• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef X86INSTRUCTIONINFO_H
15 #define X86INSTRUCTIONINFO_H
16 
17 #include "X86.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21 
22 #define GET_INSTRINFO_HEADER
23 #include "X86GenInstrInfo.inc"
24 
25 namespace llvm {
26   class X86RegisterInfo;
27   class X86TargetMachine;
28 
29 namespace X86 {
30   // X86 specific condition code. These correspond to X86_*_COND in
31   // X86InstrInfo.td. They must be kept in synch.
32   enum CondCode {
33     COND_A  = 0,
34     COND_AE = 1,
35     COND_B  = 2,
36     COND_BE = 3,
37     COND_E  = 4,
38     COND_G  = 5,
39     COND_GE = 6,
40     COND_L  = 7,
41     COND_LE = 8,
42     COND_NE = 9,
43     COND_NO = 10,
44     COND_NP = 11,
45     COND_NS = 12,
46     COND_O  = 13,
47     COND_P  = 14,
48     COND_S  = 15,
49 
50     // Artificial condition codes. These are used by AnalyzeBranch
51     // to indicate a block terminated with two conditional branches to
52     // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
53     // which can't be represented on x86 with a single condition. These
54     // are never used in MachineInstrs.
55     COND_NE_OR_P,
56     COND_NP_OR_E,
57 
58     COND_INVALID
59   };
60 
61   // Turn condition code into conditional branch opcode.
62   unsigned GetCondBranchFromCond(CondCode CC);
63 
64   /// GetOppositeBranchCondition - Return the inverse of the specified cond,
65   /// e.g. turning COND_E to COND_NE.
66   CondCode GetOppositeBranchCondition(X86::CondCode CC);
67 }  // end namespace X86;
68 
69 
70 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
71 /// a reference to a stub for a global, not the global itself.
isGlobalStubReference(unsigned char TargetFlag)72 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
73   switch (TargetFlag) {
74   case X86II::MO_DLLIMPORT: // dllimport stub.
75   case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
76   case X86II::MO_GOT:       // normal GOT reference.
77   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
78   case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
79   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
80     return true;
81   default:
82     return false;
83   }
84 }
85 
86 /// isGlobalRelativeToPICBase - Return true if the specified global value
87 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
88 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
isGlobalRelativeToPICBase(unsigned char TargetFlag)89 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
90   switch (TargetFlag) {
91   case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
92   case X86II::MO_GOT:                            // isPICStyleGOT: other global.
93   case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
94   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
95   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
96   case X86II::MO_TLVP:                           // ??? Pretty sure..
97     return true;
98   default:
99     return false;
100   }
101 }
102 
isScale(const MachineOperand & MO)103 inline static bool isScale(const MachineOperand &MO) {
104   return MO.isImm() &&
105     (MO.getImm() == 1 || MO.getImm() == 2 ||
106      MO.getImm() == 4 || MO.getImm() == 8);
107 }
108 
isLeaMem(const MachineInstr * MI,unsigned Op)109 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
110   if (MI->getOperand(Op).isFI()) return true;
111   return Op+4 <= MI->getNumOperands() &&
112     MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
113     MI->getOperand(Op+2).isReg() &&
114     (MI->getOperand(Op+3).isImm() ||
115      MI->getOperand(Op+3).isGlobal() ||
116      MI->getOperand(Op+3).isCPI() ||
117      MI->getOperand(Op+3).isJTI());
118 }
119 
isMem(const MachineInstr * MI,unsigned Op)120 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
121   if (MI->getOperand(Op).isFI()) return true;
122   return Op+5 <= MI->getNumOperands() &&
123     MI->getOperand(Op+4).isReg() &&
124     isLeaMem(MI, Op);
125 }
126 
127 class X86InstrInfo : public X86GenInstrInfo {
128   X86TargetMachine &TM;
129   const X86RegisterInfo RI;
130 
131   /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
132   /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
133   ///
134   typedef DenseMap<unsigned,
135                    std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
136   RegOp2MemOpTableType RegOp2MemOpTable2Addr;
137   RegOp2MemOpTableType RegOp2MemOpTable0;
138   RegOp2MemOpTableType RegOp2MemOpTable1;
139   RegOp2MemOpTableType RegOp2MemOpTable2;
140   RegOp2MemOpTableType RegOp2MemOpTable3;
141 
142   /// MemOp2RegOpTable - Load / store unfolding opcode map.
143   ///
144   typedef DenseMap<unsigned,
145                    std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
146   MemOp2RegOpTableType MemOp2RegOpTable;
147 
148   static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
149                             MemOp2RegOpTableType &M2RTable,
150                             unsigned RegOp, unsigned MemOp, unsigned Flags);
151 
152 public:
153   explicit X86InstrInfo(X86TargetMachine &tm);
154 
155   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
156   /// such, whenever a client has an instance of instruction info, it should
157   /// always be able to get register info as well (through this method).
