMin) const650 computeOperandLatency(const InstrItineraryData *ItinData,
651 const MachineInstr *DefMI, unsigned DefIdx,
652 const MachineInstr *UseMI, unsigned UseIdx,
653 bool FindMin) const {
654
655 int DefLatency = computeDefOperandLatency(this, ItinData, DefMI, FindMin);
656 if (DefLatency >= 0)
657 return DefLatency;
658
659 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
660
661 int OperLatency = 0;
662 if (UseMI)
663 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
664 else {
665 unsigned DefClass = DefMI->getDesc().getSchedClass();
666 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
667 }
668 if (OperLatency >= 0)
669 return OperLatency;
670
671 // No operand latency was found.
672 unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
673
674 // Expected latency is the max of the stage latency and itinerary props.
675 if (!FindMin)
676 InstrLatency = std::max(InstrLatency,
677 defaultDefLatency(ItinData->SchedModel, DefMI));
678 return InstrLatency;
679 }
680