158   ///
getRegisterInfo()159   virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
160 
161   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
162   /// extension instruction. That is, it's like a copy where it's legal for the
163   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
164   /// true, then it's expected the pre-extension value is available as a subreg
165   /// of the result register. This also returns the sub-register index in
166   /// SubIdx.
167   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
168                                      unsigned &SrcReg, unsigned &DstReg,
169                                      unsigned &SubIdx) const;
170 
171   unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
172   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
173   /// stack locations as well.  This uses a heuristic so it isn't
174   /// reliable for correctness.
175   unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
176                                      int &FrameIndex) const;
177 
178   unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
179   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
180   /// stack locations as well.  This uses a heuristic so it isn't
181   /// reliable for correctness.
182   unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
183                                     int &FrameIndex) const;
184 
185   bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
186                                          AliasAnalysis *AA) const;
187   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
188                      unsigned DestReg, unsigned SubIdx,
189                      const MachineInstr *Orig,
190                      const TargetRegisterInfo &TRI) const;
191 
192   /// convertToThreeAddress - This method must be implemented by targets that
193   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
194   /// may be able to convert a two-address instruction into a true
195   /// three-address instruction on demand.  This allows the X86 target (for
196   /// example) to convert ADD and SHL instructions into LEA instructions if they
197   /// would require register copies due to two-addressness.
198   ///
199   /// This method returns a null pointer if the transformation cannot be
200   /// performed, otherwise it returns the new instruction.
201   ///
202   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
203                                               MachineBasicBlock::iterator &MBBI,
204                                               LiveVariables *LV) const;
205 
206   /// commuteInstruction - We have a few instructions that must be hacked on to
207   /// commute them.
208   ///
209   virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
210 
211   // Branch analysis.
212   virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
213   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
214                              MachineBasicBlock *&FBB,
215                              SmallVectorImpl<MachineOperand> &Cond,
216                              bool AllowModify) const;
217   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
218   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
219                                 MachineBasicBlock *FBB,
220                                 const SmallVectorImpl<MachineOperand> &Cond,
221                                 DebugLoc DL) const;
222   virtual bool canInsertSelect(const MachineBasicBlock&,
223                                const SmallVectorImpl<MachineOperand> &Cond,
224                                unsigned, unsigned, int&, int&, int&) const;
225   virtual void insertSelect(MachineBasicBlock &MBB,
226                             MachineBasicBlock::iterator MI, DebugLoc DL,
227                             unsigned DstReg,
228                             const SmallVectorImpl<MachineOperand> &Cond,
229                             unsigned TrueReg, unsigned FalseReg) const;
230   virtual void copyPhysReg(MachineBasicBlock &MBB,
231                            MachineBasicBlock::iterator MI, DebugLoc DL,
232                            unsigned DestReg, unsigned SrcReg,
233                            bool KillSrc) const;
234   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
235                                    MachineBasicBlock::iterator MI,
236                                    unsigned SrcReg, bool isKill, int FrameIndex,
237                                    const TargetRegisterClass *RC,
238                                    const TargetRegisterInfo *TRI) const;
239 
240   virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
241                               SmallVectorImpl<MachineOperand> &Addr,
242                               const TargetRegisterClass *RC,
243                               MachineInstr::mmo_iterator MMOBegin,
244                               MachineInstr::mmo_iterator MMOEnd,
245                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
246 
247   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
248                                     MachineBasicBlock::iterator MI,
249                                     unsigned DestReg, int FrameIndex,
250                                     const TargetRegisterClass *RC,
251                                     const TargetRegisterInfo *TRI) const;
252 
253   virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
254                                SmallVectorImpl<MachineOperand> &Addr,
255                                const TargetRegisterClass *RC,
256                                MachineInstr::mmo_iterator MMOBegin,
257                                MachineInstr::mmo_iterator MMOEnd,
258                                SmallVectorImpl<MachineInstr*> &NewMIs) const;
259 
260   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
261 
262   virtual
263   MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
264                                          int FrameIx, uint64_t Offset,
265                                          const MDNode *MDPtr,
266                                          DebugLoc DL) const;
267 
268   /// foldMemoryOperand - If this target supports it, fold a load or store of
269   /// the specified stack slot into the specified machine instruction for the
270   /// specified operand(s).  If this is possible, the target should perform the
271   /// folding and return true, otherwise it should return false.  If it folds
272   /// the instruction, it is likely that the MachineInstruction the iterator
273   /// references has been changed.
274   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
275                                               MachineInstr* MI,
276                                            const SmallVectorImpl<unsigned> &Ops,
277                                               int FrameIndex) const;
278 
279   /// foldMemoryOperand - Same as the previous version except it allows folding
280   /// of any load and store from / to any address, not just from a specific
281   /// stack slot.
282   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
283                                               MachineInstr* MI,
284                                            const SmallVectorImpl<unsigned> &Ops,
285                                               MachineInstr* LoadMI) const;
286 
287   /// canFoldMemoryOperand - Returns true if the specified load / store is
288   /// folding is possible.
289   virtual bool canFoldMemoryOperand(const MachineInstr*,
290                                     const SmallVectorImpl<unsigned> &) const;
291 
292   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
293   /// a store or a load and a store into two or more instruction. If this is
294   /// possible, returns true as well as the new instructions by reference.
295   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
296                            unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
297                            SmallVectorImpl<MachineInstr*> &NewMIs) const;
298 
299   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
300                            SmallVectorImpl<SDNode*> &NewNodes) const;
301 
302   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
303   /// instruction after load / store are unfolded from an instruction of the
304   /// specified opcode. It returns zero if the specified unfolding is not
305   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
306   /// index of the operand which will hold the register holding the loaded
307   /// value.
308   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
309                                       bool UnfoldLoad, bool UnfoldStore,
310                                       unsigned *LoadRegIndex = 0) const;
311 
312   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
313   /// to determine if two loads are loading from the same base address. It
314   /// should only return true if the base pointers are the same and the
315   /// only differences between the two addresses are the offset. It also returns
316   /// the offsets by reference.
317   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
318                                        int64_t &Offset1, int64_t &Offset2) const;
319 
320   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
321   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
322   /// be scheduled togther. On some targets if two loads are loading from
323   /// addresses in the same cache line, it's better if they are scheduled
324   /// together. This function takes two integers that represent the load offsets
325   /// from the common base address. It returns true if it decides it's desirable
326   /// to schedule the two loads together. "NumLoads" is the number of loads that
327   /// have already been scheduled after Load1.
328   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
329                                        int64_t Offset1, int64_t Offset2,
330                                        unsigned NumLoads) const;
331 
332   virtual void getNoopForMachoTarget(MCInst &NopInst) const;
333 
334   virtual
335   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
336 
337   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
338   /// instruction that defines the specified register class.
339   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
340 
isX86_64ExtendedReg(const MachineOperand & MO)341   static bool isX86_64ExtendedReg(const MachineOperand &MO) {
342     if (!MO.isReg()) return false;
343     return X86II::isX86_64ExtendedReg(MO.getReg());
344   }
345 
346   /// getGlobalBaseReg - Return a virtual register initialized with the
347   /// the global base register value. Output instructions required to
348   /// initialize the register in the function entry block, if necessary.
349   ///
350   unsigned getGlobalBaseReg(MachineFunction *MF) const;
351 
352   std::pair<uint16_t, uint16_t>
353   getExecutionDomain(const MachineInstr *MI) const;
354 
355   void setExecutionDomain(MachineInstr *MI, unsigned Domain) const;
356 
357   unsigned getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
358                                         const TargetRegisterInfo *TRI) const;
359   void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
360                                  const TargetRegisterInfo *TRI) const;
361 
362   MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
363                                       MachineInstr* MI,
364                                       unsigned OpNum,
365                                       const SmallVectorImpl<MachineOperand> &MOs,
366                                       unsigned Size, unsigned Alignment) const;
367 
368   bool isHighLatencyDef(int opc) const;
369 
370   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
371                              const MachineRegisterInfo *MRI,
372                              const MachineInstr *DefMI, unsigned DefIdx,
373                              const MachineInstr *UseMI, unsigned UseIdx) const;
374 
375   /// analyzeCompare - For a comparison instruction, return the source registers
376   /// in SrcReg and SrcReg2 if having two register operands, and the value it
377   /// compares against in CmpValue. Return true if the comparison instruction
378   /// can be analyzed.
379   virtual bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
380                               unsigned &SrcReg2,
381                               int &CmpMask, int &CmpValue) const;
382 
383   /// optimizeCompareInstr - Check if there exists an earlier instruction that
384   /// operates on the same source operands and sets flags in the same way as
385   /// Compare; remove Compare if possible.
386   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
387                                     unsigned SrcReg2, int CmpMask, int CmpValue,
388                                     const MachineRegisterInfo *MRI) const;
389 
390   /// optimizeLoadInstr - Try to remove the load by folding it to a register
391   /// operand at the use. We fold the load instructions if and only if the
392   /// def and use are in the same BB. We only look at one load and see
393   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
394   /// defined by the load we are trying to fold. DefMI returns the machine
395   /// instruction that defines FoldAsLoadDefReg, and the function returns
396   /// the machine instruction generated due to folding.
397   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
398                         const MachineRegisterInfo *MRI,
399                         unsigned &FoldAsLoadDefReg,
400                         MachineInstr *&DefMI) const;
401 
402 private:
403   MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
404                                               MachineFunction::iterator &MFI,
405                                               MachineBasicBlock::iterator &MBBI,
406                                               LiveVariables *LV) const;
407 
408   /// isFrameOperand - Return true and the FrameIndex if the specified
409   /// operand and follow operands form a reference to the stack frame.
410   bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
411                       int &FrameIndex) const;
412 };
413 
414 } // End llvm namespace
415 
416 #endif
417